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Abstract

In many centralized school admission systems, a significant fraction of allocated seats
are later vacated, often due to students obtaining better outside options. We consider the
problem of reassigning these seats in a fair and efficient manner while also minimizing the
movement of students between schools. Centralized admissions are typically conducted us-
ing the Deferred Acceptance (DA) algorithm, with a lottery used to break ties caused by
indifferences in school priorities. We introduce the Permuted Lottery Deferred Acceptance
(PLDA) mechanisms, which reassign vacated seats using a second round of Deferred Accep-
tance with a lottery given by a suitable permutation of the first round lottery numbers. We
show that a mechanism based on a simple reversal of the first round lottery order performs
the best among all PLDA mechanisms. We also characterize PLDA mechanisms as the class
of truthful mechanisms satisfying some natural efficiency and fairness properties. Empiri-
cal investigations based on data from NYC high school admissions support our theoretical
findings.

Keywords: dynamic matching, matching markets, school choice, deferred acceptance, tie-
breaking, cancellations, reassignments.

1 Introduction

In many public school systems throughout the United States, students and families are required
to submit preferences over the schools for which they are eligible. As this is done fairly early
in the academic year, students typically do not know their options outside of the public school
system at the time they their submit preferences. As a consequence, a significant fraction of
the students do not use their allotted seat in a public school, leading to significant inefficiency.
For example, in the NYC public high school system, over 80,000 students are assigned a public
school seat each year in March, and about 10% of these students choose not to attend a public
school in September, possibly opting instead to attend a private or charter school.1 A well-
designed reassignment process, run after students learn about their outside options, could lead
to significant gains in overall welfare. Yet there is no known systematic way of reassigning
unused seats. Our goal is to design an explicit reassignment mechanism run at a late stage of
the matching process that reassigns these seats well.
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1In the 2004-2005 school year, 9.22% of a total of 81,884 students dropped out of the public school system

after the first round. Numbers for 2005-2006 and 2006-2007 are similar.
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During the past fifteen years, insights from matching theory have informed the design of
school choice programs in several cities around the world. The formal study of this mecha-
nism design approach to school choice originated in a paper of [Abdulkadiroglu and Sönmez,
2003]. They formulated a model in which students have strict preferences over a finite set of
schools, each with a given capacity, and each school partitions the set of students into priority
groups. There is now a vast and growing literature that explores many aspects of school choice
systems and informs how they are designed in practice. However, most models considered in
this literature are essentially static. Incorporating dynamic considerations, such as changes in
student preferences, in designing assignment mechanisms is an important aspect that has only
recently started to be addressed. Our work provides some initial theoretical results in this area
and suggests that simple adaptations of one-shot mechanisms can work well in a more general
setting.

We consider a two-stage model of school assignment with finitely many schools. Students
initially submit their ordinal preferences over schools, and receive a first round assignment based
on these preferences via the standard Deferred Acceptance mechanism (DA). School preferences
are given by weak priorities, and ties are broken via a single lottery ordering across all schools.2

Afterwards, some students may be presented with better outside options (such as admission to
a private school), and may no longer be interested in the seat allotted to them. In the second
round, students are invited to re-submit their (new) ordinal preferences over schools. The goal
is to reassign the seats so that the resulting assignment is efficient, fair, and so that the overall
(two-stage) mechanism is strategy-proof and does not penalize students for participating in the
second round.

A natural starting point for reallocating seats is to simply re-run DA on the new preferences,
using the same school preferences (priorities and tie-breaking) as in the first round. However,
this approach may result in a cascade of reassignments of students from one school to another,
which is costly for school administration and for students. Alternatively, the second round
mechanism could allocate the vacant seats first to those students who were unassigned in the
first round so as to reduce reassignment costs. Unfortunately, students can readily manipulate
such a reassignment mechanism.3 The challenge is to design a reallocation mechanism that
retains the good properties of DA while also avoiding its potentially high reassignment costs.

We suggest a class of mechanisms with good incentive properties — the permuted lottery
deferred acceptance mechanisms (PLDA)— in which the assignments in both stages are given
by DA, the initial assignment serves as a guarantee in the second round, and the lottery numbers
across the two rounds are correlated. The mechanisms first break ties in school priorities by
a single lottery ordering of the students, and a first-round assignment is computed by running
DA; in the second round, each school first prioritizes students who were assigned to it in the
first round over those who were not, and within each of the resulting two classes, students
are prioritized according to their initial priorities at the school; finally, further ties across all
schools are broken via a permutation of the (first-round) lottery numbers, and a second-round
assignment is computed by running DA.

Our key insight is that the mechanism designer can leverage the correlation between tie-
breaking lotteries to achieve operational goals. In particular, we show that reversing the lottery
between the two rounds reduces the number of reassigned students. Our main theoretical result
is that under a simple and intuitive condition, which we term the order condition, all PLDAs

2This model for the first round assignment is consistent with current practice at a number of school choice
systems, including at New York City, Chicago and Denver (see NYC Department of Education [2017], Chicago
Public Schools [2017], Denver Public Schools [2017], Pathak and Sönmez [2013]).

3Specifically, by submitting truncated preference lists initially, students are either assigned one of their top
choices in the first round, or receive high priority in the second round.
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Figure 1: Running DA with the same lottery creates a cascade of reassignments, whereas
reversing the lottery minimizes reassignment.

In this example, there are 6 students with common preferences and 6 schools with a single priority group.

All students prefer schools in the order s1 � s2 � · · · � s6. The student assigned to school s1 in the

first round leaves after the first round; otherwise all students find all schools acceptable in both rounds.

Running DA with the same tie-breaking lottery reassigns all students to the school one better on their

preference list, whereas reversing the tie-breaking lottery reassigns only the student initially assigned to

s6.

produce the same distribution over the final assignment, and the reverse lottery DA (RLDA)4

minimizes reassignment. In other words, when the order condition holds, RLDA is provably
optimal among PLDAs with respect to both ex ante allocative efficiency and minimizing re-
assignment. The order condition can be interpreted as all schools having the same relative
overdemand in the two rounds, despite changes in student preferences, and is satisfied when
dropouts are uniform across first round student preferences, or when students have common
preferences, as in Figure 1. (Our theoretical result holds in more general settings with het-
erogeneous student preferences and arbitrary priorities at schools.) We also give an axiomatic
justification for the class of PLDA mechanisms. In the case with no school priorities, they are
equivalent to the class of mechanisms that are two-round strategy-proof while satisfying natural
efficiency and fairness requirements.

We empirically assess the performance of RLDA using data from the New York City high
school system. We investigate a class of PLDAs that include RLDA, rerunning DA using the
original lottery order (termed forward lottery deferred acceptance or FLDA), and rerunning
DA using an independent random lottery. We find that all these mechanisms perform fairly
similarly in terms of allocative efficiency, but RLDA reduces the number of reassigned students
significantly. For instance, on the NYC public school system data set from 2004-2005, we find
that FLDA results in about 7,200 reassignments out of a total of about 75,000 who remained in
the public school system, whereas RLDA results in fewer than 3,100 reassignments.

1.1 Related Work

The mechanism design approach to school choice was first formulated by [Balinski and Sonmez,
1999] and [Abdulkadiroglu and Sönmez, 2003]. Since then, many economists have worked closely
with school authorities to redesign school choice systems.5 These centralized mechanisms appear

4The student with the worst first round lottery number is given the highest priority in the second round.
5See for example New York City by [Abdulkadirolu et al., 2005a] and Boston by [Abdulkadirolu et al., 2005b] in

2003 and 2005 respectively, followed by New Orleans (2012), Denver (2012), and Washington DC (2013), among
others.
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to outperform the uncoordinated and ad-hoc assignment systems that they replaced ([Abdulka-
diroğlu et al., 2015]). A significant portion of the theoretical literature has focused on the relative
merits of two canonical mechanisms, Deferred Acceptance (DA), first introduced by [Gale and
Shapley, 1962], and Top Trading Cycles (TTC), as well as their variations. We refer the reader
to recent surveys by [Pathak, 2011] and [Abdulkadiroglu and Sonmez, 2011] of the rich and
growing (theoretical and empirical) literature on school choice problems.

One strand of literature explores how ties are broken within priority groups in DA. [Ab-
dulkadiroglu et al., 2009] empirically compared single tie-breaking and multiple tie-breaking for
DA, and recent papers of [Arnosti, 2015], [Ashlagi and Nikzad, 2016] and [Ashlagi et al., 2015]
study these tie-breaking rules analytically. We note that in our model, PLDA mechanisms use
tie-breaking to reduce the number of reassignments while still satisfying natural efficiency and
fairness properties.6

A second strand of literature that is relevant to our model is the work of [Abdulkadiroglu and
Sonmez, 1999] on house allocation models with existing tenants (or housing endowments). The
second round in our model can be thought of as school seat allocation with existing endowments.
[Abdulkadiroglu and Sonmez, 1999] prove that a generalization of TTC is strategy-proof, Pareto
efficient, and individually rational7 in this setting. However, directly applying the generalized
TTC mechanism in the two-round setting suffers from some drawbacks. First, in our model the
endowments are computed endogenously from the preferences. This means that a strategy-proof
mechanism in the housing model is not necessarily strategy-proof in our two-round model, as a
student has an incentive to manipulate their first round endowment. Secondly, while the TTC
mechanism is natural in a model with endowments, it is less appropriate for assigning public
school seats to students, where it is perfectly reasonable for a student to have priorities giving
them a right to attend a school, but not to be able to trade these rights with each other.

Our work is among a growing number of papers that consider a dynamic model for school
admissions. [Compte and Jehiel, 2008] consider using DA to reassign agents who each hold a
position at an organization. They show that a modified version of DA that prioritizes agents cur-
rently holding a position is strategy-proof, stable, and respects individual guarantees.8 [Combe
et al., 2016] study a more general model that also incorporates new agents, and show that the
modified version of DA can be improved significantly in terms of overall welfare while also re-
ducing the degree of instability. However, a critical distinction between this stream of work and
ours is that in our model, the initial endowment is determined endogenously by preferences, and
so students could manipulate their first round endowment to improve their final assignment.

A number of recent papers focus on the strategic issues in dynamic reassignment, such as
[Dur, 2012, Kadam and Kotowski, 2014, Pereyra, 2013], and also propose using modified versions
of DA in each round. These works develop appropriate solution concepts in finite markets with
specific cross-period constraints and propose DA-like mechanisms that implement them. In
recent work that is complementary to ours, [Narita, 2016] analyzes the preference data from
NYC school choice system and observes that a significant proportion of preferences change after
the initial match. Narita also considers a modified version of DA in this setting and establishes
that it has good incentive and efficiency properties. We similarly propose PLDA mechanisms
for their desirable incentive and efficiency properties. However, we focus on the problem of
reassignment in school choice, where the emphasis is on the final assignment after two rounds,
and the cost of reassignment. In contrast to [Narita, 2016], we consider a setting where outside
options are realized after the initial assignment, and preferences are otherwise unchanged. In

6Prior work has exploited indifferences to achieve other ends. For example, [Erdil and Ergin, 2008] show how
to improve allocative efficiency, and [Ashlagi and Shi, 2014a] show how to increase community cohesion.

7An allocation is individually rational if every agent weakly prefers his assignment to his original endowment.
8A two-round mechanisms respects individual guarantees if each agent is assigned to a weakly better position

in the second round.
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addition, we provide an axiomatic justification for the class of PLDA mechanisms. This provides
us with a natural class of mechanisms over which to optimize. We also exploit indifferences in
school priorities to reduce the number of reassignments, which is not addressed in prior literature.

Our work connects with several strands in the operations management literature. [Ashlagi
and Shi, 2014a] consider the problem of improving community cohesion in school choice, and find
that correlating the lottery number of students belonging to the same community can be used to
improve cohesion. [Ashlagi and Shi, 2014b] consider the problem of optimal allocation without
money, motivated also by the school choice problem. Both these papers provide an axiomatic
characterization of a class of candidate mechanisms and optimize over the class, which is similar
to our approach. Our work also has some connections to the queueing literature. The class of
mechanisms that emerges in our setting involves choosing a permutation of the initial lottery
order, and we find that the reverse lottery minimizes the number of reassignments within this
class. This is similar to the choice of a service policy in a queuing system, e.g., first-in-first-
out (FIFO), last-in-first-out (LIFO), shortest-remaining-processing-time (SRPT), etc., wherein
a particular policy is chosen in order to minimize an appropriate cost function such as the
expected waiting time, e.g., see [Lee and Srinivasan, 1989]. “Work-conserving” service policies
such as these result in different expected waiting times though the achievable throughput is
identical, similar in spirit to our finding that different PLDA mechanisms differ in the number
of reassignments but have identical allocative efficiency (under some conditions). Our continuum
model parallels fluid limits and deterministic models employed in queueing [Whitt, 2002], revenue
management [Talluri and Van Ryzin, 2006] and other contexts in the OM literature.

2 Model

We begin by informally describing our setting. We consider the problem of assigning seats at
a finite set S of schools to a set of students. Each school partitions the students into priority
groups that are exogenously determined and publically known. Each student submits a strict
preference ordering over the schools that she finds acceptable. A single lottery ordering of the
students is used to resolve ties in the priority groups at all schools, resulting in an instance of the
two-sided matching problem with strict preferences and priorities. Seats are initially assigned
according to the student optimal Deferred Acceptance (DA) algorithm, as follows. In each step,
unassigned students apply to their favorite school that has not yet rejected them. Each school si
tentatively assign seats to the top qi students who have applied to it, where qi is the capacity of
school si, and rejects any remaining students who have applied to it. The algorithm runs until
there are no new student applications, at which point it terminates and assigns each student
to her tentatively assigned school seat. We remark that the strict student preferences, weak
school priorities, and use of DA with single tie-breaking are consistent with many school choice
systems, such as those in New York City, Chicago and Denver (see e.g. [Abdulkadiroglu and
Sönmez, 2003]).

After this initial assignment, some students are subsequently presented with better outside
options—such as admission to a private school that is not in S—and may no longer be interested
in the seats assigned to them, effectively vacating those seats. After these outside options are
revealed, each student submits her new ordinal preferences over schools, and a reassignment is
computed. Since the reassignment occurs at a relatively late stage, moving students from one
school to another is costly, potentially for both schools and students. Our goal is to design a
procedure to reassign students to schools that minimizes the amount of student movement with
respect to the initial assignment, while satisfying appropriate notions of efficiency, fairness, and
incentive compatibility.

The timeline for the mechanism design problem considered here is as follows. Students submit
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Figure 2: Timeline of the two-round mechanism design problem

first round preference reports�,9 the mechanism designer obtains the first round assignment µ by
running DA with uniform-at-random single tie-breaking, and the mechanism designer announces
µ. Then, students observe their outside option, and update their preferences accordingly. Finally,
students submit their updated second round preference reports �̂, the mechanism designer
obtains the second round assignment µ̂ by running a reassignment mechanism M , and the
mechanism designer announces µ̂. We illustrate this in Figure 2.

We describe two models for the problem of assigning seats to students. The discrete model
(Section 2.1), which assumes a finite set of students, can be easily translated into implementable
mechanisms and is used in the empirical analysis (Section 5). The continuum model (Section
2.2), which assumes a finite number of schools and a continuum of students, is used in most of
the theoretical analysis (Section 3.1). Intuitively, one could think of the continuum model as
a reasonable approximation of the discrete model when the number of students is large.10 Our
continuum model can be viewed as a two-round version of the model introduced by Azevedo
and Leshno [2014].

2.1 Discrete Model

A finite set Λ = {1, 2, . . . ,m} of students are to be assigned to a set S = {s1, . . . , sn} of schools.
Each student can attend at most one school. For every school si ∈ S, let qi ∈ N+ be the capacity
of school si. Let sn+1 6∈ S denote the outside option. We assume that the outside option has
infinite capacity qn+1 =∞. Each student λ ∈ Λ has strict first round preferences �λ and second

round preferences �̂λ over S ∪ {sn+1}. Each school si has weak priorities �Si over Λ, which
partition the students into priority groups. Equivalently, each student λ has a priority group
pλi ∈ N at school si, and students in higher priority groups are preferred.

Definition 1. Preferences (�, �̂) are consistent if the second round preferences �̂ are obtained
from the first round preferences � via truncation: (1) for every si, sj ∈ S, si � sj iff si�̂sj, and
(2) for every si ∈ S, sn+1 � si implies sn+1�̂si.

In other words, preferences are consistent if the only change in preferences across the two
rounds is in each student’s relative ranking of sn+1, which weakly improves from the first round
to the second, corresponding to an outside option (possibly) being realized between the two

rounds. We say that a student λ is consistent if she has consistent preferences (�λ, �̂λ).

9Since we will be considering mechanisms which are strategy-proof in the large, we assume that students report
truthfully and do not distinguish between reported preferences and true preferences.

10We do not establish a formal relationship between the discrete and continuum models, as that is beyond the
scope of our paper. Continuum models have been used in a number of papers on school choice, see [Agarwal and
Somaini, 2014, Ashlagi and Shi, 2014a, Azevedo and Leshno, 2014]
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Each student λ ∈ Λ is given a lottery number L(λ), drawn independently and uniformly
from [0, 1]. We remark that every ordinal ranking of students can be realized by some cardinal
lottery function L, and these random lottery numbers generate a permutation of the students
uniformly at random.

An assignment specifies a school for each student. For a generic assignment µ, we let µ(λ)
denote the school to which student λ is assigned, and µ(si) denote the set of students assigned
to school si. If µ(λ) = si then student λ is said to be assigned to school si; if µ(λ) = sn+1,
student λ is matched with her outside option and is said to be unassigned. An assignment is
feasible if |µ(si)| ≤ qi for all si. In the rest of the paper, the term “assignment” is always used
to mean a feasible assignment.

Next, we define what we mean by a reassigned student. All else being equal, we want to
minimize the number of such students, as student movement is costly both for students and for
school administration.

Definition 2. A student λ ∈ Λ is a reassigned student if she leaves a school in S for another
school in S. That is, λ is a reassigned student11 if µ(λ) 6= µ̂(λ) and µ(λ)�̂λsn+1.

2.2 Continuum Model

In the continuum model, a continuum of students Λ is to be assigned to a set S = {s1, . . . , sn}
of schools. Each student can attend at most one school. The set of students Λ has an associated
measure η, i.e., for any (measurable) A ⊆ Λ, η(A) gives the mass of students in A. The outside
option is sn+1 /∈ S. As before, the capacities of the schools are q1, . . . , qn ∈ R+, and qn+1 =∞.
A set of students of η-measure at most qi can be assigned to school si.

Each student λ ∈ Λ has a type θλ and a first round lottery number L(λ) ∈ [0, 1], which
encode both student preferences and school priorities. A student’s type θ is given by the tuple
θ = (�θ, �̂θ, pθ), where �θ and �̂θ are strict preferences over S∪{sn+1}, which are, respectively,
the student’s first and second round preferences, and pθ is an n-dimensional priority vector
with pθi indicating (the number of) the priority group of student θ at school si. Each school
si has ni priority groups. We assume that larger priority groups are preferred, and that a
student in the kth most preferred priority group at si is in priority group pi = ni − k, so that
pi ∈ {0, 1, . . . , ni − 1}.

