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Abstract. False data injection (FDI) attacks pose a significant threat to the reliability of power system
state estimation (PSSE). Recently, graph signal processing (GSP)-based detectors have been shown to
enable the detection of well-designed cyber attacks named unobservable FDI attacks. However, current
detectors, including GSP-based detectors, do not consider the impact of secured sensors on the detection
process; thus, they may have limited power, especially in the low signal-to-noise ratio (SNR) regime.
In this paper, we propose a novel FDI attack detection method that incorporates both knowledge of
the locations of secured sensors and the GSP properties of power system states (voltages). We develop
the secured-sensors-and-graph-Laplacian-based generalized likelihood ratio test (SSGL-GLRT) that
integrates the secured data and the graph smoothness properties of the state variables. Furthermore,
we introduce a generalization of the method that allows the use of different high-pass GSP filters
together with prior knowledge of the locations of the secured sensors. Then, we develop the SSGL-
GLRT for a distributed PSSE based on the alternating direction method of multipliers (ADMM).
Numerical simulations demonstrate that the proposed method significantly improves the probability
of detecting FDI attacks compared to existing GSP-based detectors, achieving an increase of up to
30% in the detection probability for the same false alarm rate by integrating secured sensor location
information.

Keywords: Graph signal processing (GSP) · false data injection (FDI) attack detection · secured
sensors · power system state estimation (PSSE) · cyber-physical systems · distributed detection.

1 Introduction

Smart grids integrate traditional power system components with advanced information and communication
technology (ICT), providing critical cyber-physical infrastructure [43]. However, this also makes them vul-
nerable to cyber attacks [40–42], particularly false data injection (FDI) attacks, where an attacker corrupts
measurements and injects fake information into the system. FDI attacks may inflict severe damage that
ranges from economic consequences to the destruction of grid devices [14, 23, 24, 47, 48] by influencing the
critical power system state estimation (PSSE) process, which provides grid monitoring signals for power
system operations [26, 27]. PSSE is typically equipped with residual-based bad data detection (BDD) capa-
bilities and, therefore can identify faulty data and random faults [27]. However, a well-designed, unobservable
FDI attack can bypass the conventional residual-based BDD [21, 25]. Therefore, developing advanced tools
to detect unobservable FDI attacks is crucial to maintaining high power supply quality and stable system
operation.

In the past decade, various methods have been proposed for the detection of unobservable FDI attacks.
Some methods utilize a set of protected measurements or synchronized phasor measurement units [2, 6, 19,
20]. Specifically, these works aim to find the best locations for the protected sensors. Machine learning-based
methods have been proposed, but they require a large, stationary, and reliable database of data, which
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Fig. 1: Graph representation of IEEE 14-bus system. The node color represents the value of the states (voltage
phases). In (a), the grid is not under attack, whereas in (b), node 14 is attacked (red circle), and nodes
{3, 8, 10, 13} are protected (green circles). It can be seen that the unattacked grid state is much smoother
than the attacked grid state, i.e., the states of connected buses tend to be similar.

is often not available [10, 12, 18, 44]. Sparse methods were proposed in [28, 34]. However, these methods
impose assumptions on the stationary and structural characteristics of the system loads, such as the lack of
correlation with the system topology and the sparse nature of the attack in the time domain, which may not
be true in real-world situations. Additionally, previous studies, such as [17, 31, 46], investigated the use of
BDD and cyber attacks to compromise the distributed PSSE. Furthermore, graph signal processing (GSP)
methods have been demonstrated to be useful for the detection of failures, topology changes, and FDI
attacks [4, 5, 9, 11, 29, 33, 37, 38]. Despite this, incorporating information on secured sensor locations
into FDI detection designs has not yet been explored either in centralized or in distributed frameworks.
Additionally, the use of GSP properties for FDI detection remains at a preliminary stage and has not been
fully investigated.

In this study, we present a novel approach for the detection of unobservable FDI attacks in power
systems in the presence of secured sensors that are assumed to be immune to adversarial cyber attacks.
These sensors with secured measurements can be obtained by additional validation processes by methods
such as encryption, continuous monitoring, and separation from the Internet [20]. Our approach leverages
the fact that the system states are known to be smooth graph signals [8, 9, 33], as illustrated in Fig. 1.
Moreover, our approach is distinguished from existing GSP-based detectors by its ability to incorporate
prior knowledge on the locations of the secured sensors. We formulate the hypothesis testing for this setting
and derive the secured-sensors-and-graph-Laplacian-based generalized likelihood ratio test (SSGL-GLRT)
that incorporates both the information on the locations of the secured-sensors and the graph smoothness
properties of the system states. Furthermore, we introduce a generalization of the SSGL-GLRT by replacing
the graph smoothness measure with any high-pass graph filter. The considered model can also accommodate
distributed power system operation. In this approach, the network is divided into interconnected areas that
are controlled separately, but share partial information. To this end, we derive the distributed SSGL-GLRT,
that utilizes the alternating detection method of multipliers (ADMM) optimization algorithm in [3]. The
numerical results indicate that the proposed SSGL-GLRT with secured sensors achieves a higher probability
of detection and a lower false alarm rate, compared to existing methods, in the presence of secured sensors.
This is due to the fact that the SSGL-GLRT exploits the graph smoothness property of the states as well as
the knowledge of unattacked measurements.

