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Motivation: Collaborative (Supervised) Learning

® data is collected from different sources, it cannot be shared

® goal is to build a model that captures all the data
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Task Adaptability

learn controller from deploy learned controller
training data

® sample tasks from a distribution
® |earn a policy that does well on all of them

® quickly adapt policy to an unseen task

Motivation



Outline

Federated Learning

Model-Free Learning for control

The Federated LQR problem

Meta-LQR



Federated Learning

a framework for distributed optimization that accounts for:

® device and data heterogeneity
® data locality (privacy)

® communication efficiency
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Centralized “Learning”
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® all data in one place (or globally accessible)
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Federated “Learning”
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® data is not shared between clients, the model is shared and “averaged”

Federated Learning Problem Setup



Problem Formulation

consider the stochastic optimization problem

minimize E¢ [I(z, ()] // population risk

where
e [:RP x R* is the expected loss function
® 1 is the model parameter vector
® ( ~ P with P unknown
® N clients each generate m samples denoted D* = {¢i,...,¢% ) for i € [N]
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Problem Formulation

consider the stochastic optimization problem

minimize E¢ [I(z, ()] // population risk

where
e [:RP x R* is the expected loss function
® 1 is the model parameter vector
® ( ~ P with P unknown
® N clients each generate m samples denoted D* = {¢i,...,¢% ) for i € [N]

to highlight the distributed nature of the problem, rewrite as

N
1 . ol
minimize ;,1 fi(z), where fi(z)= g I(x

CE?)’

empirical risk client % solves

Federated Learning Problem Setup



FedAvg

a prototypical federated learning algorithm [McMahan et al. 2016]

Algorithm 1: Federated Averaging (FedAvg)

Input: global iterations K, local iterations 7, stepsize 7 +

for k=0,1,..., K —1do

// server operations

randomly select subset of clients Sy,
broadcast x;, to all clients in Sy,

for each client in Sy in parallel do
for t=0,1,...,7—1do
pick data point n € D’ and compute g;(z) = Vi(z, ()
L ack;t_H — xk‘t — nktgl(w](;)t) // SGD iteration

send AECZ)T — :cgj)r — xp to server // new — old

aggregate the updates zj11 5 + - Yics, AI(J)T // global update

Federated Learning Problem Setup



Linear Quadratic Control
System
consider the discrete-time dynamical system
41 = Aze + Buy, mo~D t=0,1,2,... (dynamics)

with
® state x; € R"”, input u; € R™
e initial condition Exzo = 0, and Exozd > ul
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Linear Quadratic Control
System

consider the discrete-time dynamical system
41 = Aze + Buy, mo~D t=0,1,2,... (dynamics)

with
® state x; € R"”, input u; € R™
e initial condition Exzo = 0, and Exozd > ul

Objective

design a static linear control policy uy = — Kz such that:
KeK={K|p(A-BK) <1} (stability) // non-convex

and the quadratic cost

C(K) 2 Eyonp [Z z (Q + KTRK) xt} s.t. (dynamics)+(stability)

t=0
is minimized
Model-free LQR



Model-Based Solution

LQR problem:
minimize C(K)
K

s.t. (dynamics) + (stability)

LQR solution:

® solve the DARE for Pk
Px=Q+AT"PrA— A"PxB(R+ B"PxB) 'BTPrA
® construct K* from (A, B, Pk, R)

K*=—(R+B"PxB) 'B"PxA

Model-free LQR



Model-Based Solution

LQR problem:
minimize C(K)
K

s.t. (dynamics) + (stability)

LQR solution:

® solve the DARE for Pk
Px=Q+AT"PrA— A"PxB(R+ B"PxB) 'BTPrA
® construct K* from (A, B, Pk, R)

K*=—(R+B"PxB) 'B"PxA

Q: How do we compute K without a model, i.e., (A, B,Q, R)?

