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Abstract. The stability of an equilibrium point of a nonlinear dynamical
system is typically determined using Lyapunov theory. This requires the con-

struction of an energy-like function, termed a Lyapunov function, which satis-

fies certain positivity conditions. Unlike linear dynamical systems, there is no
algorithmic method for constructing Lyapunov functions for general nonlinear

systems. However, if the systems of interest evolve according to polynomial
vector fields and the Lyapunov functions are constrained to be sum-of-squares

polynomials then stability verification can be cast as a semidefinite (convex)

optimization programme. In this paper we describe recent advances in sum-
of-squares programming that facilitate advanced stability analysis and control

design.

1. Introduction. One of the most fundamental questions in systems and control
theory is that of determining the stability of an equilibrium point of a dynamical
system. Consider the linear time invariant (LTI) system ẋ(t) = Ax(t) where x(t) ∈
Rn is the state vector andA ∈ Rn×n. The equilibrium point x∗ = 0 is asymptotically
stable if and only if A is Hurwitz, i.e. all eigenvalues of A lie in the open left
half plane. In 1892 the Russian mathematician A. M. Lyapunov showed that for a
nonlinear system ẋ(t) = f(x(t)) with f(0) = 0 and f locally Lipschitz, if there exists
a radially unbounded positive definite function V : Rn → R such that V (0) = 0

and V̇ , 〈∂V∂x , f(x)〉 < 0 for all x 6= 0 ∈ Rn then the 0 equilibrium is globally
asymptotically stable. For LTI systems this is translates to the following: A is
Hurwitz if and only if for a given square, positive definite matrix Q there exists
a positive definite matrix P ∈ Rn×n that satisfies the Lyapunov equationATP +
PA+Q = 0. Equivalently, one may search for a positive definite matrix P such that
the inequality ATP + PA ≺ 0 is satisfied. The inequality follows by considering
the quadratic Lyapunov function candidate V (x) = xTPx. Clearly if the previous
inequality holds then the Lie derivative xT (ATP + PA)x is negative definite. The
search for the matrix P subject to ATP +PA ≺ 0 is a convex optimisation problem
[7], specifically a Semidefinite Program (SDP) [6], which can be solved efficiently.

For general nonlinear systems, there is no convex optimization method that can
be used to search for a Lyapunov function (should one exist) certifying stability of
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an equilibrium point. In fact there is no general algorithm that can construct a
Lyapunov function even when a converse theorem guarantees that such a certificate
exists. However, if we restrict our attention to dynamical systems whose vector
fields evolve according to polynomial functions and only consider Lyapunov function
candidates that are representable as the sum of squared polynomial functions, then
tractable convex optimization techniques do exist. Although not pursued here, other
restrictions on the system such as exponential stability and f ∈ C2 allow for convex
optimization based methods, see for example [11]. The link between convexity
and and the sum-of-squares decomposition was established in the thesis of Parrilo
[26]. Broadly speaking, sum-of-squares programming can be seen as a nonlinear
(polynomial) expansion of the Linear Matrix Inequality (LMI) framework.

Fifteen years after sum-of-squares techniques were first introduced, the field is
still rapidly developing and finding new application areas. In this paper we describe
recent advances in the area with application to advanced computational stability
analysis, particularly with a view to control applications. For a broader introduction
to sum-of-squares theory the reader is referred to [3] for an algebraic flavour and [9]
for a robust control perspective.

1.1. Notation. Rn denotes the standard Euclidean n-dimensional space, Rn×m
the set of real matrices of dimension n ×m and Sn the space of symmetric n × n
matrices. The jth row and column of a matrix A ∈ Rn×n are denoted by Aj,: and
A:,j respectively. Given x ∈ Rn we denote the ring of multivariable polynomials
with real coefficients by R[x] and the subset of sum-of-squares polynomials in the
variable x by Σ[x]. Sometimes it may be necessary to indicate the maximum degree
of a polynomial or sum-of-squares polynomial in which case we use the subscript
notation Rd[x] or Σd[x] where d is a positive integer. All other notation will be
introduced as and when needed.

2. The sum-of-squares decomposition. We first begin by defining the primary
objects of interest.

Definition 2.1 (Monomial). Given an n-tuple of non-negative integers (α1, . . . , αn),
a monomial in x1, . . . , xn takes the form xα = xα1

1 xα2
2 · · ·xαnn . The degree of a

monomial is given by ∂(α) =
∑n
i=1 αi.

Definition 2.2 (Real Polynomial). A polynomial f in x1, . . . , xn with coefficients
in R is a finite linear combination of monomials written in the form

f(x) =
∑
i

aαix
αi , aαi ∈ R.

The degree of f , denoted ∂(f), is the maximum αi corresponding to a non-zero aαi .
The set of all such polynomials is denoted R[x].

Definition 2.3 (Sum-of-Squares Polynomial). A polynomial P ∈ R[x] is a sum-of-
squares (SOS) if it can be decomposed into N polynomials and expressed as

P (x) =

N∑
i=1

p2
i (x)

where p1, . . . , pN ∈ R[x].

From Definition 2.3 it follows that both the degree, ∂(P ), and the minimum
degree monomial must both be even in order for the polynomial P to admit a
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sum-of-squares decomposition. It is clear from Definition 2.3 that sum-of-squares
polynomials are nonnegative on Rn, i.e. P (x) ≥ 0 for all x ∈ Rn. The following
theorem by Parrilo [27] is the key to providing computational methods that allow
us to construct sum-of-squares decompositions.

Theorem 2.4. The existence of a sum-of-squares decomposition of a polynomial in
n variables and of degree 2d can be decided by solving a semidefinite programming
feasibility problem. Assuming no structure or sparsity, the dimensions of the linear
matrix inequality constraint are

(
n+d
d

)
×
(
n+d
d

)
.

We can now relate Definition 2.3 with Theorem 2.4: If P (x) is a sum-of-squares
polynomial of degree 2d and Z(x) is a column vector containing all monomials up
to degree d then there exists a positive semidefinite matrix Q such that

P (x) = Z(x)TQZ(x). (1)

Furthermore, when the coefficients of P are not known, they can be searched for
using (1) subject to the constraint Q � 0.

The significance of this result is that semidefinite programming feasibility prob-
lems are convex. For completeness we describe the general structure of a semidefinite
programme, but as writing out the SDPs explicitly can become cumbersome, several
software packages such as SOSTOOLS [23], Gloptipoly [15] and YALMIP [21] have
been developed, that automate the conversion between sum-of-squares programs
and SDPs. Throughout this work SOSTOOLS will be used to formulate and solve
all sum-of-squares programmes.