In the following, vectors and matrices are denoted by boldface lowercase and uppercase letters, respec-
tively. The mth element of the vector a and the (m, q)th element of the matrix A are denoted by am and
Am,q, respectively. Similarly, aΛ is a subvector of a with the elements indexed by Λ. The matrix I and the
vector 0 denote the identity matrix and the zero vector, respectively, with appropriate dimensions, and || · ||
denotes the Euclidean l2-norm of vectors.
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2 Model

The power system is represented by an undirected weighted graph, G(V, ξ), where V is the set of N nodes
(bus and/or generators), and ξ is the set of edges (transmission lines) between the nodes. In this graph
representation of the power system, it can be shown that the nodal admittance matrix is a graph Laplacian
matrix. The (k, l)th element of B is given by [27]

Bk,l =


−
∑

n∈Nk

bk,n, k = l

bk,l, (k, l) ∈ ξ

0, otherwise

, ∀k, l = 1, . . . , N, (1)

where Nk is the set of buses connected to bus k and bk,n < 0 is the susceptance of line (k, n) ∈ ξ.
The power system is governed by the nonlinear power flow equations, which are often approximated by

the linearized DC model [27]. We consider the attacked and noisy DC model:

z = Hθ + a+ e, (2)

where the active power measurements, z ∈ RM , are corrupted by an additive FDI attack, a ∈ RM , and by
measurement noise, e ∈ RM , which is assumed to be a zero-mean Gaussian vector with covariance matrix
R. The matrix H ∈ RM×N is a known full-rank matrix, which is determined by the network topology and
by the admittance matrix [27]. It should be noted that the matrix B from (1) is a submatrix of H from (2)
that is associated with the power injection meters. Finally, the system states, i.e., the voltage phases, are
denoted by θ ∈ RN .

In the GSP literature, signals measured over the nodes of the graph are assumed to be smooth w.r.t. the
Laplacian matrix [7, 15, 22, 35, 39, 45, 49]. In the context of power systems, it was shown in [4, 9, 32] that
the system states are smooth graph signals, i.e.

TVG(θ)
△
= θTBθ ≤ ε1, (3)

where ε1 > 0 is small relative to all other parameters in the system. By substituting (1) in (3), we obtain

TVG(θ) =
1

2

N∑
k=1

∑
n∈Nk

Bk,n

(
θk − θn

)2
. (4)

Roughly speaking, the smoothness property in (3), also referred to as graph total variation (TV), implies
that the signal values (states in power systems) associated with the end nodes of edges with high weights
in the graph (buses with large susceptance values) tend to be similar. In particular, the voltage angles of
connected buses are similar.

The FDI attack, a ∈ RM , is considered to be an unobservable FDI attack [25], i.e. it satisfies

a = Hc, (5)

where c ∈ RN is an arbitrary vector. As a result, the attack a is in the range of H. It is known that the
attack described in (5) surpasses classical BDD methods [21].

3 GSP-Based FDI Detection with Secured Sensors

In this section, we design the SSGL-GLRT for detecting unobservable FDI attacks in the presence of secured
measurements. In particular, it is assumed that a subset of the measurements is more reliable as these
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measurements are equipped with additional protection measures, e.g. encryption, continuous monitoring,
and separation from the Internet [20]. This set of protected sensors may encompass generator nodes, which
are typically highly secured, and/or specific locations that were chosen based on a defense policy against FDI
attacks. The SSGL-GLRT is based on the generalized likelihood ratio test (GLRT). Specifically, we consider
the following hypothesis test associated with the model from Section 2:{

H0 : a = 0
H1 : a ̸= 0.

To this end, we derive the secured-sensors-and-graph-Laplacian-based maximum likelihood estimator (SSGL-ML)
of the states in Subsection 3.1. Subsequently, we use the SSGL-ML to derive the SSGL-GLRT in Subsection
3.2, and discuss its properties in Subsection 3.3.