Let Θ be the set of all student types. For each θ ∈ Θ let ζ(θ) = η({λ ∈ Λ : θλ = θ}) be the

measure of all students with type θ. We say that θ is consistent if the preferences (�θ, �̂θ) are
consistent (see Definition 1), and otherwise we say that θ is inconsistent. We assume that all
students have consistent preferences.

Assumption 1 (Consistent preferences). If ζ(θ) > 0 then θ is consistent.

As in the discrete model, we assume that the first round lottery numbers are i.i.d variables
drawn uniformly from [0, 1] and do not depend on preferences. This means that for all θ ∈ Θ
and intervals (a, b) with 0 ≤ a ≤ b ≤ 1, the proportion of students with type θ who have lottery
number in (a, b) is equal to the length of the interval (a, b),12

η({λ ∈ Λ : θλ = θ, L(λ) ∈ (a, b)}) = (b− a)ζ(θ).

An assignment specifies the set of students admitted at each school. For any assignment
µ, we let µ(λ) denote the school to which student λ is assigned, and µ(si) denote the set of

11Several alternative definitions of reassigned students, such as counting students who are initially in sn+1 and
end up at a school in S, and/or counting students who no longer find their initial assignment acceptable, could
also be considered. We note that our results continue to hold for all these alternative definitions.

12This can be justified via an axiomatization of the kind obtained in Al-Najjar [2004].
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students assigned to school si. We assume that µ(si) is η-measurable and η(µ(si)) ≤ qi, for all
si ∈ S ∪ {sn+1}. We will again let µ denote the first round assignment, and let µ̂ denote the
second round assignment.

2.3 Mechanisms

In this section, we formally define the class of mechanisms that we will be considering.

Let the students’ first and second round preference reports be denoted by � and �̂ respec-
tively. A reassignment mechanism is a function that maps the realization of first round lotteries
L(λ), first round assignment µ and students’ second round reports �̂ into a reassignment µ̂.13 A
two-round mechanism obtained from a reassignment mechanism M is a two-round mechanism
where the first round mechanism is DA with uniform-at-random single tie-breaking, and the sec-
ond round mechanism is M . We emphasize that we intentionally keep the first round consistent
with currently used mechanisms by fixing it to be DA with the same uniform-at-random lottery
used for tie-breaking at all schools. It follows that the only freedom afforded the planner is the
design of the reassignment mechanism.

We next describe some desirable properties of reassignment mechanisms. Any reassignment
that requires taking away a student’s initial assignment against her will is impractical. Thus,
we require our reassignment to respect first round guarantees:

Definition 3. A reassignment µ̂ respects guarantees if every student prefers her second round

assignment to her first round assignment, that is µ̂(λ)�̂λµ(λ) for every λ ∈ Λ.

One of the main reasons for the success of DA in practice is the way it respects priorities: if
a student is not assigned to a school she wants, it is because that school filled up with assigned
students of higher priority. We require reassignments to respect priorities in this sense:

Definition 4. A reassignment µ̂ respects priorities (subject to guarantees) if for every

school si ∈ S and student λ ∈ Λ such that si �̂λ µ̂(λ), we have η (µ̂(si)) = qi, and if in addition
a student λ′ satisfies µ̂(λ′) = si 6= µ(λ′) then λ′ �Si λ.

We are interested in reassignment mechanisms that respect guarantees and priorities. We
next define a class of reassignment mechanisms that respect guarantees and priorities. These
mechanisms play a prominent role in our analysis, as we will show that, in the continuum model,
they are uniquely characterized by respecting guarantees and priorities, and appropriate notions
of two-round strategyproofness, efficiency and fairness in the continuum.

We say P is a permutation if it is a Lebesgue measure preserving bijection from [0, 1] to
[0, 1].

Definition 5 (Permuted Lottery Deferred Acceptance (PLDA) Mechanisms). Let P be a per-
mutation (that may depend on ζ(·)). Let L be the realization of first round lottery numbers, and
let µ be the first round assignment obtained by running DA with lottery L. The permuted lottery
deferred acceptance mechanism (PLDA) associated with P is a function mapping (L, µ,�, �̂)
into a reassignment µ̂P , which is obtained by running DA on Λ with student preferences �̂ and
S and with school preferences �̂S that are determined as follows. For each si:

• Student λ ∈ Λ for whom µ(λ) = si are termed guaranteed at si, and all other students are
termed non-guaranteed at si.

13Here we make the restriction that the second round assignment depends on the first round report only
indirectly, through the first round assignment µ. We believe that this is a reasonable restriction, given that the
second round occurs a significant period of time after the first round, and will help the mechanism appear more
fair from the student perspective.
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• Schools prefer all guaranteed students to all non-guaranteed students, that is, for every
student λ ∈ Λ guaranteed at si and student λ′ ∈ Λ non-guaranteed at si, we have λ�̂Si λ′.
• Ties within each of the two groups—guaranteed and non-guaranteed—are broken first ac-

cording to �Si , and then according to the permuted lottery P ◦ L (in favor of the student
with the larger permuted lottery number).

Intuitively, these mechanisms involve running deferred acceptance twice. They use single
tie-breaking in both rounds, explicitly correlate the lotteries used in the two rounds via P ,
and modify school priorities in order to guarantee that each student receives a (weakly) better
assignment in the second round. Two special cases are worth highlighting. The RLDA (“reverse
lottery”) mechanism uses the reverse permutation R(x) = 1 − x; and the FLDA (“forward
lottery”) mechanism, which preserves the original lottery order, uses the identity permutation
F (x) = x. In this paper, we provide strong evidence to support the use of the RLDA mechanism.

We now describe some desirable incentive and efficiency properties for two-round mechanisms
in the continuum model, and define PLDA mechanisms in this setting. In the school choice
problem, and in the reassignment problem in particular, it is reasonable to assume that students
will strategize for all the rounds for which they know their preferences for schools in S. Hence, it
is desirable that at every point when a student (with consistent preferences) reports preferences,
she receives the best expected utility, conditional on everything that has happened up to that
point, by reporting truthfully.14 Specifically, let ex ante expected utility refer to the expected
utility from the second round assignment at the beginning of the first round, conditional on
first round reports, and let interim expected utility refer to the expected utility from the second
round assignment at the beginning of the second round, conditional on first round guarantees
and second round reports. 15

Definition 6. A two-round mechanism is two-round strategy-proof (in the continuum model)16

if the following hold:

• Knowing first round preferences and the joint distribution of first round assignments and
second round preferences, and assuming other students are truthful, no student (with con-
sistent preferences) can obtain a better ex ante expected utility from her second round
assignment by using any two-round strategy that involves lying in one or both rounds.

• Knowing the specific realization of first round assignments and the conditional distribution
of second round preferences, and assuming other students are truthful, no student can
obtain a better interim expected utility from her second round assignment by lying in the
second round.

Note that a mechanism that uses a top-trading cycles like mechanism (which uses the first
round allocation as an initial endowment) in the second round will not be two-round strategy
proof, because students will benefit from manipulating their first round reports to obtain a more
popular initial allocation which they can leverage to their advantage in the second round.

In order to be efficient, a reassignment mechanism should not waste any unused seats that
are desired by students. A reassignment mechanism is non-wasteful if no student is assigned a

14Here we assume a cardinal utility model underlying student preferences. We make this formal in Section 3.1.
15We remark that our model makes the most sense with a fixed outside option value in the first round that is

then updated in the second round. We may interpret this as students knowing their valuations for each school
both inside and outside the system, and assuming that the probability they will receive an outside school that
they are not guaranteed is 0, and reporting accordingly in the first round. We note that it is a dominant strategy
for them to report in this manner.

16We remark that PLDA mechanisms are not generally strategy-proof (see Example C in the appendix). How-
ever, there is reason to expect that students will not strategize in a sufficiently large discrete market, since
PLDAs are two-round strategy-proof in the continuum model, and hence satisfy a “strategy-proofness in the
large” condition defined by Azevedo and Budish [2013]
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school she prefers less to a school not at capacity, that is for each realization of µ̂, student λ ∈ Λ
and schools si, sj , if µ̂(λ) = si and sj�̂λsi, then η(µ̂(sj)) = qj .

It is also desirable for a two-round mechanism to be Pareto efficient. We do not want any pair
of students to be able to improve their utility by swapping probability shares in second round
allocations. However, we also require that our reassignment mechanism respects guarantees
and priorities (see Definitions 3 and 4). This motivates the following definitions. A Pareto-
improving cycle among reassigned students is an ordered set of types (θ1, θ2, . . . , θm) ∈ Θm, sets
of students (Λ1,Λ2, . . . ,Λm),Λi ⊆ Λ and schools (s̃1, s̃2, . . . , s̃m) ∈ Sm such that for all i it holds

that η(Λi) > 0, s̃i+1�̂θi s̃i (where we define s̃m+1 = s̃1), and for all λ ∈ Λi it is the case that
θλ = θi, µ̂(λ) = si, µ(λ) 6= si. We say that a Pareto-improving cycle among reassigned students

respects priorities if for all i and λ ∈ Λi, λ̂ ∈ Λi+1 it holds that pλi+1 ≥ pλ̂i+1 (where we define
Λm+1 = Λ1 and pm+1 = p1).

Definition 7. A two-round mechanism is constrained Pareto efficient among reassigned
students if there are no Pareto-improving cycles among reassigned students that respect prior-
ities.

We formally define permuted lottery deferred acceptance mechanisms in the continuum model
in terms of cutoffs, in the style of Azevedo and Leshno [2014], as follows.

Definition 8 (PLDA Mechanisms in the Continuum). Let P be a permutation (that may depend
on ζ(·)). The first round assignment µ is defined by a vector of cutoffs C ∈ Rn+1

+ , where a student
λ is given a first round score rλi = pλi + L(λ) at school si and assigned to her favorite school
among those where her first round score exceeds the cutoff:

µ(λ) = max
�λ

({si ∈ S ∪ {sn+1} : rλi ≥ Ci}).

In the second round, for each student λ with priority vector pλ = p, lottery number L(λ) = l
and first round assignment µ(λ) = si, we associate a second round score of r̂λi = ni + P (l) at
school si, and a second round score of r̂λj = pj + P (l) at all other schools sj, j 6= i. The second

round assignment µ̂P is defined via a vector of cutoffs ĈP ∈ Rn+1
+ , where a student λ is assigned

to her favorite school among those where her second round score weakly exceeds the cutoff:

µ̂P (λ) = max
�̂λ

({si ∈ S ∪ {sn+1} : r̂λi ≥ ĈPi }).

The validity of such a definition in describing DA mechanisms follows from the arguments
in [Azevedo and Leshno, 2014], and it is easy to verify that our model satisfies the technical
conditions required in that paper.

PLDA mechanisms are an attractive class of two-round mechanisms, as they satisfy all our
desired incentive and efficiency properties.

Proposition 1. Suppose student preferences are consistent. Then PLDA mechanisms respect
guarantees and priorities, and are two-round strategy-proof (in the continuum model), non-
wasteful, and constrained Pareto efficient among reassigned students.

Proposition 1 demonstrates that PLDA mechanisms have desirable properties. They are
two-round strategy-proof in the continuum model, so students have an incentive to truthfully
report their preferences when the number of students is large. They are also efficient in that
they are non-wasteful and constrained Pareto efficient among reassigned students.

We will further show (Theorem 4) that in a setting without priorities, the PLDA mechanisms
are in a sense the only mechanisms that satisfy all these properties. Specifically, suppose we
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additionally require that our reassignment mechanism is anonymous, in that students with the
same first round assignments and second round preference reports have the same distributions
over reassignments, and is averaging, in that the aggregate proportion of students of a given
type assigned to each pair of schools in the two rounds is deterministic. Then every mechanism
that satisfies these properties is a PLDA mechanism. We make this formal in Section 3.1.

3 Main Results

We have introduced the PLDA mechanisms as a class of mechanisms with desirable incentive
and efficiency properties. We will show that the defining characteristic of a mechanism in this
class –the permutation of lotteries between the two rounds– can be chosen to achieve desired
operational goals.

We first provide a simple and intuitive order condition under which all PLDA mechanisms
give the same ex ante allocative efficiency. When the primitives of the market satisfy the order
condition, it is possible to pursue secondary operational goals without sacrificing allocative
efficiency. Then, in the context of reassigning school seats before the start of the school year,
we consider the specific problem of minimizing reassignment, and show that when the order
condition is satisfied, reversing the lottery minimizes reassignment among all PLDA mechanisms.
In Section 3.1 we provide axiomatic justification for PLDAs (in the case of no school priorities),
showing that PLDAs are the two-round strategyproof mechanisms that are Pareto efficient
among reassigned students and satisfy certain natural fairness properties.

In Section 5 we demonstrate that our theoretical results hold empirically even in settings
where the order condition does not hold. In simulations using data from the NYC high school
system, the reverse lottery significantly reduces the number of reassigned students (relative to
reusing the same lotteries as in the initial round, or other natural permutations), and does not
significantly affect allocative efficiency.

Our results suggest that RLDA is a good choice of mechanism when the primary goal is
to provide an efficient second round assignment (in terms of the allocation produced) while
minimizing the number of reassigned students. In Section 6 we discuss how the choice of lottery
can be used to achieve other operational goals, such as maximizing the number of students
with improved assignments. Our results indicate that it is possible to do so without sacrificing
allocative efficiency.

We begin by defining the order condition, which we will need to state our main results.

Definition 9. The order condition holds on a set of primitives (S, q, p,Λ, η) if for every
priority class p, the first and second round school cutoffs under RLDA within that priority class
are in the same order. That is, for all si, sj ∈ S ∪ {sn+1},

Cp,i > Cp,j ⇒ ĈRp,i ≥ ĈRp,j .

We emphasize that the order condition is a condition on the market primitives, namely,
school priorities and capacities and student preferences. We may interpret the order condition
as an indication that the relative demand for the schools is consistent between the two rounds.
Informally speaking, it means that the revelation of the outside options does not change the
relative overdemand for the schools. One important setting where the order condition holds
is the case of uniform dropouts and a single priority type. In this setting, each student either
remains in the system and retains her first round preferences in the second round, or drops out
of the system entirely. If dropouts occur in an i.i.d. fashion, the order condition is satisfied (for
arbitrary school priorities and capacities and initial student preferences).17 We provide direct

17Formally, this is the case where there exists ρ ∈ [0, 1] s.t. for every strict preference � over schools, it
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proofs of several of our theoretical results for this setting in Section 4, in order to give a flavor
of the arguments employed to establish them in the general setting.

Next, we define type equivalence of mechanisms. In words, this refers to equivalence between
mechanisms in terms of the masses of different student types θ assigned to each school in the
second round allocation.

Definition 10. Two allocations µ̂ and µ̂′ are said to be type equivalent if for all types θ ∈ Θ
and schools si,

η({λ ∈ Λ : θλ = θ, µ̂(λ) = si}) = η({λ ∈ Λ : θλ = θ, µ̂′(λ) = si}).18

We remark that type equivalence depends only on the second round allocation, while reas-
signment measures the difference between the first and second round allocations.

We are now ready to state the main results of this section.

Theorem 1 (Order condition implies type equivalence). If the order condition (Definition 9)
holds, all PLDA mechanisms produce type equivalent allocations.

Thus, if the order condition holds, the measure of each student type θ ∈ Θ assigned to each
school in the second round is independent of the permutation chosen for the PLDA.

Theorem 2 (Reverse lottery minimizes reassignment). If all PLDA mechanisms produce type
equivalent allocations, then RLDA minimizes the measure of reassigned students among PLDA
mechanisms.

Our results present a strong case for using the RLDA mechanism when the main goals are
to achieve allocative efficiency and minimize the number of reassigned students. Theorems 1
and 2 show that when the order condition holds, RLDA is unequivocally optimal in the class of
PLDA mechanisms, since all PLDA mechanisms give type-equivalent allocations19 and RLDA
minimizes the number of reassigned students. We remark that running RLDA provides a simple
way to check for whether the order condition holds for a given set of primitives.20

Next, we give examples of when the order condition holds and does not hold, and illustrate
the resulting implications for type equivalence. We illustrate these in Figure 3.

Example 1. Consider a setting with 2 schools, each with a single priority group. School s1 has
lower capacity and is initially more overdemanded. Student preferences are such that when all
the students who only want s2 drop out, s1 is still more overdemanded and the order condition
holds, and when all the students who only want s1 drop out, s2 now becomes more overdemanded
under RLDA and the order condition does not hold.

Specifically, school capacities are given by q1 = 2, q2 = 5. There is measure 4 of each of
the four types of first round student preferences. Let θi denote the student type that finds only

holds that ζ({θ = (�θ, �̂θ,1) ∈ Θ :�θ=�, �̂θ = sn+1 � . . .}) = ρζ({θ = (�θ, �̂θ,1) ∈ Θ :�θ=�}), and

ζ({θ = (�θ, �̂θ,1) ∈ Θ :�θ=�, �̂θ =�}) = (1−ρ)ζ({θ = (�θ, �̂θ,1) ∈ Θ :�θ=�}).We note that this is essentially
the case where dropouts are i.i.d. with probability p. We remark that there are well-known technical measurability
issue w.r.t. a continuum of random variables, but it should be noted that this issue can be handled—see, for
example, Al-Najjar [2004].

18We remark that the type equivalence condition is well-defined in the space of interest. Specifically, although
for general random mechanisms these measures are random variables, in the case of PLDA mechanisms, these
measures are a deterministic function of priorities and preferences, and the equality is well-defined.

19A reasonable utility model in the continuum would yield that type equivalence implies welfare equivalence.
20We are not suggesting that the mechanism should involve checking the order condition and then using RLDA

only if this condition is satisfied (based on the guarantee in Theorems 1 and 2). However, one could, in principle,
check the order condition on historical data and accordingly decide whether to use the RLDA mechanism or not.
See Section 5 for discussion on considerations if the order condition is not exactly satisfied.

12



school si acceptable, and θi,j denote the type that finds both acceptable and prefers si to sj. As
we will be considering only students who either leave the system completely or keep the same
preferences, we will also let these denote student types with the same preferences in the second
round. If we run DA with single tie-breaking, the first round cutoffs are (C1, C2) =

(
3
4 ,

1
2

)
.

Suppose that all type θ2 students leave the system, and no other students receive an outside

option. This frees up 2 units at s2. Under RLDA, the second round cutoffs are
(
ĈR1 , Ĉ

R
2

)
=(

1, 3
4

)
. In this case, the order condition holds and FLDA and RLDA are type equivalent. It is

simple to verify that both FLDA and RLDA assign

µ̂F (s1, s2) = µ̂R(s1, s2) = ((1, 1, 0), (0, 2, 3)) ,

where the vector denotes the measure of students of type (θ1, θ12, θ21) assigned to the school.

