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Abstract

I use a model of human causal learning, Causal Support (Tenen-
baum & Griffiths, 2001), to derive a meaningful measure of Cognitive
Distance—the degree to which two people differ in their opinions about
the workings of the world. Next, I amend this measure to quantify
the notion of Cognitive Diversity. Cognitive Diversity measures the
degree to which opinions vary within a human collective, such as a
political party or a research department of a firm or university. Mea-
sures of Cognitive Distance and Diversity are important for theoretical
and empirical work which aims to link Cognitive Diversity to collec-
tive Wisdom—an organization’s success in recognizing structure in the
universe of interest—in order to make robust collective decisions in un-
certain environments.



1 Introduction

We need to unearth the mechanisms guiding transitions from wise to unwise
collectives, if we care to achieve a science of sustainable development. This
is so, because most decisions that are relevant to sustainable development—
however we may define it—are at least indirectly influenced by human col-
lectives: committees, congress, corporate boards etc. One important set of
machanisms relates the diversity of individual minds within a collective to
the wisdom with which it solves its problems (collective decision and collec-
tive action).

Decisions and problem solving, involve preferences, experienced data and
beliefs. The diversity of preferences and information (experienced data) have
been in focus for much of the work that considers the heterogeneity of ac-
tors in economics and political science. Here, I will focus on the diversity
of belief systems. In teams of people who work closely together, ultimate
preferences are often the same—outcomes that favor the success of the team
are preferred—and relevant information is swiftly shared among all members.
Thus we might regard information and preferences as homogenous. But peo-
ple’s minds have slowly been forged by diverse forces. Aside from inherant
differences, they are subjected to thousands of interacting influences from
within and without their social settings. Thus, we should not be surprised
to find that people think differently from one another, even if they com-
monly observe the same long stream of data. Of course, collectives might
also be diverse in their preferences and in addition their members may select
information sources differently—because of preference variation over the set
of information sources—which causes people’s received information to vary.
Climate change discussions at all scales (from local to global) for example,
are likely to draw attendees with diverse goals and beliefs, who also expose
themselves selectively to different information channels. To more clearly
understand and articulate the benefits and costs of cognitive diversity—the
diversity of mechanistic (causal) beliefs—in any of the above settings, we
must have a way to quantify cognitive distance and cognitive diversity. This
is what this paper is about.

Socially constructed measures of diversity—for example along ethnic, gen-
der and religious dimensions—are highly sensitive to context and interpreta-
tion. Yet, they have become a common public agenda of firms and organi-
zations. This diversity agenda is promoted for ethical and esthetic reasons
or as a result of political pressures, while perhaps the most relevant form of
diversity—for the success and robustness of collectives—is related to cognition



and beliefs'.

Analogous with definitions of bio-diversity (Weitzman, 1992) that are
designed to represent or reflect the amount of genetic information that is
available to the system—for greater functional diversity under a greater range
of circumstances—an organization’s cognitive diversity must be defined in
such a way that it reflects the collective’s current mental tool kit. However,
the analogy with bio-diversity has its limits. Weitzman’s diversity measure,
for example, applies to collections of objects that can be filed into natural
discrete categories such as genetic species or languages and these must be
hierarchically related by inheritance. In the most ideal circumstance—the one
for which Weitzman’s measure has the most meaning—the species’ inheritance
structure forms a tree. Human minds, if they inherit from each other, can not
be arranged meaningfully in such structures and there is no natural typology
for human minds. Cognitive differences are often small and subtle and thus
complex languages have evolved to communicate those subtleties. Thus, the
spaces of mental models and their representations—Bayesian Networks—must
be continuous spaces and not sets of types. But then we need a continuous
measure of diversity.