3.1 SSGL-MLE

As stated at the beginning of this section, a subset of measurements, Λ ⊂ {1, . . . ,M}, is assumed highly
secured. From the point of view of an adversary, this assumption implies that the measurements in the subset
Λ cannot be attacked:

aΛ = 0. (6)

From the defender’s perspective, we assume that constraint (6) is relaxed and replaced by the following
assumption:

||aΛ||2 = ||Ma||2 ≤ ε2, (7)

where ε2 is small relative to the other parameters in the system and M is a diagonal mask matrix with the
diagonal elements

Mi,i =

{
1 i ∈ Λ

0 i /∈ Λ.

Assumption (7) implies that the attack, a, has relatively small absolute values over the sensors in the
set Λ ⊂ M. This assumption permits flexibility in the case where some sensors in the set Λ are affected by
random bad data (not originated by an attack), and makes the system more robust to small misspecifications
or perturbations of Λ.

The SSGL-ML is a PSSE method with prior knowledge about the locations of the secured measurements
and the graph smoothness properties of the system states [4, 9, 33]. The SSGL-ML is solved by maximizing
the following regularized log-likelihood function over the system state variables θ and the FDI attack a:

QSSGL(θ,a) =− (z−Hθ − a)TR−1(z−Hθ − a)

− µ1θ
TBθ − µ2||Ma||2,

(8)

where µ1 > 0 and µ2 > 0 are regularization parameters. These parameters enable the system operator to
adjust the importance of each of the regularization functions. Note that the log-likelihood function in (8) is a
concave function (see Appendix), and thus, the solution to the SSGL-ML is obtained by solving the normal
equations. This function is equivalent to the standard PSSE log-likelihood function with two additional
regularization terms:

R.1 Graph-Laplacian regularization (µ1θ
TBθ): A graph smoothness regularization term that incorporates

the smoothness of the states in (3). This allows us to make a distinction between the system states,
which are considered smooth, and the non-smooth FDI attack.

R.2 Secured-sensors regularization (µ2||Ma||2): An energy regularization function that incorporates the in-
formation on the locations of the secured sensors by using (7). This allows further distinction between
the signal Hθ, which is a non-sparse signal with energy across all sensor positions, and the low-energy
attack.
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We now derive the SSGL-ML for the state vector, θ, and the attack vector, a, based on the regularized
log-likelihood function in (8). Later, these estimators will be used for deriving the GLRT in Subsection 3.2.
We first consider the null hypothesis, H0, i.e. there is no attack (a = 0). By substituting a = 0 in (8), we
obtain that under hypothesis H0, the SSGL-ML of θ is

θ̂SSGL-ML
|H0

= arg min
θ∈RN

−QSSGL(θ,a = 0)

= arg min
θ∈RN

(z−Hθ)TR−1(z−Hθ) + µ1θ
TBθ

= Kθz, (9)

where the gain matrix is given by

Kθ △
= (HTR−1H+ µ1B)−1HTR−1. (10)

The SSGL-ML estimator in (9)-(10) coincides with the GSP weighted least squares (GSP-WLS) estimator
from [4].

Under hypothesis H1, when it is known that a ̸= 0, the SSGL-ML for both θ and a is given by

(θ̂SSGL-ML
|H1

, âSSGL-ML
|H1

) = arg min
θ∈RN ,a∈RM

−QSSGL(θ,a). (11)

Since −QSSGL(θ,a) from (8) is convex (see Appendix), the estimators of θ and a can be computed by the
following normal equations:

a = Ka(z−Hθ) (12)

θ = Kθ(z− a), (13)

where Kθ is defined in (10) and
Ka =(R−1 + µ2M)−1R−1. (14)

Substituting (12) into (13) results in

θ̂SSGL-ML
|H1

= Aθz, (15)

where

Aθ △
=
(
I−KθKaH

)−1
Kθ(I−Ka). (16)

Substituting (15) in (12) results in

âSSGL-ML
|H1

= Ka(I−HAθ)z. (17)

The MLEs of θ and a given in (9), (15), and (17), are used in the next subsection to derive the SSGL-GLRT.

3.2 SSGL-GLRT

The SSGL-GLRT is the difference between the regularized log-likelihood function from (8) under H1 and
under H0 [16]:

T SSGL-GLRT(z) = QSSGL(θ̂SSGL-ML
|H1

, âSSGL-ML
|H1

)−QSSGL(θ̂SSGL-ML
|H0

,0). (18)

By using (15) and (17), we obtain

QSSGL(θ̂SSGL-ML
|H1

, âSSGL-ML
|H1

) =− (z−HAθz−Ka(I−HAθ)z)TR−1

× (z−HAθz−Ka(I−HAθ)z)

− µ1(A
θz)TBAθz− µ2||MKa(I−HAθ)z||2.

(19)
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Similarly, using (9), we obtain

QSSGL(θ̂SSGL-ML
|H0

,0) =− (z−HKθz)TR−1(z−HKθz)

− µ1(K
θz)TBKθz.

