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Robust nonlinear stability and performance analysis of an F/A-18
aircraft model using sum of squares programming
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SUMMARY

In this paper, we develop algorithms for the computational analysis of stability and robust performance
properties of nonlinear models governed by polynomial differential equations in quasi-Linear Parameter
Varying form subject to parametric uncertainty. The methods presented use the sum of squares decompo-
sition and ideas from real algebraic geometry to represent polynomial non-negativity over closed sets to
compute various system properties such as L2 gain, regions of attraction, reachable sets and nonlinear
Hankel norm approximations. The methods we present are then illustrated on a nonlinear model of an
F/A-18 aircraft short-period dynamics subject to uncertainty in the aerodynamic coefficients. Copyright
© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the fundamental problems in systems and control theory is that of verifying whether or not
an equilibrium point of a nonlinear dynamical system is stable in the face of uncertainties. For finite
dimensional nominal linear systems, this question can be answered both analytically and algorithmi-
cally. However, linear models can only approximate a nonlinear system locally and computational
nonlinear stability analysis is a nontrivial task. If the systems under study are also uncertain, sta-
bility assessment becomes harder and even running exhaustive simulations becomes a challenge.
Furthermore, all performance metrics that we may wish to compute assume the existence of stability
certificates for these systems.

A major problem encountered when dealing with uncertain nonlinear system models (from a
computational viewpoint) is that the uncertainty can shift the equilibrium point of interest. The sim-
plest example of this occurs when dealing with additive uncertainty. Computational verification thus
becomes difficult as the stability of the equilibrium point must be assessed for all allowable distur-
bances. In this paper, we consider nonlinear uncertain systems modeled by quasi-Linear Parameter
Varying (qLPV) dynamics [1]. The qLPV framework allows us to maintain the nonlinear character
of the dynamic equations but guarantees that the equilibrium is fixed for all allowable parameters.
This approach strikes a balance between model accuracy and algorithm complexity, and for these
reasons, it is frequently used in the aerospace industry, see for example [2, 3].

In this paper, we consider the problem of computationally verifying stability and performance
measures of an aircraft feedback control system. This is an essential part of the engineering design
cycle and is a requirement for clearance of flight control laws. The verification stage can be
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computationally demanding as it relies on a combination of extensive high-fidelity simulations
of the nonlinear system and robust analysis of linearized models corresponding to varying aero-
dynamic conditions. An alternative method would be to consider robustness of nonlinear models
directly; however, such an approach is in general intractable even for low dimensional models. This
problem is further compounded by the fact that realistic aircraft models often contain nonlineari-
ties and operate in an uncertain environment subject to disturbances. Furthermore, such models are
usually parameterized by aerodynamic coefficients that vary over the intended flight envelope.

Traditional methods for analyzing robust stability and performance assume that the system model
has been linearized and that the uncertainty and model can be represented by a linear fractional rep-
resentation [4]. Well-studied methods from robust control can then be used to construct robust flight
control laws and analyze performance. Many such techniques are described in the collective work
[5]. Representative methods that one would typically call traditional methods include �-analysis
for structured uncertainty [6], H1 loop shaping [7] and gain scheduling [8].

More recently, thanks to developments in the seemingly unrelated fields of convex optimization
and real algebraic geometry, algorithmic methods based on polynomial non-negativity permit the
analysis of nonlinear systems directly [9–11]. On the basis of these methods, the region of attraction
of an aircraft model is investigated in [12], and adaptive control laws for aircraft models with delays
are investigated in [13].

The main result of this work is a collection of sum of squares (SOS) optimization problems that
can be used to verify the robust stability and performance of an uncertain nonlinear model of an
F/A-18 in qLPV form. In particular, we consider the closed loop stability of the F/A-18 model
subject to uncertainty in its short-period dynamics under the feedback control of a nonlinear
dynamic inversion controller [14]. This work can be considered as an extension to the work in [15],
which considers an qLPV model subject to polytopic uncertainty. Algorithmic methods for obtaining
Lyapunov functions and estimating regions of attraction, reachable sets and nonlinear Hankel norm
bounds for the closed loop nonlinear uncertain system are presented that use the SOS decomposition
and dissipation inequalities [16]. Preliminary results obtained in this paper appeared in [17].

The paper is set out as follows: In Section 2, the SOS decomposition is described. Next, in
Section 3, SOS techniques are used to obtain various stability and performance certificates. The
nonlinear aircraft model and NDLI controller derived and the SOS programmes formulated in
Section 4 are applied before the paper is concluded in Section 5.

2. PRELIMINARIES

Rn denotes the n-dimensional Euclidean space; for a vector x 2Rn, the standard Euclidean 2-norm
is denoted by jxj. For time-varying signals, k � k denotes the L2 norm.