Model-free LQR



Model-Free LQR

we do not have access to the model (A, B) or cost matrices (Q, R)
® Riccati approach won't work

® gradient descent to find K7 \/
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Model-Free LQR

we do not have access to the model (A, B) or cost matrices (Q, R)
® Riccati approach won't work

® gradient descent to find K7 \/

Policy Iteration

initially assume we do have access to (4, B, @, R) and we want to solve
minimize C(K)
K
s.t. (dynamics) + (stability)
try to apply gradient descent:

K « K —nVC(K)

[Fazel, Ke, Kakade, Meshahi, ICML, 2018]
Model-free LQR



LQR Reformulation

we can equivalently rewrite the quadratic cost function
C(K) 2 Eyyop |:Z 7 (Q + KTRK) act:| =Euo~p ze Prxo
t=0

where Pk solves the Lyapunov equation

(A—BK)"Px(A—BK)+Q+ K"RK = Px

Reformulated LQR problem:
min}r)nize Ezop o Pro
s.t. (dynamics) + (stability)

® for n > 3 there exist non-convex problem instances

Model-free LQR



LQR Gradients

EzonD xg Pxxo formulation of C'(K) makes it easier to compute a gradient:

VC(K) =2((R+ B"PxB)K — B" Px A)Sk,

Ex

where Y i is the state-correlation matrix:

choose K, zt41 = (A— BK)z:, Xk £ Eczonp thxtT

t=0

closed-loop dynamics

® not useful as an “object” in the model-free setting

® for analysis...

Model-free LQR



LQR Landscape

Gradient Dominance: [Polyak—tojasiewicz]

a function f : R™ — R is said to be gradient dominated if the there exits a
scalar 1 > 0 such that

fl@) = f@*) < pl|Vf ()]

® used in place of strong convexity to ensure linear convergence rate of
gradient descent
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LQR Landscape

Gradient Dominance: [Polyak—tojasiewicz]

a function f : R™ — R is said to be gradient dominated if the there exits a
scalar 1 > 0 such that

fl@) = f@*) < pl|Vf ()]

® used in place of strong convexity to ensure linear convergence rate of
gradient descent

LQR is Gradient Dominated! [Fazel et. al]

for any K such that C'(K) < oo, we have

Xl
Omin (ZK)QO—min (R)

I

C(K) - C(K*) < IVC(K)|7

=  VC(K) =0 then K is optimal (or £k not full-rank)
Model-free LQR



Model-Based Policy Gradient

LQR landscape is “approximately smooth”, fort =1,..., N:

® Gradient Descent:
Kt+1 < Kt — nVC(Kt)

produces a controller that satisfies

C(Kn) — C(K*) < e

Model-free LQR



Model-Based Policy Gradient

LQR landscape is “approximately smooth”, fort =1,..., N:

® Gradient Descent:
Kt+1 < Kt — WVC(Kt)

produces a controller that satisfies

C(Kn) — C(K*) < e

® Natural Policy Gradient:
Kip1 + Ky —nVC(K)Sg!
® Gauss-Newton:

Kiy1 « KV (R + B Pk, B) ' VO(K,)Xk!

Model-free LQR



Model-Based LQR

® Gradient Descent:
Kt+1 < Kt — nVC(Kt)

® Natural Policy Gradient:
Kt+1 < Kt — ’I’]VC(Kt)E};&
® Gauss-Newton:

Kip1 < K —n(R+ BTPK,,B)JVC(K,,)EZ

methods require oracle access to: VC'(K,), EZ, (R+ BT Py, B)™*

Model-free LQR



Model-Free LQR

® we do not have access to (A, B,Q, R)

® have access to a closed-loop simulation that for a given K, produces
{xtv ut}i:o

® use the simulation data to provide a gradient estimate and then run

—

K1+ Ky —nVC(Ky)

Model-free LQR



Model-Free LQR

® we do not have access to (A, B,Q, R)

® have access to a closed-loop simulation that for a given K, produces
{xtv ut}i:o