(20)

Substituting (19) and (20) in (18), results in

T SSGL-GLRT(z) = zTGz, (21)

where

G
△
=(I−HKθ)TR−1(I−HKθ)− (I−HAθ)T (I−Ka)TR−1

× (I−Ka)(I−HAθ) + µ1

(
(Kθ)TBKθ − (Aθ)TBAθ

)
− µ2(I−HAθ)T (Ka)TMKa(I−HAθ).

(22)

The SSGL-GLRT in (21) is a weighted energy detector, where the weight matrix G in (22) is composed
of five components: The first and second components evaluate the estimation accuracy of the SSGL-ML
under hypotheses H0 and H1, respectively, w.r.t. the input measurements. The third and fourth components
evaluate the smoothness of the estimated state vector under hypotheses H0 and H1, respectively. Finally,
the fifth component evaluates the compliance of the estimated attack with the assumption in (7).

The computational complexity of the detector proposed in (21)-(22) can be separated into two parts: the
online and offline operations. Online, it is required to compute (21) given the M×M matrix G and the M×1
vector z. In this case, the number of multiplications is in order of O(M2) when G is dense and unstructured.
Offline, it is required to calculate the matrix G defined in (22). In this case, the most demanding procedure
is the inverse of R, which is an M ×M matrix. Thus, the computational complexity is in order of O(M3)
when R is dense and unstructured.

3.3 Special Cases

In the following, we present a few special cases of the SSGL-GLRT.

C.1 No regularization (µ1 = µ2 = 0): By substituting µ1 = 0 and µ2 = 0 in (10) and (14), we obtain

Kθ = K
△
= (HTRH)−1HTR−1

and Ka = I, respectively. Substituting these results and µ1 = µ2 = 0 in (22), results in

G = (I−HK)TR−1(I−HK). (23)

By substituting (23) in (21), one obtains the J(θ)-test [27]:

TBDD(z) = zT (I−HK)TR−1(I−HK)z. (24)

It is known that the BDD detector in (24) cannot detect unobservable FDI attacks as defined in (5) (see
e.g. [21, 25]).

C.2 Only Laplacian-based regularization (µ1 > 0, µ2 = 0): When µ2 = 0, similarly to in C.1, we obtain
that Ka = I. By substituting this result and µ2 = 0 into (16), we get Aθ = 0. Thus, in this case, (22) is
reduced to

G = (I−HKθ)TR−1(I−HKθ) + µ1(K
θ)TBKθ. (25)

Finally, substitution of (25) in (21) results in

TGL-GLRT(z) =zT (I−HKθ)TR−1(I−HKθ)T z

+ µ1z
T (Kθ)TBKθz,

(26)

which is the graph-Laplacian-regularized GLRT (GL-GLRT) from [5]: that only considers the prior on
the smoothness of the states.
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C.3 Only secured-sensors-based regularization (µ1 = 0, µ2 > 0): By substituting µ1 = 0 in (10) and
(16) we obtain Kθ = K and

Aθ
2

△
=
(
I−KKaH

)−1
K(I−Ka).

By substituting these results in (22), we obtain the weighting matrix for this case:

G =− (I−HAθ
2)

T (I−Ka)TR−1(I−Ka)(I−HAθ
2)

− µ2(I−HAθ
2)

T (Ka)TMKa(I−HAθ
2)

+ (I−HK)TR−1(I−HK).

The resulting detector only takes into account the prior information of the secured measurements. How-
ever, this detector is not practical because if Λ does not include all measurements, i.e. some measurements
are not secured, then (I − KKaH) is not invertible. Moreover, by substituting (13) in (12) and then
substituting Kθ = K we see that (17) can also be written as

âSS-ML
|H1

= (I −KaHK)−1Ka(I−HK)z.

This indicates that for unobservable attacks, a = Hc, we obtain that âSS-ML
|H1

is the same for input z and

its corrupted version z+Hc, because

(I−HK)Hc = Hc−Hc = 0.

Hence, this detector is not effective against unobservable FDI attacks.

Regularization term
Detector Secured sensors Graph Laplacian

SSGL-GLRT v v
GL-GLRT x v
PP-GLRT v x

BDD x x

Table 1: Classification of the different GLRTs based on the regularization functions used.