Let RmŒx�,RŒx1, : : : , xn� denote the commutative ring of real valued multivariable polynomi-
als in x1, : : : , xn of maximum degree m. When it is clear from context, we will simply use RŒx�.
Furthermore, let †Œx� denote the set of polynomials that are SOS of fixed degree. A polynomial,
p.x/, is said to be an SOS if it can be written as

p.x/D

MX
iD1

h2i .x/.

Clearly, p.x/ 2 †Œx�) p.x/ > 0 for all x ¤ 0 (the converse is not necessarily true). Equivalently
[9], p.x/ 2 †Œx� if and only if there exists a vector of monomials Z.x/ and a positive semidefinite
matrix Q such that

p.x/DZT .x/QZ.x/.

This formulation allows SOS decompositions to be computed using convex optimization techniques,
specifically semidefinite programming [18]. Throughout this work, we will formulate and solve all
SOS optimization problems using the freely available MATLAB toolbox SOSTOOLS [19] in con-
junction with the SDP solver SeDuMi [20]. The methods presented in this paper rely on using the
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SOS decomposition to construct Lyapunov functions for nonlinear systems; detailed descriptions of
how this can be carried out are presented in [11, 21].

3. RESULTS

In this paper, we will consider qLPV system models, which can be thought of as an extension to the
class of models covered by differential inclusions [22]. A qLPV model is given by

Px D A.xI �/xCB.xI �/u , f .x,uI �/ (1a)

y D C.xI �/ , h.xI �/ (1b)

where x 2Rn is the state vector, y 2Rq is the output, u 2Rk is the input and � 2 ‚ �Rp is the
vector of parameters where ‚ is a semialgebraic set given by

‚D ¹� 2Rpjgi .�/6 0, i D 1, : : : , j º (2)

where the functions gi are polynomial in � for i D 1, : : : , j . The matrices A,B ,C are polynomial
in their arguments � and x. We also define a domain of the state space that we are interested in
analyzing the system properties over, which contains the origin, by

DD ¹x 2Rnjgi .x/6 0, i D j C 1, : : : , kº , (3)

with gi for i D j C 1, : : : , k being polynomial functions of x. One of the advantages of the qLPV
model representation (1) is that the equilibrium point x� D 0 by intent does not change as a function
of the uncertainty in the system.

3.1. Robust stability

The first system property we are interested in is that of robust stability of the unforced dynamical
system

Px D f .x, 0I �/ (4)

corresponding to system (1a) with u D 0. It is assumed that without loss of generality, the equilib-
rium point of interest is x� D 0. Throughout this paper, it is also assumed that the vector field f is
sufficiently smooth so as to ensure local existence and uniqueness of solutions for all x0 2D. Such
an assumption is justified as we are dealing with polynomial vector fields.

The analysis questions posed in this work will be formulated using the Lyapunov framework [23].
Frequently, we will search for a function V.x/, which is positive definite, that is, V.x/ > 0,8x ¤ 0.
However, SOS programming only guarantees that V.x/ > 0. The requirement that V.x/ be pos-
itive definite rather than positive semidefinite can be ensured by imposing the requirement that
V.x/� '.x/> 0, 8x where '.x/ is positive definite. Typical choices of '.x/ include

'.x/D �jxj2, � > 0 (5a)

'.x/D

nX
iD1

dX
jD1

�ijx
2j
i ,

mX
jD1

�ij > � 8i D 1, : : : ,n, � > 0, �ij > 0 8i , j . (5b)

It then follows that V.x/� '.x/> 0) V.x/> '.x/ > 0.
We begin by presenting a generalization of the Lyapunov stability theorem:

Proposition 1 ([21])
Let x� D 0 be an equilibrium point of (4). By assumption, we have x� 2 D where D is defined as
in (3). Let there exist a continuously differentiable polynomial function V.x/ and positive definite
functions 'i .x/, i D 1, 2 and non-negative polynomials qi .x, �/, rl.x, �/, for i D 1, : : : , j and
l D j C 1, : : : , k such that
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1102 J. ANDERSON AND A. PAPACHRISTODOULOU

1. V.x/� '1.x/> 0 8x 2Rn n ¹0º, V.0/D 0,
2. � @V

@x
f .x, 0I �/C

Pj
iD1 qi .x, �/gi .�/C

Pk
lDjC1 rl.x, �/gl .x/� '2.x/> 0 ,

then x� is robustly asymptotically stable.