Suppose that all type θ1 students leave the system, and no other students receive an outside
option. This frees up 1 unit at s1. Under RLDA, no new students are assigned to s2, and
the previously bottom ranked (but now top ranked) measure 1 of students who find s1 acceptable

are assigned to s1. Hence the second round cutoffs are
(
ĈR1 , Ĉ

R
2

)
=
(

7
8 , 1
)
. In this case, the

order condition does not hold. Type equivalence also does not hold, since the FLDA and RLDA
assignments are

µ̂F =

(
(2, 0, 0),

(
1

3
,
7

3
,
7

3

))
, µ̂R = ((1.5, 0.5, 0), (1, 2, 2))

where the vector denotes the measure of students of type (θ12, θ21, θ2) assigned to the school. We
note that in this case, FLDA is Pareto efficient, whereas RLDA is not.

We end this section by giving a little intuition as to why our results are true. A key conceptual
insight is that we can simplify the analysis by shifting away from student assignments, which
depend on student preferences, and considering instead the options that a student is allowed
to choose from, which are independent of preferences. Specifically, if we define the affordable
sets for each student as the set of schools for which she meets either the first or second round
cutoffs, then each student is assigned to her favorite school in her affordable set, and changing
the student’s preferences does not change her affordable set in our continuum model. Moreover,
affordable sets and preferences uniquely determine demand.

The main technical idea that we use in establishing our main results is that the order con-
dition is equivalent to the following, seemingly much more powerful “global” order condition.

Definition 11. We say that a PLDA with permutation P satisfies the local order condition
on a set of primitives (S, q, p,Λ, η) if, for every priority class p, the first and second round
school cutoffs within that priority class are in the same order under this PLDA. That is, for all
si, sj ∈ S ∪ {sn+1},

Cp,i > Cp,j ⇒ ĈPp,i ≥ ĈPp,j .

We say that the global order condition holds on a set of primitives (S, q, p,Λ, η) if:

1. (Consistency aross rounds) For every permutation P , the local order condition holds for
PLDA with permutation P on (S, q, p,Λ, η); and

2. (Consistency aross permutations) For every priority class p, for all pairs of permutations
P, P ′ and schools si, sj ∈ S ∪ {sn+1}, it holds that ĈPp,i > ĈPp,j ⇒ ĈP

′
p,i ≥ ĈP

′
p,j.

In other words, the global order condition requires that not just RLDA but all PLDA mechanisms
result in a school cutoff ordering that is preserved from the first to the second round, and
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Figure 3: In Example 1, FLDA and RLDA are type equivalent when the order condition holds,
and give different assignments to students of every type when the order condition does not hold.

The initial economy and first round assignment are depicted on the top left. On the top and bottom

right, we show the second round assignments under FLDA and RLDA when type θ2 students (who only

want s2) drop out, and when type θ1 students (who only want s1) drop out. Students toward the left

have larger lottery numbers. The patterned boxes above each column of students indicate the affordable

sets for students in that column. When students who only want s2 drop out, the order condition holds,

and FLDA and RLDA are type equivalent. When students who only want s1 drop out, s2 becomes more

overdemanded in RLDA, and FLDA and RLDA give different ex ante assignments to students of every

remaining type.

further that first-round ties in cutoffs are broken consistently across PLDAs in the second round.
Surprisingly, this global requirement is guaranteed to hold if the order condition (Definition 9)
holds, i.e., if RLDA satisfies the local order condition.

Theorem 3. The order condition holds on a set of primitives (S, q, p,Λ, η) if and only if the
global order condition holds on (S, q, p,Λ, η).

We provide some intuition as to why Theorem 3 holds using the affordable set framework.
Under the reverse permutation, the sets of schools that enter a student’s affordable set in the first
and second rounds respectively are maximally unaligned. Hence if the cutoff order is consistent
across both rounds under the reverse permutation, then the cutoff order should also be consistent
across both rounds under any other permutation.

The affordable set framework also sheds some light on the power of Theorem 3. Fix a
mechanism and suppose that the first and second round cutoffs are in the same order. Then
each student λ’s affordable set is of the form Xi = {si, si+1, . . . , sn} for some i = i(λ), where

schools are indexed in decreasing order of their cutoffs for the relevant priority group pθ
λ
, and

the probability that a student receives some affordable set is independent of her preferences.
Moreover, since affordable sets are nested X1 ⊇ X2 ⊇ · · · ⊇ Xn, and since the lottery order
is independent of student types, aggregate demand is uniquely identified by the proportion of
students whose affordable set contains si for each i. When the global order condition holds, this
is true for every PLDA mechanism individually, which provides enough structure to induce type
equivalence.
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3.1 Characterization

In this section, we consider a setting where each school has exactly one priority group. We
show that the class of PLDA mechanisms is equivalent to the class of two-round mechanisms
that respect guarantees and priorities and are two-round strategy-proof, non-wasteful, Pareto
efficient among reassigned students, and satisfy a few natural fairness conditions. Note that,
in the case with exactly one priority type, the first round corresponds to the random serial
dictatorship (RSD) mechanism of Abdulkadiroğlu and Sönmez [1998], where the (random) order
of students is given by the order of tie-breaking. We will only consider mechanisms that are
non-atomic, that is, any single student changing her preferences has no effect on the assignment
probabilities of other students.

In order to let students trade off between probabilities of assignment, we will need to assume
some underlying cardinal utilities. Let Υ ⊆ Rn+1 × Rn+1 be the set of pairs of first and second
round cardinal utility vectors (u, û) that correspond to consistent preferences, where ui, ûi are the
student’s utility from being assigned to si in the first and second round respectively. Formally,21

Υ =
{

(u, û) ∈ Rn+1 × Rn+1 : ui ≥ uj ⇔ ûi ≥ ûj ∀ i, j ≤ n, and ui ≤ un+1 ⇒ ûi ≤ ûn+1 ∀ i ≤ n
}
.

We assume that students’ consistent cardinal utilities have full support.

Assumption 2 (Full support). Student consistent cardinal utilities have full support. That is,
for all sets U ⊆ Υ with positive Lebesgue measure, there exists a positive measure of students
whose first and second round cardinal utilities pairs are in U .

We note that this is a strong assumption, and is stated in this manner for simplicity and
brevity.22

We have already shown that PLDA mechanisms satisfy a number of desirable properties. We
restate them here for completeness. A reassignment mechanism µ̂ respects guarantees if every

student prefers her second round assignment to her first round assignment, that is µ̂(λ)�̂λµ(λ)
for every λ ∈ Λ. A reassignment mechanism is non-wasteful if no student is assigned a school
she prefers less to a school not at capacity, that is for each realization of µ̂, student λ ∈ Λ and
schools si, sj , if µ̂(λ) = si and sj�̂λsi, then η(µ̂(sj)) = qj . A two-round mechanism is two-
round strategy-proof (in the continuum model) if: knowing the joint distribution of first round
preferences, first round assignments and second round preferences, and assuming other students
are truthful, no student (with consistent preferences) can obtain a better ex ante expected utility
from her second round assignment by using any two-round strategy that involves lying in one or
both rounds; and knowing the specific realization of first round assignments and the conditional
distribution of second round preferences, and assuming other students are truthful, no student
can obtain a better interim expected utility from her second round assignment by lying in the
second round.

We remark that we require two-round strategy-proofness only for students whose true pref-
erence type is consistent. This is because reversals in student preferences can lead to conflicts
between the desired first round assignment with respect to first round preferences, and the
desired first round guarantee with respect to second round preferences. Moreover, it may be
reasonable to assume that students who are sophisticated enough to strategize about misreport-
ing in the first round to affect the guarantee structure in the second round will also know their

21We note that Υ is isomorphic to Rn+2 and inherits the Lebesgue measure via the isomorphism.
22We will only need support on certain specific subsets of cardinal utilities in order to prove our characterization

result. Moreover, if we let the measure of students of any subset of types tend to 0, our characterization result
will still hold.
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second round preferences over schools in S at the beginning of the first round, and hence will
have consistent preferences.23

We also specify the appropriate notion of efficiency in a setting without priorities. A Pareto-
improving cycle among reassigned students is an ordered set of types (θ1, θ2, . . . , θm) ∈ Θm, sets
of students (Λ1,Λ2, . . . ,Λm),Λi ⊆ Λ and schools (s̃1, s̃2, . . . , s̃m) ∈ Sm such that for all i it holds

that η(Λi) > 0, s̃i+1�̂θi s̃i (where we define s̃m+1 = s̃1), and for all λ ∈ Λi it is the case that
θλ = θi, µ̂(λ) = si, µ(λ) 6= si.

Definition 12. A two-round mechanism is Pareto efficient among reassigned students24

if there are no Pareto-improving cycles among reassigned students.

We now additionally define some desirable fairness properties. We want our mechanism
to treat students equally. A two-round mechanism is anonymous if it entirely ignores student
identities. In particular, students with the same first round assignment and first and second
round preference reports have the same distribution over second round assignments. A two-round
mechanism where the first round is RSD satisfies the averaging axiom, if for a fixed first round
allocation µ, every realization of the second round allocation µ̂ leads to the same proportion of
students with type θ being assigned to a pair of schools (s, s′) in the two rounds. That is, for all
θ, s, s′, there exists a constant cθ,s,s′ such that η({λ ∈ Λ : θλ = θ, µ(λ) = s, µ̂(λ) = s′}) = cθ,s,s′ .

Our characterization result is the following.

Theorem 4. Suppose student preferences are consistent and student cardinal utilities have full
support (Assumption 2). A non-atomic two-round assignment mechanism where the first round
is DA with uniform-at-random single tie-breaking25 respects guarantees and is:

1. non-wasteful;

2. two-round strategy-proof;

3. Pareto efficient among reassigned students;

4. anonymous; and

5. averaging;

if and only if the second round assignment is given by PLDA, or obtainable as a stable matching
under the same second round school preferences as in PLDA. (Here the permutation P can
depend on the measure of student preference types ζ(·).)

Our result mirrors similar large market cutoff characterizations for single-round mechanisms
by Liu and Pycia [2016] and Ashlagi and Shi [2014a], which show, in settings with a single and
multiple priority types respectively, that a mechanism is non-atomic, strategyproof, symmetric,
and efficient (in each priority class) if and only if it is lottery-plus-cutoff. Our contribution is
that we consider a two-round setting, where we use an affordable set argument, and the fact that
the mechanism respects guarantees, to isolate the second round from the first. We then employ
arguments similar to those used in these previous results to show that the first and second round
mechanisms can individually be characterized using lottery-plus-cutoff mechanisms.

23One obvious objection is that students may also obtain extra utility from staying at a school between rounds,
or equivalently have a disutility for moving, creating inconsistent preferences where the school they are assigned
in the first round becomes preferred to previously more desirable schools. We remark that Theorem 4 extends to
the case when we consider students whose preferences incorporate an addititional utility for staying put, provided
that the utility is the same at every school for a given student, or satisfies a similar non-crossing property.

24An alternative would be to require Pareto efficiency including all students. This would lead to a smaller
class of mechanisms that includes the forward lottery DA (FLDA) mechanism, but typically does not include the
reverse lottery DA (RLDA) mechanism (see the end of Section 2 for definitions of FLDA and RLDA).

25This is also random serial dictatorship.
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The main focus of our result is the effect of cross-round constraints. First, two-round strat-
egyproofness, together with respecting guarantees, constrains the second round to be DA, with
each student assigned in the first round given a guarantee at the school she was assigned in
the first round. In addition, we show that two-round strategyproofness and anonymity together
allow the cutoffs in the two rounds to be explicitly related, in a way that is independent of
student preferences.

The intuition behind the proof again uses affordable sets, which are analogous to cutoffs.
We first construct overdemand orderings in both rounds, as in Ashlagi and Shi [2014a]. We next
note that the affordable sets in each round are given by the n sets of least overdemanded schools
according to the overdemand ordering in that round, which gives some structure to the possible
joint distribution over first and second round affordable sets. The bulk of the proof is dedicated
to showing a technical lemma (Lemma 2), which states that two-round strategyproofness and
anonymity together imply that two students of different types face the same joint distribution
of first and second round affordable sets. The formal proof can be found in the appendix.

4 A Special Case: Uniform Dropouts

In this section, we consider the special case of our model in which there is exactly one priority
group at each school, students leave the system uniformly at random with some fixed probability
ρ, and the students who remain in the system retain their preferences. For this special case, we
give a direct proof that the global order condition holds, and show that all PLDA mechanisms
give type equivalent allocations. These proofs give the interested reader a taste of the analysis
and the proof techniques used in the paper, but in a simpler and more transparent setting. This
section may be skipped at a first reading without loss of continuity.

In the uniform dropouts model, each student drops out of the system with probability ρ.
This can be interpreted as students leaving the city for reasons that are independent of the
school choice system. In this case, the second round problem can be viewed as a rescaled version
of the first round problem. In particular, the measure of remaining students who were assigned
to each school si in the first round is (1− ρ)qi, the measure of students of each type θ assigned
to each school is scaled down by factor 1− ρ, the residual capacity of each school is ρqi, and the
measure of students of each type θ who are still in the system is scaled down by factor 1 − ρ.
Thus, the relative overdemand remains the same and schools fill in the same order regardless of
the choice of permutation.

Throughout this section, since there are no priorities, we will let student types be defined
either by θ = (�θ, �̂θ,1) or simply θ = (�θ, �̂θ).

Formally, we define uniform dropouts with probability ρ as follows. For every strict preference
� over schools, students with first round preferences � with probability ρ find the outside
option sn+1 the most attractive in the second round, and with probability 1− ρ retain the same
preferences in the second round,

ζ({θ = (�θ, �̂θ) ∈ Θ :�θ=�, �̂θ = sn+1 � . . .}) = ρζ({θ = (�θ, �̂θ) ∈ Θ :�θ=�}),

ζ({θ = (�θ, �̂θ) ∈ Θ :�θ=�, �̂θ =�}) = (1− ρ)ζ({θ = (�θ, �̂θ) ∈ Θ :�θ=�}).

We show first that the order condition (Definition 9) holds, and that Theorem 3 holds in
the setting with uniform dropouts. Specifically, we show that the local order condition holds for
the reverse lottery, and that the global order condition holds. The proof of Theorem 3 in the
general setting has a similar flavor, and can be found in the appendix.

Theorem 5. In the case of uniform dropouts, the global order condition holds.
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Proof of Theorem 5. We start with some intuition and a proof outline before providing the
formal proof. We assume without loss of generality that all schools reach capacity in the second
round of PLDA.26 Each student s has an affordable set, which is the set of schools for which she
meets either the first or second round cutoffs. Suppose that the first and second round cutoffs
are in the same order. Then each student λ’s affordable set is of the form Xi = {si, si+1, . . . , sn}
for some i = i(λ), and the proportions of students with each affordable set is independent of
student preferences. Hence the measure of students assigned to a school is uniquely identified
by the proportion of students with affordable set Xi for each i.

The main steps in the proof are as follows: (1) Assuming that every student’s affordable set
is Xi for some i, for every school sj , guess the proportion of students who should receive an
affordable set that contains sj . (2) Calculate the corresponding second round cutoffs C̃j for
school sj . (3) Show that these cutoffs are in the same order as the first round cutoffs. (4) Use
the fact that the cutoffs are in the same order to verify that the cutoffs are market-clearing. It
follows that the constructed cutoffs are precisely the PLDA(P ) cutoffs.

Let the first rounds cutoffs be C1, C2, . . . , Cn, where without loss of generality we index the
schools such that C1 ≥ C2 ≥ · · · ≥ Cn.

(1) Since the second round problem is a rescaled version of the first round problem (with a
(1 − ρ) fraction of the original students remaining), we guess that we want the proportion of
students with an affordable set containing sj to be 1

1−ρ times the original proportion.

(2) We translate this into cutoffs in the following way. Let fPi (x) = |{l : l ≥ Ci or P (l) ≥ x}|
be the proportion of students who receive school si in their (second round) affordable set with
the amended second round scoring functions under permutation P if the first and second round
cutoffs are Ci and x respectively. Notice that fi(x) is decreasing for all i, fi(0) = 1, fi(1) = 1−Ci,
and if i < j then fi(x) ≤ fj(x) for all x ∈ [0, 1]. Let the cutoff C̃Pi ∈ [0, 1] be defined by the
equation

fi(C̃
P
i ) =

1

1− ρ
(1− Ci),

and we let C̃Pi = 0 if Ci < ρ.

(3) We now show that the cutoffs C̃ are in the right order. Suppose i < j. If C̃Pi = 0 then
Cj ≤ Ci ≤ ρ and so C̃Pj = 0 ≤ C̃Pi as required. Hence we may assume that C̃Pi , C̃

P
j > 0. In this

case, we have

C̃Pj ≤ C̃Pi

⇔ fj

(
C̃Pj

)
− (1− Cj) ≥ fj

(
C̃Pi

)
− (1− Cj)

⇔ ρ

1− ρ
(1− Cj) ≥

∣∣∣{l : l < Cj , P (l) ≥ C̃Pi
}∣∣∣ .

Now∣∣∣{l : l < Cj , P (l) ≥ C̃P
i

}∣∣∣ ≤ ∣∣∣{l : l < Ci, P (l) ≥ C̃P
i

}∣∣∣ =
ρ

1− ρ
(1− Ci) ≤

ρ

1− ρ
(1− Cj),

where the inequalities follow from the fact that Ci ≥ Cj , and so C̃Pi ≥ C̃Pj as required.

(4) We now show that C̃P is the set of market-clearing DA cutoffs for the second round of
PLDA with permutation P . This step essentially verifies that affordable sets uniquely determine

26Suppose that not all schools reach capacity in the second round of PLDA. Then we may add a mass of
auxiliary students with the same type distribution as the existing students, and the result follows by considering
all PLDA mechanisms on this amended economy where the first round lottery L provides all auxiliary students
with worse lottery numbers than those of the original students in the first round, and the permutation P again
provides all the auxiliary students with worse lottery numbers in the second round.
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demand. Note that γi = Ci−Ci+1 is the proportion of students whose first round affordable set
is Xi. Since dropouts are uniform at random, this is the proportion of such students out of the
total number of remaining students both before and after the dropouts occur.

Now fi

(
C̃Pi

)
is the proportion of students whose second round affordable set contains si,

and since C1 ≥ C2 ≥ · · · ≥ Cn and C̃P1 ≥ C̃P2 ≥ · · · ≥ C̃Pn , it follows that the affordable sets
are nested. Hence the proportion of students (remaining after dropouts) whose second round
affordable set is Xi is given by

γPi = fi+1

(
C̃Pi+1

)
− fi

(
C̃Pi

)
=
Ci − Ci+1

1− ρ
=

γi
1− ρ

.

For each student type θ = (�,�) and set of schools S, let Dθ(S) be the maximal school
in S under �, and let θ′ = (�, �̂) be the student type consistent with θ that finds all schools
unacceptable in the second round. Then for all i, a set of students of measure∑

j≤i

∑
θ∈Θ:Dθ(Xj)=i

γPj (1− ρ)ζ(θ) =
∑
j≤i

γj
∑

θ∈Θ:Dθ(Xj)=i

ζ(θ)

choose to go to school si in the second round under the second round cutoffs C̃P , which is the
same as the measure of the set of students who choose to go to school si in the first round under
first round cutoffs C. Since C are market-clearing cutoffs, it follows that C̃P are too.

