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Motivation: Collaborative (Supervised) Learning

• data is collected from different sources, it cannot be shared

• goal is to build a model that captures all the data
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Task Adaptability

• sample tasks from a distribution

• learn a policy that does well on all of them

• quickly adapt policy to an unseen task

Motivation



Outline

• Federated Learning

• Model-Free Learning for control

• The Federated LQR problem

• Meta-LQR



Federated Learning

a framework for distributed optimization that accounts for:

• device and data heterogeneity

• data locality (privacy)

• communication efficiency

Federated Learning Problem Setup
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Centralized “Learning”

• all data in one place (or globally accessible)
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Federated “Learning”

• data is not shared between clients, the model is shared and “averaged”

Federated Learning Problem Setup



Problem Formulation

consider the stochastic optimization problem

minimize
x

Eζ [l(x, ζ)] // population risk

where

• l : Rp × Ru is the expected loss function

• x is the model parameter vector

• ζ ∼ P with P unknown

• N clients each generate m samples denoted Di = {ζi1, . . . , ζim} for i ∈ [N ]

to highlight the distributed nature of the problem, rewrite as

minimize
x

1

N

N∑
i=1

fi(x)︸ ︷︷ ︸
empirical risk

, where fi(x) ≜
1

m

∑
ζ∈Di

l(x, ζ)

︸ ︷︷ ︸
client i solves
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FedAvg

a prototypical federated learning algorithm [McMahan et al. 2016]

Algorithm 1: Federated Averaging (FedAvg)

Input: global iterations K, local iterations τ , stepsize ηk,t

for k = 0, 1, . . . ,K − 1 do
// server operations

randomly select subset of clients Sk
broadcast xk to all clients in Sk

for each client in Sk in parallel do

x
(i)
k,0 ← xk

for t = 0, 1, . . . , τ − 1 do
pick data point η ∈ Di and compute gi(x) = ∇l(x, ζ)
x
(i)
k,t+1 ← x

(i)
k,t − ηk,tgi(x

(i)
k,t) // SGD iteration

send ∆
(i)
k,τ ← x

(i)
k,τ − xk to server // new − old

aggregate the updates xk+1 ← xk +
1
nc

∑
i∈Sk

∆
(i)
k,τ // global update

Federated Learning Problem Setup



Linear Quadratic Control

System

consider the discrete-time dynamical system

xt+1 = Axt +But, x0 ∼ D t = 0, 1, 2, . . . (dynamics)

with
• state xt ∈ Rn, input ut ∈ Rm

• initial condition Ex0 = 0, and Ex0x
T
0 ⪰ µI

Objective

design a static linear control policy ut = −Kxt such that:

K ∈ K ≜ {K | ρ(A−BK) < 1} (stability) // non-convex

and the quadratic cost

C(K) ≜ Ex0∼D

[
∞∑
t=0

xT
t

(
Q+K⊤RK

)
xt

]
s.t. (dynamics)+(stability)

is minimized

Model-free LQR
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Model-Based Solution

LQR problem:

minimize
K

C(K)

s.t. (dynamics) + (stability)

LQR solution:

• solve the DARE for PK

PK = Q+ATPKA−ATPKB(R+BTPKB)−1BTPKA

• construct K⋆ from (A,B, PK , R)

K⋆ = −(R+BTPKB)−1BTPKA

Q: How do we compute K without a model, i.e., (A,B,Q,R)?

Model-free LQR
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Model-Free LQR

we do not have access to the model (A,B) or cost matrices (Q,R)

• Riccati approach won’t work

• gradient descent to find K? ✓

Policy Iteration

initially assume we do have access to (A,B,Q,R) and we want to solve

minimize
K

C(K)

s.t. (dynamics) + (stability)

try to apply gradient descent:

K ← K − η∇C(K)

[Fazel, Ke, Kakade, Meshahi, ICML, 2018]
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LQR Reformulation

we can equivalently rewrite the quadratic cost function

C(K) ≜ Ex0∼D

[
∞∑
t=0

xT
(
Q+K⊤RK

)
xt

]
= Ex0∼D xT

0 PKx0

where PK solves the Lyapunov equation

(A−BK)TPK(A−BK) +Q+KTRK = PK

Reformulated LQR problem:

minimize
K

Ex0∼D xT
0 PKx0

s.t. (dynamics) + (stability)

• for n ≥ 3 there exist non-convex problem instances

Model-free LQR



LQR Gradients

Ex0∼D xT
0 PKx0 formulation of C(K) makes it easier to compute a gradient:

∇C(K) = 2((R+BTPKB)K −BTPKA︸ ︷︷ ︸
EK

)ΣK ,

where ΣK is the state-correlation matrix:

choose K, xt+1 = (A−BK)xt︸ ︷︷ ︸
closed-loop dynamics

, ΣK ≜ Ex0∼D

∞∑
t=0

xtx
T
t

• not useful as an “object” in the model-free setting

• for analysis...