Proof
The first condition imposes that V.x/ is positive definite; that is, V.x/ > 0 8x, apart from
x D 0, where V.0/ D 0. Denote by PV .x/, the derivative of V.x/ with respect to time, that is,
PV .x/D @V

@x
f .x, 0I �/. The second condition can be written as

� PV .x/ > �

jX
iD1

qi .x, �/gi .�/�
kX

lDjC1

rl.x, �/gl .x/, (6)

which when � 2 ‚ and x 2 D, the non-negativity of qi and ri makes the right-hand side of (6)
positive. Thus, PV < 0 when � 2 ‚ and x 2 D. Therefore, V.x/ is a Lyapunov function for (4) and
the equilibrium point is robustly asymptotically stable. �

This proposition can be thought of as a generalized nonlinear version of the S -procedure [24]
using Positivstellensatz, a result from real algebraic geometry [25]. It is by relaxing the polynomial
inequality constraints in Proposition 1 to the existence of an SOS decomposition that it is possible
to construct Lyapunov functions algorithmically using convex optimization.

Programme 1
Select even integers a,mi ,ni > 0 and search for a polynomial V.x/ 2RaŒx�, where V.0/D 0, SOS
polynomials qi 2 †ni Œx, �� for i D 1, : : : , j and ri 2 †mi Œx, �� for i D j C 1, : : : , k, and positive
definite functions 'i .x/, i D 1, 2 such that

V.x/� '1.x/ 2†Œx�

�
@V

@x
f .x, 0I �/C

jX
iD1

qi .x, �/gi .�/C
kX

lDjC1

rl.x, �/gl.x/� '2.x/ 2†Œx, ��

where the functions 'i .x/ are of the form (5a) or (5b), then x� is a robustly stable equilibrium point
and V.x/ is a Lyapunov function for (4).

It is assumed that the degree bounds (a,mi ,ni ) have been chosen a priori. If Programme 1 returns
an infeasible solution, less conservative solutions may be found by increasing the degree of the
polynomials, that is, by increasing a,mi and ni . This assumption is true for all SOS programmes
although we shall only state it here once. The trade-off is that as the degree bounds are increased,
the computational cost does so too. Work toward reducing the computational burden of high-order
SOS programmes based on system decomposition is presented in [26].

In general, it is not possible to analytically obtain bounds on the degree of any of the polynomial
multipliers or indeed the Lyapunov function for uncertain systems. However, progress toward this
goal is being made. It has been shown that if a system is nominally exponentially stable on a bounded
region of the state space, then a polynomial Lyapunov function must exist [27]. Furthermore, a
bound on the degree of an SOS Lyapunov function has also been identified [28]. Work along similar
lines has shown that when the Lyapunov function degree is fixed, SOS techniques can fail to find a
Lyapunov function when one is known to exist; however, if the degree is allowed to increase and the
vector field is homogenous, then existence of a polynomial Lyapunov function implies existence of
an SOS Lyapunov function [29].

In addition to stability, it is often desirable to determine the Region of Attraction (RoA), denoted
RA, of an equilibrium point of the unforced system (4). Let �.t I x0, �/ be the solution to (4) with
initial state x0 at t D 0 and � 2‚. Note that this implies existence and uniqueness of �. The region
of attraction corresponds to the volume of state space such that

RA D ¹x0 2Dj8� 2‚,�.t I x0, �/! 0 as t !1º .

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1099–1114
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Determining the set RA exactly is a nontrivial task, and no analytic solutions exist for general
nonlinear systems. Most region of attraction algorithms attempt to (under)approximate RA by
simple, more computationally amenable set descriptions such as ellipses and polytopes using the
linear differential inclusion framework [22]. More recently, SOS methods have been applied to RoA
analysis [10,30], although these typically lead to bilinear matrix inequalities, which are non-convex
[31]. The most common method for approximating RA is to determine the largest level curve of
a Lyapunov function that is completely contained in D. Define the set enclosed by the level curve
V.x/D c by

�c D ¹x 2RnjV.x/6 cº . (7)

When �c � D and V.x/ is a Lyapunov function of (4), it follows that �c is a compact positively
invariant subset of D and is thus an estimate of the RoA. We now propose an algorithm based on
the SOS decomposition and the Positivstellensatz that computes the largest level set of V , that is,
the maximum c, such that �c �D.

Programme 2
Given a Lyapunov function V 2 RaŒx� for (4) and a non-negative integer 	, search for SOS
polynomials di 2†bi Œx� for i D j C 1, : : : , k that solve

max
di2†bi Œx�,�>0

�

s.t. jxj2�.V .x/� �/� dl.x/gl.x/ 2†Œx�, l D j C 1, : : : , k.

It then follows that �� � D and the maximum level set of V contained in D is given by
¹x 2RnjV.x/D �º.

Less conservative solutions can be obtained by increasing 	 and the degree of the SOS polynomial
multipliers bi . A full derivation of this SOS programme is provided in the Appendix.