® use the simulation data to provide a gradient estimate and then run

—

Kt+1 < Kt — UVC(K,‘)

One-Point Gradient Estimate: ZeroOrder(K,r,ns, T)

® draw n, random matrices Uy, s.t. ||Us||lp =7, for s=1,...,n;
— 1 & nm
VCK:—ECK Us; x0)—-, C' hori length
(K) 0y 2 (K + Us; xo) 2 // orizon length T

is a biased estimate of VC(K)

Model-free LQR



Model-Free LQR: Convergence
® we do not have access to (4, B,Q, R)

® have access to a closed-loop simulation that for a given K, produces
1
{Zt, ut }i—o

® use the simulation data to provide a gradient estimate and then run

—

Kt+1 — Kt — ﬁVC(Kf)

ZeroOrder

v

K,U,z0,7 Simulator (s, u )Ty

(dynamics) (environment)

[Malik et al., JMLR, 2020], [Neshaei et al. arXiv, 2024],[Mohammadi et al. TAC, 2022]
Model-free LQR



Model-Free LQR: Convergence
® we do not have access to (4, B,Q, R)

® have access to a closed-loop simulation that for a given K, produces
1
{Zt, ut }i—o

® use the simulation data to provide a gradient estimate and then run

—

Kt+1 — Kt — ﬁVC(Kt)

ZeroOrder

v

K,U,z0,7 Simulator (s, u )Ty

(dynamics) (environment)

® for k sufficiently large, the one-point gradient estimates converges w.h.p.:

C(Ky) — C(K*) < e

® polynomial computational and sample complexity

[Malik et al., JMLR, 2020], [Neshaei et al. arXiv, 2024],[Mohammadi et al. TAC, 2022]
Model-free LQR



Federated LQR

for full details...

ar (iV > math > arXiv:2308.11743

Mathematics > Optimization and Control
[Submitted on 22 Aug 2023]

Model-free Learning with Heterogeneous Dynamical Systems: A Federated LQR Approach

Han Wang, Leonardo F. Toso, Aritra Mitra, James Anderson

Federated LQR



Problem formulation

® given i =1,..., M (stabilzable) LTI systems

o, = ADaf) 1+ BOW, o) D,

Federated LQR

(dynamics;)



Problem formulation

® given i =1,..., M (stabilzable) LTI systems
x,&zl = A(%Ei) + B(i)uii), x(()i) ~ D, (dynamics;)

® construct a common state feedback controller, u,ﬁi) = Kasgi), that solves

o (K)

M oo

. . 1 i i i i

K™ =argmin { Cag(K) £ i E E E xi )TQmi ) +u§ >TRu§ )
t=0

K =1

st. {(dynamics;)}iL, + {(stability;)}:2,

Federated LQR



Questions & Challenges

@ Is this common policy stabilizing for all the systems? If so, under
what conditions?
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Questions & Challenges

@ Is this common policy stabilizing for all the systems? If so, under
what conditions?

® How far is the learned common policy from each agent’s locally
optimal policy?

©® What is the (sample complexity) benefit to each participating agent?

Federated LQR



Questions & Challenges

@ Is this common policy stabilizing for all the systems? If so, under
what conditions?

® How far is the learned common policy from each agent’s locally
optimal policy?

® What is the (sample complexity) benefit to each participating agent?
© Can the optimal controller be applied and fine-tuned on unseen

systems? [meta-learning, see later]|

Federated LQR



System Heterogeneity

we cannot expect a solution to Fed-LQR problem for arbitrary systems

® system heterogeneity

max A — AV|| <ea, and max||BY — BY| <ep, foralli,j
1,7 ¥

® contrast to classical robust control of nominal+perturbation

Federated LQR



Low-Heterogeneity Regime

Scalar Example

consider a simple 2 system setting, with

xﬁr)l = aazgn + ugl), xii)l = —oz:l:g) + u§2)

and controller u,(f) = K:r:gi) fori=1,2

Federated LQR



Low-Heterogeneity Regime

Scalar Example

consider a simple 2 system setting, with

(1) (1)