Hence in PLDA(P ), the second round cutoffs are exactly the constructed cutoffs C̃P and
they satisfy C̃P1 ≥ · · · ≥ C̃Pn . In other words, the local order condition is satisfied for all P , with
schools indexed such that C1 ≥ C2 ≥ · · · ≥ Cn, and so the global order condition holds.

Remark. The general proof of Theorem 3 uses the cutoffs for RLDA in steps (1) and (2)
above to guess the proportions of students who receive an affordable set that contains sj , and
requires careful accounting for each student priority type. However, the general structure for
the proof is similar, and the tools used are straightforward generalizations of the ones used in
the proof above.

We next show that Theorem 1 holds with uniform dropouts. Specifically, we show that all
PLDA mechanisms give type equivalent allocations.

Proposition 2. In the case of uniform dropouts, all PLDA mechanisms produce type equivalent
allocations.

Proof of Proposition 2. As in the proof of Theorem 5, we assume without loss of generality that
all schools reach capacity in the second round of PLDA. We showed in the proof of Theorem 5
that for all i, a set of students of measure∑

j≤i

∑
θ∈Θ:Dθ(Xj)=i

γPj (1− ρ)ζ(θ) =
∑
j≤i

γj
∑

θ∈Θ:Dθ(Xj)=i

ζ(θ)

choose to go to school si in the second round under the second round cutoffs ĈP , where

γPi = fi+1

(
ĈPi+1

)
− fi

(
ĈPi

)
=
Ci − Ci+1

1− ρ
=

γi
1− ρ

is the proportion of students with affordable set Xi in the second round with permutation P
and cutoffs ĈP .

It follows from this analysis that all PLDAs are “type equivalent” to the first round assign-
ment, in the following sense. For each preference order �, let �̃ be the preferences obtained
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from � by making the outside option the most desirable, sn�̃ · · · . Let T = {(�,�), (�, �̃)} be
a set containing a pair of consistent types that either retain the same preferences or drop out.
Then for all schools si, it holds that

η
({
λ ∈ Λ :

(
�λ, �̂λ

)
∈ T, µ̂P (λ) = si

})
= η

({
λ ∈ Λ :

(
�λ, �̂λ

)
∈ T, µ(λ) = si

})
.

Since, under uniform dropouts, exactly one type from each set T remains in the system in
round 2, and this covers all student types that remain in the system, it follows that µ̂P is type
equivalent to µ̂P

′
for all permutations P, P ′.

5 Empirical Analysis

In this section, we use data from New York City’s (NYC) school choice system to simulate and
evaluate the performance of PLDA mechanisms under different permutations P . The simulations
indicate that our theoretical results are real-world relevant. Different choices of P are found to
yield similar allocative efficiency: the number of students assigned to their k-th choice for each
rank k, as well as the number of students remaining unassigned, are very similar for different
permutations P . At the same time, the difference in the number of reassigned students is
significant and is minimized under RLDA.

5.1 The Data and Simulations

We use data from the high school admissions process in NYC for the academic years 2004-05,
2005-06 and 2006-07, as follows:27

1. First round preferences: In our simulation, we take the first round preferences � of every
student to be the preferences they submitted in the main round of admissions. The algo-
rithm used in practice is essentially strategy-proof (see Abdulkadirolu et al. [2005a]),28 so
it is reasonable to assume that reported preferences are true preferences.29

2. Second round preferences: In our simulation, students either drop out from the system
entirely in the second round or maintain the same preferences. Students are considered to
drop out if the data does not record them as attending any public high school in NYC the
following year (this was the case for about 9% of the students each year).30

3. School capacities: Each school’s capacity is set equal to the number of students assigned
to it in the data.31 This is only a lower bound on the actual capacity, but allows us to
compute the true final allocation under PLDA since under our model, the occupancy of
schools with vacant seats only decreases in the second round.

4. School priorities over students are obtained directly from the data.32

27We performed an initial cleanup of the data, such as removing preference entries which did not correspond to
an existing school code.

28The algorithm is not completely strategy-proof, since students may rank no more than 12 schools. However,
only a very small percentage of students rank 12 schools.

29However, there is some empirical evidence that students do not report their true preferences even in school
choice systems with strategy-proof mechanisms, see e.g. Hassidim et al. [2015], Narita [2016]

30For a minority of the students (9.2%−10.45%), their attendance in the following year could not be determined
by our data, and hence we assume they drop out randomly at a rate equal to the rate of dropouts for the rest of
the students (8.9%− 9.2%).

31As per the final assignment produced by centralized allocation.
32Unlike in the theoretical analysis, where we assumed no priorities, we take them into consideration here. We

obtained similar results to the ones described below in simulations with no school priorities.
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α Reassignments Reassignments k = 1 k = 2 k = 3 Unassigned
(number) (%) (%) (%) (%) (%)

FLDA: ∞ 7235 8.84 50.27 13.21 7.53 4.79
7.39 7035 8.59 50.26 13.22 7.53 4.79
2.72 6551 8.00 50.21 13.24 7.55 4.79
1.00 5830 7.12 50.10 13.31 7.57 4.78
0.37 5240 6.40 49.98 13.38 7.61 4.76
0.00 4792 5.85 49.86 13.45 7.64 4.76

-0.37 4336 5.30 49.75 13.49 7.68 4.74
-1.00 3751 4.58 49.59 13.55 7.72 4.73
-2.72 3253 3.97 49.47 13.57 7.76 4.71
-7.39 3106 3.79 49.44 13.57 7.76 4.70

RLDA: −∞ 3079 3.76 49.43 13.56 7.76 4.70

Table 1: Simulation Results, 2004-2005 NYC High School admissions with priorities.

We show the mean number of students being reassigned, the mean percentage of students being reassigned,

and the mean percentage getting their k-th choice or remaining unassigned, averaged across 50 realizations

for each value of α. All percentages are out of the total number of students, including those that drop

out. The data contained 81,884 students and 653 schools. The percentage of students who dropped out

was 9.22%. Variation across realizations in number of reassignments was approximately 100 students.

We consider the following family of PLDA mechanisms, parameterized by a single parameter
α, that smoothly interpolates between RLDA and FLDA. Each student λ receives a uniform i.i.d.
first round lottery number L(λ) (a normal variable with mean 0 and variance 1), which generates
a uniformly random lottery order. The second round score of λ is given by αL(λ) + L̃(λ), where
L̃(λ) is a new i.i.d. normal variable with mean 0 and variance 1, and α is identical for all the
students. Note that α = −∞ corresponds to RLDA and α =∞ corresponds to FLDA. For a fixed
real α, every realization of second round scores corresponds to some permutation of first round
lottery numbers, with α roughly capturing the correlation of the second round order with that of
the first round. (We remark that two different iterations using the same α do not generally give
the same PLDA, since in a PLDA mechanism the permutation used is a deterministic function
of the input, while L̃(λ) is random. We quote averages across simulations.)

5.2 Results

The results of our computational experiments based on 2004-05 NYC high school admissions
data appear in Figure 4 and Table 1.33 Allocative efficiency appears not to vary much across
values of α; the number of students receiving their k-th choice for each 1 ≤ k ≤ 12, as well as the
number of unassigned students, vary by less than 1% of the total number of students. (Larger
values of α give more students their first choice, but only slightly.) We further find that for most
students, the likelihood of getting one of their top k choices under FLDA and under RLDA are
very close to each other. (Specifically, for 87% of students, these likelihoods differ empirically
by less than 3% for all k. Here, the bound of 3% was chosen to suppress statistical variation
in our simulations, that involved 19,800 trials each for FLDA and RLDA. FLDA and RLDA
were compared since they represent the two extreme PLDAs. The same divergence metric was
under 10% for 98.2% of students.) This is consistent with what we would expect based on our
theoretical finding of type equivalence (Theorem 1) of the final allocation under different PLDA
mechanisms.

Figure 4 shows that the mean number of reassignments is minimized at α = −∞ (RLDA)

33The results for 2005-06 and 2006-07 were similar.
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Figure 4: Number of reassigned students versus α. The number of reassignments under the
extreme values of α, namely, α =∞ (FLDA) and α = −∞ (RLDA) are shown via dotted lines.

and increases with α, which is consistent with our theoretical result in Theorem 2. The mean
number of reassignments is as large as 7,200 under FLDA compared to just 3,100 under RLDA.
Overall our findings suggest that RLDA would be the best choice of mechanism in the family of
PLDA mechanisms considered.

6 Discussion

We have shown that the reverse lottery deferred acceptance mechanism (RLDA) is an attractive
choice when the objective is to minimize the number of reassigned students. It attains similar
allocative efficiency to all PLDA mechanisms when the order condition is satisfied (Theorem 1)
and minimizes reassigned students (Theorem 2). In addition, RLDA also has the nice property
of being equitable in an observable way. Specifically, under RLDA, students who receive a poor
draw of the lottery in the first round are prioritized in the second round. This may make RLDA
more palatable to students than other PLDA mechanisms. Indeed, the MIT dorm Random Hall
uses a mechanism for assigning rooms that resembles the reverse lottery mechanism we have
proposed (see Ran). Freshmen get their rooms through a serial dictatorship mechanism. At the
end of the year (after seniors leave), they can claim the rooms vacated by the seniors, and each
student is guaranteed to at least keep her current room. The initial lottery numbers (from their
first match) are reversed.34

We also remark that our results suggest that PLDA mechanisms are an attractive class of
mechanisms in more general settings, and the choice of mechanism within this class will vary
with the policy goal. If, for instance, it were viewed as more equitable to allow more students to
receive (possibly small) improvements to their first round assignment, then the FLDA mechanism
that simply runs DA again would optimize over this objective. Moreover, our type-equivalence
result (Theorem 1) shows that when the relative overdemand for schools stays the same this
choice can be made without sacrificing allocative efficiency.

We axiomatically justified the class of PLDA mechanisms in settings where schools do not

34The MIT Random Hall matching is more complicated, because sophomores and juniors can also claim the
vacated rooms, but the lottery only gets reversed at the end of freshman year. Afterward, if a sophomore switches
room, her priority drops to the last place of the queue.
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have priorities (Theorem 4). A natural question is whether a similar result holds for a model
with school priorities. We find that in a model with priorities, natural extensions of our axioms
continue to describe PLDA mechanisms, but also include undesirable generalizations of PLDA
mechanisms. Specifically, suppose we add an axiom requiring that for each school s, the proba-
bility that a student who reports a top choice of s then receives it in the first or second round
is independent of their priority at other schools. This new set of axioms describes a class of
mechanisms that includes the PLDA mechanisms, but there also exists an example market and a
mechanism satisfying this new set of axioms such that the joint distribution over the two rounds
of allocations does not match any PLDA. We believe that this new set of axioms describes a
generalization of PLDA where the permutation of a student’s lottery number depends on their
priority type. However, characterizing the class of mechanisms satisfying this natural set of
axioms in the richer setting with school priorities remains an open question. It may also be
possible to characterize PLDA mechanisms in a setting with priorities using a different set of
axioms. We leave both questions for future research.

It is natural to ask what implications our results have for finite markets. Azevedo and
Leshno [2014] have shown that if a sequence of (large) discrete economies converges to some
limiting continuum economy with a unique stable matching (defined via cutoffs), then the stable
matchings of the discrete economies converge to the stable matching of the continuum. This
suggests that the continuum PLDA mechanisms are a good approximation for the discrete
PLDA mechanisms on sufficiently large discrete economies, and that our theoretical results
should approximately hold on large discrete economies. As an example, we provide a heuristic
argument for why PLDA mechanisms are strategyproof in the large. By definition, PLDA
mechanisms satisfy the efficiency and anonymity requirements in finite markets as well. We
believe that PLDA mechanisms are approximately strategyproof in large finite markets. In the
second round it is clearly a dominant strategy to be truthful, and intuitively, for student a to
benefit from a first-round manipulation, his report should affect the second-round cutoffs in a
manner that gives him a second-round allocation he would not have received otherwise. If the
market is large enough, the cutoffs should converge to their limiting values, and the probability
that student a could benefit from such a manipulation would be negligible. A similar argument
suggests that an approximate version of our characterization result (Theorem 4) should hold for
finite markets with no priorities, as PLDA mechanisms satisfy an approximate version of the
averaging axiom in large finite markets. Our results concerning type equivalence (Theorem 1),
RLDA minimizing transfers (Theorem 2), and our sufficiency check for the order condition
(Theorem 3) should also be approximately valid in the large market limit.35

Another natural question is how to deal with inconsistent student preferences. Narita ob-
served that in the current reapplication process in the NYC public school system, although
only about 7% of students reapplied, about 70% of these reapplicants reported second round
preferences that were inconsistent with their first round reported preferences Narita [2016]. We
believe that some of our insights remain valid if a small fraction of students have an idiosyn-
cratic change in preferences, or if a small number of new students enter in the second round.
However, new effects may emerge if there is a systematic change in preferences, for instance if
students derive utility from obtaining a slot in a school s in the first round itself relative to
getting a slot in s in the second round.36 If student preferences are modified in this fashion, our

35Specifically, consider a sequence of markets of increasing size. If the order condition holds in the continuum
limit, this should lead to approximate type equivalence under all PLDAs and that RLDA approximately minimizes
transfers among PLDAs in the finite markets as market size grows. Moreover, if the local order condition holds
for the reverse lottery, then in large finite economies and for every permutation P , the set of students that violate
the local order condition on PLDA(P ) will be small relative to the size of the market.

36For example, a student who was allocated her fourth choice in the first round may have a second round
preference list that lists her top two choices followed by her fourth choice, i.e., her current allocation, because
moving to her erstwhile third choice would not be worth the effort.
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characterization result (Theorem 4) justifying PLDA mechanisms still holds, but an example
shows that our results regarding type-equivalence and optimality of RLDA break down.

Finally, what insights do our results provide for situations in which allocation is done in
three or more rounds? For instance, one could consider mechanisms under which the lottery
is reversed (or permuted) after a certain number of rounds and thereafter remains fixed. At
what stage should the lottery be reversed? Clearly, there are many other mechanisms that are
reasonable for this problem, and we leave a more comprehensive study of this question for future
work.
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A List of Notation

A.1 Discrete Model

• S = {s1, . . . , sn}: schools

• sn+1: outside option

• qi: capacity of school i

• Λ: finite set of students

• �λ: first round preferences of student λ over schools

• �̂λ: second round preferences of student λ over schools

• �Si : weak priorities of school si over students

• pλ: vector giving the number of the priority group of student λ at each school

• L: student lottery numbers

A.2 Continuum Model

• Λ: mass of students

• η: measure over Λ

• θ = (�θ, �̂θ, pθ): student types

• Θ: space of student types θ

• ζ(θ): measure of students with type θ a given type

• ni: the number of priority groups at school si

A.3 Mechanisms

• P : permutation

• µ: first round assignment

• µ̂: second round assignment

• µ̂P : second round assignment from PLDA with permutation P

• C: first round cutoffs

• Ĉ
P

: second round cutoffs from PLDA with permutation P

• Cp: first round cutoffs restricted to priority type p

• Ĉ
P
p : second round cutoffs from PLDA with permutation P restricted to priority type p
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A.4 Proofs for Uniform Dropouts (Section 4)

• ρ: probability that a student drops out

• C̃: constructed second round cutoffs

• fPi (x): proportion of students with si in their affordable set with permutation P and first
and second round cutoffs (Ci, x)

• γPi : the fraction of students whose affordable set in the second round of PLDA with
permutation P is Xi

A.5 Notation in the Appendix

• r̂λi = P (L(λ)) + ni1{L(λ)≥Ci} + pλi 1{L(λ)<Ci}: the amended scoring function of PLDA

• Xi = {si, . . . , sn+1}: schools (weakly) after si in the cutoff ordering

• γi: the proportion of students whose first round affordable set is Xi

A.6 Proof of Theorems 1 and 3

• βi,j = η({λ ∈ Λ : argmax�̂λ Xj = si}): the measure of students who, when their set of
affordable schools is Xj , will choose si

• Eλ(C): the set of schools affordable for type λ in the first round under PLDA with
permutation P

• Êλ(ĈP ): the set of schools affordable for type λ in the second round under PLDA with
permutation P

• γPi = η({λ ∈ Λ : ÊλP (ĈP ) = Xi}): the fraction of students whose affordable set in the
second round of PLDA with permutation P is Xi

• qp: restricted capacity vector for priority type p

• Λp: set of students with priority type p

• ηp: restriction of η to students with priority type p

• Ep = (S, qp,Λp, ηp): restricted primitives for priority type p

• sσp(i): ith school under second round overdemand ordering for Ep

• C̃P : second round cutoffs defined for PLDA with the amended scoring function from the
RLDA cutoffs ĈR

• C̃P
p : second round cutoffs defined for PLDA on Ep with the amended scoring function from

the RLDA cutoffs ĈR

• n̂: smallest index of a school affordable to everyone

28



A.7 Proof of Theorem 2

• `P = η({λ ∈ Λ : θλ = θ, µ(λ) = si, µ̂P (λ) 6= si}): the measure of students with type θ
leaving school si in the second round under PLDA with permutation P

• eP = η({λ ∈ Λ : θλ = θ, µ(λ) 6= si, µ̂P (λ) = si}): the measure of students with type θ
entering school si in the second round under PLDA with permutation P

A.8 Proof of Theorem 4

• sσ(i): ith school under second round overdemand ordering in a non-atomic mechanism M
satisfying axioms (1)-(4)

• X̃i = {sσ(i), sσ(i+1), . . . , sσ(n+1)}: schools (weakly) after sσ(i) in the second round overde-
mand ordering

• γi,j : proportion of students under the constructed PLSM whose first round affordable set
was Xi and second round affordable set was X̃j

• i(S′) = max{j : sj ∈ S′}: the maximum index of a school in S′

• Iji = [Ci, Cj ]: the first round scores that give students first round affordable sets {Xj+1, Xj+2, . . . , Xi}

• ρθ(I, S′): the proportion of students with type θ who, under the mechanism M , have first
round score in the interval I and are assigned to a school in S′ in the second round

B Proofs

We begin with some general notation and definitions. Let µ be the initial allocation under RSD,
and let P be a permutation. We say that a school si reaches capacity under a mechanism with
output allocation µ if η(µ(si)) = qi.

We re-index the schools in S ∪ {sn+1} so that Ci ≥ Ci+1. Moreover, we assume that this
indexing is done such that if the order condition is satisfied, then ĈPi ≥ ĈPi+1 (where the cutoffs

ĈP are as defined by PLDA(P )) holds simultaneously for all permutations P .

Throughout the appendix, for convenience, we slightly change the second round scoring
function of a PLDA with permutation P to be r̂λi = P (L(λ)) + ni1{L(λ)≥Ci} + pλi 1{L(λ)<Ci},
meaning that we give each student a guarantee at any school for which they met the cutoff in
the first round. By consistency of preferences, it is easily seen that this has no effect on the
resulting assignment or cutoffs.