A standard semidefinite programme (SDP) takes the form

p∗ = inf
X∈Sn

〈C,X〉

s.t. 〈Ai, X〉 = bi (2)

X � 0

where X ∈ Sn is the decision variable, 〈·, ·〉 defines the inner product 〈A,B〉 :=
trace(ATB), Ai ∈ Sn for all i = 1, . . . ,m, C ∈ Sn, b ∈ Rm and the partial ordering
X � 0 is interpreted as the matrix X is positive semidefinite. Optimization problem
(2) is referred to as the primal problem and p∗ is the optimal value for this problem.
The dual problem is

d∗ = sup
y∈Rm

〈b, y〉

s.t.

m∑
i=1

yiAi � C (3)

where y ∈ Rm is the dual decision variable and 〈·, ·〉 denotes the standard Euclidean
inner product. From a geometrical stand point the feasible region of (2) is the in-
tersection of an affine subspace and the positive semidefinite cone. As the positive
semidefinite cone is self-dual we can appeal to duality theory to derive (3). Semi-
definite programmes of the form given above have a weak duality property, that
is, feasible primal solutions give upper bounds on the dual solution and feasible
solutions to dual problem give lower bounds on the primal problem. For a thor-
ough treatment of SDPs and their numerical interpretations the reader is referred
to [41, 37]. As with other convex optimization programming solvers there are a
wide variety of free SDP solvers and parsers available, for example SeDuMi [34],
SDPT3 [38] and CVX [12].
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2.1. Real algebraic geometry. One of the main advantages of the sum-of-squares
decomposition is that it can be used as a computational relaxation to polynomial
non-negativity. It will be shown in Section 3 why this is desirable for the case of
nonlinear stability verification. Frequently however, we will not necessarily require
a function to be positive on the whole state space, but rather on a bounded domain.
A standard example is that of trying to find a Lyapunov function for a nonlinear
system that contains multiple equilibria. In this case it is clear that the Lyapunov
inequalities will only hold over a given region around the equilibrium of interest.
Similar arguments appear many times in robust control theory.

A result from real algebraic geometry [4] called the Positivstellensatz, which we
will now introduce, provides a feasibility test for determining the non-negativity of
polynomials over semialgebraic sets. The Positivstellensatz establishes a relation-
ship between geometric objects (affine varieties) and the validity of an algebraic
relationship (polynomial ideal) [10].

We first define what a semialgebraic set is, which we will use to define the domain
over which we wish to determine the non-negativity of a given polynomial:

Definition 2.5 (Semialgebraic Set). The basic closed semialgebraic set is a subset
of Rn defined by the existence of a finite number of polynomial inequalities:

{x ∈ Rn | fi(x) ≥ 0, fi ∈ R[x],∀i = 1, . . . , j} .

Definition 2.6 (Ideal). Given the multivariate polynomials g1, . . . , gm ∈ R[x], the
ideal generated by gi for i = 1, . . . ,m is the set

I(g1, . . . , gm) =

{
m∑
i=1

tigi | t1, . . . , tm ∈ R[x]

}
.

Definition 2.7 (Multiplicative Monoid). Given polynomials h1, . . . , hu ∈ R[x] the
multiplicative monoid, denoted M(h1, . . . , hu), generated by hi for i = 1, . . . , u is
the set of all finite products of hi including 1.

Definition 2.8 (Cone). Given the multivariate polynomials f1, . . . , fs ∈ R[x] the
algebraic cone generated by fi for i = 1, . . . , s is the set

C(f1, . . . , fs) =

{
s0 +

r∑
i=1

siFi | Fi ∈M(f1, . . . , fm), si ∈ Σ[x]

}
where r denotes the number of polynomials in M.

Using the preceding definitions we can now state the Positivstellensatz theorem:

Theorem 2.9 (Positivstellensatz). Let {f1, . . . , fs}, {g1, . . . , gm} and {h1, . . . , hu}
be finite multivariate polynomials in R[x]. Denote by C the algebraic cone generated
by {f1, . . . , fs}, I the ideal generated by {g1, . . . , gm} and M the multiplicative
monoid generated by {h1, . . . , hu}. Then the following statements are equivalent:

• The set x ∈ Rn
∣∣∣∣∣∣
f1(x) ≥ 0, . . . , fs(x) ≥ 0
g1(x) = 0, . . . , gm(x) = 0
h1(x) 6= 0, . . . , hu(x) 6= 0


is empty.

• There exist f ∈ C, g ∈ I and h ∈M such that

f + g + h2 = 0.
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For a more detailed treatment and the proof of the Positivstellensatz (and al-
gebraic geometry) see [4]. The Positivstellensatz provides an equivalence relation-
ship between sets defined by polynomial inequalities and algebraic objects. Thus
through semidefinite programming we can verify set emptiness. Note that there is
no mention of the bound of the degree on any of the polynomials or sum-of-squares
polynomials in Theorem 2.9. In order to use the SDP machinery we must place
bounds on the maximum degree of all functions.

The following example taken from [28] illustrates the ideas presented above.
Consider the set of polynomial relations:

f(x, y) := x− y2 + 3 ≥ 0, g(x, y) := y + x2 + 2 = 0 (4)

We wish to prove that there is no (x, y) ∈ R2 such that (4) is satisfied. Using
Theorem 2.9, system (4) has no solution if and only if there exist sum-of-squares
polynomials s1, s2 ∈ Σ[x, y] and a polynomial t ∈ R[x, y] that satisfy s1 +s2f+ tg =
−1. If the left hand side of this expression is evaluated for any feasible solution of
(4) then the result would be positive, which is a contradiction. Two polynomials
that certify no solution exists to (4) are t = −6, s2 = 2 and s1 = 1/3+2(y+3/2)2 +
6(x− 1/6)2. These can be found using SOSTOOLS.

Many of the sum-of-squares based theorems in the following sections can be
formulated as an application of the Positivstellensatz, but we will not explicitly
provide these formulations.

3. Computational Lyapunov stability analysis. In this section we will intro-
duce the class of systems that we will focus on in the rest of the paper. We will
present several problems related to this system and then introduce a number of
theorems which address these problems. Once these theorems are formulated, a
sum-of-squares relaxation that solves the relevant problems will be presented. In
general, complete proofs of theorems will not be provided unless it is of immediate
benefit to the reader or will be helpful to the reader should they want to generalise
the result to a broader class of systems or problems.

The primary system of interest is described by a set of coupled differential equa-
tions of the form

ẋ(t) = f(x(t)), x(0) = x0 ∈ D (5)

where f : D → Rn is a vector of polynomial functions, x(t) ∈ Rn is the state
vector and D ⊆ Rn is a neighbourhood of the origin. Without loss of generality
it is assumed that the equilibrium point of interest (which we denote by x∗) is at
the origin, i.e. f(x∗) = 0, x∗ = 0 and therefore x∗ ∈ D. Furthermore we take for
granted the fact that f is locally Lipschitz in D and thus solutions to (5) exist and
are unique (locally).