3.4 General Graph High Pass Filter (GHPF)

The SSGL-GLRT exploits the smoothness property of the states in (3). Other approaches in [9, 32] are built
upon the idea that the states can be thought of as graph signals with low energy in the high-frequency
range of the graph spectrum, as defined in the GSP literature [39]. Similarly, we can generalize the proposed
SSGL-GLRT as follows. Since the states can be considered low-pass graph signals [32], the smoothness term,

θTBθ, can be replaced by any term of the form

θTUBf
1
2 (ΦB)U

T
Bθ, (27)

where UB and ΦB are the eigenvector and eigenvalue matrices of B, i.e. B = UBΦBU
T
B . The graph

filter f(·) is assumed to be a nonnegative analytic function, defined by its graph frequency response [30],
f(Φ) = diag(f(ϕ1), . . . , f(ϕN )). Roughly speaking, f(Φ) is a GHPF if the frequency response f(ϕn) increases
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as the eigenvalue ϕn increases. Thus, using the GHPF in (27) results in a penalty on signal content in the
high graph frequencies that can be used to detect outliers/anomalies w.r.t. the graph [36], or, in our case,
FDI attacks. The practical implementation results in the same SSGL-GLRT, where B is replaced by(
UBf

1
2 (ΦB)U

T
B

)
everywhere.

For example, using the graph frequency response

f(ϕn) =
√
ϕn, n = 1, . . . , N

in (27), results in the smoothness criterion θTBθ used in the CP-GLRT. An alternative GHPF is the following
ideal-GHPF:

fGHPF(ϕn) =

{
0 ϕn ≤ ϕcut

1 ϕn > ϕcut
, n = 1, . . . , N, (28)

where ϕcut is the cutoff frequency. This GHPF is used for FDI detection in [9, 33], but without using protected
measurements.

4 Distributed Detection

In the previous section, we derived the SSGL-GLRT for the centralized approach in which a single control
center operates the system. However, a centralized approach may incur impractical computational and com-
munication load, increased vulnerability, and disclosure of the internal system structure. Therefore, in this
section, we discuss the modification of the SSGL-GLRT, and a special case, the GL-GLRT, for distributed
frameworks. Our derivation is based on the distributed PSSE approach described in [17], in which the PSSE
is performed with measurements corrupted by bad data. This section is organized as follows. In Subsection
4.1, we review the distributed PSSE from [17]. Then, in Subsection 4.2, we derive the proposed distributed
SSGL-GLRT and GL-GLRT detectors.

4.1 Distributed PSSE

We consider an interconnected power system comprising L control areas. The measurement model for the
lth area, based on the DC power flow model given in (2), can be expressed as

zl = Hlθl + al + el, l = 1, . . . , L, (29)

where θl ∈ RNl×1 represents the subset of interconnected power system states (i.e. a subvector of θ) associ-
ated with the measurements in zl, Hl ∈ RMl×Nl is the appropriate submatrix topology matrix (a submatrix
of H), al ∈ RMl×1 is the attack on the sensors in the lth area (a submatrix of H), and el ∈ RMl×1 represents
the system noise in this area, modeled as a zero-mean Gaussian noise with covariance matrix Rq ∈ RMl×Ml

(a submatrix of R). The distributed PSSE can be written as the following optimization problem [17]:

{θ̂l}Ll=1 = arg min
θl

l=1,...,L

L∑
l=1

Ql

s.t. θl[l
′] = θl′ [l], ∀l′ ∈ Al, ∀l,

(30)

where the cost function of the different areas, Ql, is jointly minimized subject to the constraint that the
state vectors of each area partially overlap. Specifically, we assume that the state vector of area l includes all
buses in that area and their first-order neighbors, and the set Al includes all areas that share state variables
with area l. The notation θl[l

′] represents the subvector of θl that includes all state variables shared with
area l′.
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The solution to (30) by the ADMM algorithm [3] consists of the following iterative steps [17]:

θ
(t+1)
l = argmin

θ
Ql(θl) +

ζ

2

Nl∑
i=1

1{Ai
l ̸=∅}|Ai

l|(θl(i)− p
(t)
l (i))2, (31a)

s
(t+1)
l (i) =

1

|Ai
l|

∑
l∈Ai

l

θ
(t+1)
l [i], ∀i with Ai

l ̸= ∅, (31b)

p
(t+1)
l (i) = p

(t)
l (i) + s

(t+1)
l (i)−

θ
(t)
l (i)− s

(t)
l (i)

2
, ∀i with Ai

l ̸= ∅. (31c)

Here, the auxiliary vectors sl and pl are used, and 1(·) denotes the indicator function, which equals 1

if its condition is met and 0 otherwise. The set Ai
l represents the areas that share variable θl(i) with

area l. Additionally, the parameter ζ represents the user-defined step size. We use here the least squares
cost function, QLS(θ) = (z − Hθ)TR−1(z − Hθ), which can be modified for each area l to QLS

l (θ) =

(zl −Hlθl)
TR−1

l (zl −Hlθl). In this case, as shown in [17], the problem is solved using (31) while replacing
(31a) with:

θ
(t+1)
l = (HlR

−1
l Hl + ζDl)

−1(R−1
l HT

l zl + ζDlp
(t)
l ), (32)

where Dl is the diagonal matrix with the (i, i) entry |Ai
l|. As for initialization, the state variables θl are set to

arbitrary values θ
(0)
l , variables s

(0)
l are initialized as in (31b), and p

(0)
l (i) is initialized as (x

(0)
l (i)− s

(0)
l (i))/2.