3.2. Input-to-state properties

In this section, we turn our attention to analyzing input-to-state properties of the qLPV system
(1a). We are interested in determining the set of reachable states in Rn when the input energy is
bounded by � > 0, that is,

R T
0
uT udt 6 �. The set of reachable states is denoted by R� and formally

defined as

R� ,
´
x.T /

ˇ̌̌̌
ˇ.x,u/ satisfy (1a), x.0/D 0,

Z T

0

uT udt 6 �, T > 0
μ

.

Following the same methodology as applied in Programme 2, an estimate of the reachable set is the
�-level set of an appropriately chosen Lyapunov function; R� � ¹x 2RnjV.x/6 �º �D.

Proposition 2 ([17])
Given an qLPV system of the form (1a) and a positive definite function '.x/, if there exists a
continuously differentiable function V.x/ such that

1. V.x/� '.x/> 0 8x 2Rn n ¹0º, V.0/D 0,
2. @V

@x
f .x,uI �/6 uT u, 8.x, �/ 2D �‚,

3. The set ¹x 2RnjV.x/6 �º �D,

then R� � ¹x 2RnjV.x/6 �º when the input signal satisfies kuk22 6 �.

Proof
For the case when u D 0, it is clear that the first two conditions ensure that V.x/ is a Lyapunov
function for the unforced system Px D f .x, 0I �/. For the more interesting case where u¤ 0, we use
a storage function argument as follows: Integrating both sides of Condition 2 from 0 to T gives

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1099–1114
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V.x.T //� V.x.0//6
Z T

0

uT udt .

By construction, we have that V.x.0// D V.0/ D 0 and noting that
R T
0 u

T udt 6
R1
0 uT udt D

kuk22, we obtain

V.x.T //6 kuk22 6 �
for every T > 0 and kuk22 6 �. Finally, Condition 3 ensures that ¹x 2 RnjV.x/ 6 �º � D and
therefore contains the subset R� . �

The results of Proposition 2 are implemented in the following SOS programme:

Programme 3
Given a non-negative integer 	, even integers a,mi ,ni ,pi > 0, search for a positive definite func-
tion '.x/, a polynomial function V 2 RaŒx�, with V.0/ D 0, SOS polynomials qi 2 †ni Œx, �� for
i D 1, : : : , j , ri 2 †mi Œx, �� for i D j C 1, : : : , k, si 2 Rpi Œx� for i D j C 1, : : : , k and an � > 0
such that:

max
� > 0, ri 2†mi Œx, ��

qi 2†ni Œx, ��, si 2†pi Œx�

�

s.t. V.x/� '.x/ 2†Œx�

�
@V

@x
f .x,uI �/C uT uC

jX
iD1

qi .x, �/gi .�/

C

kX
lDjC1

rl.x, �/gl .x/ 2†Œx, ��

jxj2�.V .x/� �/� si .x/gi .x/ 2†Œx�, i D j C 1, : : : , k.

The function ' should be constructed as described by (5a) or (5b). The reachable setR� is contained
within the set ¹x 2RnjV.x/6 �º.

3.3. Output energy

The dual problem to determining the set of reachable states from a finite energy input is that of
determining the maximum output energy achievable from a given initial condition over the uncer-
tainty set ‚. Given an initial condition x0, the maximum output energy, denoted by ��, of an qLPV
system of the form (1a–1b), is given by

�� Dmax

²Z 1
0

yT ydt

ˇ̌̌̌
Px D f .x, 0I �/, y D h.xI �/, x.0/D x0

³
, (8)

where the maximum is taken over the set ‚.

Proposition 3
Consider the unforced (u D 0) qLPV system (1a–1b) and positive definite function '.x/. If there
exists a continuously differentiable function V.x/ such that

1. V.x/� '.x/> 0 8x 2Rn n ¹0º, V.0/D 0,
2. @V

@x
f .x, 0I �/6 �yT y, 8.x, �/ 2D �‚ and .x,y/ satisfying (1) with uD 0,

then V.x0/ is an upper bound for �� over the uncertainty set ‚ for the initial condition
x.0/D x0 2D.

Proof
Integrating both sides of Condition 2 from 0 to T > 0 gives

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1099–1114
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V.x.T //� V.x.0//6 �
Z T

0

yT ydt

which is true for all T > 0. Because V.x/ is a Lyapunov function, we have that V.x.T //> 0; thus,
it follows that V.x.0// >

R T
0
yT ydt . Note that as T !1 so x.T /! 0 and V.x.T //! 0 and so

the upper bound tightens. �

In the following equations, we formulate an SOS programme for computing an upper bound on
�� using the previous proposition.