Definition 3.1. The equilibrium point x∗ of (5) is said to be

• stable, if for all ε > 0, there exists a δ = δ(ε) > 0 such that ‖x(0)‖ < δ ⇒
‖x(t)‖ < ε, for all t ≥ 0

• asymptotically stable if it stable as defined above, and δ may be chosen such
that ‖x(0)‖ < δ ⇒ limt→∞ x(t) = x∗

• unstable if it is not stable.

Definition 3.2. The equilibrium point x∗ of (5) is said to be locally exponentially
stable if there exist positive constants c, K and γ such that for all x(t0) ∈ D with
‖x(t0)‖ < c we have

‖x(t)‖ ≤ K‖x(t0)‖e−γ(t−t0),
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and globally exponentially stable if the conditions above hold for all x(t0) ∈ Rn.

Throughout this work all analysis questions pertaining to stability will be formu-
lated in the Lyapunov framework and a computational procedure that uses sum-of-
squares will be described for verification purposes.

3.1. Lyapunov function construction. In this section we introduce the central
theoretical tool that will form the core of all results described in this review. Two
notions of Lyapunov stability will be presented. Using the sum-of-squares decom-
position, computational methods for stability verification based upon these stability
definitions will be presented. In essence the majority of the control problems con-
sidered in this paper follow the same two steps: i) Recasting the primal problem as
a Lyapunov-type problem and then, ii) constructing a sum-of-squares relaxation to
the problem.

Theorem 3.3. Let x∗ = 0 ∈ D ⊂ Rn be an equilibrium point of (5). If there exists
a function V : D → R that is continuously differentiable such that

V (0) = 0

V (x) > 0 ∀x ∈ D \ {0}
V̇ (x) ≤ 0 ∀x ∈ D

then x∗ is a stable. Moreover, x∗ is asymptotically stable if

V̇ (x) < 0 ∀x ∈ D \ {0} .

When such a function exists, x∗ is said to be (asymptotically) stable in the sense
of Lyapunov.

Definition 3.4. If there exists a function V that satisfies the asymptotic stability
requirements of Theorem 3.3 with D = Rn and ‖x‖ → ∞ ⇒ V (x)→∞ then x∗ is
said to be globally asymptotically stable.

A stronger notion of stability, at least in terms of convergence properties, is that
of exponential stability.

Theorem 3.5. Let x∗ = 0 be a an equilibrium point for (5) and assume that
D ⊂ R is a given domain which includes x∗. Assume there exists a continuously
differentiable function V : D → R and positive constants k1, k2, k3 such that

k1‖x‖p ≤ V (x) ≤ k2‖x‖p

V̇ (x) ≤ −k3‖x‖p

for all t ≥ 0 and x ∈ D where p is a positive integer. Then, x∗ is exponentially
stable. Furthermore, if the assumptions hold when D = Rn then x∗ is globally
exponentially stable.

The following theorem illustrates how sum-of-squares programming can be used
to construct a polynomial stability certificate, in this case a Lyapunov function, for
an equilibrium point of (5). In accordance with Theorem 3.3 the domain of interest,
D must be defined. In particular D must be representable as a semi-algebraic set.
In this work we will focus on the simplified case of a single polynomial inequality.
The simplest example is a ball centred at the origin with radius

√
r, r > 0 which

we denote by Br ,
{
x ∈ Rn | ‖x‖22 ≤ r

}
. The polynomial inequality expression

associated with Br is β̂(x) , xTx − r ≤ 0. For the remainder of this paper we
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will assume that the domain of interest D is represented by all points that satisfy
β(x) ≤ 0 where β ∈ R[x].

Theorem 3.6. If there exists a polynomial function V , sum-of-squares polynomials
r1, r2 and positive definite polynomial functions ϕ1, ϕ2 all of bounded degree, such
that

V (x) + r1(x)β(x)− ϕ1(x) ∈ Σ[x]

−V̇ (x) + r2(x)β(x)− ϕ2(x) ∈ Σ[x]

then the equilibrium point x∗ of (5) is asymptotically stable.

Proof. The first condition ensures that V (x) is positive on D. To see this, consider
the following. Since β(x) is negative for x ∈ D and r1(x) is non-negative by construc-
tion, the term r1(x)β(x) is non-positive for x ∈ D and since by definition ϕ1(x) > 0
we have that V (x) − ϕ(x) ∈ Σ[x] ⇒ V (x) − ϕ1(x) ≥ 0 ⇒ V (x) ≥ ϕ1(x) > 0.
Therefore the first condition satisfies the first equality and inequality of Theorem
3.3. Identical arguments on the second condition enforce the derivative inequality
in Theorem 3.3. This concludes the proof.

Note that if the degree of the polynomial and sum-of-squares variables in The-
orem 3.6 are not bounded then the optimisation problem is convex but infinite
dimensional and thus not computationally tractable.

A few questions immediately come to mind: Do stable polynomial systems always
admit a sum-of-squares Lyapunov function? How conservative are we being by lim-
iting ourselves to positive polynomials that admit a sum-of-squares decomposition?
Can we determine a priori the degree of the Lyapunov function required? The
answer to the first question is simply, no. In [1] a globally stable polynomial sys-
tem is presented that cannot admit any polynomial Lyapunov function. Of course
there are several subtleties to this result: The search is limited to global stability
analysis and local stability is not considered. Secondly, the authors are referring
to asymptotic stability. As will be shown in Theorem 3.8, locally exponentially
stable systems do admit polynomial Lyapunov functions and it is possible to obtain
a degree bound a priori [29, 30]. We first present a sum-of-squares programme for
verifying exponential stability.

Theorem 3.7. Let x∗ = 0 be an equilibrium point of (5) which is contained in
D ⊂ Rn. Suppose there exists a polynomial V , sum-of-squares polynomial r and
scalars κ1, κ2 > 0 such that

V (x)− κ1‖x‖2 ∈ Σ[x]

−V̇ (x)− κ2‖x‖2 + r(x)β(x) ∈ Σ[x]

then x∗ is a locally exponentially stable equilibrium point.

In Theorem 3.7 we have used the fact that it is known that the Lyapunov function
V can be assumed to be a sum-of-squares polynomial [30], thus the sum-of-squares
multiplier used in the first condition of Theorem 3.6 is not required here. The
following theorem [30] shows that all systems of the form (5) that are exponentially
stable on a bounded domain admit a sum-of-squares polynomial Lyapunov function.