Hansen and Sargent (2008) make use of a continuous distance measure-
between models and some true data generating process—that is related to the
cognitive distance measure that I present here. Both, Hansen and Sargent’s
distance measure-the Kullback—Leibler divergence—and the one I present
here-the square-root of the Jensen Shannon Divergence—can be calculated
over models from a broader class than the one discused by Hansen and Sar-
gent. The measure I propose improves the measure that Hansen and Sargent
use. Additionally, I discuss how Hansen and Sargent’s class of models is re-
lated to Bayesian Networks. Bayesian Networks were recently suggested
by Tenenbaum and Griffiths as general representations of human cognitive
models, regarding some causal system (Tenenbaum & Griffiths, 2008). We
must allow for cognitive models with complex causal structures if we want
to build theories of robust collective decisions in complex contexts. Bayesian
Networks are good candidates because they allow for almost arbitrary causal
complexity.

I advance a cognitive distance metric which is the square root of a mea-

!Note however, that, depending on the context, socially constructed measures of diver-
sity might be highly correlated with cognitive diversity, and thus they may serve as more
applicable proxies of cognitive diversity than membership size which is often constrained.
Hence, focusing on these often more easily apparent forms of diversity might be justified
also on grounds of organizational efficacy and robustness, if and when cognitive diversity
can be shown to have such benefits.



sure known as the Jensen-Shannon Divergence (henceforth JSD). The JSD
is a symmetrized version of the distance measure between some true process
and an individual’s model which is used by Hansen and Sargent in their im-
portant work on robust decisions in economics (Hansen and Sargent, 2008).
The JSD is a lesser known, yet important quantity in information theory.
When we take the square root of the JSD we obtain a metric, satisfying
all of the properties of metrics. The older and more widely known mea-
sure used by Hansen and Sargent—the Kullback—Leibler divergence—neither
satisfies symmetry nor the triangle inequality and thus the square-root of
the JSD is an improvement as a measure of distance. The way in which
we intuitively understand distance, demands distance measures to satisfy at
least symmetry—if an object is at distance d from some other object, the
second object better be at that same distance d from the first object—and
less importantly it should satisfy the triangle inequality.

With a good measure of cognitive diversity we may show analytically and
empirically whether and under what conditions cognitive diversity leads to
robust collective decisions?. We may do this by relating cognitive diversity
to other measures, such as one measuring collective wisdom. In addition,
we may also construct a normative theory regarding how collectives should
make robust decisions and how in constructing collectives, managers should
trade off diversity against other concerns.

To further explain why robustness would follow from diversity, some peo-
ple’s models of the world—to be made precise below—that had been inaccurate
previously, might have more explanatory power as circumstances change,
while others that once furnished the best explanations might fade in rele-
vance. A system of interest might cycle through regimes so that it be better
explained by chaining together a set of simple models with probabilistic
transition rules between them than by picking one complicated model. For
different people different past experiences are salient and they build models
that best explain those salient experiences. For example, a stock trader who
lost money in the last financial crisis, will craft an exposed theory that ex-
plains it. A person’s prevailing biases might then be useful for the group at
particular times.

Starting with Condorcet’s jury theorem, (Marquis de Condorcet, 1785)3,

2The benefits and costs of diversity must depend also on the organization’s opinion
aggregation scheme, just as the benefits of bio-diversity depend on the structure of the
food web.

3 Although since Waldron (1995) there has been widespread argreement among scholars
that in Politics Aristotle had already espoused a theory of “The Wisdom of the Multi-
tude”, which implicitly was synonymous with a theory of the social benefits of Diversity,



there have been various arguments with different degrees of sophistication,
that, depending also on the organizational scheme of the collective, many
thinkers together will on average come to wiser conclusions than any indi-
vidual could on her own. In general, in these arguments the implied rea-
son is that the greater the number of people, the greater is the variance in
insights—the cognitive heterogeneity and diversity is higher in larger groups,
by assumption. The diversity of minds and not the sheer number of people is
in truth believed to lead to better collective decisions, but this is not how it
is formulated in the theories*. For a thorough discussion and overview of the
literatures on and related to collective wisdom, distributed intelligence and
cognition or the wisdom of crowds, see “Collective Wisdom: Principles and
Mechanisms” (edited by Landemore and Elster, 2012). For an exhaustive
treatise on robust economic decisions of individuals who don’t trust their
own models, see Hansen and Sargent (2008).