We say a student can afford a school in a round if her score in that round is at least as large
as the school’s cutoff in that round. We say that the set of schools a student can afford in the
second round (with the amended scoring function) is their affordable set.

Throughout the appendix, we let Xi = {si, . . . , sn+1} be the set of schools at least as afford-
able as school si, and we let γi be the proportion of students whose first round affordable set is
Xi.

We say that a cutoff and assignment pair (C, µ) are market-clearing if η(µ(si)) ≤ qi for all
si ∈ S ∪ {sn+1}, with equality if Ci > 0. It follows from the results in Azevedo and Leshno
[2014] that the PLDA cutoffs and assignments (C, µ) and (ĈP , µ̂P ) are market-clearing.

Given cutoffs C, we will find it useful to define cutoffs Cp for each priority type p by
Cp,i = bCi − pic, where bxc is the largest integer smaller than or equal to x. Intuitively, Cp,i
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is the lottery number a student λ with priority type pλ = p needs in order to be able to go to
school si.

B.1 Proof of Proposition 1

Fix a permutation P and some PLDA with permutation P . We show that this particular PLDA
satisfies all the desired properties. Let η be a distribution of students, and let ĈP be the second
round cutoffs corresponding to the assignment given by the PLDA for this distribution of student
types.

PLDA respects guarantees because fewer students are guaranteed at each school than the
capacity of the school. PLDA is non-wasteful because the second round finds a stable matching
where all schools find all students acceptable, which is non-wasteful.

We now show that the PLDA mechanism is two-round strategyproof. Since students are
non-atomic, no student can change the cutoffs ĈP by changing their first or second round
reports. Hence it is a dominant strategy for all students to report truthfully in the second
round. Moreover, for any student of type λ, the only difference between having a first round
guarantee at a school si and having no first round guarantee is that in the former, r̂λi increases
by ni − pλi . This means that having a guarantee at a school si changes the student’s second
round assignment in the following way. She receives school si when she would have otherwise
received a seat in some school sj that she reported preferring less to si, and her second round
assignment is unchanged otherwise. Therefore students want their first round guarantee to be
the best under their second round preferences, so it is a dominant strategy for students with
consistent preferences to report truthfully in the first round.

PLDA is constrainted Pareto efficient among reassigned students, since we use single tie-
breaking and the output is stable with respect to the second round lotteries r̂. This is easily seen
via the cutoff characterization. Fix a Pareto improving cycle that respects priorities. Without
guarantees, if a student gets assigned a seat at a school si when they prefer si+1, then they must
be in the same priority group as the students in the cycle assigned to si+1 and have a worse
lottery number. Hence ĈPi < ĈPi+1, which creates a cycle in the cutoffs.

We make the above intuition formal. Fix the first round allocation µ. Suppose there ex-
ists a Pareto-improving cycle among reassigned students that respects priorities, that is an
ordered set of types (θ1, θ2, . . . , θm) ∈ Θm, sets of students (Λ1,Λ2, . . . ,Λm),Λi ⊆ Λ and schools

(s̃1, s̃2, . . . , s̃m) ∈ Sm such that for all i it holds that η(Λi) > 0, s̃i+1�̂θi s̃i (where we define
s̃m+1 = s̃1), for all λ ∈ Λi it is the case that θλ = θi, µ̂(λ) = si, µ(λ) 6= si, and for all i and

λ ∈ Λi, λ̂ ∈ Λi+1 it holds that pλi+1 ≥ pλ̂i+1 (where we define Λm+1 = Λ1 and pm+1 = p1).

Let λi ∈ Λi. Then, if li is the first round lottery number of student λi at school si (which is
a random variable), and r̂i is the second round lottery number of student λi at school si, then
r̂i = pλi + P (li) for all i. Moreover, since si+1�̂λisi but η(Λi+1) > 0, where for all λ̂ ∈ Λi+1 it

holds that pλii+1 ≥ pλ̂i+1, it follows that λi and all the students in Λi+1 are in the same priority
group at school si, say pi. Moreover, the second round lottery number of student λi must be in
the interval [ĈPi −pi, ĈPi+1−pi] ⊆ [0, 1] (where we define ĈPm+1 := ĈP1 ) with positive probability.

Since P is fixed, we may also assume that the cutoffs ĈPi are fixed and so this interval is non-
empty for all i. But as this is true for all i, it follows that ĈP1 < ĈP2 < · · · < ĈPn < ĈP1 , which
is a contradiction.

B.2 Proof of Theorem 1

We first prove Theorem 1 in the case when all schools have one priority group. We then show
that if the order condition holds, all PLDA mechanisms assign the same number of seats at a
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given school si to students of a given priority type p. Hence we can reduce the general problem
to the case when all schools have one priority group by restricting to the set of students with
priority type p. This shows that all PLDA mechanisms produce type equivalent allocations.

Lemma 1. Assume each school has a single priority group, p = 1. If the order condition holds,
all PLDA mechanisms produce type equivalent allocations.

Proof. Let P be a permutation.

Assume the order condition holds. By Theorem 3, we may assume that the global order
condition holds. Hence the schools in S ∪ {sn+1} can be indexed so that Ci ≥ Ci+1 and
ĈPi ≥ ĈPi+1 for all permutations P (simultaneously).

We first present the relevant notation that will be used in this proof. We are interested in
sets of schools of the form Xi = {si, . . . , sn+1}. Let

βi,j = η({λ ∈ Λ : si is the most desirable school in Xj with respect to �̂λ})

be the measure of the students who, when their set of affordable schools is Xj , will choose si
(when following their second round preferences). Note that βi,j = 0 for all j > i.

Let Eλ(C) and ÊλP (ĈP ) be the sets of schools affordable for type λ in the first and second
round, respectively, when running PLDA with lottery P . Note that for each student λ ∈ Λ,
there exists some i such that Eλ(C) = Xi, and since the order condition is satisfied, there
exists some j ≤ i such that ÊλP (ĈP ) = Xj . The fact that ÊλP (ĈP ) = Xj for some j is a

result of the order condition; our modified scoring function guarantees that Eλ(C) ⊆ ÊλP (ĈP )
(every school affordable in the first round is guaranteed in the second) and hence that j ≤ i.
Let γPi = η({λ ∈ Λ : ÊλP (ĈP ) = Xi}) be the fraction of students whose affordable set in the
second round of PLDA with permutation P is Xi.

37 We note that by definition of PLDA,
η({λ ∈ Λ : θλ = θ, ÊλP (ĈP ) = Xi}) = ζ({θ})γPi , that is, the students whose affordable sets are
Xi “break proportionally” into types. For a school i, this means that the measure of students
assigned to si is therefore

∑
j≤i βi,jγ

P
j .

Let P ′ be another permutation, and define γP
′

i similarly. We will prove by induction that
there exist PLDA(P ′) cutoffs ĈP ′ such that γP

′
i = γPi for all si ∈ S ∪ {sn+1}. Note that by the

proportional breaking into types of γPi and γP
′

i , this will imply type equivalence.

Assume that the PLDA(P ′) cutoffs ĈP ′ are chosen such that γP
′

j = γPj for all j < i, and i

is maximal such that this is true. Then we have that
∑

j≤i−1 βi,jγ
P
j =

∑
j≤i−1 βi,jγ

P ′
j . Assume

w.l.o.g. γPi > γP
′

i . It follows that qi ≥
∑

j≤i βi,jγ
P
j ≥

∑
j≤i βi,jγ

P ′
j , where the first inequality

follows since si cannot be filled beyond capacity. If the second inequality is strict, then under
P ′, si is not full, and therefore ĈP

′
i = 0. However, this means that all students can afford

si under P ′, and therefore γP
′

i = 1 −
∑

j<i γ
P ′
j = 1 −

∑
j<i γ

P
j ≥ γPi , contradiction. If the

second inequality is an equality, then βi,i = 0 and no students demand school i under the given
affordable set structure. It follows that we can define the cutoff ĈP

′
i such that γP

′
i = γPi . This

provides the required contradiction, completing the proof.

Now consider when schools have possibly more than one priority group. We show that if
the order condition holds, then all PLDA mechanisms assign the same measure of students of
a given priority type to a given school. It is not at all obvious that such a result should hold,
since priority type and student preferences may be correlated, and the relative proportions of
students of each priority type assigned to each school can vary widely. Nonetheless, the order
condition (specifically, the equivalent global order condition) imposes enough structure so that
any given priority type is treated symmetrically across different PLDA mechanisms.

37Note that ηΛ = 1, as η is a probability distribution over Λ.

31



Theorem 6. If the order condition holds, then for all priority types p and schools si all PLDA
mechanisms assign the same measure of students of priority type p to school si.

Proof. Fix a permutation P . By Theorem 3, we may assume that the global order condition
holds.

We show that PLDA(P ) assigns the same measure of students of each priority type to
each school si as RLDA. The idea will be to define cutoffs on priority-type-specific economies,
and show that these cutoffs are the same as the PLDA cutoffs. However, since cutoffs are
not necessarily unique in the two-round setting, care needs to be taken to make sure that the
individual choices for priority-type-specific cutoffs are consistent across priority types.

The proof runs as follows. We first define an economy Ep for each priority type p that gives
only as many seats as assigned to students of priority type p under RLDA. We then invoke
the global order condition and Theorems 3 and 1 to show that all PLDA mechanisms are type
equivalent on each Ep. We also use the global order condition to argue that it is sufficient to
consider affordable sets, and also to select ‘minimal’ cutoffs. Then we construct cutoffs CPp,i
using the economies Ep and show that they are (almost) independent of priority type. Finally,
we show that this means CPp,i also define PLDA cutoffs on the large economy E and conclude
that PLDA(P ) assigns the same measure of students of each priority type to each school si as
RLDA.

(1) Defining little economies Ep on each priority type.

Fix a priority type p. Let qp be a restricted capacity vector, where qp,i is the measure of students
of priority type p assigned to school si under RLDA. Let Λp be the set of students λ such that
pλ = p, and let ηp be the restriction of the distribution η to Λp. Let Ep denote the primitives

(S, qp,Λp, ηp). Recall that ĈR are the second round cutoffs of RLDA on E . It follows from the

definition of Ep that ĈR
p are also the second round cutoffs for RLDA on Ep.

Let C̃P
p be the second round cutoffs of PLDA(P ) on Ep. We show that the cutoffs C̃P

p defined

on the little economy are the same as the consistent second round cutoffs ĈP
p for PLDA with

permutation P on the large economy E , that is C̃P
p = ĈP

p .

(2) Implications of the global order condition

We have assumed that the global order condition holds.

This has a number of implications for PLDA mechanisms on the little economies Ep. For all
p, the local order condition holds for RLDA on Ep. Hence by Theorem 3 the little economies Ep
each satisfy the order condition. Moreover, by Theorem 1 all PLDA mechanisms on Ep are type
equivalent. Finally, if we can show that for every permutation P , PLDA(P ) assigns the same
measure of students of each priority type to each school si as RLDA, then E satisfies the global
order condition if and only if for all p the little economy Ep satisfies the global order condition.

The global order condition also allows us to determine aggregate student demand from the
proportions of students who have each school in their affordable set. In general, if affordable sets
break proportionally across types, and if for each subset of schools S′ ⊆ S we know the proportion
of students whose affordable set is S′, then we can determine aggregate student demand. The
global order condition implies that for any pair of permutations P, P ′, the affordable sets from
both rounds are nested in the same order under both permutations. In other words, for each
priority type p there exists a permutation σp such that the affordable set of any student in any
round of any PLDA mechanism is of the form sσp(i), sσp(i+1), . . . , sσp(n), sn+1. Hence when the
global order condition holds, to determine the proportion of students whose affordable set is S′,
it is sufficient to know the proportion of students who have each school in their affordable set.

Another more subtle implication of the global order condition is the following. In the second
round of PLDA, for each permutation P and school si there will generically be an interval
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that ĈPi can lie in and still be market-clearing. The intuition is that there will be large empty
intervals corresponding to students who had school si in their first round affordable set, and
whose second round lottery changed accordingly. When the global order condition holds, we can
without loss of generality assume that as many of the cutoffs for a given priority type are 0 or
1 as possible, and the global order condition will still hold.

Formally, for cutoffs C we can equivalently define priority-type-specific cutoffs Cp,i = bCi −
pic. Note the cutoffs Cp are consistent across priority types, namely

• Cutoffs match for two priority types with the same priority group at a school,

pi = p′i ⇒ Cp,i = Cp′,i and Ĉp,i = Ĉp′,i; and

• There is at most one marginal priority group at each school,

Cp,i, Cp′,i ∈ (0, 1) ⇒ pi = p′i.

Moreover, if cutoffs Cp are consistent across priority types, then there exist cutoffs C from
which they arise.

Suppose that we set as many of the priority-type specific cutoffs ĈP to 0 as possible, i.e. we
let ĈPi be 0 if all students have si in their affordable set, 1 if none do, and keep it the same
otherwise. Then under this new definition, C, ĈP satisfies the local order condition consistently
with all other PLDAs.

Specifically, let
fPp,i(x) = |{l : l ≥ Cp,i or P (l) ≥ x}|

be the proportion of students of priority type p who have school si in their affordable set if the
first and second round cutoffs are Cp,i and x respectively. Notice that f is decreasing in x. If

fPp,i

(
ĈPp,i

)
= 1 we set ĈPp,i = 0, and otherwise we keep ĈPp,i unchanged.

Since E satisfies the global order condition, for all p there exists an ordering σp such that
Cσp(1) ≥ Cσp(2) ≥ · · · ≥ Cσp(n) and ĈP

′

σp(1) ≥ ĈP
′

σp(2) ≥ · · · ≥ ĈP
′

σp(n) for all permutations P ′.

We show that the global order condition implies that the newly defined cutoffs ĈP satisfy
ĈPσp(1) ≥ ĈPσp(2) ≥ · · · ≥ ĈPσp(n). This is because the global order condition implies that f is

increasing in i, i.e. for each p, i < j and x it holds that fPp,σp(i)(x) ≤ fPp,σp(j)(x). Hence if we set

Ĉp,σp(i) to be 0 then for all j > i

fPp,σp(j)

(
Ĉp,σp(j)

)
≥ fPp,σp(j)

(
Ĉp,σp(i)

)
(since f is decreasing)

≥ fPp,σp(i)

(
Ĉp,σp(i)

)
(since f is increasing in i)

= 1,

so we set Ĉp,σp(j) to be 0. In other words, we have essentially taken a set of the smallest cutoffs
and set them all to 0.

(3) Cutoffs C̃Pp,i are (almost) independent of priority type.

We now show that C̃Pp,i depends on p only via pi, and does not depend on pj for all j 6= i. We will

use the fact that Ep satisfies the global order condition, and characterize C̃Pp,i using an affordable
set argument.

Now since Ep satisfies the order condition, all PLDA mechanisms on Ep are type equivalent,
and the proportion of students who have each school in their affordable set is the same across
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all PLDA mechanisms. In other words, for all permutations P, P ′, priority types p and schools

si it holds that fPp,i

(
C̃Pp,i

)
= fP

′
p,i

(
C̃P

′
p,i

)
.

We write this in terms of RLDA as follows. Note that

fRp,i (x) = (1− x) + min{x, (1− Cp,i)}.

• Case 1: fRp,i

(
ĈRp,i

)
= 0.

Then no students with priority type p have si in their second round affordable set, so
C̃Pp,i = 1.

• Case 2: fRp,i

(
ĈRp,i

)
∈ (0, 1).

Then C̃Pp,i satisfies the following equation in terms of ĈRp,i, Cp,i and P :

fPp,i

(
C̃Pp,i

)
= fRp,i

(
ĈRp,i

)
= 2− ĈRp,i − Cp,i. (1)

We note that an application of the intermediate value theorem shows that this equation
always has a solution in [0, 1], since fPp,i(0) = 1 − Cp,i, fp,i(1) = 1, fp,i is continuous and

decreasing on [0, 1], and we are in the case when 1− Cp,i < ĈRp,i < 1.

Hence C̃Pp,i is defined by fPp,i and fRp,i.

• Case 3: 0 ≤ ĈRp,i ≤ 1− Cp,i.
In this case, all students with priority type p have si in their second round affordable set
and we set C̃Pp,i = 0.

In all three cases, the value of C̃Pp,i depends on fPp,i(·), fRp,i(·) and ĈRp,i, which depend only on Cp,i

and the permutations P or R. Since Cp,i depends on p only through pi, it follows C̃Pp,i depends
on p only through pi.

Hence if p, p′ are two priority vectors such that pi = p′i, then C̃Pp,i = C̃Pp′,i, so the C̃Pp,i are

consistent across priority types. Hence the C̃Pp,i define cutoffs C̃Pi that are independent of priority
type.

(4) C̃Pi are the PLDA cutoffs.

Finally, we remark that C̃Pi are market-clearing cutoffs. This is because we have shown that
for each priority type p, the number of students assigned to each school si is the same under
RLDA and under the demand induced by the cutoffs C̃Pi , and we know that the RLDA cutoffs
are market-clearing for E .

Hence C̃Pi give the assignments for PLDA on E , and since C̃Pi was defined individually for
each priority type p on Ep it follows that PLDA(P ) assigns the same measure of students of each
priority type to each school si as RLDA.

We are now ready to prove Theorem 1

Proof of Theorem 1. Fix a priority type p. By Theorem 6, for every school si, all PLDA mech-
anisms assign the same measure qp,i of students of priority type p to school si.

Consider the subproblem with primitives Ep = (S, qp,Λp, ηp). By Lemma 1, for all θ ∈ Θ and
si,

ηp({λ ∈ Λp : θλ = θ, µ̂P (λ) = si}) = ηp({λ ∈ Λp : θλ = θ, µ̂P ′(λ) = si}).

Since ηp is the restriction of η to λp, it follows that all PLDA mechanisms are type equivalent.
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B.3 Proof of Theorem 2

Proof of Theorem 2. Fix θ = (�θ, �̂θ, pθ) ∈ Θ and school si ∈ S. We will show that R minimizes
the measure of reassigned students with type θ who were assigned to school si in the first round.
The idea is that reversing the lottery shortcuts improvement chains within a particular type,
moving one student many schools up their preference list instead of moving many students each
a few schools up their preference list. We make this formal.

Let P be a permutation. Let the measure of students with type θ leaving school si in the
second round under PLDA(P ) be denoted by `P = η({λ ∈ Λ : θλ = θ, µ(λ) = si, µ̂P (λ) 6= si}).
Let the measure of students with type θ entering school si under permutation P be denoted
eP = η({λ ∈ Λ : θλ = θ, µ(λ) 6= si, µ̂P (λ) = si}). Due to type equivalence, there is a constant

c, independent of P , such that `P = eP − c. If sn+1�̂θsi, then there are no reassigned students
with type θ entering school si under either PLDA(P ) or RLDA, since all students of type θ

prefer to be unassigned. So assume si�̂θsn+1.