Model-free LQR



LQR Landscape

Gradient Dominance: [Polyak– Lojasiewicz]

a function f : Rn → R is said to be gradient dominated if the there exits a
scalar µ > 0 such that

f(x)− f(x⋆) ≤ µ∥∇f(x)∥2.

• used in place of strong convexity to ensure linear convergence rate of
gradient descent

LQR is Gradient Dominated! [Fazel et. al]

for any K such that C(K) <∞, we have

C(K)− C(K⋆) ≤ ∥ΣK⋆∥
σmin(ΣK)2σmin(R)︸ ︷︷ ︸

µ

∥∇C(K)∥2F

=⇒ ∇C(K) = 0 then K is optimal (or ΣK not full-rank)

Model-free LQR
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Model-Based Policy Gradient

LQR landscape is “approximately smooth”, for t = 1, . . . , N :

• Gradient Descent:
Kt+1 ← Kt − η∇C(Kt)

produces a controller that satisfies

C(KN )− C(K⋆) ≤ ϵ.

• Natural Policy Gradient:

Kt+1 ← Kt − η∇C(Kt)Σ
−1
Kt

• Gauss-Newton:

Kt+1 ← Ktη∇(R+BTPKtB)−1∇C(Kt)Σ
−1
Kt

Model-free LQR
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Model-Based LQR

• Gradient Descent:
Kt+1 ← Kt − η∇C(Kt)

• Natural Policy Gradient:

Kt+1 ← Kt − η∇C(Kt)Σ
−1
Kt

• Gauss-Newton:

Kt+1 ← Kt − η(R+BTPKtB)−1∇C(Kt)Σ
−1
Kt

methods require oracle access to: ∇C(Kt), Σ
−1
Kt

, (R+BTPKtB)−1

Model-free LQR



Model-Free LQR

• we do not have access to (A,B,Q,R)

• have access to a closed-loop simulation that for a given K, produces

{xt, ut}lt=0

• use the simulation data to provide a gradient estimate and then run

Kt+1 ← Kt − η∇̂C(Kt)

One-Point Gradient Estimate: ZeroOrder(K, r, ns, τ)

• draw ns random matrices Us, s.t. ∥Us∥F = r, for s = 1, . . . , ns

∇̂C(K) =
1

ns

ns∑
s=1

C(K + Us;x0)
nm

r2
, // C horizon length τ

is a biased estimate of ∇C(K)

Model-free LQR
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Model-Free LQR: Convergence

• we do not have access to (A,B,Q,R)

• have access to a closed-loop simulation that for a given K, produces

{xt, ut}lt=0

• use the simulation data to provide a gradient estimate and then run

Kt+1 ← Kt − η∇̂C(Kt)

• for k sufficiently large, the one-point gradient estimates converges w.h.p.:

C(Kk)− C(K⋆) ≤ ϵ

• polynomial computational and sample complexity

[Malik et al., JMLR, 2020], [Neshaei et al. arXiv, 2024],[Mohammadi et al. TAC, 2022]
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Federated LQR

for full details...

Federated LQR



Problem formulation

• given i = 1, . . . ,M (stabilzable) LTI systems

x
(i)
t+1 = A(i)x

(i)
t +B(i)u

(i)
t , x

(i)
0 ∼ D, (dynamicsi)

• construct a common state feedback controller, u
(i)
t = Kx

(i)
t , that solves

K∗ =argmin
K

Cavg(K) ≜
1

M

M∑
i=1

C(i)(K)︷ ︸︸ ︷
E

[
∞∑
t=0

x
(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

]
s.t. {(dynamicsi)}Mi=1 + {(stabilityi)}Mi=1
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Questions & Challenges

1 Is this common policy stabilizing for all the systems? If so, under
what conditions?

2 How far is the learned common policy from each agent’s locally
optimal policy?

3 What is the (sample complexity) benefit to each participating agent?

4 Can the optimal controller be applied and fine-tuned on unseen
systems? [meta-learning, see later]
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System Heterogeneity

we cannot expect a solution to Fed-LQR problem for arbitrary systems

• system heterogeneity

max
i,j
∥A(i) −A(j)∥ ≤ ϵA, and max

i,j
∥B(i) −B(j)∥ ≤ ϵB , for all i, j

• contrast to classical robust control of nominal+perturbation

Federated LQR



Low-Heterogeneity Regime

Scalar Example

consider a simple 2 system setting, with

x
(1)
t+1 = αx

(1)
t + u

(1)
t , x

(2)
t+1 = −αx(2)