Theorem 3.8. For system (5), suppose that f is polynomial, ∂(f) = q and that
x∗ = 0 is exponentially stable on Br for some r > 0 with ‖x(t)‖ ≤ K‖x(0)‖e−γt.
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Then there exist κ1, κ2, κ3 > 0 and a sum-of-squares polynomial V such that for all
x ∈ Br the following inequalities

κ1‖x‖2 ≤ V (x) ≤ κ2‖x‖2

V̇ (x) ≤ −κ3‖x‖2

are satisfied. Furthermore, ∂(V ) < 2qNk−1 where k(L, γ,K) is any integer such
that c(k) < K where

c(k) ,
N−1∑
i=0

(eTL +K(TL)k)iK2(TL)k

and satisfies

c(k)2 +
log 2K2

2γ
K

(TL)k

T
(1 + c(k))(K + c(k)) <

1

2
,

c(k)2 <
γ

KL log 2K2
(1− (2K2)−

L
γ )

where L denotes the Lipschitz bound of f on B4Kr and N(L, γ,K) is any integer
such that NT > (log 2K2/2γ) and T < 1

2L .

The proof of this this theorem is constructive and is based upon the Picard
iteration. The highlights of the theorem are that exponentially stable systems have
a sum-of-squares polynomial Lyapunov function, the degree of which is bounded,
and furthermore the degree bound is a function of the continuity properties of f
and the convergence rate of (5) in the sense of Definition 3.2 (with t0 = 0).

This section is concluded with an illustrative example taken from [2]. Consider
the nonlinear system described the following set of nonlinear ODEs:

ẋ1 = x2

ẋ2 = −x1 +
1

3
x3

1 − x2. (6)

This system has two saddle points at (±
√

3, 0) as well as a stable focus at the origin.
Here we are interested in trajectories of (6) with initial conditions in the circular
disc centred on the origin with radius 1: D = {x ∈ R2 | xTx − 1 ≤ 0}, i.e. B1.
Using SOSTOOLS [23], Theorem 3.6 was used to construct a Lyapunov function
verifying local asymptotic stability. The phase portrait for the system and the level
sets of the Lyapunov function are shown in Figure 1.

In addition to stability, it is often desirable to determine the Region of Attraction
(RoA) denoted RA, of x∗ belonging to (5). Let φ(t;x0) be the solution to (5) with
initial state x0 at t = 0. The region of attraction corresponds to the volume of state
space RA ⊆ Rn such that

RA = {x0 ∈ Rn | φ(t;x0) exists and is unique, φ(t;x0)→ x∗ as t→∞} .

Determining the set RA exactly is a nontrivial task and no analytic solutions exist
for general nonlinear systems. Most region of attraction algorithms attempt to
(under)approximate RA by simple, more computationally amenable set descriptions
such as ellipses and polytopes using the linear differential inclusion framework [5].
More recently, sum-of-squares methods have been applied to RoA analysis [8, 39]
although these typically lead to bilinear matrix inequalities which are non-convex
[36]. The most common method for approximating RA is to determine the largest
level curve of a Lyapunov function that is completely contained in some pre-specified
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A B

Figure 1. A: Trajectories of system (6) initiated form various ini-
tial conditions (red lines) can be seen to either converge to the
stable equilibrium point at the origin or rapidly diverge if their
initial state is close to the two saddle points at (±

√
3, 0). B: Level

curves of the Lyapunov function (blue circles).

subset of Rn. Denote such a subset by X and assume that it can be represented by
a semialgebraic set of the form

X = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . , k} .
For expositional purposes we will assume that X = D, that is, we will assume
that we are searching for an approximation of RA on the same set that was used
for stability analysis. For completeness we will provide a general algorithm at the
end of the example that attempts the more complicated task of estimating RA on
the whole of Rn. The reader is referred to the references previously mentioned for
various implementations of the algorithm. A new method based upon set invariance
which provides an estimate of RA that is not given by a Lyapunov function level-set
is presented in [40].

Define the point set enclosed by the level curve V (x) = c where c > 0 by

Ωc = {x ∈ Rn | V (x) ≤ c} . (7)

When Ωc ⊂ D and V (x) is a Lyapunov function of (5) it follows that Ωc is compact
and positively invariant and hence a region of attraction for the zero equilibrium
point, x∗, of (5). We now propose a sum-of squares programme based on the
Positivstellensatz that computes the largest level-set of V , i.e. the maximum c,
such that Ωc ⊂ D. We denote this set by Ωc∗ .

Given a Lyapunov function V ∈ Ra[x] and non-negative integers κ, b1, . . . , bk,
search for sum-of-squares polynomials di ∈ Σbi [x] for i = 1, . . . , k that solve:

max
di∈Σbi [x],c>0

c (8)

s.t. ‖x‖2κ(V (x)− c)− di(x)gi(x) ∈ Σ[x], i = 1, . . . , k,

and let c∗ denote the optimal value of the objective function. The maximum level
set of V contained within D is thus V (x) = c∗.

Less conservative (although computationally more demanding) solutions can be
obtained by increasing κ and the degree of the sum-of-squares polynomial multipliers
bi.
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Region of Attraction Estimate

Figure 2. An estimate of the RoA of (6) obtained by solving
optimization (8). The green (outer) curve indicates the domain D
we are interested in, the blue (inner) curve is the largest level set
of the Lyapunov function contained in D.

Let us return to the example system (6). Consider now the domain D = {x ∈
R2 | xTx−2.2 ≤ 0} shown by the green level curve in Figure 2. Following the steps
described previously we obtain the quartic Lyapunov function:

V (x) = 3.421x2
1 + 1.7217x1x2 + 2.8584x2

2 + 0.45219x4
1

+1.318x2x
3
1 + 1.5945x2

2x
2
1 + 0.20294x1x

3
2 + 0.86584x4

2.

Setting κ = 1 and ∂(d1) = 2, solving (8) we find that the largest level curve of V con-
tained inD, and thus an approximation of the RoA onD, is {x ∈ R2 | V (x) ≤ 6.308}
which is shown in Figure 2. Improved estimates of the true region of attraction may
be obtained by iterating between adjusting the domain D and then computing the
largest Lyapunov level curve inside that region. The pseudo-code for such an algo-
rithm is:

1. Define a domain X in the state space described by a semialgebraic set.
2. Construct a Lyapunov function V (x) on X as described earlier.
3. Compute Ωc∗ using (8). Given a scalar ∆ > 0, set X ′ = Ωc∗+∆ and go to

Step 2 replacing X with X ′.
The above steps should be iterated until the optimization problems become infeasi-
ble. Note that by employing Theorem 2.9 it is possible to ensure that X ′ contains
X c.f. [40].