Programme 4
Given an initial condition x0 2 D and positive definite function '.x/, find a polynomial func-
tion V 2 RaŒx� where V.0/ D 0 and SOS polynomials qi 2 †ni Œx, �� for i D 1, : : : , j and
ri 2†mi Œx, �� for i D j C 1, : : : , k that solve

min
V 2RaŒx�,qi2†ni Œx,��,rl2†mi Œx,��

V.x0/

s.t. V.x/� '.x/ 2†Œx�

�
@V

@x
f .x, 0I �/� yT y C

jX
iD1

qi .x, �/gi .�/

C

kX
lDjC1

rl.x, �/gl.x/ 2†Œx, ��.

Then V.x.0//> ��.

3.4. L2! L2 gain

The input-to-output gain of a system is the maximum ratio of the output signal energy to the input
signal energy where energy is defined as the L2 norm of a signal; hence, it also denoted as the
L2! L2 gain. The L2! L2 norm of an qLPV system of the form (1) is given by

sup
kuk2¤0,�2‚

kyk2

kuk2
, x.0/D 0. (9)

The following proposition uses a Storage function argument to compute bounds on the L2 ! L2
gain of a system.

Proposition 4
Given an qLPV system of the form (1) and a positive definite function '.x/ such that

1. V.x/� '.x/> 0 8x 2Rn n ¹0º, V.0/D 0,
2. � @V

@x
f .x,uI �/� yT y C �2uT u> 0 8.x, �/ 2D �‚

then the L2! L2 gain of (1) is less than � .

Proof
Integrating Condition 2 from 0 to T > 0 and rearranging terms, we obtain

�.V .x.T //� V.x.0///>
Z T

0

�
yT y � �2uT u

�
dt

D

Z T

0

yT ydt � �2
Z T

0

uT udt .

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1099–1114
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By definition x.0/D 0 and from Condition 1, we have V.x.0//D 0 and V.x.T //> 0. Rearranging
the previous inequality gives R T

0
yT ydtR T

0
uT udt

C
V.x.T //R T
0
uT udt

6 �2

for all T > 0. As T !1 stability of the equilibrium point means V.x.T //! 0 and thus

kyk2

kuk2
6 � .

�

An SOS programme to compute an upper bound of the input–output gain based on the previous
proposition is now given.

Programme 5
Given the qLPV system (1) search for a continuously differentiable polynomial function V 2RaŒx�,
a positive definite function '.x/ given by (5a) or (5b), and SOS polynomials qi 2 †ni Œx, �� for
i D 1, : : : , j and ri 2†mi Œx, �� for i D j C 1, : : : , k that solve

min
� > 0,V 2RmŒx�,

qi 2†ni Œx, ��, ri 2†mi Œx, ��

�

s.t. V.x/� '.x/ 2†Œx�

�
@V

@x
f .x,u/� yT y C �uT uC

jX
iD1

qi .x, �/gi .�/

C

kX
lDjC1

rl.x, �/gl .x/ 2†Œx, ��

then the L2! L2 gain of (1) is upper bounded by
p
� .

3.5. Hankel Norm estimation

Hankel norm operators are frequently used in linear control analysis to synthesize lower-order
plant models prior to designing a controller. Related work has extended the concept of control
and observability gramians to nonlinear systems [32, 33]. The Hankel norm of an qLPV system is
defined as

sup
u2L2Œ0,T �,�2‚

qR1
T
yT ydtqR T

0
uT udt

.

The quantity that we wish to obtain an estimate of is

� Dmax

8̂<̂
:
Z 1
T

yT ydt

ˇ̌̌̌
ˇ̌̌
R T
0
uT udt 6 �, x.0/D 0

u.t/D 0 for t > T > 0
.x,u,y/ satisfy .1/

9>=>; .

A Hankel norm estimate is then
p
�.

Proposition 5
Given the qLPV system (1) and positive definite functions 'i .x/, i D 1, 2, if there exist continuously
differentiable functions ¹V ,W º 2RŒx� such that:

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:1099–1114
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1. V.x/� '1.x/> 0 8x 2Rn n ¹0º, V.0/D 0,
2. W.x/� '2.x/> 0 8x 2Rn n ¹0º, W.0/D 0,
3. � @V

@x
f .x,uI �/C uT u> 0, 8.x, �/ 2D �‚,

4. � @W
@x
f .x, 0I �/� yT y > 0, 8.x, �/ 2D �‚,

then � 6 sup¹W.x.T //jV.x.T // 6 �º and
p
� is an upper bound for the robust nonlinear Hankel

norm of (1).

Proof
The proof combines results from Propositions 2 and 3. From the proof of Proposition 2, select an
� > 0, then we have V.x.T // 6 �, and from the proof of Proposition 3, we obtain W.x.T // >R1
T
yT ydt . Therefore, an estimate of the Hankel norm is

� 6 sup

²Z 1
T

yT ydt

ˇ̌̌̌
V.x.T //6 �

³
6 sup ¹W.x.T //jV.x.T //6 �º .