t + u
(2)
t

and controller u
(i)
t = Kx

(i)
t for i = 1, 2

• ϵA = 2α and ϵB = 0

• ϵA > 2 =⇒ α > 1 =⇒ both systems unstable

• for stability require |α−K| < 1 and |α+K| < 1

Takeaway

we will need to impose some bound on the degree of heterogeneity

Federated LQR
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Aside: Quantifying System Heterogeneity

recall our definition:

max
i,j
∥A(i) −A(j)∥ ≤ ϵA, and max

i,j
∥B(i) −B(j)∥ ≤ ϵB , for all i, j

are these systems really similar?

x
(1)
t+1 = 0.99x

(1)
t + 0.1u

(1)
t and x

(2)
t+1 = 1.01x

(2)
t + 0.01u

(2)
t

possible fixes:

• µ(M,∆)

• ν-gap

• Lyapunov functions

Federated LQR



Algorithm 2: Model-free Federated Policy Learing for LQR (FedLQR)

Input: no. of periods N , period length L, stepsizes ηl, ηg, initial policy K0

for n = 0, 1, . . . , N − 1 do
// server operations

broadcast Kn to all clients

for each client i ∈ [M ] in parallel do

K
(i)
n,0 ← Kn

for l = 0, 1, . . . , L− 1 do
̂∇C(i)(K

(i)
n,l)← ZeroOrder(K

(i)
n,l, r, τ) // estimate gradient

K
(i)
n,l+1 ← K

(i)
n,l − ηl

̂∇C(i)(K
(i)
n,l) // update policy

send ∆
(i)
n ← K

(i)
n,L −Kn to server // new − old

aggregate updates Kn+1 ← Kn +
ηg
M

∑
i∈Sk

∆
(i)
n // global update

Federated LQR



Model-Based Results: Bounded Gradient Difference

with access to (A(i), B(i)) and Q,R, the global update for the controller is

Kn+1 = Kn −
Lηlηg
ML

M∑
i=1

L−1∑
l=0

∇C(K
(i)
n,l)

• if ϵA, ϵB are small then their policy gradient directions “should be” close

• for any i, j, we have

∥∇C(i)(K)−∇C(j)(K)∥ ≤ ϵAh1(K) + ϵBh2(K)︸ ︷︷ ︸
O(ϵA+ϵB)

where h1, h2 are bounded polynomials of the problem data

• gradient of agent i can be approximated by gradient of agent j

Federated LQR



Model-Based Results: Bounded Gradient Difference

Bounded Policy Gradients

∥∇C(i)(K)−∇C(j)(K)∥ ≤ ϵAh1(K) + ϵBh2(K)︸ ︷︷ ︸
O(ϵA+ϵB)
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Model-Based Results: Agent Optimality

Distance between KN and K⋆
i : [informal]

For each agent, after N rounds, if (ϵAg1 + ϵBg2)
2 < g3︸ ︷︷ ︸

low heterogeneityregime

, then

C(i)(KN )−C(i)(K⋆
i ) ≤

(
1− ηµ2C1

)N︸ ︷︷ ︸
<1

(C(i)(K0)− C(i)(K
(⋆)
i ))︸ ︷︷ ︸

initial optimaility gap

+CuB(ϵA, ϵB)︸ ︷︷ ︸
bias

moreover KN is stabilizing for all N .
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Distance between K⋆ and K⋆
i : [informal]

For all agents
C(i)(K⋆)− C(i)(K⋆

i ) = O((ϵA + ϵB)
2).
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Model-Free Results:

Variance Reduction

provided ns and τ large enough, and r small enough, then w.h.p∥∥∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
̂∇C(i)(K

(i)
n,l)−∇C

(i)(K
(i)
n,l)

]∥∥∥∥∥
F

≤ ϵ

• each agent obtains a 1
ML

speed up per iteration relative to centralized case

• all results from model-based setting carry through!

• overall sample complexity improved by a factor Õ( 1
M
)

• each agent’s sample cost improved from Õ( 1
ϵ2
) to Õ( 1

Mϵ2
)

Federated LQR
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Numerics

Performance as a function of number of agents:

• System: 3 states, 3 inputs

• Heterogeneity: ϵA = ϵB = 1
2

• ZO Parameters: ns = 5, τ = 15, r = 0.1
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Numerics

Performance as a function of number of agents:

• System: 3 states, 3 inputs

• No. Systems: M = 10

• ZO Parameters: ns = 5, τ = 15, r = 0.1
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Questions & Challenges

1 Is this common policy stabilizing for all the systems? If so, under
what conditions?

2 How far is the learned common policy from each agent’s locally
optimal policy?

3 What is the (sample complexity) benefit to each participating agent?

4 Can the optimal controller be applied and fine-tuned on unseen
systems?



For full details...