In the following subsection we shall consider the problem of constructing a state
feedback controller. One of the goals of feedback control is to enlarge the region of
attraction of a desired equilibrium point.

3.2. State feedback control design. The standard control synthesis problem
can be stated as follows: given a (possibly unstable) dynamical system of the form
ẋ(t) = f(x(t), u(t)) find a control law of the form u(x) such that the closed loop
is asymptotically stable. Typically the controlled system should seek to minimise
a given convex cost function. For LTI systems the solution to such problems are
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well understood and there are well known results that give necessary and sufficient
conditions for the existence of the controller and optimality conditions. The non-
linear counterpart is however still an open problem. We will describe one approach
based on the work in [32] to solve the state feedback case, extensions to more com-
plicated synthesis problems including output feedback and estimator design have
been investigated [42, 43, 35], for results related to the general nonlinear control
setup see [17, 22]. We first consider a relaxed version of the problem stated above
by assuming that the dynamical system can be written in input-affine form:

ẋ = f(x) + g(x)u (9)

where f is a vector of polynomial functions such that f(0) = 0 and g is a matrix
of polynomial functions and the polynomial control law to be constructed is u =
h(x). Initially we will just consider the stabilisability problem and ignore optimal
synthesis. Under these assumptions, state-feedback control amounts to finding a
polynomial Lyapunov function such that

V (x)− φ(x) ∈ Σ[x], (10a)

−∂V
∂x

(f(x) + g(x)h(x)) ∈ Σ[x], (10b)

where φ(x) is a positive definite polynomial function. Clearly constructing a sum-
of-squares decomposition for the derivative condition (10b) is challenging as the
problem is not jointly convex in V (x) and h(x). Convex methods that avoid this
problem include density functions [33], and moment relaxations [20]. However, the
method presented here follows the Lyapunov approach but utilises a recasting of
system (9) into a form that is reminiscent of the LTI set up. Let Z(x) be an
appropriately chosen vector of monomials of dimension N ×1 and of degree at least
1, then (9) can be written as

ẋ = A(x)Z(x) +B(x)u (11)

where A(x) and B(x) are polynomial matrices of appropriate dimension. By defini-
tion Z(x) = 0 if and only if x = 0. Let us now define the matrix M(x) ∈ Σ[x]N×n

such that

Mij(x) ,
∂Zi
∂xj

(x).

Define the index set IB = {b1, b2, . . . , bk} to denote the row indices of B(x) that
contain only zeros. Finally let us define the vector x̃ = [xb1 , . . . , xbk ]T . The state-
feedback problem is now to find a function u(x) = h(x) := F (x)Z(x) such that the
equilibrium point x∗ = 0 of the closed loop system is stable. After describing a
solution to the state feedback problem a method for including a cost function will
be described.

Theorem 3.9. Given the dynamical system (11), if there exists a symmetric poly-
nomial matrix P (x̃) ∈ R[x]N×N , a polynomial matrix H(x) ∈ R[x]n×N a positive
scalar ε and a sum-of-squares polynomial s ∈ Σ[x] such that

zT (P (x̃)− εI)z ∈ Σ[z, x̃] (12a)

zT (P (x̃)AT (x)MT (x) +M(x)A(x)P (x̃) . . .

+HT (x)BT (x)MT (x) +M(x)B(x)H(x) . . . ∈ Σ[z, x] (12b)

−
∑
i∈IB

∂P

∂xj
(x̃)Ai,:Z(x) + s(x)I)z
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with z ∈ RN . Then the state feedback problem admits a solution, furthermore, one
such stabilizing controller is

u(x) = H(x)P−1(x̃)Z(x).

Proof. An outline of the proof is provided for completeness. Assume the polynomial
matrices P and H defined in Theorem 3.9 exist and that conditions (12a)–(12b)
are satisfied. Consider the Lyapunov function V (x) = ZT (x)P−1(x̃)Z(x). The
proof proceeds by showing that V is indeed a Lyapunov function for the closed loop
system

ẋ =
[
A(x) +B(x)H(x)P−1(x̃)

]
Z(x). (13)

Positive definiteness of V is guaranteed by the fact that (12a) ensures P and thus
P−1 is positive definite. What is left to do now is show that the derivative condition
is non-positive. First, differentiate V along the trajectories of (13), then using the
identity

∂P

∂xi
(x) = −P (x)

∂P−1

∂xi
(x)P (x)

it is easily shown that V is a valid Lyapunov function and that condition (12b)
enforces non-positivity.

When condition (12b) in Theorem 3.9 holds, if s(x) > 0 for all x 6= 0 then the
origin is asymptotically stable. Furthermore if P (x̃) is a constant the origin of the
closed loop system is globally stable.

The results of this section are now extended to the optimal control setting. We
focus on nonlinear H∞ state-feedback control1. Here we consider dynamical systems
which can be written in the form ẋ

z1

z2

 =

 A(x) B1(x) B2(x)
C1(x) 0 0
C2(x) 0 I

 Z(x)
w
u

 , (14)

where the monomial vector Z(x) takes the same form as in the state-feedback
problem and z1 ∈ Rm1 , z2 ∈ Rm2 . The index vector IB is extended to denote
the zero rows of the matrix [B1(x) B2(x)]. The control objective in this case is to
minimise the induced L2-gain from w to z = [zT1 , z

T
2 ]T by choosing a control law

u(x) = F (x)Z(x). Below we present a relaxation to the problem, instead of finding
a controller that finds the minimum achievable L2-gain we specify an acceptable
gain, γ > 0 and then determine if a controller that achieves this bound exists. This
is commonly referred to as sub-optimal control.

Theorem 3.10. Given a nonlinear system of the form (14). If there exist a sym-
metric polynomial matrix P ∈ R[x̃]N×N , a positive definite sum-of-squares polyno-
mial s ∈ Σ[x] and a constant ε > 0 such that

νT1 (P (x̃)− εI)ν1 ∈ Σ[ν1, x̃]

−
[
ν1

ν2

]T  Ψ PCT1 MB1

C1P −(γ − s)I 0
BT1 M

T 0 −(γ − s)I

[ ν1

ν2

]
∈ Σ[ν, x]

1The term nonlinear H∞ is a somewhat confusing term for an inherently linear object, however
it is frequently used in practice and so we adopt it here. It refers to the largest achievable gain of

system (9) from an input signal belonging to the function space L2[0,∞] to an output signal in
L2[0,∞].
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where Ψ = MÂP + PÂMT −MBBTMT −
∑
i∈IB

∂P
∂xi

(AiZ) + sI and Â = A −
B2C2, with ν1 ∈ RN , ν2 ∈ Rm1+m2 . (Note that we have dropped the dependance on
variables in the second constraint in order to reduce the notational burden.) Then
the state feedback law

u(x) = −
[
γBT2 (x)MT (x)P−1(x̃) + C2(x)

]
Z(x)

renders x∗ of the closed loop system asymptotically stable and the L2-gain from w
to z is less than γ. If, additionally, P (x̃) is a constant matrix then the L2-gain
bound and asymptotic stability hold globally.