_ (1) (2)
Tify =axy +uy o, Ty

= —a:l:f)

+ ui”

and controller u§i> = K:rgi) fori=1,2

® ¢y =2aand eg =0

® ¢4 >2 =— a>1 = both systems unstable

e for stability require | — K| < 1 and |a + K| < 1
Takeaway

we will need to impose some bound on the degree of heterogeneity

Federated LQR



Aside: Quantifying System Heterogeneity

recall our definition:

max A — AV <eq, and max||BY - BY| <ep, foralli,j
7, 57

are these systems really similar?

o) =099z + 01wV and 2%, = 1.012” + 0.01u(”

possible fixes:
* w(M,A)

® v-gap

® | yapunov functions

Federated LQR



Algorithm 2: Model-free Federated Policy Learing for LQR (FedLQR)

Input: no. of periods N, period length L, stepsizes n;,7q4, initial policy Ko

forn=0,1,...,N —1do
// server operations
broadcast K, to all clients

for each client ¢ € [M] in parallel do
K« Kn
for [=0,1,...,L —1do
VC(Z')(KS’)Z) — ZeroOrder(K(ia7 r,T) // estimate gradient

ny

Kfzi,)l-&-l — K’r(lwl - UzVC(”(K(i)l) // update policy

n,

send Asf) — KT(LZ)L — K,, toserver // new — old

| aggregate updates Ky y1 < Kn + 1 A // global update

iE€S)

Federated LQR



Model-Based Results: Bounded Gradient Difference

with access to (A(i), B(“) and Q, R, the global update for the controller is

L M L-1 )
i=1 [=0

® if €4, ep are small then their policy gradient directions “should be" close

® for any i, j, we have

|IVC(K) = VCY(K)| < eah1(K) + epha(K)

O(eaten)

where hi, ha are bounded polynomials of the problem data

® gradient of agent i can be approximated by gradient of agent j

Federated LQR



Model-Based Results: Bounded Gradient Difference

Bounded Policy Gradients

IVCO(K) = VCD (K| < e (K) + epha(K)

O(eaten)

|
T X
(B X i

/
. [ve(gy

Q

Federated LQR



Model-Based Results: Agent Optimality

Distance between Ky and K;: [informal]

For each agent, after N rounds, if (eag1 + 53g2)2 < g3, then

low heterogeneityregime

CO(Kn)—-CO(K!) < (1= qp*C1)" (O (Ko) — CO(K)) + CuBlea, en)

<1 initial optimaility gap bias

moreover K is stabilizing for all N.

Federated LQR
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Distance between Ky and K;: [informal]

For each agent, after N rounds, if (eag1 + eBg2)2 < g3, then

low heterogeneityregime
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Federated LQR



Model-Based Results: Agent Optimality

Distance between Ky and K;: [informal]

For each agent, after N rounds, if (eagi + eBg2)2 < gs, then

C(i)(KN) _ C(i)(KZ) < (1 _ 77“201)1\7 C(i)(Ko) _ C(i)(Ki(*)) +CuB(ea, en)

<1 initial gap bias

moreover K is stabilizing for all V.

Distance between K* and K;: [informal]

For all agents v _
CO(K") = C(K]) = O((ea +en)?).

Federated LQR



Model-Free Results:

Variance Reduction

provided ns and 7 large enough, and r small enough, then w.h.p

M L-1

1 o (i i i
i1z 2% [V ED) - Voo )]

i=1 =0

<e

F

Federated LQR



Model-Free Results:

Variance Reduction

provided ns and 7 large enough, and r small enough, then w.h.p

M L-1

i (@) @) (g
i1z 2% [V ED) - Voo )]

i=1 =0

<e

F

® each agent obtains a ﬁ speed up per iteration relative to centralized case
® all results from model-based setting carry through!