We will show that `R ≤ `P for all permutations P . If eR = 0 and no students of type θ enter
si under RLDA, then `R = eR − c ≤ eP − c = `P for all permutations P , and fewer students of
type θ leave si under RLDA. So assume eR > 0. We claim that in this case `R = 0, which will
complete our proof. We will show that having both eR > 0 and `R > 0 means that students
who entered si in the second round of RLDA had worse first and second round lottery numbers
than students who left si in the second round of RLDA, which contradicts the reversal of the
lottery.

Since eR > 0, there exists some student λ ∈ Λ with type θλ = θ for which si = µ̂R(λ)�̂θµ(λ).
By consistency, we have si �θ µ(λ), and therefore λ could not afford (meet the cutoff for) si in
the first round. If `R = 0 we are done. If `R > 0, there exists some student λ′ ∈ Λ with type

(�λ′ , �̂λ
′
, pλ) = θλ for which sj = µ̂R(λ′)�̂θµ(λ′) = si.

By definition, λ′ could afford si in the first round and λ could not, and hence L(λ′) > L(λ).

Note that since si�̂θsn+1, then sj�̂θsn+1, and thus consistency gives that sj �θ si.
Now since λ′ received a better second round assignment under RLDA than λ, µ̂R(λ′)�̂θµ̂R(λ),

and both λ and λ′ were reassigned under RLDA, it follows that R(L(λ′)) > R(L(λ)).

This contradicts that L(λ′) > L(λ), and therefore `R = 0, completing our proof.

B.4 Proof of Theorem 3

Proof of Theorem 3. In what follows, we will fix a permutation P and show that the PLDA
mechanism with permutation P satisfies the local order condition and is type equivalent to the
reverse lottery RLDA mechanism.

(1) Every school has a single priority group

We first consider the case when ni = 1 for all i, that is, every school has a single priority
group. Recall that the schools are indexed according to the first round overdemand ordering,
so that C1 ≥ C2 ≥ · · · ≥ Cn ≥ Cn+1. Since the local order condition holds for RLDA, let us
assume that they are also indexed according to the second round overdemand ordering under
RLDA, so that ĈR1 ≥ ĈR2 ≥ · · · ≥ ĈRn ≥ ĈRn+1.

The idea will be to construct a set of cutoffs C̃P directly from the permutation P and the
cutoffs ĈR, show that the cutoffs are in the correct order C̃P1 ≥ C̃P2 ≥ · · · ≥ C̃Pn ≥ C̃Pn+1 and

show that the cutoffs C̃P and resulting assignment are market-clearing when school preferences
are given by the amended scoring function with permutation P .

(1a) Definitions
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As in the proof of Theorem 1, let βi,j = η({λ ∈ Λ : argmax�̂λ Xj = si}) be the measure of

students who, when their set of affordable schools is Xj , will choose si. Let Eλ(C) be the set of

schools affordable for type λ in the first round under PLDA with any permutation, let Êλ(ĈR)
be the set of schools affordable for type λ in the second round under RLDA, and let Êλ(ĈP ) be
the set of schools affordable for type λ in the second round under PLDA with permutation P .

Let γRi = η({λ ∈ Λ : ÊλP (ĈR) = Xi}) be the fraction of students whose affordable set in

the second round of RLDA is Xi, and let γPi = η({λ ∈ Λ : ÊλP (ĈP ) = Xi}) be the fraction of
students whose affordable set in the second round of PLDA with permutation P is Xi.

Let n̂ be the smallest index such that sn̂ does not reach capacity when not offered to all the
students. In other words, n̂ is the smallest index such that every student has school sn̂ in their
(second round) affordable set under RLDA, i.e. sn̂ ∈ Êλ(ĈR). Since the local order condition
holds for RLDA, we may equivalently express n̂ in terms of cutoffs as the smallest index such
that (1− Cn̂) + (1− ĈRn̂ ) ≥ 1. Such n̂ always exists, since every student has the outside option
sn+1 in their total affordable set.

(1b) Defining cutoffs for PLDA

Let us define cutoffs C̃P as follows. For i ≥ n̂ let C̃Pi = 0. For each permutation P , define a
function

fPi (x) = |{l : l ≥ Ci or P (l) ≥ x}|

representing the proportion of students who have si in their (second round) affordable set with
first and second round cutoffs Ci, x under the amended scoring function with permutation P .
Since P is measure-preserving, fPi (x) is continuous and monotonically decreasing in x.

For i < n̂, we inductively define C̃Pi to be the largest real smaller than C̃Pi−1 satisfying

fPi (C̃Pi ) = fRi

(
ĈRi

)
(2)

(where we define C̃P0 = 1). Now fPi (0) = 1 ≥ fRi
(
ĈRi

)
, and

fPi

(
C̃Pi−1

)
= fPi−1

(
C̃Pi−1

)
+ |{l | l ∈ [Ci, Ci−1) and P (l) ≥ C̃Pi−1}|

≤ fRi−1

(
ĈRi−1

)
+ (Ci−1 − Ci)

= (1− Ci) + (1− ĈRi−1)

≤ fRi

(
ĈRi

)
where in the first equality we are using that Ci−1 ≥ Ci, the first inequality follows from the
definition of C̃Pi=1, and the last inequality since ĈRi−1 ≥ ĈRi .

It follows from the intermediate value theorem that the cutoffs C̃P are well-defined and
satisfy C̃P1 ≥ C̃P2 ≥ · · · ≥ C̃Pn ≥ C̃Pn+1.

(1c) The constructed cutoffs clear the market

We show that the cutoffs C̃P and resulting assignment (from letting students choose their
favorite school out of those for which they meet the cutoff) are market-clearing when the second
round scores are given by r̂λi = P (L(λ)) + ni1{lλ≥Ci}+ pλi 1{lλ≥Ci}. We call the mechanism with

this second round assignment MP .

The idea is that since the cutoffs C̃Pi are decreasing in the same order as Ci and ĈRi , the
(second round) affordable sets are nested in the same order under both sets of second round
cutoffs. It follows that aggregate student demand is uniquely specified by the proportion of
students with each school in their affordable set, and that we have defined these to be equal,
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fPi

(
C̃Pi

)
= fRi

(
ĈRi

)
. It follows that C̃P are market-clearing and give the PLDA(P ) cutoffs,

so PLDA(P ) satisfies the local order condition (with the indices indexed in the same order as
with RLDA). We make the affordable set argument explicit below.

Consider the proportion of lottery numbers giving a second round affordable set Xi. Since
ĈR1 ≥ ĈR2 ≥ · · · , under RLDA this is given by

γRi = fRi+1

(
ĈRi+1

)
− fRi

(
ĈRi

)
,

if i < n̂ and 0 if i > n̂, where we define fP0 (x) = 1 for all P and x. Similarly, since C̃P1 ≥ C̃P2 ≥
· · · , under MP this is given by

fPi+1

(
C̃Pi+1

)
− fPi

(
C̃Pi

)
if i < n̂ which is precisely γRi , and 0 if i > n̂.

Hence, for all i < n̂, the measure of students assigned to school si under both RLDA and
MP is

∑
j≤i βi,jγ

R
j = qi, and for all i ≥ n̂, the measure of students assigned to school si is∑

j≤n̂ βi,jγ
R
j < qi. It follows that the cutoffs C̃P are market-clearing cutoffs when the second

round scores are given by r̂λi = P (L(λ)) +ni1{lλ≥Ci}+ pλi 1{lλ≥Ci}, so PLDA(P) = MP satisfies
the local order condition.

(2) Some school has more than one priority group.

Now consider when schools have possibly more than one priority group. We show that if
RLDA satisfies the local order condition, then PLDA with permutation P assigns the same
number of students of each priority type to each school si as RLDA, and within each priority
type assigns the same number of students of each preference type to each school as RLDA. We
do this by first assuming that PLDA with permutation P assigns the same number of students
of each priority type to each school si as RLDA, and showing that this gives consistent cutoffs.

We note that this proof is uses very similar arguments to the proof of Theorem 6.

(2a) Defining little economies Ep on each priority type.

Fix a priority type p. Let qp be a restricted capacity vector, where qp,i is the measure of students
of priority type p assigned to school si under RLDA. Let Λp be the set of students λ such that
pλ = p, and let ηp be the restriction of the distribution η to Λp. Let Ep denote the primitives
(S, qp,Λp, ηp).

Let C̃P
p be the second round cutoffs of PLDA(P ) on Ep. By definition ĈR

p are the second

round cutoffs of RLDA on Ep. We show that the cutoffs C̃P
p defined on the little economy are

the same as the consistent second round cutoffs ĈP
p for PLDA(P ) on the large economy E , that

is C̃P
p = ĈP

p .

(2b) Implications of RLDA satisfying the local order condition

Since RLDA satisfies the local order condition on E , RLDA also satisfies the local order
condition on Ep for all p. It follows from (1) that the global order condition holds on each of
the little economies Ep. Hence by Theorem 1 all PLDA mechanisms on Ep are type equivalent.
Moreover, as in the proof of Theorem 6, the global order condition on Ep also allows us to
determine aggregate student demand in Ep from the proportions of students who have each
school in their affordable set.

Finally, as in the proof of Theorem 6, we may assume that for each p and school si the cutoff
C̃Pp,i is the minimal real satisfying

fPp,i

(
C̃Pp,i

)
= fRp,i

(
ĈRp,i

)
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where for each permutation P

fPp,i(x) = |{l : l ≥ Cp,i or P (l) ≥ x}|

is the proportion of students of priority type p who have school si in their affordable set if the
first and second round cutoffs are Cp,i and x respectively.

It follows that C̃Pp,i depends on p only via pi, and does not depend on pj for all j 6= i. This

is because the value of C̃Pp,i depends on fPp,i(·), fRp,i(·) and ĈRp,i, which depend only on Cp,i and
the permutations P or R. Moreover, Cp,i depends on p only through pi. Hence if p, p′ are two
priority vectors such that pi = p′i, then C̃Pp,i = C̃Pp′,i, so the C̃Pp,i are consistent across priority

types. Hence the C̃Pp,i define cutoffs C̃Pi that are independent of priority type.

(3) C̃Pi are the PLDA cutoffs.

Finally, we show that C̃Pi are market-clearing cutoffs. By (1), for each priority type p, the
number of students assigned to each school si is the same under RLDA and under the demand
induced by the cutoffs C̃Pi , and we know that the RLDA cutoffs are market-clearing for E .

Hence C̃Pi give the assignments for PLDA on E , and since C̃Pi was defined individually for
each priority type p on Ep it follows that PLDA(P ) assigns the same measure of students of each
priority type to each school si as RLDA.

B.5 Proof of Theorem 4

Proof of Theorem 4. Let a permuted lottery stable matching mechanism (PLSM) be a reassign-
ment mechanism that is non-atomic and outputs a matching that is stable under the same second
round school preferences as in PLDA. In a slight abuse of notation, we will also let PLSM refer
to the two-round mechanism defined by this reassignment mechanism. We need to show that
PLSM satisfies the axioms and that any mechanism satisfying the axioms is a PLSM.

We first recall the cutoff characterization of the set of stable matchings for given student
preferences and responsive school preferences (encoded by student scores r), as provided by
Azevedo and Leshno in Azevedo and Leshno [2014]. Namely, if C ∈ Rn+1

+ is a vector of cutoffs,
let the assignment µ defined by C be given by assigning each student of type λ to her favorite
school among those where her score weakly exceeds the cutoff, µ(λ) = max�λ({si ∈ S∪{sn+1} :
rλi ≥ Ci}). We say that C is market-clearing if under the assignment µ defined by C, every school
with a positive cutoff is exactly at capacity, η(µ(si)) ≤ qi for all si ∈ S ∪{sn+1}, with equality if
Ci > 0. Then the set of all stable matchings is precisely given by the set of assignments defined
by market-clearing vectors Azevedo and Leshno [2014].

Recall also that under PLDA with permutation P , a student of type λ has a second round
score r̂λi = P (L(λ)) +1{L(λ)≥Ci} at school si for each school si ∈ S∪{sn+1}. In a slight abuse of

notation, we will sometimes let ĈP refer to the second round cutoffs from some fixed PLSM with
permutation P (not necessarily corresponding to the student-optimal stable matching given by
PLDA).

(1) Any PLSM satisfies the axioms: The proof that any PLSM satisfies the axioms essen-
tially follows from Proposition 1. We provide a full proof here for completeness.

Fix a permutation P and some PLSM with permutation P . We first show that this particular
PLSM satisfies all the axioms. Let η be a distribution of students, and let ĈP be the second
round cutoffs corresponding to the assignment given by the PLSM for this distribution of student
types. PLSM respects guarantees because fewer students are guaranteed at each school than the
capacity of the school. PLSM is non-wasteful because the second round finds a stable matching
where all schools find all students acceptable, which is non-wasteful.
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We now show that the PLSM is two-round strategyproof. Since students are non-atomic,
no student can change the cutoffs ĈP by changing their first or second round reports. Hence it
is a dominant strategy for all students to report truthfully in the second round. Moreover, for
any student of type λ, the only difference between having a first round guarantee at a school
si and having no first round guarantee is that in the former, r̂λi increases by 1. This means
that having a guarantee at a school si changes the student’s second round assignment in the
following way. She receives school si when she would have otherwise received a seat in some
school sj that she reported preferring less to si, and her second round assignment is unchanged
otherwise. Therefore students want their first round guarantee to be the best under their second
round preferences, so it is a dominant strategy for students with consistent preferences to report
truthfully in the first round.

PLSM is Pareto efficient among reassigned students, since we use single tie-breaking and the
output is stable with respect to the second round lotteries r̂. This is easily seen via the cutoff
characterization. Without guarantees, if a student gets assigned a seat at a school si when they
prefer si+1, then ĈPi < ĈPi+1, so there cannot be a cycle in the preferences of such students.

We make the above intuition formal. Fix the first round allocation µ. Suppose there
exists a Pareto-improving cycle among reassigned students, that is an ordered set of types
(θ1, θ2, . . . , θm) ∈ Θm, sets of students (Λ1,Λ2, . . . ,Λm),Λi ⊆ Λ and schools (s̃1, s̃2, . . . , s̃m) ∈ Sm

such that for all i it holds that η(Λi) > 0, s̃i+1�̂θi s̃i (where we define s̃m+1 = s̃1), and for all
λ ∈ Λi it is the case that θλ = θi, µ̂(λ) = si, µ(λ) 6= si.

Let λi ∈ Λi. Then, if li is the first round lottery number of student λi at school si (which
is a random variable), and r̂i is the second round lottery number of student λi at school si,
then r̂i = P (li) for all i. Moreover, since si+1�̂λisi but η(Λi+1) > 0, it follows that the second
round lottery number is in the interval [ĈPi , Ĉ

P
i+1] (where we define ĈPm+1 := ĈP1 ) with positive

probability. Since P is fixed, we may also assume that the cutoffs ĈPi are fixed and so this
interval is non-empty for all i. But this is clearly a contradiction.

Averaging follows from the continuum model, which preserves the relative proportion of
students with different reported types under random lotteries and permutations of random
lotteries. Anonymity is easily checked.

(2) Any mechanism satisfying the axioms is a PLSM:

We now show that any mechanism M satisfying the axioms is a PLSM in a particular sense.
We will show specifically that if we assume that each instantiation of M provides type equivalent
output, then M is type equivalent to a PLSM. Moreover, if we assume that conditional on their
reports, students’ assignments under M are uncorrelated, we are able to explicitly construct a
PLSM that provides the same output as M . We provide a sketch of the proof before fleshing
out the details.

Fix a distribution of student types ζ. Since the first round of our mechanism M is deferred
acceptance with uniform-at-random single tie-breaking and M is anonymous, this gives a distri-
bution η of students that is the same (up to relabeling of students) at the end of the first round.
For a fixed labeling of students, it also gives a a distribution over first round assignments µ and
a distribution over second round assigments µ̃.

We first invoke averaging to assume that all ensuing constructions of aggregate cutoffs and
measures of students assigned to pairs of schools in the two rounds are deterministic. Specifically,
since the first round assignment µ is given by uniform-at-random single tie-breaking, and the
mechanism satisfies the averaging axiom, we may assume that each pathwise realization of the
mechanism gives type equivalent (two-round) allocations. Hence, for the majority of the proof we
perform our constructions of aggregate cutoffs and measures of students pathwise, and assume
that any realization produces the same cutoffs and measures of students. (In particular, the
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quantities Ĉi, ρi,j , γi,j that we will later define will be the same across all realizations.)

Outline of Proof:

We use Pareto efficiency among reassigned students to construct a first round overdemand
ordering s1, s2, . . . , sn, sn+1 and a permutation σ giving the second round overdemand ordering
sσ(1), sσ(2), . . . , sσ(n+1), as in Ashlagi and Shi [2014a], where school s comes before s′ in an
ordering for the first (second) round if there exists a non-zero measure of students who prefer
school s to s′ in the first (second) round but who are assigned to s′ in the first (second) round. (In
the case of the second round ordering, we require that these students’ second round assignments
s′ not be the same as their first round guarantee.) The existence of these orderings follow from
the fact that the first round mechanism, DA with a single priority class and uniform-at-random
single tie-breaking, is Pareto efficient, combined with the fact that the two-round mechanism
is Pareto efficient among reassigned students. We let Xi = {si, si+1, . . . , sn+1} denote the set
of schools after si in the first round overdemand ordering, and X̃i = {sσ(i), sσ(i+1), . . . , sσ(n+1)}
denote the set of schools after sσ(i) in the second round overdemand ordering.

We next note that instead of assignments µ and µ̂, we can think of giving students first and
second round affordable sets E(λ), Ê(λ) so that µ and µ̂ are given by letting each student choose
their favorite school in their affordable set for that round. We use two-round strategy-proofness
and anonymity to show that two students of different types face the same joint distribution
over first and second round affordable sets. This allows us to construct the permutation P by
constructing proportions γi,j of students whose first round affordable set was Xi and (second
round) affordable set was X̃j . This is the most technical step in the proof, and so we separate
it into several steps. We first define a ‘prefix property’ and show that it holds (Lemma 2). We
then use this prefix property to show that it is possible to construct the proportions γi,j so that
they are both the same for every student type θ, and consistent with the proportion of students
in each type assigned to each pair of schools jointly over the first and second round assignments.

We then construct the lottery L and verify that if second round school preferences �̃S are
given by first prioritizing all guaranteed students over non-guaranteed students and subsequently
breaking ties according to the permuted lottery P ◦ L, then defining the first and second round
affordable sets via cutoffs given by γi,j is consistent with the first round assignments and gives
a second round assignment that is stable with respect to second round school and student
preferences.

Formal Proof:

We now present the formal proof. Since we are assuming that the considered mechanism M
is strategy-proof, we assume that students report truthfully and so consider preferences instead
of reported preferences. We will explicitly specify when we are considering the possible outcomes
of a single student misreporting.

Let the schools be numbered s1, s2, . . . , sn such that Ci ≥ Ci+1 for all i. The intuition
is that this is the order in which they reach capacity in the first round. We observe that all
reassignments are index-decreasing. That is, for all s, s′, if there exists a non-zero measure of
students who are assigned to s in the first round and s′ in the second round, and s′ 6= sn+1,
then s = si and s′ = sj for some i ≥ j. This follows since the mechanism respects guarantees,
student preferences are consistent, and the schools are indexed in order of increasing first-round
affordability. Throughout this section we will denote the outside option sn+1 either by s0 or ∅,
to make it more evident that indices are decreasing.