Proof. The proof follows from the classic LPV synthesis algorithms c.f.[16] and the
obvious differences are covered by Theorem 3.9.

4. Non-polynomial system analysis. In this section we will describe how sum-
of-squares techniques can be used to verify the stability of dynamical systems that
do not evolve according to polynomial vector fields. This overview will be infor-
mal and is intended primarily for pedagogical reasons. Two simple examples will
motivate the problem and then a general algorithm will be presented. The method
we describe involves taking a non-polynomial system and recasting it as a con-
strained polynomial system. Stability of the new system then implies stability of
the original system. The caveat is that the state dimension of the new polynomial
system is likely to be larger than that of the original system and include new state
constraints[25].

Consider the dynamical system

ż(t) = f(z(t)) (15)

where f(z∗ = 0) = 0 and z(t) ∈ Rn. Unlike in (5) f is not necessarily a vector
of polynomial functions. For brevity we drop the dependence on time, t, from the
notation. Let us now define the augmented state vectors x̃1, x̃2:

x̃1 , [x1, . . . , xn]T = z,

x̃2 , [xn+1, . . . , xn+m]T ,

which after applying a recasting algorithm form the system

˙̃x1 = f1(x̃1, x̃2) (16a)

˙̃x2 = f2(x̃1, x̃2) (16b)

where f1, f2 are polynomial vector functions. In order for the system (16) to ac-
curately capture the behaviour of (15) the recasting process must introduce some
constraints on (16) (or more concretely on the new state variables x̃2). Essentially
this restricts the state evolution of (16) to a manifold. We write these constraints
in vector form

x̃2 = F (x̃1) (17)

with the equality being applied in an element-wise manner. Clearly for the recasting
process to be of any use F must be polynomial in x̃1. Such a recasting process may
indirectly induce some non-polynomial constraints of the form

G1(x̃1, x̃2) = 0 (18a)

G2(x̃1, x̃2) ≤ 0 (18b)

which are automatically satisfied when (17) holds.
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In order to verify stability of an equilibrium point of the non-polynomial system
(15) using sum-of-squares programming we instead construct a Lyapunov function
for the constrained, recast system (16). A theorem that proves this condition is suf-
ficient and sum-of-squares programme that implements the results will be provided
after two illustrative examples are presented.

The first example is an exact recasting. Exactness refers to the fact that the
transformed system has the same state dimension as the original system. Take
the non-polynomial scalar system ẋ(t) = ce−αx(t). Choose p(t) = ce−αx(t) then
ṗ(t) = −αp2(t). Next we present a more involved example taken from [25]. Let Γ
be the static saturation function:

Γ(w) =
w√

1 + w2
.

Now consider the system

ẋ1 = x2, (19a)

ẋ2 = −Γ(x1 + x2), (19b)

which has one equilibrium point, x∗ at the origin. To recast this as a polynomial
system, introduce the following variables:

u1 =
√

1 + (x1 + x2)2, u3 =
√

1 + x2
1,

u2 =
1

u1
, u4 =

1

u3
.

Note that these variables are the induced equality constraints described by (18a).
The state equations from (19) can now be written as:

ẋ1 = x2,

ẋ2 = −(x1 + x2)u2,

u̇1 = (x1 + x2)(x2 − x1u2 − x2u2)u2, (20)

u̇2 = −(x1 + x2)(x2 − x1u2 − x2u2)u3
2,

u̇3 = x1x2u4,

u̇4 = −x1x2u
3
4,

with the constraints

ui ≥ 0 i ∈ {1, 2, 3, 4} ,
u2

1 = 1 + (x1 + x2)2,

u1u2 = 1, (21)

u2
3 = 1 + x2

1,

u3u4 = 1.

It should be clear that the polynomial constraints (21) above encode the variables
u1, . . . , u4 defined earlier. The Lyapunov theorems presented thus far do not take
into account constrained systems of the form (20)–(21). First, a generalised con-
strained polynomial system is defined and the a sum-of-squares programme for
stability verification is presented.
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A constrained polynomial dynamical system takes the following form:

ẋ(t) = f(x(t), θ(t))

ai(x, θ) ≤ 0, for i = 1, . . . , N1, (22)

bj(x, θ) = 0, for j = 1, . . . , N2,∫ T

0

ck(x, θ)dt ≤ 0, for k = 1, . . . , N3,

where x(t) ∈ Rn is the usual state vector and θ(t) ∈ Rm represents any needed
auxiliary variables. It is assumed that the functions ai, bj , ck are all polynomials.
The domain of interest is D ⊂ Rm+n which we assume has a semialgebraic repre-
sentation:

D ,
{

(x, θ) ∈ Rn+m | ai(x, θ) ≤ 0, bj(x, θ) = 0,∀i, j
}
.

We further assume that f(x, θ) = 0 for x = x∗ = 0 and θ ∈ D0
θ where D0

θ ,
{θ ∈ Rm | (0, θ) ∈ D}. The following Lyapunov Theorem from [25] provides a sum-
of-squares programme for verifying the stability of the equilibrium point x∗ of (22).

Theorem 4.1. Given system (22), where f is allowed to be a rational function
with no singularities in D. Suppose there exist polynomials V (x), w(x, θ), pi(x, θ),
qj(x, θ) and scalars rk > 0 such that V (x∗) = 0, V (x) > 0 for all x 6= x∗ around x∗

and that w(x, θ) > 0 and pi(x, θ) ≥ 0 on D. Then if

− ∂V

∂x
f(x, θ) +

N1∑
i=1

pi(x, θ)ai(x, θ) +

N2∑
j=1

qj(x, θ)bj(x, θ) +

N3∑
k=1

rkck(x, θ) ≥ 0, (23)

or if there are no integral constraints

− w(x, θ)
∂V

∂x
f(x, θ) +

N1∑
i=1

pi(x, θ)ai(x, θ) +

N2∑
j=1

qj(x, θ)bj(x, θ) ≥ 0, (24)

then the equilibrium point x∗ = 0 is stable.

Proof. This is a simple extension of Theorem 3.3. Integrating either (23) or (24)
from 0 to T it is easily verified that V (x(0))−V (x(T )) ≥ 0 onD when the constraints
are satisfied, thus ensuring stability.