® overall sample complexity improved by a factor (’)(Ai)

® each agent's sample cost improved from O(%) to O(—

€ Me2 )

Federated LQR



Numerics

Performance as a function of number of agents:

® System: 3 states, 3 inputs

* Heterogeneity: €4 = ep = 3

® 70 Parameters: ns =5, 7 =15, r =0.1

*
1

Kn) _C(l)(K
Clli(K

c

Federated

6x107!

1)

4x107t

3x1071

LQR

—— Single system (M=1)

—— Multiple systems (M=10)
—— Multiple systems (M=50)

0

1000 2000 3000 4000
Number of global iterations (n)

5000



Numerics

Performance as a function of number of agents:

® System: 3 states, 3 inputs
® No. Systems: M =10

® 70 Parameters: ns =5, 7 =15, r = 0.1

— £=0,6&5=0
— £,=0.30,6,=0.15

- — £1=15,6,=0.65
g
e
TEex107
Slo
%

4x1071

0 1000 2000 3000 4000 5000

Number of global iterations (n)
Federated LQR




Questions & Challenges

@ Is this common policy stabilizing for all the systems? If so, under
what conditions?

® How far is the learned common policy from each agent’s locally
optimal policy?

® What is the (sample complexity) benefit to each participating agent?

@ Can the optimal controller be applied and fine-tuned on unseen
systems?



For full details...

Proceedings of Machine Learning Research vol 242:902-915, 2024 6th Annual Conference on Learning for Dynamics and Control

Meta-Learning Linear Quadratic Regulators:
A Policy Gradient MAML Approach for Model-free LQR

Leonardo F. Toso LT2879@COLUMBIA.EDU
Donglin Zhan DZ2478 @ COLUMBIA.EDU
James Anderson JAMES.ANDERSON @ COLUMBIA.EDU
Han Wang HW2786@COLUMBIA.EDU

Columbia University, New York, NY
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Meta-Learning for Control

learn a controller that is efficiently adaptable to all tasks in a distribution

2 -1 -1

Tyl = @ @ Ty + @ Ut

Meta-LQR



Meta-Learning for Control

learn a controller that is efficiently adaptable to all tasks in a distribution

2 -1 -1

Tyl = @ GZ) Ty + @ Ut

o the task: 74 := (A® B® QW RM)
® task objective:

C(i)(K) A |:Z 20T (Q(i) + KTR(i)K) 931(51):|
Meta-LQR =



Meta-Learning: Learning to Learn

Aoy e

Multi-task ‘ » “" ’. . ‘%
Dataset. 2 ‘ )

B ) State-Input

Text Images Amifto Observations

Meta-LQR



Meta-Learning: Learning to Learn

N

YOV

Multi-task T ¥ &»{?‘;
Dataset s [ROVVIVV RN Vv Y

State-Input

Aoty Observations

Text

Foundation

Model
GPT, LLaMA, Sora

Meta-LQR



Meta-Learning: Learning to Learn

yOUISSINE . 2
Multi-task S %m:’
Dataset 2 v J
. State-Input
Text — Observations
A -
Foundation
Model
GPT, LLaMA, Sora
Downstream Question Sentiment Image Object Robot
Tasks Ansewring Analysis Classification Detection Manipulation

Meta-LQR
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Meta-Learning for Control

“'.1&”."_" Xt+1 = A(l)x, + B(l)ut (Sys)

(O, RM) (env)

Design: {u; }:>0 such that

min,, E Y2, c(sys,env)

Meta-LQR



Meta-Learning for Control

Training Tasks

3 (AM, B0

) (A®, B®)

(@@, R?)