Next, we define a permutation σ on the schools. We think of this as giving a second round
overdemand (or inverse affordability) ordering, where the schools fill in the order sσ(1), sσ(2), . . . , sσ(n)

in the second round, and which we will eventually show gives the same outcome as a PLSM
with cutoffs Ĉσ(1) ≥ Ĉσ(2) ≥ · · · . For all s, s′, if there exists a non-zero measure of students
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with consistent preferences who have second round preference reports � such that s � s′, and
are not assigned to s′ in the first round, but are assigned to s′ in the second round, then
s = sσ(i), s

′ = sσ(j) for some i < j. We assume that σ is the unique permutation satisfying this
that is maximally order preserving. That is, for all pairs of schools si, sj for which no non-zero
measure of students of the above type exist, σ(i) < σ(j) iff i < j. We also define σ(n+1) = n+1.
An ordering σ with the required properties exists since the mechanism is Pareto efficient among
reassigned students, so every trading cycle involves a student swapping a share in their first
round guarantee.

Let S′ be a set of schools, and let � be a preference ordering over all schools. We say that S′ is
a prefix of � if s′ � s for all s′ ∈ S′, s 6∈ S′. For a set of schools S′, let i(S′) = max{j : sj ∈ S′} be
the maximum index of a school in S′. We may think of i(S′) as the index of the most affordable
school in S′ in the first round.

For a student type θ = (�, �̂), an interval I ⊆ [0, 1] and a set of schools S′, let ρθ(I, S′) be
the proportion of students with type θ who, under the mechanism M , have first round lottery
in the interval I and are assigned to a school in S′ in the second round. When S′ = {s′} we
will sometimes write ρθ(I, s′) instead of ρθ(I, {s′}).38 In this section, for brevity, when defining
preferences � we will sometimes write �: [si1 , si2 , . . . , sik ] instead of si1 � si2 � · · · � sik .

(2a) Constructing the permutation P

We now construct the permutation P as follows. For all pairs of indices i, j, we define a
scalar γi,j , which we will show can be thought of as the proportion of students (of any type)
whose first round affordable set is Xi and whose second round affordable set is X̃j .

Now, for all pairs of indices i, j such that σ(j) < i, we define student preferences θi,j = (�i,j
, �̂i,j) such that

�i,j : [sσ(j), si−1, si, sn+1] and �̂i,j : [sσ(j), sn+1],

with all other schools unacceptable. (We remark that in the case where σ(j) = i − 1, the first
two schools in this preference ordering coincide.) We note that the full support assumption
implies that there is a positive measure of such students. Let ρi,j be the proportion of students
of type θi,j whose first round assignment is si and whose second round assignment is school
sσ(j). Intuitively, ρi,j is the proportion of students who can deduce that their lottery number is

in the interval [Ci, Ci−1], and whose second round affordable set contains X̃j .

For a fixed index i, we define γi,j for j = 1, 2, . . . , n to be the unique solutions to the following
n equations:

γi,j = 0 for all j such that σ(j) ≥ i
γi,1 + · · ·+ γi,j = ρi,j for all j such that σ(j) < i.

We may intuitively think of γi,j as the proportion of students of type θi,j whose first round
lottery is in [Ci, Ci−1] and whose second round affordable set contains sσ(j) but not sσ(j−1). If
σ(j) ≥ i then this would include all students whose first round lottery is in [Ci, Ci−1], and so we
define γi,j = 0

We also define γi,n+1 to be

γi,n+1 = Ci−1 − Ci −
n∑
j=1

γi,j .

Since transfers are index-decreasing, we may intuitively think of γi,n+1 as the proportion of
students of type θi,j assigned to school si in the first round whose only available school in the
second round comes from their first round guarantee.

38Here we are assuming that this proportion is the same for every realization of the first round of M . This
requires non-atomicity and anonymity.
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Figure 5: Constructing the permutation P for n = 2 schools, where σ is the identity permutation.
The intervals Ĩi,j for i ≤ σ(j) = j < n + 1 are empty by definition, as all transfers are index-
decreasing.

We define the lottery P from γi,j as follows. We break the interval [0, 1] into (n+1)2 intervals,
Ĩi,j , where the interval Ĩi,j has length γi,j , and the intervals are ordered in decreasing order of
the first index i,

Ĩn+1,n+1, Ĩn+1,n, . . . , Ĩ1,2, Ĩ1,1.
39

The interval Ĩi,j can be thought of as the lottery numbers of students whose first round lottery
is in [Ci, Ci−1] and whose second round affordable set contains sσ(j) but not sσ(j−1) (whose only
available school in the second round comes from their first round guarantee, if j = n+ 1).

The permutation P maps the intervals back into [0, 1] in decreasing order of the second index
j,

P (Ĩn+1,n+1), P (Ĩn,n+1), . . . P (Ĩ2,1), P (Ĩ1,1).40

In Figure 5, we show an example for two schools.

We note that
∑n+1

j=1 γi,j = Ci−1 − Ci, which is the proportion of students whose first round
affordable set is Xi. We may interpret γi,j to be the proportion of students who can deduce that
their lottery number is in the interval [Ci, Ci−1], and whose second round affordable set is X̃j ,
and so

∑n+1
i=1 γi,j is the proportion of students whose second round affordable set is X̃j .

We show that there exists a PLSM mechanism with permutation P , where the students
with first round scores in Ĩi,j are precisely the students with first round affordable set Xi and
second round affordable set X̃j , and that this PLSM mechanism gives the same joint distribution
over first and second round assignments as M . To do this, we first show that this distribution
of first and second round affordable sets gives rise to the correct joint first and second round
assignments over all students. We then use anonymity to construct L in such a way so as to
have the correct first and second round assignment joint distributions for each student. Finally,
we verify that these second round affordable sets give a stable matching under the second round
school preferences given by P .

(2b) Equivalence of the joint distribution of assignments given by affordable sets
and M :
Fix student preferences θ = (�, �̂). We show that if we let γi,j be the proportion of students
with preferences θ who have first round affordable set Xi and second round affordable set X̃j ,
then we obtain the same joint distribution over assignments in the first and second rounds for
students with preferences θ as under mechanism M . In doing so, we will use the following lemma
about prefixes.

The ‘prefix lemma’ states that for every set of schools S′, there exist certain intervals of the
form Iji = [Ci, Cj ] such that for any two student types whose top set of acceptable schools under

39Specifically, let Ĩi,j = [Ci−1 −
∑
j′≤j γi,j′ , Ci−1 −

∑
j′<j γi,j′ ].

40Specifically, let Ĉσ(j) = 1−
∑
i′,j′:j′≤j γi′,j′ , and let P (Ĩi,j) = [Ĉσ(j−1) −

∑
i′≤i γi′,j , Ĉσ(j−1) −

∑
i′<i γi′,j ].
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second round preference reports is S′, the proportion of students with lotteries in Iji who are
upgraded to a school in S′ in the second round is the same for each type.

We define a prefix of preferences � to be a set of schools S′ that is a top set of acceptable
schools under �, that is, for all s′ ∈ S′ and s 6∈ S′, it holds that s′ � s.

Lemma 2. [Prefix Property] Let s = sj be a school, and let S′ 63 s be a set of schools such that
i(S′) < j. Let θ = (�, �̂) and θ′ = (�′, �̂′) be consistent preferences such that S′ is a prefix
of �, �̂ and some students with preferences θ are assigned to school s in the first round, and
similarly S′ is a prefix of �′, �̂′ and some students with preferences θ′ are assigned to school s
in the first round.

Then the proportion of such students of type θ whose first round lotteries are in the inter-
val [Cj , Ci(S′)] and who are assigned to a school in S′ in the second round is the same as the
proportion of such students of type θ′ whose first round lotteries are in the interval [Cj , Ci(S′)]

and who are assigned to a school in S′ in the second round. Equivalently, ρθ([Cj , Ci(S′)], S
′) =

ρθ
′
([Cj , Ci(S′)], S

′).

Sketch of proof of Lemma 2. The idea of the proof is to use the full support assumption to
identify students who are essentially indifferent between schools in S′, and then use two-round
strategy-proofness to show that they are indifferent between reporting either θ or θ′. This shows
that the conditional probabilities of being assigned to S′ are the same for students of type
θ or θ′ (conditional on certain first round assignments). We then invoke anonymity to argue
that proportions of types of students assigned to a certain school are given by the conditional
probabilities for individual students of being assigned to that school. We present the full proof
at the end of Section 3.1.

We now show that the mechanism M and the affordable set distribution γi,j produce the
same joint distribution of assignments.

(2b.i.) Students with two acceptable schools:
To give a bit of the flavor of the proof, we first consider student preferences θ of the form
�: [si1 , si2 , sn+1] and �̂ : [si1 , sn+1], where all other schools are unacceptable. There are five
ordered pairs of schools that students of this type can be assigned to in the two rounds. Namely,
if we let (s, s′) denote assignment to s in the first round and s′ in the second round, then
the ordered pairs are (si1 , si1), (si2 , si1), (si2 , sn+1), (sn+1, si1), and (sn+1, sn+1). Since the
proportion of students with each first round assignment is fixed, it suffices to show that the
mechanism M and the mechanism that assigns first and second round affordable set distributions
according to γi,j produce the same proportion of students assigned to (si2 , si1), and the same
proportion of students assigned to (sn+1, si1).

The proportion of students with preferences θ who are assigned to (si2 , si1) and (sn+1, si1)
under M are given by ρθ([Ci2 , Ci1 ], si1) and ρθ([0, Cmax{i1,i2}], si1) respectively. We want to
show that this is the same as the proportion of students with preferences θ who are assigned
to (si2 , si1) and (sn+1, si1) respectively when first and second round affordable sets are given by
the affordable set distribution γi,j . We remark that when i1 > i2 this holds vacuously, since all
the terms are 0. Hence, since for any school s the proportion of students with preferences θ who
are assigned to s in the first round does not depend on θ, it suffices to consider the case i1 < i2.

Let θ′ = (�′, �̂′) be the preferences given by �′: [si1 , si1+1, . . . , si2−1, si2 , sn+1] and �̂′ :
[si1 , sn+1], where only the schools with indices between i1 and i2 are acceptable in the first
round, only si1 is acceptable in the second round, and all other schools are unacceptable.

Recall that for all i > i1, θi,σ−1(i1) = (�i,σ−1(i1), �̂i,σ−1(i1)) are the student preferences such
that �i,σ−1(i1): [si1 , si−1, si, sn+1] and �̂i,σ−1(i1) : [si1 , sn+1], with all other schools unacceptable,
and that ρi,σ−1(i1) is the proportion of students of type θi,σ−1(i1) whose first round assignment is
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si and whose second round assignment is school si1 . (We note that in the case when i = i1 + 1,
we let the first two schools under the preference ordering �i,σ−1(i1) coincide.)

Then the proportion of students with preferences θ who are assigned to (si2 , si1) under M is
given by ρθ([Ci2 , Ci1 ], si1), where

ρθ([Ci2 , Ci1 ], si1) = ρθ
′
([Ci2 , Ci1 ], si1) (by the prefix property (Lemma 2))

=
∑

i1<i≤i2

ρθ
′
([Ci, Ci−1], si1)

=
∑

i1<i≤i2

ρ
θi,σ−1(i1)([Ci, Ci−1], si1)

(since the second round assignment does not depend on the first round report)

=
∑

i1<i≤i2

ρi,σ−1(i1) (by the definition of ρi,σ−1(i1))

=
∑

i1<i≤i2

∑
j≤σ−1(i1)

γi,j (by the definition of γi,j),

which is precisely the proportion of students with preferences θ who are assigned to (si2 , si1) if
the first and second round affordable sets are given by γi,j .

Similarly, let θ′′ = (�′′, �̂′′) be the preferences given by �′′: [si1 , si2 , si2+1, . . . , sn, sn+1] and
�̂′′ : [si1 , sn+1], where only si1 and the schools with indices greater than i2 are acceptable in the
first round, only si1 is acceptable in the second round, and all other schools are unacceptable.

Then the proportion of students with preferences θ who are assigned to (sn+1, si1) under M
is given by ρθ([0, Cmax{i1,i2}], si1), where

ρθ([0, Cmax{i1,i2}], si1) = ρθ
′′
([0, Cmax{i1,i2}], si1) (by the prefix property (Lemma 2))

=
∑

max{i1,i2}<i≤n

ρθ
′′
([Ci, Ci−1], si1)

=
∑

max{i1,i2}<i≤n

ρ
θi,σ−1(i1)([Ci, Ci−1], si1)

(since the second round assignment does not depend on the first round report)

=
∑

max{i1,i2}<i≤n

ρi,σ−1(i1) (by the definition of ρi,σ−1(i1))

=
∑

i,j:max{i1,i2}<i≤n,j≤σ−1(i1)

γi,j (by the definition of γi,j),

which is precisely the proportion of students with preferences θ who are assigned to (sn+1, si1)
if the first and second round affordable sets are given by γi,j .

(2b.ii.) Students with general preferences:

We now consider general (consistent) student preferences θ of the form (�, �̂), where

�: [si1 , si2 , . . . , sik , sn+1] and �̂ : [si1 , si2 , . . . , sil , sn+1],

for some k > l and where all other schools are unacceptable. We wish to show that for every
pair of schools s, s′ ∈ {si1 , si2 , . . . , sik , sn+1}, the mechanism M and the mechanism that assigns
first and second round affordable set distributions according to γi,j produce the same proportion
of students assigned to (s, s′). It suffices to show that for every prefix S′ of the preferences �̂
and every school s ∈ {si2 , . . . , sik , sn+1}, the mechanism M and the mechanism that assigns first
and second round affordable set distributions according to γi,j produce the same proportion of
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students assigned to s in the first round and some school in S′ in the second round. We say that
the students are assigned to (s, S′).

Fix a prefix S′ of �̂ and a school s = sij , 1 < j ≤ k. Let m ≤ k be such that S′ =
{si1 , si2 , . . . , sim}. If j ≤ m then s ∈ S′, so in any mechanism that respects guarantees, the
proportion of students assigned to (s, S′) is the same as the proportion of students assigned to
s in the first round.

If j > m and ij ≤ i(S′), then in the first round, whenever the school ij is available in the
first round, so is the preferred school i(S′); thus for any school s′, the proportion of students
assigned to s in the first round is 0. It follows that in any mechanism that respects guarantees,
the proportion of students assigned to (s, S′) is 0.

From here on, we may assume that j > m (ie. s 6∈ S′) and ij > i(S′). Since ij > i(S′),
the proportion of students with preferences θ who are assigned to (s, S′) under M is given by
ρθ([Cij , Ci(S′)], S

′). Let i(σ(S′)) be the index i such that si ∈ S′ and σ−1(i) is maximal, that is,
the index of the school in S′ that is most affordable in the second round.

Let θ′ = (�′, �̂′) be the preferences given by

�′: [si(σ(S′)), s
′, si(S′)+1, si(S′)+2, · · · , sij−1, sij , sn+1] and �̂′ : [si(σ(S′)), s

′, sn+1]

for all s′ ∈ S′ \ {si(σ(S′))}. It may be helpful to think of this as all preferences of the form

�′: [S′, si(S′)+1, si(S′)+2, · · · , sij−1, sij , sn+1] and �̂′ : [S′, sn+1],

where the school si(σ(S′)) comes first and otherwise the schools in S′ are ordered arbitrarily.

We remark that only the schools in S′ and the schools with indices between i(S′) and ij are
acceptable in the first round, only the schools in S′ are acceptable in the second round, and all
other schools are unacceptable. Since j > m, ij > i(S′), and the preferences θ are consistent,
the preferences θ′ are well-defined. Let θ′′ = (�′′, �̂′′) be the preferences given by �′′=�′ and
�̂′′ : [si(σ(S′)), sn+1].

Recall that for all i > i(σ(S′)), θi,σ−1(i(σ(S′))) = (�i,σ−1(i(σ(S′))), �̂i,σ−1(i(σ(S′)))) are the stu-
dent preferences such that

�i,σ−1(i(σ(S′))): [si(σ(S′)), si−1, si, sn+1] and �̂i,σ−1(i(σ(S′))) : [si(σ(S′)), sn+1],

with all other schools unacceptable. Additionally, recall that ρi,σ−1(i(σ(S′))) is the proportion
of students of type θi,σ−1(i(σ(S′))) whose first round assignment is si and whose second round
assignment is school si(σ(S′)).

Let Ŝ = {si1 , si2 , . . . , sij−1}, and let i(Ŝ) be the index i such that i ∈ Ŝ and σ−1(i) is
maximal, that is, the index of the school preferable to s under � that is most affordable in the
second round.

Then the proportion of students with preferences θ who are assigned to (s, S′) under M is
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given by ρθ([Cij , Ci(Ŝ)], S
′), where

ρθ([Cij , Ci(Ŝ)], S
′) = ρθ

′
([Cij , Ci(Ŝ)], S

′) (by the prefix property (Lemma 2) with prefix S′)

=
∑

i(Ŝ)<i≤ij

ρθ
′
([Ci, Ci−1], S′)

=
∑

i(Ŝ)<i≤ij

ρθ
′
([Ci, Ci−1], si(σ(S′)))

(by the definition of the second round overdemand ordering)

=
∑

i(Ŝ)<i≤ij

ρθ
′′
([Ci, Ci−1], si(σ(S′))) (by the prefix property with prefix {si(σ(S′))})

=
∑

i(Ŝ)<i≤ij

ρ
θi,σ−1(i(σ(S′)))([Ci, Ci−1], si(σ(S′)))

(since the second round assignment does not depend on the first round report)

=
∑

i(Ŝ)<i≤ij

ρi,σ−1(i(σ(S′))) (by the definition of ρi,σ−1(i(σ(S′))))

=
∑

i(Ŝ)<i≤ij

∑
j′≤σ−1(i(σ(S′)))

γi,j′ (by the definition of γi,j′),

which is precisely the proportion of students with preferences θ who are assigned to (s, S′) if the
first and second round affordable sets are given by γi,j′ .

(3) Constructing the lottery L

Fix a student λ who reports first and second round preferences θ = (�, �̂). Suppose that λ
is assigned to schools (si, sj) in the first and second rounds respectively. We first characterize
all first and second round budget sets consistent with the overdemand orderings that could have
led to this assignment. Let i be the smallest index i′ such that max�Xi′ = si, let j be the

smallest index j′ such that max�̂ X̃j′ ∪ {si} = sj , and let j be the largest index j′ such that
max�̂ X̃j′ ∪ {si} = sj . Then the set of first and second round budget sets that student λ could
have been assigned by the mechanism is given by {Xi′ , Xj′ ∪ {si} : i ≤ i′ ≤ i, j ≤ j′ ≤ j}.
(We remark that the asymmetry in these definitions is due to the existence of the first round
guarantee in the second round budget sets.)