The conditions in Theorem 4.1 can easily be implemented as sum-of-squares pro-
grammes in exactly the same manner as those of Theorems 3.6, 3.7 The final the-
orem in this section provides sufficient conditions for verifying the stability of (15)
by constructing a Lyapunov function for (16). As we’ve done elsewhere functional
dependance on variables has been suppressed where possible to improve readability.

Theorem 4.2. Let D1 ⊂ Rn and D2 ⊂ Rm be open sets with z∗ = 0 ∈ D1 and
F (D1) ⊂ D2 and define x̃0

2 = F (0). If there exists a function Ṽ : D1 × D2 → R
and column vectors of functions λ1(x̃1, x̃2), λ2(x̃1, x̃2), s1(x̃1, x̃2) and s2(x̃1, x̃2) such
that

Ṽ (0, x̃0
2) = 0

Ṽ + λT1 G1 + sT1 G2 − φ(x̃1, x̃2) ≥ 0 ∀(x̃1, x̃2) ∈ D1 ×D2

− ∂Ṽ
∂x̃1

f1 −
∂Ṽ

∂x̃2
f2 + λT2 G1 + sT2 G2 ≥ 0 ∀(x̃1, x̃2) ∈ D1 ×D2

s1(x̃1, x̃2) ≥ 0 ∀(x̃1, x̃2) ∈ Rn+m

s2(x̃1, x̃2) ≥ 0 ∀(x̃1, x̃2) ∈ Rn+m
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with φ(x̃1, x̃2) any scalar function such that φ(x̃1, F (x̃1)) > 0 for all (x̃1, x̃2) ∈
D1 ×D2. Then z∗ is a stable equilibrium point of (15).

Replacing positivity constraints in Theorem 4.2 with sum-of-squares relaxations
and assuming that D1 and D2 can be represented as semialgebraic sets allows for
the conditions above to be algorithmically verified.

4.1. Absolute stability. An alternative method for analysing non-polynomial sys-
tems using the sum-of-squares framework was developed in [14] using the notion of
functional sum-of-squares decompositions and absolute stability arguments [18, Ch.
7]. Recall the definition of a sum-of-squares polynomial (Definition 2.3), consider
the functional p(x, ζ(x)) where x ∈ Rn and ζ : Dx → Rp. We would like to de-
termine if p(x, ζ(x)) ≥ 0 on Dx ⊂ Rn. Extending the idea of a sum-of-squares
decomposition of a polynomial to the functional case, a relaxation for positivity is
to search for a decomposition of the form

p(x, ζ(x)) =

N∑
i=1

gi(x, ζ(x))2. (25)

There is no implication here that the functions gi should be polynomial. This idea
can be taken further and incorporated into a semidefinite programme to compu-
tationally verify positivity of p. To do so we treat ζ as an independent variable,
then if p is polynomial in (x, ζ) with ∂(p) = 2d and a decomposition of the form

p(x, ζ) =
∑N
i=1 g

2
i (x, ζ) exists where the functions gi are polynomial in x and ζ,

then computing a functional-decomposition can be cast in a similar manner to the
polynomial case. Let

p(x, ζ) = Z(x, ζ)TQZ(x, ζ) (26)

where Z is a vector of monomials in x and ζ of degree less than or equal to d and
the decision variable Q is a symmetric matrix of coefficients to be determined. If
there exists a positive semidefinte Q then p is said to possess a functional sum-of-
squares decomposition and satisfies p(x, ζ) ≥ 0 for all x, ζ. The following example
illustrates this idea. The problem is to determine iff the expression

p(x) = 2x4 + 2x3 sinx− x2 sin2 x+ 5 sin4 x (27)

is non-negative. Non-negativity is confirmed if a functional sum-of-squares decom-
position of p can be constructed: Set ζ(x) = sinx then (27) can be written as
p(x, ζ) = 2x4 + 2x3ζ − x2ζ2 + 5ζ4, now define Z(x, ζ) = [x2, ζ2, xζ]T then (26) tells
us that (27) is a functional sum-of-squares polynomial if there exists a λ such that

Q =

 2 0 1
0 5 0
1 0 −1

+ λ

 0 1 0
1 0 0
0 0 −2


is positive semidefinite. Clearly multiple values of λ satisfy this requirement, in fact
the solution space is an affine subspace. Taking λ = −3 and performing a Cholesky
decomposition and a variable substitution gives

p(x) =
1

2
(2x2 − 3 sin2 x+ x sinx)2 +

1

2
(sin2 x+ 3x sinx)2.



LYAPUNOV ANALYSIS USING SOS PROGRAMMING 2377

The notion of functional sum-of-squares decompositions will be used to address
the absolute stability problem. Let us consider the system

ẋ = f(x, u) x(0) = x0 ∈ Dx
y = h(x) (28)

u = ζ(t, y)

where x ∈ Dx ⊂ Rn, u ∈ Du ⊂ Rp, y ∈ Dy ⊂ Rr and f : Dx × Du → Rn is a
polynomial function. We assume that the system (28) is well-posed and that Dx is
an open set containing the equilibrium point x∗ = 0, furthermore (28) is assumed
to be locally Lipschitz in x on Dx and continuous in t and x ∈ Dx for all t ≥ 0. The
function ζ : R × Dy → Du is assumed to be nonlinear and f(x∗, ζ(t, h(x∗))) = 0.
The vector of functions

ζ(t, y) =

 ζ1(t, y)
...

ζs(t, y)

 , ζi(t, y) : R×Dy → Rpi ,

where
∑s
k=1 pk = p are placed in a polynomial generalised sector :

rk(y, ζ) , [ζ(t, y)− αk(y)]
T

[ζ(t, y)− βk(y)] ≤ 0, k = 1, . . . , s (29)

with αk, βk ∈ Rpi [y] for all i. Finally let r = [rT1 , . . . , r
T
k ]T and define the set Hr

to contain all the functions φ(t, y) such that r(y, φ(t, y)) ≤ 0 for all y ∈ Dy and all
t ≥ 0.

Definition 4.3. System (28) is said to be locally absolutely stable if ζk satisfies the
polynomial generalised sector constraint (29) for all x ∈ Dx and x∗ is asymptotically
stable for all ζ ∈ Hr. If the previous conditions all hold and Dx = Rn then we say
the system is absolutely stable.

An interpretation of the sector inequalities is that they are used to encode para-
metric uncertainty and functions for which we have polynomial upper and lower
bounds. The simplest example is the case of a single parameter δ ∈ R such that
a ≤ δ ≤ b where a and b are known. The sector inequality (29) takes the form

[ζk − a]T [ζk − b] ≤ 0

with ζk = δ. In [14] the absolute stability problem is addressed where both f and
the sector inequalities may be rational functions. For simplicity we only focus on
the polynomial case.