(D, RW) (env)

Design: {u; } ;>0 such that

min,, E Y%, c(sys, env)

(QM-1, RM-D) QU ROD)

Meta-LQR



Downstream Applications

|Design {u, }; that adapts to different sys and env

Training Tasks Downstream Tasks|
4~*“? (A0, By w (A®, B®)

(Q(”.R(I)) (Q(Z),R(Z))

f—

& (AM-D BM-Dy

Q. R)

@, RM)

(@, RM-D)

Meta-LQR



Model Agnostic Meta Learning: MAML

consider the setting where tasks 79 ~ p(T), i € {1,..., M}
® Features z_)
® Labels y_ ;)
® Dataset D () = {2, (1) Yp +() }n1

® Cost £_(i(0, D)), for some model parameter § € ©

Meta-LQR



Model Agnostic Meta Learning: MAML

consider the setting where tasks 7(") ~ p(T), i € {1,

® Features z_)

® Labels y_ ;)
® Dataset D_u;) = {z, ¢ o}
() () s Y 7 (D) fr=1

® Cost £_(i(0, D)), for some model parameter § € ©

Goal: Learn an initialization 8y € © that solves

M
1 i
L a7 2 o 0o Pro)
subject to fo = 0o — m VoL, i) (00, D,1y) (MAML)

1 step PG

MpFin2Abeel, Levine, ICML, 2017]



Model Agnostic Meta-Learning

MAML-LQR Objective: Design a controller K}, that can efficiently adapt to
any task drawn from p(7), i.e.,

1M )
> (K - mVC(”(K))

=1

K = argming s, Cu(K) :

1 step PG

subject to {(sys-dyn)}™,, with Sy £ NicanS™

SO

SO

[Molybog & Lavaei, CCTA, 2021],[Musavi & Dullerud, CDC, 2023]
Meta-LQR



MAML-LQR

Algorithm 3: Model-free Federated Policy Learing for LQR (FedLQR)

Input: no. of periods N, stepsizes n;, g, initial policy Ko, tasks T

forn=0,1,...,N —1do
broadcast K, to all clients

for each task i € [M] in parallel do

K« K,
// estimate gradient

[VCW(K,),V2CH(K,)] + ZeroOrder2(K,,r, T,ns)
// update policy
KT(Li) “ K — VOO (K,), H® 17— mV2C® (K,)

VC“)(K,(LZ.)) < ZeroOrder2(Ky,,r,T,ns) // update task gradients
| EKny1 ¢ Ky —25M HOVCO(KQ)HD // update MAML

Meta-LQR



MAML-LQR Properties

For appropriately chosen parameters, we have:

® every iteration of the algorithm produces a stabilizing controller
e for all tasks: CV(Kn) — CO(K}) < e+ c1(€)

e for all tasks: CO (K) — CO(K}) < c2(e)

where € defines the task heterogeneity

Meta-LQR



Numerics

® nominal system: unstable Boeing aircraft

1.22 0.03 -0.02 -0.32 0.01 0.99
A— 0.01 0.47 4.70 0 B —3.44 1.66
0.02 -0.06 0.40 0|’ —-0.83 0.44
0.01 —0.04 0.72 1.55 —0.47 0.25

® initial stabilzing controller

0.613 —1.535 0.303 0.396

Ko=1 0888 0604 —0147 —0.582

® heterogeneity (x107%): M = 50 tasks, with:

ea=12 ep=11 e=14 er=12

Meta-LQR



Numerics

20

15

JO(KR) =) V(K )
JUKR) =) MK )

0 50 100 150 200 50 100 150 200 250 3
Iterations (n) Iterations (n)

® Left: gap between nominal task and MAML controller

® Right: varying levels of heterogeneity

Meta-LQR



Numerics

—— Unseen task 1

10° —— Unseen task 2

o —— Unseen task 3

5 Random Ko, pg
’:‘\10-1

|
:f 1072
=

1073

0 50 100 150 200 250 300
Iterations (n)

® three unseen tasks initiated from K*

® one task initiated from Ky

Meta-LQR



Final Thoughts

® demonstrated that federated learning can be applied to optimal control

® proven sample and computational complexity performance boost as a
function of number of agents and heterogeneity

® demonstrated that MAML can provably produce efficiently adaptable
controllers

® bounded the optimality gap

e

james.anderson@columbia.edu

Meta-LQR
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