Conditional on λ being assigned to schools (si, sj) in the first and second rounds respec-
tively, we assign a lottery number L(λ) to λ distributed uniformly over the union of intervals
∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′ ,

( L(λ) | (µ(λ), µ̃(λ)) = (si, sj)) ∼ Unif
(
∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′

)
,

independent of all other students’ assignments.

We show that this is consistent with the first round of the mechanism being RSD. We
have shown in (1) that if for each pair of reported preferences θ = (�, �̂) ∈ Θ, a uniform
proportion γi′,j′ of students with reported preferences θ are given first and second round budget
sets Xi′ , {sθ} ∪ X̃j′ (where sθ = max�Xi is the first round assignment of such students), we
obtain the same distribution of assignments as M . Since M is anonymous and satisfies the
averaging axiom, and since |Ĩi′,j′ | = γi′,j′ , it follows that each student’s first round lottery
number is distributed as Unif[0, 1].

(4) Constructing the PLSM and verifying stability

Given the constructed lottery L, we construct the second round cutoffs Ĉi for the PLSM
and verify that the allocation µ̃ is feasible and stable with respect to the schools’ second round
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preferences, as defined by P ◦L and the guarantee structure. Specifically, in PLSM, each student
with first round score l and first round allocation s has a second round score r̂i = P (l)+1(s = si)
at each school si ∈ S ∪ {sn + 1}, and students are assigned to their favorite school si at which
their second round score exceeds the school’s second round cutoff, r̂i ≥ Ĉi.

Recall that the schools are indexed so that C1 ≥ C2 ≥ · · · ≥ Cn+1, and that the permutation
σ is chosen so that the second round overdemand ordering is given by sσ(1), sσ(2), . . . , sσ(n+1) =

sn+1, and so it should follow that the second round cutoffs Ĉi satisfy Ĉσ(1) ≥ Ĉσ(2) ≥ · · · ≥
Ĉσ(n+1).

By the characterization of stable allocations given in Azevedo and Leshno [2014], it suffices
to show that if each student with first round allocation s and second round lottery number in
[Ĉσ−1(i), Ĉσ−1(i−1)] is assigned to their favorite school in {s}∪X̃i, where X̃i = {sσ(i), sσ(i+1), . . . , sσ(n+1)},
then the resulting assignment µ̂ is equal to the second round assignment µ̃ of our mechanism
M , and satisfies that η(µ̂−1(si)) ≤ qi for any school si, and η(µ̂−1(si)) = qi if Ĉi > 0.

For fixed i, j, let Ĉσ(j) = 1 −
∑

i′,j′:j′≤j γi′,j′ and let Ĉi,σ(j) = Ĉσ(j−1) −
∑

i′≤i γi′,j . (We
remark that since γi,j refers to the ith school to fill in the first round, si, and the jth school to
fill in the second round, sσ(j), the Ĉ are indexed slightly differently to γi,j .)

We use the averaging assumption and the equivalence of assignment probabilities that we
have shown in (1) to conclude that if µ̂ is the assignment given by running DA with round scores
r̂ and cutoffs Ĉ, then µ̃ = µ̂.

This is fairly evident, but we also show it explicitly below. Specifically, consider a student
λ ∈ Λ with first round lottery number L(λ) and reported preferences θ = (�, �̂). Let i, j be
such that L(λ) ∈ ∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′ , where i is the smallest index i′ such that max�Xi′ = si,

let j is the smallest index j′ such that max�̂ X̃j′ ∪ {si} = sj , and j is the largest index j′ such

that max�̂ X̃j′ ∪ {si} = sj . Then, because of the way in which we have constructed the lottery
L, (µ(λ), µ̃(λ)) = (si, sj).

Moreover, since

P (L(λ)) ∈ P (∪i′,j′:i≤i′≤i,j≤j′≤j Ĩi′,j′)

= ∪i′,j′:i≤i′≤i,j≤j′≤jP (Ĩi′,j′),

where P (Ĩi′,j′) ∈ [Ĉσ(j′), Ĉσ(j′−1)], it holds that under µ̂, student λ receives their favorite school

in {si} ∪ X̃j′ for some j ≤ j′ ≤ j, which is the school sj . Hence µ̃(λ) = µ̂(λ) = sj .

It follows immediately that the allocation µ̂ is feasible, since it is equal to the feasible
assignment µ̃.

Finally, let us check that the allocation is stable. Suppose that Ĉj > 0. We want to show
that η(µ̃−1(sj)) = qj . First note that it follows from the definition of Ĉj that

1 >
∑

i′,j′:j′≤σ−1(j)

γi′,j′ =
∑
i′

ρi′,σ−1(j).

Consider student preferences θ = (�,�) given by �: [sj , s1, s2, . . . , sj−1, sj+1, . . . , sn+1]. Then∑
i′ ρi′,σ−1(j) is the proportion of students of type θ who are assigned to school sj in the second

round, which, by assumption, is also the probability that a student with preferences θ is assigned
to sj in the second round. But since M is Pareto efficient among reassigned students, and hence
non-wasteful, this means that η(µ̃−1(sj)) = qj .

Proof of Lemma 2. Here, we prove the prefix property.
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We first observe that any schools reported to be acceptable but ranked below s in the first
round are inconsequential. Moreover, since M respects guarantees and by two-round strategy-
proofness, any schools reported to be acceptable but ranked below s in the second round are
inconsequential. We show this below.

Suppose there are two student preferences θ = (�, �̂) and θ′ = (�, �̂′) that differ only in the
second round preferences, and �̂′ is given by truncating the preferences �̂ at the school s and
making all schools worse than s under �̂ unacceptable. Let �̂′ : [si1 , si2 , . . . , sik = s, sn+1] and
let S′ = {si1 , si2 , . . . , sik}. Since the mechanism respects guarantees, students reporting θ and
θ′ are assigned only to schools in S′. Suppose for the sake of contradiction that the mechanism
M treats students with reported preferences θ and θ′ who are assigned to s in the first round
differently, that is, the distribution of (µ̃(λ) | µ(λ) = s, λ reports preferences θ) is different to
the distribution of (µ̃(λ) | µ(λ) = s, λ reports preferences θ′). Let j be the smallest index for
which the probability of assignment differs,

P
(
µ̃(λ) = sij | µ(λ) = s, λ reports θ

)
6= P

(
µ̃(λ) = sij | µ(λ) = s, λ reports θ′

)
.

Suppose the left hand side is larger than the right hand side by some amount ∆. Consider
a student with true preferences θ′ whose cardinal utilities for schools in {si1 , si2 , . . . , sij} are
v, v − ε, . . . , v − (j − 1)ε, for all other schools in S′ are ε

j+1 , . . . ,
ε
k , and for all other schools is

0. Then by misreporting �̂′ in the second round, they increase their interim expected utility by
at least ∆(v − (j − 1)ε) − ε, which for sufficiently small ε is positive, contradicting two-round
strategy-proofness. Hence the left hand side is smaller than the right hand side, and a similar
argument for a student with true preferences θ shows that the probabilities must in fact be
equal.

Hence it suffices to prove the lemma for first round preference orderings � and �′ for which
s is the last acceptable school. We note that the above argument proves the prefix property for
any two sets of preferences θ, θ′ and first round assignment s where the first round preferences
are identical. When the first round preferences are different, because students cannot misreport
their first round preferences after the fact, we will need to use two-round strategy-proofness
for a number of additional student preferences in order to show that the prefix property holds.
When the second round preferences are different, we will need to consider more fine-grained
information that students have about the lottery number, and use two-round strategy-proofness
for a number of different student preferences based on this fine-grained information. We provide
the formal argument below.

Let i1, . . . , ik be the indices of the schools in S′, in increasing order. We observe that
ik = i(S′). Recall that s = sj , where ik < j.

Since we wish to prove that the lemma holds for all pairs θ, θ′ satisfying the assumptions, it
suffices to show that the lemma holds for a fixed preference θ and vary only θ′. Therefore, we
may, without loss of generality, fix the preferences θ to satisfy that

�: [si(S′), si1 , . . . , sik−1
, s = sj , sn+1] and �̂ : [si(S′), si1 , · · · , sik−1

, sn+1]

and all other schools unacceptable. That is, the worst school in S′ is top ranked, then all other
schools in S′ in order. In the first round s = sj is also acceptable, and in the second round only
schools in S′ are acceptable.

We remark that given the first round ordering, the worst school in S′ and the school s (namely
si(S′) and sj) are the only acceptable schools to which students of type θ will be assigned in
the first round. Moreover, it follows from the structure of the preferences θ and θ′ that the
proportion of students with preferences θ who can deduce that their score is in [Cj , Ci(S′)] is
precisely Ci(S′) −Cj , and similarly for θ′. Similarly, the proportion of students with preferences
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θ (or θ′) who can deduce that their lottery number is in [Ci(S′), 1] is precisely 1− Ci(S′). (Note
that students with preferences θ′ may be able to deduce that their lottery number falls in a
subinterval of the interval we have specified. However, this does not affect our statements.) We
remark that the set of students with preferences θ and lottery number in [Ci(S′), 1] is precisely
the set of students with preferences θ who are assigned to a school in S′ in the first round, and
similarly for θ′.

To compare the proportion of students of types θ and θ′ whose scores are in [Cj , Ci(S′)] and
who are assigned to S′ in the second round, we define a third student type θ′′ as follows. Let
θ′′ = (�′, �̂) be a set of preferences where the first round preferences are the same as the first
round preferences of θ′, and the second round preferences are the same as the second round
preferences of type θ.

Let λ be a student with preferences θ, and similarly let λ′ be a student with preferences
θ′. We use the two-round strategy-proofness of the mechanism to show that λ has the same
probability of being assigned to some school in S′ in the second round as if she had reported
type θ′′, and similarly for λ′. Since the proportion of students of either type being assigned
to a school in S′ in the first round is the same and the mechanism respects guarantees, this is
sufficient to prove the prefix property.

Formally, let ρ be the probability that λ is assigned to some school in S′ in the second round
if she reports truthfully, conditional on being able to deduce that her first round score is in
[Cj , Ci(S′)], and let ρ′ be the probability that λ′ is assigned to some school in S′ in the second
round if she reports truthfully, conditional on being able to deduce that her first round score is
in [Cj , Ci(S′)]. (We note that given her first round assignment µ(ρ′), the student ρ′ may actually
be able to deduce more about her first round score, and so the interim probability that ρ′ is
assigned to some school in S′ in the second round if she reports truthfully is not necessarily
ρ′.) Let ρ′′ be the probability a student with preferences θ′′ and first round score in [Cj , Ci(S′)]
chosen uniformly at random is assigned to some school in S′ in the second round. It follows
from the design of the first round and from anonymity that ρ is the probability that a student
with preferences θ and lottery number in [Cj , Ci(S′)] chosen uniformly at random is assigned to
some school in S′ in the second round, and similarly for ρ′.

Proving the lemma is equivalent to proving ρ = ρ′. We show that ρ = ρ′′ = ρ′. Note that
the first equality is between preferences that are identical in the second round, and the second
equality is between preferences that are identical in the first round.

We first show that ρ = ρ′′, that is, changing just the first round preferences does not affect the
probability of assignment to S′. This is almost immediate from Bayesian incentive compatibility,
since the second round preferences under θ and θ′′ are identical. (This also illustrates the power
of the assumption that the second round assignment does not depend on first round preferences.
It implies that manipulating first round reports to obtain a more fine-grained knowledge of the
lottery number does not help, since assignment probabilities are conditionally independent of
the lottery number.) We run through the full argument below.

Consider a student λ0 with preferences θ whose second round cardinal utilities over schools
in S′ are v, v − ε, v − 2ε, . . . , v − (|S′| − 1)ε, for some small ε and some large v, and are 0 for all
other schools and the outside option.

Let π be the probability that a student with preferences θ who is unassigned in the first round
is assigned to a school in S′ in the second round. We note that since the last acceptable school
under preferences θ and θ′ is s = sj , the set of students with preferences θ who are unassigned in
the first round is equal to the set of students with preferences θ with lottery number in [0, Cj ],
and similarly the set of students with preferences θ′′ who are unassigned in the first round is
equal to the set of students with preferences θ′′ with lottery number in [0, Cj ]. Hence, the fact
that θ and θ′′ have the same second preferences gives us that π is also the probability that a

49



student with preferences θ′′ who is unassigned in the first round is assigned to a school in S′ in
the second round.

By truthfully reporting preferences θ, student λ0 has expected ex ante utility of at most

(1− Ci(S′))v + (Ci(S′) − Cj)ρv + Cjπv,

where the first term is an upper bound on their expected utility from having a lottery number
in [Ci(S′), 1] in the first round, the second term is an upper bound on their expected utility from
having a lottery number in [Cj , Ci(S′)] in the first round, and the third term is an upper bound
on their expected utility from having a lottery number in [0, Cj ] in the first round.

By misreporting preferences θ′′, they have expected ex ante utility of at least

(1− Ci(S′))(v − |S′|ε) + (Ci(S′) − Cj)ρ′′(v − |S′|ε) + Cjπ(v − |S′|ε).

From two-round strategy-proofness for λ0 and taking ε to zero, it follows that ρ ≥ ρ′′. A
symmetric argument for a student with preferences θ′′ with the same second round cardinal
utilities gives the reverse inequality, and hence ρ = ρ′′.

We now show that ρ′ = ρ′′. This is a little more involved, but essentially relies on breaking
the set of students with first round score in [Cj , Ci(S′)] into smaller subsets, depending on their
first round assignment, and using Bayesian incentive compatibility for students who have high
value for schools in S′ and low value outside of S′ to show that in each subset, the probability
of an arbitrary student being assigned to a school in S′ in the second round is the same for
students with either set of preferences θ′ or θ′′.

We first introduce some notation for describing the first round preferences of θ′ and θ′′. Let
{j1 ≤ · · · ≤ jm} be the indices between i(S′) and j corresponding to schools that a student with
preferences θ′ and lottery number in [Cj , Ci(S′)] could have been assigned to in the first round.
Formally, we define them to be the indices k for which sk 6∈ S′, i(S′) < k ≤ j, sk �′ sj and sk
is relevant in the first round overdemand ordering, that is, k′ < k for all k′ such that sk′ �′ sk.
We observe that jm = j.

For l = 1, . . . ,m, let ρ′l be the probability that a student with preferences θ′ who was assigned
to school sjl is assigned to a school in S′ in the second round.

The set of students with preferences θ′ assigned to school sjl in the first round is precisely the
set of students with preferences θ′ whose first round lottery number is in [Cjl , Cjl−1

] and similarly
the set students of with preferences θ′′ assigned to school sjl in the first round is precisely the
set of students with preferences θ′′ whose first round lottery number is in [Cjl , Cjl−1

]. It follows
that (Ci(S′) − Cj) =

∑m
l=1(Cjl−1

− Cjl), and that

(Ci(S′) − Cj)ρ′ =
m∑
l=1

(Cjl−1
− Cjl)ρ

′
l.

Let ρ′′l be the probability that a student with preferences θ′′ who was assigned to school sjl
is assigned to a school in S′ in the second round. Then it also holds that

(Ci(S′) − Cj)ρ′′ =
m∑
l=1

(Cjl−1
− Cjl)ρ

′′
l .

We show now that ρ′′l = ρ′l for all l, which implies that ρ′ = ρ′′.

Consider a student λl with preferences θ′ assigned to school sjl in the first round whose second
round cardinal utilities are, for some small ε and some large v, v, v− ε, v− 2ε, . . . , v− (|S′|− 1)ε
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in the appropriate order for schools in S, ε, ε2 , . . . for the other acceptable schools, and 0 for all
other schools and the outside option.

By truthfully reporting preferences θ′, student λl has expected interim utility of at most

ρ′lv + (1− ρ′l)ε,

and by misreporting preferences θ′′, they have expected interim utility of at least

ρ′′l (v − |S′|ε),

so from second round strategy-proofness for λl and taking ε to 0, it follows that ρ′l ≥ ρ′′l .
Similarly, consider a student λ′′l with preferences θ′′ with the same first round guarantee sl,

second round cardinal utilities over schools in S′ also v, v − ε, . . . , v − (|S′| − 1)ε in the order
corresponding to preferences �, and second round cardinal utilities for other acceptable schools
ε, ε2 , . . .. Second round strategy-proofness for these students gives the reverse inequality ρ′l ≤ ρ′′l ,
and hence ρ′l = ρ′′l . This completes the proof of the lemma.

C Example of non-strategy-proofness of PLDA

In this section, we provide an example illustrating that when non-atomicity does not hold, PLDA
mechanisms are not necessarily strategyproof.

Example 2. Consider a setting with n = 2 schools and m = 4 students. Each school has capacity
1 and a single priority class. For readability, we let ∅ denote the outside option, ∅ = sn+1 = s3.
The students have the following preferences:

1. s1 �1 ∅ �1 s2 and ∅ �̂1 s1 �̂1s2,

2. s1 �2 s2 �2 ∅, second round preferences identical,

3. s2 �3 s1 �3 ∅, second round preferences identical,

4. s2 �4 ∅ �4 s1, second round preferences identical.

We show that the two-round mechanism where the second round is the reverse lottery deferred
acceptance mechanism is not strategy-proof.

Assume student 2’s utility is M for s1, ε for s2, and 0 for s3 in both rounds, where M >>
ε > 0. Consider the lottery which yields 1 �B 2 �B 3 �B 4. If the students report truthfully,
the first round assignment is

µ(A) = (µ(1), µ(2), µ(3), µ(4)) = (s1, s2, ∅, ∅),

and the reassignment is
µ̂(A) = (µ̂(1), µ̂(2), µ̂(3), µ̂(4)) = (∅, s2, s1, ∅).

However, consider what happens if student 2 reports s1 �r2 ∅ �r2 s2 in both rounds. Then,
the first round assignment becomes µ(A) = (s1, ∅, s2, ∅), and the reassignment becomes

µ̂(A) = (∅, s1, s2, ∅),

which is a strictly beneficial change for student 2 (and, in fact, weakly beneficial for all students).

We remark that this reassignment was not stable in the second round when students reported
truthfully, since, in that case school s2 had second round preferences 2�̂S2 4�̂S2 3�̂S2 1, and so school
s2 and student 4 form a blocking pair.
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Consider now the expected utility of student 2 from reporting truthfully and her expected
utility from misreporting, when all other students report truthfully and the expectation is over
the first round lottery order. With probability 1

4! , the lottery order is 1 �B 2 �B 3 �B 4, in
which case student 2 can change her assignment from s2 to s1 by reporting s2 as unacceptable.
Moreover, one can verify that for any lottery order, if student 2 received s1 in the first or second
round under truthful reporting, then she also received s1 in the same round by misreporting.41

Hence, by misreporting in this particular fashion, student 2 increases her probability of receiving
s1 by at least 1

4! . Thus, for M sufficiently large with respect to ε, this violates strategy-proofness.

41This is because any stable matching in which student 2 is assigned s1 remains stable after student 2 truncates.
Indeed, student 2 is not part of any unstable pair, as she got her first choice, and any unstable pair not involving
student 2 remains unstable under the true preferences, as only student 2 changes her preferences.
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