�

Programme 6
Compute V.x/ using SOS programme 3 for some � > 0.
Compute W.x/ using SOS programme 4.
Define h.x/ , V.x/ � � 6 0. Given a positive integer 	, search for an SOS polynomial r 2 †Œx�
that solves

max
ı>0,r2†Œx�

ı

s.t. jxj2�.W.x/� ı/� r.x/h.x/ 2†Œx, ��.

Then
p
ı is an upper bound for �.

In the next section, the ideas presented in this section will be illustrated on a nonlinear model of
an F/A-18 aircraft.

4. F/A-18 EXAMPLE

4.1. Short-period dynamics

The qLPV model we analyze in this paper approximates the F/A-18 short-period dynamics of a
nonlinear, aeroservoelastic aircraft model derived in [34]. The model consists of two states q and

˛ that represent pitch rate and angle of attack, respectively. The dynamics are given by

�
Pq


 P̨

�
D

24 0 1
Iyy

M˛.˛/unc

1C cos.˛/
mVo

Zq.˛/unc
cos.˛/
mVo

Z˛.˛/unc

35� q


˛

�
C

24 1
Iyy

M�.˛/unc

cos.˛/
mVo

Z�.˛/unc

35
elev
(10)

where elev is the elevator deflection and 
elev D elev � elevo represents large deviations from
the steady-state value elevo. Similarly, 
˛ D ˛ � ˛o. The terms Iyy and m represent the moment
of inertia and aircraft mass, respectively. The model is valid around an operating point characterized
by the velocity Vo and altitude ho.

The functions M˛.˛/unc ,M�.˛/unc ,Zq.˛/unc ,Z˛.˛/unc and Z�.˛/unc represent the weighted
additive uncertainty in the aerodynamic coefficients given by
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M˛.˛/unc DM˛.˛/CcM ˛wM˛ıM˛

M�.˛/unc DM�.˛/CcM �wM�ıM�

Zq.˛/unc DZq.˛/C bZqwZqıZq
Z˛.˛/unc DZ˛.˛/C bZ˛wZ˛ıZ˛
Z�.˛/unc DZ�.˛/C bZ�wZ�ıZ�

where M˛.˛/, : : : ,Z�.˛/ are polynomial functions of ˛ obtained from a least-squares optimization
on the raw data from the aerodynamic lookup table [34]. The functions ı are time-varying and satisfy

jıi .t/j6 1, the constants wM˛ , : : : ,wZ� satisfy wi > 0, and finally, the constant terms cM ˛ , : : : ,bZ�
represent the average moment or force over the range ˛ (pitch rate).

This choice of uncertainty model is best illustrated by way of example. In Figure 1, we vary the
weight wM� and plot the uncertainty bands created inM�.˛/. This corresponds to uncertainty in the
moment due to the elevator deflection over the range ˛ 2 Œ�7, 14�.

4.2. Nonlinear Dynamic Inversion control law

Nonlinear Dynamic Inversion (NDI) control laws are a popular choice for control design of
aerospace vehicles as the controllers derived are valid for the entire flight envelope, thus avoid-
ing the need for gain scheduling methods. Given the nonlinear model of the F/A-18 short-period
dynamics (10), the NDI control law we consider is given by


elev D

�
M�.˛/

Iyy

��1 �
v �

M˛.˛/

Iyy

˛

�
(11)

which is designed to achieve pitch rate control based on the nominal model. The command pitch
acceleration, v, is the external signal, which is produced via a simple proportional control law,
v D !q.qcom � q/, where the scalar gain !q is selected such that the input–output response of the
nominal model is

q.s/

qcom.s/
D

5

sC 5
. (12)

It is by combining the uncertain short-period dynamics model (10), the NDI control law (11) and
the proportional controller (12) that the closed loop system in qLPV form becomes�

Pq

 P̨

�
D
�
Ainv.˛, ı/�wqŒBinv 02�1�

� � q


˛

�
CwqBinv.˛, ı/qcom, (13)

Figure 1. Uncertainty in the aerodynamic coefficientM�.˛/ for choices of wM�
corresponding to a 5% and

10% deviation from nominal operating conditions.
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where ı 2R5 is the vector of uncertain parameters ı D
�
ım˛ , ım� , ı´q , ı´˛ , ı´�

	T
and

Ainv.˛, ı/D

"
0 A12inv

A21inv A22inv

#
, (14)

with

A12inv D
cM ˛

Iyy
wM˛ �

M˛.˛/

M�.˛/

cM �

Iyy
wM�ıM� ,

A21inv D 1C cs.˛/

 
Zq.˛/

mVo
C

bZq
mVo

wZqıZq

!
,

A22inv D cs.˛/

 
Z˛.˛/

mVo
C

bZ˛
mVo

wZ˛ıZ˛

!
� cs.˛/

M˛.˛/

M�.˛/

 
Z�.˛/

mVo
C

bZ�
mVo

wZ�ıZ�

!
,

and

Binv.˛, ı/D

24 1C
bM �

M�.˛/
wM�ıM�

cs.˛/
Iyy
M�.˛/



Z�.˛/
mVo

C
bZ�
mVo

wZ�ıZ�

�
35 , (15)

where cs.˛/D
�
1� 1

2
.
˛C a0/

2
�

is an approximation of cos.˛/.