Meta-LQR



Meta-Learning for Control

learn a controller that is efficiently adaptable to all tasks in a distribution

• the task: T (i) := (A(i), B(i), Q(i), R(i))
• task objective:

C(i)(K) ≜

[
∞∑
t=0

x(i)T
(
Q(i) +K⊤R(i)K

)
x
(i)
t

]

Meta-LQR
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)
x
(i)
t

]
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Meta-Learning: Learning to Learn
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Meta-Learning for Control
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Downstream Applications

Can we learn a controller from a subset of tasks that can easily adapt to
unseen tasks?
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Model Agnostic Meta Learning: MAML

consider the setting where tasks τ (i) ∼ p(T ), i ∈ {1, . . . ,M}

• Features xτ(i)

• Labels yτ(i)

• Dataset Dτ(i) = {xn,τ(i) , yn,τ(i)}Nn=1

• Cost ℓτ(i)(θ,Dτ(i)), for some model parameter θ ∈ Θ

Goal: Learn an initialization θ0 ∈ Θ that solves

min
θ0∈Θ

1

M

M∑
i=1

ℓτ(i)(θ̂0,Dτ(i)),

subject to θ̂0 = θ0 − ηl∇θ0ℓτ(i)(θ0,Dτ(i))︸ ︷︷ ︸
1 step PG

(MAML)

[Finn, Abeel, Levine, ICML, 2017]
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Model Agnostic Meta-Learning

MAML-LQR Objective: Design a controller K⋆
ML that can efficiently adapt to

any task drawn from p(T ), i.e.,

K⋆
ML = argminK∈SML

CML(K) :=
1

M

M∑
i=1

C(i)
(
K − ηl∇C(i)(K)

)
︸ ︷︷ ︸

1 step PG

subject to {(sys-dyn)}Mi=1, with SML ≜ ∩i∈[M ]S(i)

[Molybog & Lavaei, CCTA, 2021],[Musavi & Dullerud, CDC, 2023]

Meta-LQR



MAML-LQR

Algorithm 3: Model-free Federated Policy Learing for LQR (FedLQR)

Input: no. of periods N , stepsizes ηl, ηg, initial policy K0, tasks T

for n = 0, 1, . . . , N − 1 do
broadcast Kn to all clients

for each task i ∈ [M ] in parallel do

K
(i)
0 ← Kn

// estimate gradient

[ ̂∇C(i)(Kn), ̂∇2C(i)(Kn)]← ZeroOrder2(Kn, r, τ, ns)
// update policy

K
(i)
n ← Kn − ηl ̂∇C(i)(Kn), H(i) ← I − ηl ̂∇2C(i)(Kn)

∇C(i)(K
(i)
n )← ZeroOrder2(Kn, r, τ, ns) // update task gradients

KN+1 ← KN − ηg
M

∑M
i=1 H

(i)∇C(i)(K
(i)
N )H(i) // update MAML
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MAML-LQR Properties

For appropriately chosen parameters, we have:

• every iteration of the algorithm produces a stabilizing controller

• for all tasks: C(i)(KN )− C(i)(K⋆
i ) ≤ ϵ+ c1(ϵ̄)

• for all tasks: C(i)(K⋆
ML)− C(i)(K⋆

i ) ≤ c2(ϵ̄)

where ϵ̄ defines the task heterogeneity
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Numerics

• nominal system: unstable Boeing aircraft

A =


1.22 0.03 −0.02 −0.32
0.01 0.47 4.70 0
0.02 −0.06 0.40 0
0.01 −0.04 0.72 1.55

 , B =


0.01 0.99
−3.44 1.66
−0.83 0.44
−0.47 0.25


• initial stabilzing controller

K0 =

[
0.613 −1.535 0.303 0.396
0.888 0.604 −0.147 −0.582

]

• heterogeneity (×10−3): M = 50 tasks, with:

ϵA = 1.2 ϵB = 1.1 ϵQ = 1.4 ϵR = 1.2
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Numerics

• Left: gap between nominal task and MAML controller

• Right: varying levels of heterogeneity
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Numerics

• three unseen tasks initiated from K∗

• one task initiated from K0
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Final Thoughts

• demonstrated that federated learning can be applied to optimal control

• proven sample and computational complexity performance boost as a
function of number of agents and heterogeneity

• demonstrated that MAML can provably produce efficiently adaptable
controllers

• bounded the optimality gap

james.anderson@columbia.edu
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