The ADMM iterative step converges when the objective function and constraints functions are convex, closed,
and proper, and the augmented Lagrangian has a saddle point [3].

4.2 Distributed SSGL-GLRT and GL-GLRT

The cost function for the SSGL-ML in (8) is obtained by solving the standard PSSE, which is defined

as an unconstrained LS problem along with two regularization terms. One term, µ1θ
TBθ, imposes prior

knowledge on the smoothness property of the state variables, as defined in (3). The other term, µ2∥Ma∥2,
imposes prior knowledge on the secured sensors, as defined in (7). We modify the regularization terms to
recast the optimization problem as the minimization of a regional cost function. Specifically, we introduce
the local smoothness measure defined in [39], which is given by the inner summation of the global smoothness
measure in (4):

Si(θ) =
∑
j∈Ni

Bi,j(θi − θj)
2, (33)

where Ni is the first-order neighborhood of bus i. We measure the smoothness over each region by summing

the local smoothness of all buses in that region, resulting in
∑Nl

i=1 Si(θ). It can be verified that this sum
satisfies ∑

i∈R

Si(θ) = θT
l Blθl,

where Bl is the submatrix of B associated with the state variables in the lth region. Moreover, since the prior
knowledge on the location of the secured sensors is local to each sensor, we modify the prior assumption in
(34) for each area l to

∥Mlal∥2 ≤ εl, (34)

where Ml is the Ml ×Ml submatrix of the diagonal matrix M associated with the power measurements in
the lth area. Using (29) and (33)-(34), we can modify the log-likelihood function in (8) to measure the cost
function of the lth area as

QSSGL
l (θl,al) = −(zl −Hlθl − al)

TR−1
l (zl −Hqθl − al)− µ1,lθ

T
l Blθl − µ2,l∥Mlal∥2. (35)
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Algorithm 1: Distributed SS-GLRT in area l

Input: Fix detection threshold γl and step size ζ Set initial guess: θ
(0)

|H0,l
, s

(0)
l , and p

(0)
l

1 for t = 0, 1, . . . do
2 Update:

3 θ
(t+1)

|H0,l
= (HlR

−1
l Hl + µ1,lBl + ζDl)

−1(R−1
l HT

l zl + ζDlp
(t)
l )

4 s
(t+1)
l (i) = 1

|Ai
l
|

∑
l∈Ai

l
θ
(t+1)

|H0,l
[i], ∀i with Ai

l ̸= ∅

5 p
(t+1)
l (i) = p

(t)
l (i) + s

(t+1)
l (i)−

θ(t)
|H0,l(i)−s

(t)
l

(i)

2
, ∀i with Ai

l ̸= ∅

6 Set θ̂SSGL-ML
|H0,l

= θ
(t+1)

|H0,l

7 Set initial guess: θ
(0)

|H1,l
, s

(0)
l , p

(0)
l , and a

(0)

|H1,l

8 for t = 0, 1, . . . do
9 Update:

10 θ
(t+1)

|H1,l
= (HlR

−1
l Hl + µ1,lBl + ζDl)

−1(R−1
l HT

l (zl − a
(t)
l ) + ζDlp

(t)
l )

11 s
(t+1)
l (i) = 1

|Ai
l
|

∑
l∈Ai

l
θ
(t+1)

|H0,l
[i], ∀i with Ai

l ̸= ∅

12 p
(t+1)
l (i) = p

(t)
l (i) + s

(t+1)
l (i)−

θ(t)
|H0,l(i)−s

(t)
l

(i)

2
, ∀i with Ai

l ̸= ∅
13 a

(t+1)

|H1,l
= (R−1

l + µ2,lMl)
−1R−1

l (zl −Hlθ
(t+1)
l )

14 Set θ̂SSGL-ML
|H1,l

= θ
(t+1)

|H1,l
and âSSGL-ML

|H1,l
= a

(t+1)

|H1,l

15 if QSSGL
l (θ̂SSGL-ML

|H1,l
, âSSGL-ML

|H1,l
)−QSSGL

l (θ̂SSGL-ML
|H0,l

,0) > γl then
16 return “The area is under an FDI attack”

17 else
18 return “The area is under normal operation”

As presented in Section 3.2, the SSGL-GLRT is a detector derived from (18). For the distributed case,
the SSGL-GLRT can be adapted by defining L detectors, denoted as T SSGL-GLRT

l , where each detection test
is performed in the corresponding control center. These detectors are defined as follows:

T SSGL-GLRT
l = QSSGL

l (θ̂SSGL-ML
|H1,l

, âSSGL-ML
|H1,l

)−QSSGL
l (θ̂SSGL-ML

|H0,l
,0), l = 1, . . . , L, (36)

where θ̂SSGL-ML
|H1,l

and âSSGL-ML
|H1,l

are the ML estimates for the state variables and the attack in the lth area

under the H1 hypothesis, and θ̂SSGL-ML
|H0,l

are the ML estimates for the state variable in the lth area under

the H0 hypothesis.
For hypothesis H0, we seek to estimate θ̂SSGL-ML

|H0,l
, which is obtained by replacing Ql(θl) in (31) with

(35) when al is replaced with 0. Therefore, we can estimate θ̂SSGL-ML
|H0,l

by applying the results from (9)-(10)

to (31), which results in replacing (31a) with

θ
(t+1)
|H0,l

= (HlR
−1
l Hl + µ1,lBl + ζDl)

−1(R−1
l HT

l zl + ζDlp
(t)
l ). (37)

Note that the inclusion of the term ζDl is motivated by the same reasons as in (32). For hypothesis H1, we

want to estimate (θ̂SSGL-ML
|H1,l

, âSSGL-ML
|H1,l

), which is obtained by replacing Ql(θl) in (31) with (35), a function

of both θl and al. In this case, we can estimate (θ̂SSGL-ML
|H1,l

, âSSGL-ML
|H1,l

) by applying the results from (9)-(14)

to (31), which results in replacing (31a) with

θ
(t+1)
|H1,l

= (HlR
−1
l Hl + µ1,lBl + ζDl)

−1(R−1
l HT

l (zl − a
(t)
l ) + ζDlp

(t)
l ) (38)
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Algorithm 2: Distributed GL-GLRT in area l

Input: Fix detection threshold γl and step size ζ Set initial guess: θ
(0)

|H0,l
, s

(0)
l , and p

(0)
l

1 for t = 0, 1, . . . do
2 Update:

3 θ
(t+1)

|H0,l
= (HlR

−1
l Hl + µ1,lBl + ζDl)

−1(R−1
l HT

l zl + ζDlp
(t)
l )

4 s
(t+1)
l (i) = 1

|Ai
l
|

∑
l∈Ai

l
θ
(t+1)

|H0,l
[i], ∀i with Ai

l ̸= ∅

5 p
(t+1)
l (i) = p

(t)
l (i) + s

(t+1)
l (i)−

θ(t)
|H0,l(i)−s

(t)
l

(i)

2
, ∀i with Ai

l ̸= ∅

6 Set θ̂SSGL-ML
|H0,l

= θ
(t+1)

|H0,l
if −QSSGL

l (θ̂SSGL-ML
|H0,l

,0) > γl then

7 return “The area is under an FDI attack”

8 else
9 return “The area is under normal operation”

and adding

a
(t+1)
|H1,l

= (R−1
l + µ2,lMl)

−1R−1
l (zl −Hlθ

(t+1)
l ). (39)

Note that steps (31b)-(31c) are not modified, ensuring that the agreement between shared states is unrelated
to the local functions Ql. Moreover, the inclusion of the term ζDl is motivated by the same reasons as in
(32) and (37). The distributed SS-GLRT is summarized in Algorithm 1.

Moreover, from (20) and (26) we observe that the GL-GLRT, which is a special case of the SSGL-GLRT,

can be expressed as TGL-GLRT = QSSGL(θ̂SSGL-ML
|H0

,0). Similar to the SSGL-GLRT, the GL-GLRT can be

adjusted for the distributed scenario by applying L detectors, represented as TGL-GLRT
l , where each test is

performed in the appropriate control center. These detectors are defined as

TGL-GLRT
l = QSSGL

l (θ̂SSGL-ML
|H0,l

,0), l = 1, . . . , L,

where θ̂SSGL-ML
|H0,l

estimation is described in (37). The distributed GL-GLRT is summarized in Algorithm 2.

5 Simulations: IEEE 57-Bus Test Case

The performance of the SSGL-GLRT from (21) is evaluated and compared with the following detectors:

1. The J(θ) test in (24) [1], which is the conventional BDD method.
2. GSP-based methods: the GL-GLRT in (26). and the Ideal-GLRT introduced in [9, 33].

3. The SSGL-GLRT obtained by using B = f
1
2 (ΦB) in (21), where f(ΦB) = 1 + 99 × fGHPF(ΦB), which

is the perturbed ideal GHPF defined in (28).