4.3. Robust stability

We begin by analyzing the robust stability of the qLPV model of the closed loop F/A-18 short-period
dynamics under the influence of an NLDI controller described by (13) with qcom D 0. Through-
out this section, it is assumed that Vo D 150 m/s at sea-level, for wM˛ D � � � D wZ� D w. In
Figure 2(A), the stability of the nominal system model is analyzed, and the region of attraction esti-
mate is plotted using a quadratic and quartic Lyapunov function. The RoA estimate is computed
using SOS programme 1 to compute the Lyapunov function and SOS programme 2 to enlarge the
RoA. It is clear that the higher-order Lyapunov function produces a larger RoA estimate, that is, a
less conservative estimate of the RoA.

Introducing uncertainty into the model at levels wi D 0.2 and wi D 0.4 for i D 1, : : : , 5, the RoA
estimates decrease as the uncertainty increases. This is shown in Figure 2(B) using a fourth-order
Lyapunov function. For comparison, the nominal estimate obtained previously is also shown.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

da

q

Nominal System

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

da

q

Lyapunov functions for varying amount of uncertainty

A B

Figure 2. (A): Region of attraction estimates for the nominal system obtained using quadratic (solid line)
and fourth-order (dashed) Lyapunov functions. (B): RoA estimates for uncertainty levels wi D 0.2 (dotted

line) and wi D 0.4 (dash-dot line) using a fourth-order Lyapunov function.
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4.4. Input-state-output performance

We now turn our attention to analyzing the input–output properties of the F/A-18 aircraft. To begin
with, let us determine the set of reachable states (R�) in the state space given a bounded L2-norm
input qcom. The region of the state space we consider for this analysis is

DD ¹
˛j � 0.166 rad6
˛ 6 0.166 radº.

It is by using SOS programme 3 that the R� can be estimated. In Figure 3, the maximum devia-
tion of the angle of attack, 
˛, for increasing levels of uncertainty is plotted as a function of input
energy. Consider for example the uncertainty level w D 0.1: using Figure 3, it can be seen that when
kqcomk < 0.15 then 
˛ will not deviate by more than 6 degrees from its equilibrium value. If the
level of uncertainty is increased to w D 0.4, less energy in the input (kqcomk< 0.1) can be tolerated
to keep 
˛ within the same range.

It is by using Programme 5 that an upper bound on the L2! L2 gain from input, qcom, to output
(which we select as pitch rate q) can be computed. The results for different levels of uncertainty
are shown in Figure 4(A). To interpret these plots, they must be considered in conjunction with the
previous plot. Let us continue with the running example: for all pitch rate reference signals that

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

 in degrees

Figure 3. Guaranteed range of 
˛ for an input energy kqcomk 6 � for varying magnitudes of
parametric uncertainty.

Upper bound of induced L   norm from q
         

to q for an input of energy ||q        ||    < 

0 2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

2

2.2

2.4

in degrees
0 0.05 0.1 0.15 0.2 0.25

1

1.5

2

2.5

A B

Upper bound of induced L   norm from q
         

to q for an input of energy ||q        ||    < 

Figure 4. (A):Robust performance plotted as a function of the deviation in the angle of attack, 
˛, for
various uncertainty levels. The deviation in angle of attack is shown on the x-axis and an upper bound of the
L2 ! L2-gain on the y-axis. (B): Robust performance plotted as a function of the magnitude of the input

signal, kqcomk< �, for varying levels of uncertainty.
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0 2 4 6 8 10 12
0.8

1

1.2

1.4

1.6

1.8

 in degrees

Upper bound on Hankel norm for an input of energy ||qcom|| < 

w = 0.1
w = 0.2
w = 0.3
w = 0.4
w = 0.5

Figure 5. Hankel norm estimates for varying levels of uncertainty plotted as a function of 
˛.

satisfy kqcomk 6 0.15, it is guaranteed that the angle of attack will not deviate by any more than 6
degrees from its equilibrium value and the L2-norm of the output will satisfy kqk< 1.07kqcomk for
any amount of uncertainty w 6 0.1.

The previous results can be used to show how the L2-norm bound on the reference input affects
the full L2 ! L2 system gain. This is shown in Figure 4(B) where it is clear that the perfor-
mance degrades, that is, the gain from input-to-output increases, as the uncertainty in the model
is increased. Furthermore, as the uncertainty level increases, the rate at which the gain increases
(as a function of the input signal magnitude, �) also increases. These results are plotted for the same
uncertainty levels as in Figure 4(A).