Theorem 4.4. Assume that Dx is represented by a finite set of polynomial inequal-
ities Dx , {x ∈ Rn | ai(x) ≤ 0} where ai ∈ R[x] for i = 1, . . . , b. Let V (x) be a
polynomial function such that V (0) = 0 and define the vectors s1 ∈ Σ[x, ζ]p×1, s2 ∈
Σb[x, ζ] and σ1(x), σ2(x) are positive definite polynomial functions. For r(y, ζ) ≤ 0
defined by (29), if

V (x)− σ1(x) ∈ Σ[x]

−∂V
∂x

f(x, ζ)− σ2(x) + s1(x, ζ)T r(h(x), ζ) + s2(x, ζ)Ta(x) ∈ Σ[x, ζ]

where a = [a1, . . . , ab]
T . Then the equilibrium point x∗ = 0 of (28) is locally

absolutely stable, additionally if Dx = Rn then it is absolutely stable.
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If f is a rational function then a simple modification to the definition of the
sector inequalities (29) and a minor change to Theorem 4.4 allows for stability to
be verified using the sum-of-squares decomposition. Note that system (19) is a
specific example of a non-polynomial system that can be modelled and analysed
using this methodology.

4.2. Systems with delays. The final class of systems we consider in this paper,
is that of systems with time-delays: in this case, the state is a function rather than
a point in Rn, so that the time evolution depends on the history of the state. Over
the past few years, a lot of progress has been made in the stability analysis of linear
time-delay systems using Lyapunov-Krasovksii (L-K) and frequency domain meth-
ods [13, 19]. In the case of linear time-delay systems, converse Lyapunov functional
theorems exist, which provide information on the structure of the Lyapunov func-
tion candidates that should be considered when constructing Lyapunov functionals.
These searches can be cast as LMIs and solved efficiently, however, the analysis of
nonlinear time delay systems is much more difficult.

In this review paper we discuss recent advances that allow the construction of
L-K functionals for time-delay systems using sum-of-squares. More details on the
methodology can be found in [24, 31].

We build on the notation used in this paper and borrow more from [13]. For b > a
denote C([a, b],Rn) the Banach space of continuous functions mapping the interval
[a, b] into Rn with the topology of uniform convergence. For φ ∈ C([a, b],Rn) the
norm of φ is defined as ‖φ‖ = supa≤θ≤b |φ(θ)|, where | · | denotes a norm on Rn.
Finally, we let Cγ = {φ ∈ C : ‖φ‖ < γ}.

We consider autonomous Retarded Functional Differential Equations (RFDEs)
of the form

ẋ(t) = f(xt). (30)

where f : Ω → Rn, Ω ⊂ C, ‘ ˙ ’ represents the right-hand derivative2 and xt ∈ Ω,
xt(θ) = x(t + θ), θ ∈ [−r, 0]. Definitions of stability of the steady-state x∗ of this
system satisfying f(x∗) = 0 can be found in [13].

Let Ω ⊂ Cγ , define V : Ω→ R a continuous function and let V̇ denote the Upper
Right Dini Derivative, defined as

V̇ (φ) = lim sup
h→0+

1

h
[V (xh(φ))− V (φ)] .

We then have the following theorem [19]:

Theorem 4.5. (Lyapunov-Krasovskii) Let Ω ⊂ Cγ . Suppose V : Ω→ R is contin-
uous and there exist nonnegative functions a(s) and b(s) mapping R+ to R+ such
that a(s)→∞ as |s| → ∞, and a(0) = b(0) = 0 such that

a(|φ(0)|) ≤ V (φ), V̇ (φ) ≤ −b(|φ(0)|) ∀ φ ∈ Ω. (31)

Then the solution x = 0 of (30) is uniformly stable. If, in addition, b(s) is positive
definite, then the solution x = 0 of (30) is uniformly asymptotically stable.

Consider now the following functional:

V (xt) = V0(x(t)) +

∫ 0

−r
V1(θ, x(t), x(t+ θ))dθ +

∫ 0

−r

∫ t

t+θ

V2(x(ζ))dζdθ

2The right hand derivative of a function g(s), g : R → R is defined as dg
ds

=

limh→0+
g(s+h)−g(s)

h
.
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for the system of the form (30). This functional is composed of three terms; the first
resembles the term that is usually used for ODEs; the second term is a functional,
to take care of the effect of delay, while the last term is added for reasons that will
become obvious in the sequel. Sufficient conditions for the (global) stability of the
zero equilibrium can now be formulated as follows:

Theorem 4.6. Let 0 be an equilibrium for the system given by (30). Let there exist
polynomials V0, V1 and V2 and a positive definite polynomial ϕ(x(t)) such that:

1. V0(x(t))− ϕ(x(t)) ≥ 0,
2. V1(θ, x(t), x(t+ θ)) ≥ 0 for θ ∈ [−r, 0],
3. V2(x(ζ)) ≥ 0,
4. r ∂V1

∂x(t)f + dV0

dx(t)f − r
∂V1

∂θ + rV2(x(t))− rV2(x(t+ θ)) + V1(0, x(t), x(t))

− V1(−r, x(t), x(t− r)) ≤ 0 for θ ∈ [−r, 0].

Then the equilibrium 0 of the system given by (30) is globally uniformly stable.

A proof can be found in [24].
To impose the conditions θ ∈ [−r, 0], we use a process similar to the region of

attraction section. The polynomial V1(θ, x(t), x(t + θ)) needs to be non-negative
only when h(θ) = θ(θ+ r) ≤ 0. We therefore rewrite condition (2) in Theorem 4.6,
as follows:

V1(θ, x(t), x(t+ θ)) + p(θ, x(t), x(t+ θ))h(θ) ∈ Σ[x, θ].

Condition (4) can be verified in a similar manner, resulting into a sum-of-squares
programme. We can also consider different Lyapunov structures, depending on the
system at hand.

When dealing with nonlinear systems with more than one equilibria or with state-
space/parameter constraints, we will only be able to construct a L-K functional
within a restricted region of the state-space. In this case, we will still need to specify
Ω = {xt ∈ C : ‖xt‖ ≤ γ}, and adjoin the relevant conditions on x(t), x(t − r) and
x(t + θ) ∀ θ ∈ [−r, 0] to the relevant kernels of the Lyapunov functionals in much
the same way that the conditions θ ∈ [−r, 0] were adjoined in Conditions (2) and
(4) of Theorem 4.6.

5. Conclusions. In this paper we have described how the sum-of-squares decom-
position of multivariate polynomials can be used to computationally verify stability
and performance properties of nonlinear dynamical systems. In particular we have
illustrated how to construct Lyapunov functions that verify local and exponential
stability of polynomial systems, synthesise state-feedback controllers and address
stability issues related to non-polynomial systems and infinite dimensional systems.
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