These methods were selected to demonstrate the advantage of incorporating both the physical and the GSP
information. For the SSGL-GLRT, SS-Ideal-GLRT, GL-GLRT, and Ideal-GLRT, we chose the regularization
parameter µ1 = 900; in addition, for the SSGL-GLRT and SS-Ideal-GLRT we also set µ2 = 10. We conducted
1, 000 Monte-Carlo simulations based on the IEEE 57-bus test case network using the DC-PF model in (2)
to evaluate performance. For each trial, we randomly drew the load demand from a Gaussian distribution
with the mean set to the load values provided in the test case. We computed the system states using the
Matpower command runpf(·) [50]. We set the noise covariance matrix to R = σ2I with σ2 = 0.01. We
generated an unobservable FDI attack using (5) with c33 ̸= 0, and then normalized it to satisfy ||a|| = 1. In
addition, we defined the set of secured sensors S by constraining 80 power measurements (36% of the total
measurements) such that it was ensured that the state variables in the generator buses and their first-order
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Fig. 2: The probability of detection is measured versus: (a) the probability of false alarm (ROC), and (b) the
strength of the attack ∥a∥

.

neighbors are not affected by the attack. This set includes the power injection measurements in these buses
and the power flow measurement in the lines entering these buses.

The performance of the different detectors is exhibited in Fig. 2. In Fig. 2.(a), the receiver operating
characteristic (ROC) curves demonstrate the balance between the probability of detection and the proba-
bility of false alarms. The results show that the proposed SSGL-GLRT outperforms all other detectors in
terms of the probability of detection for any level of false alarm probability. In particular, the inclusion of
prior information about protected measurements gives the SSGL-GLRT an advantage over the GL-GLRT.
Similarly, the SS-Ideal-GLRT, which benefits from incorporating the additional information on the loca-
tions of the secured sensors, outperforms the Ideal-GLRT. The results also show that detectors based on
the smoothness of the states, i.e., the SSGL-GLRT and GL-GLRT, perform better than those based on the
graph-bandlimited assumption, i.e., the SS-Ideal-GLRT and Ideal-GHPF. This is because the smoothness
assumption provides a better description of the states’ behavior than the graph-bandlimited assumption.
Finally, it can be seen that the that the conventional BDD method - the J(θ) test - has the same power as
random chance (“coin flipping”). Thus, it cannot detect the unobservable FDI attack, as expected.

In Fig. 2.(b) the detection probability is shown versus the attack strength, which is measured by ∥a∥.
As expected, it can be seen that the detection probability of all the detectors except the BDD detector
increases with an increase in ∥a∥. In a similar manner to Fig. 2. (a), it can be observed that incorporating
the additional information on the locations of the secured sensors improves the probability of detection,
where the SSGL-GLRT and SS-Ideal-GLRT outperforms the GL-GLRT and the Ideal-GLRT, respectively.
Moreover, it can be observed that the SSGL-GLRT shows the best performance. Finally, as expected, the
BDD detector fails to detect the unobservable FDI attack for any selection of ∥a∥ presented.

6 Conclusions

We introduce SSGL-GLRT, which is a new detection method against FDI attacks based on the well-known
GLRT. The SSGL-GLRT is derived while incorporating knowledge of secured sensors’ locations and graph
smoothness properties of power system state variables. We provide a generalization of the method that allows
the use of different high-pass GSP filters instead of using the graph smoothness measure. Moreover, we also
consider the case where the power system is operated in a distributed manner and provide the distributed
SSGL-GLRT detector. Numerical simulation show that incorporating the knowledge of the locations of the
secured sensors alongside the graph smoothness properties in the design of the detector significantly improves



the detection capabilities against FDI attacks. Future work may focus on expanding the proposed detector
to the alternating current (AC) power flow model, which is often used in power systems.

Appendix: Concavity of Q(θ, a)

In order to show that the function Q(θ,a) from (8) is a concave function w.r.t θ and a, we need to show
that the Hessian matrix of the second-order partial derivatives of −Q(θ,a) is a positive semidefinite matrix.

It can be seen that the Hessian matrix of −Q(θ,a) w.r.t. the vector [θT ,aT ]T is(
HTR−1H+B HTR−1

R−1H R−1 +M

)
=

(
HTR−1H HTR−1

R−1H R−1

)
+

(
B 0
0 M

)
.

The Hessian is a sum of two matrices. In the following, we show that each one of these matrices is positive
semidefinite, which implies that the Hessian is a positive semidefinite matrix. First, it can be seen that

the matrix

(
B 0
0 M

)
is a positive semidefinite matrix because it is a block diagonal matrix of two positive

semidefinite matrices (see the definitions of B and M in (1) and (8), respectively). Second, the matrix(
HTR−1H HTR−1

R−1H R−1

)
is a positive semidefinite matrix since it can be verified that its Schur complement,

HTR−1H−HTR−1RR−1H = 0,

is a positive semidefinite matrix [13].
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