The F/A-18’s performance with respect to the nonlinear Hankel norm estimation is shown in
Figure 5. As with the L2! L2 performance shown in Figures 4(A–B), it can be seen that the per-
formance decreases as the uncertainty in the model increases. Here, we show how the performance
varies with respect to a change in the angle of attack.

5. CONCLUSION

In this paper, it has been shown how robust and nonlinear analysis of qLPV systems can be per-
formed using the SOS decomposition of mutivariable polynomials. Algorithmic methods based on
Lyapunov techniques and convex optimization are explicitly derived and presented for a variety of
input–output system properties such as L2-gain, reachable sets and nonlinear Hankel norm estima-
tions. The results are illustrated on a model of the F/A-18 short-period dynamics under a nonlinear
dynamic inversion feedback control law.

APPENDIX

Here, we present a version of the Positivstellensatz theorem from real algebraic geometry. This
result is then used to derive the RoA SOS programme 2. The following definitions are required
before stating the main theorem:

Definition 1 (Ideal)
Given the multivariate polynomials ¹gi , : : : ,gmº 2RŒx�, the Ideal generated by gi for i D 1, : : : ,m
is the set

I.gi , : : : ,gm/D
´

mX
iD1

tigi

ˇ̌̌̌
ˇ t1, : : : , tm 2RŒx�

μ
.
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Definition 2 (Multiplicative monoid)
Given polynomials ¹hi , : : : , hmº 2 RŒx�, the Multiplicative Monoid, denoted M.h1, : : : , hm/,
generated by hi for i D 1, : : : ,m is the set of all finite products of hi including 1.

Definition 3 (Cone)
Given the multivariate polynomials ¹k1, : : : , kmº 2 RŒx�, the Algebraic Cone generated by ki for
i D 1, : : : ,m is the set

C.k1, : : : , km/D

´
s0C

rX
iD1

siFi

ˇ̌̌̌
ˇFi 2M.k1, : : : , km/, si 2†Œx�

μ
where r denotes the number polynomials in M and †Œx� denotes the cone of SOS polynomials
in x.

Theorem 1 (Positivstellensatz)
Let .fi /¹iD1,:::,lº, .gj /¹jD1,:::,mº and .hk/¹kD1,:::,pº be finite families of polynomials in RŒx�.
Denote by C the algebraic cone generated by .fi /¹iD1,:::,lº, I the ideal generated by .gj /¹jD1,:::,mº

and M the multiplicative monoid generated by .hk/¹kD1,:::,pº. Then the following statements
are equivalent:

� The set 8<:x 2Rn

ˇ̌̌̌
ˇ̌ fi .x/> 0, i D 1, : : : , l
gj .x/D 0, j D 1, : : : ,m
hk.x/¤ 0, k D 1, : : : ,p

9=;
is empty.
� There exist f 2 C, g 2 I and h 2M such that f C gC h2 D 0.

We now show how the previous result can be used to find the largest level set of a Lyapunov
function contained in a domain.

Assume that a polynomial Lyapunov function V.x/ has been obtained using SOS programme 1
and the domain of interest D is defined by a single polynomial p1.x/ 6 0. We wish to find the
largest � > 0 such that the set ¹x 2 RnjV.x/ < � ,p1.x/ > 0º D ;. Equivalently, this set can be
written as

¹x 2Rnj � .V .x/� �/> 0,p1.x/> 0,V.x/� � ¤ 0º D ;. (16)

It is by applying the second equivalence relation in Theorem 1 that the empty set (16) is equivalent
to the existence of SOS polynomials r1, r2, r3, r4 2†Œx� and positive integer k, such that

r1 � r2.V � �/C r3p1 � r4.V � �/p1C .V � �/
2k D 0. (17)

Setting r1 D r3 D 0 and choosing k D 1 gives

�r2.V � �/� r4.V � �/p1C .V � �/
2 D 0,

dividing through by .V � �/ and rearranging, we obtain

.V � �/� r4p1 D r2. (18)

This is now a convex SOS programme. The largest level set of V contained in D is obtained by
maximizing � over (18) which is the condition presented in SOS programme 2. It is by multiplying
the .V � �/ term by jxj2� (where 	 is a positive integer) that a nested hierarchy of tests is obtained.
Uncertainty descriptions are included in exactly the same manner.

For more complicated domain descriptions that consist of multiple polynomial inequalities, that
is, when D D ¹p1.x/ 6 0, : : : ,pm.x/ 6 0º, the level set V.x/ � � must be contained in each
pi .x/6 0; thus, the SOS programme must determine the largest � that (18) holds for all pi ’s.
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