Now, I will derive the JSD from recent work in cognitive science on how
humans uncover causal structure in their universe of concern (Tenenbaum &
Griffiths, 2001, Griffiths & Tenenbaum, 2005) and I will show how the class of
models discussed in Hansen and Sargent is related to the class of models that
I use here. After that, I will show how the JSD can be generalized for multiple
models and I will argue that, with the appropriate normalization, the square-
root of the resulting quantity—known as the n-point JSD, or generalized
JSD—-is a meaningful metric of group level cognitive diversity.

2 Causal Beliefs and Joint Distributions

Causal reasoning is important for discussions in business, politics and sus-
tainable development. Thus, for now I restrict my models of human reason-
ing to the causal domain, although I acknowledge that other forms of rea-
soning (ontological, deontic, deontological, etc.) often play roles and must
be incorporated to account completely for the diversity of individual rea-
soning within collectives. Measures of cognitive distance and diversity are
constructed not from data of cognition per se, as cognition at this scale is
unobservable, but from observable reasoning or model building. The data
can come from laboratory experiments in which participants build models
to either answer questions or to trade on some market. Or it can come from

Cammack (2013) convincingly dispelled this interpretation of Aristotle’s text and showed
that Aristotle, very likely, had something very different in mind.

“In the case of Condorcet’s jury theorem the argument is simply numerical and has
little to do with people’s cognition at all.



(a) Graph 0 (b) Graph 1

Figure 1: Two examples of Simple Cognitive Maps. Here “B” stands for
Background Cause and “C” stands for Cause of interest (the variable which
actor 1 believes has a causal effect on “E”, but actor 0 does not).

interviews as well as transcriptions of speeches or debates. Transcriptions
or interviews—for example—are used to elicit statements of the form “COq
causes Climate Change,” which are then encoded as directed signed arcs of
the graph representing a particular speaker’s belief system as depicted in
Figure 1:

COy & Climate-Change.

The downsides of using transcriptions of debates and speeches are that
1) it can be quite tedious to encode thousands of causal statements in the
abscence of automation® and 2) the exact parameters of the causal structures
are arbitrary. Hence, for the time being—while we are waiting for better
language models—I recommend using experiments.

To begin with, people are assumed to have some objects to think about.
These I call variables. For macro-economists, for example, the objects of
thought would include variables such as interest and unemployement rates,
GDP and inflation, among others. The researcher elicits from a set of people—
perhaps macro-economists—each person’s beliefs about how the variables of
the domain of interest are causally related. Then, he arranges the causal
relations into a coherent data structure, representing that person’s belief
system.

Cognitive Maps (henceforth CM), as the resulting signed digraphs are
often called (see Figure 1 for two simple examples), can then be coded as
Bayesian Networks (henceforth BN), which are parametric representations

®Crowdsourcing platforms such as Amazon Turk may help. See “Creating Speech and
Language Data With Amazon’s Mechanical Turk”, Callison-Burch & Dredze, 2010.



of how a person believes that a set of variables is jointly distributed, while
maintaining the causal interpretation. In experiments people might directly
express their beliefs as fully parametrized Bayesian Networks, which elimi-
nates a host of arbitrary coding decisions for the researcher. For an example
of such an experiment, see Castner and Li, forthcoming. For an exhaustive
treatise on causal models, see Judea Pearl’s “Causality: Models, Reason-
ing, and Inference” (Pearl, 2000), for Probabilistic Graphical Models more
generally see “Probabilistic Graphical Models: Principles and Techniques”
by Koller and Friedman (2009) and for a detailed account of how beliefs
are elicited and cognitive maps are constructed from people’s statements see
“Structure of Decision: The Cognitive Maps of Political Elites” (1976), edited
by Robert Axelrod. While the exact calculations in this paper take a par-
ticular form of sub-linear causation, any functional probabilistic relationship
between k variables can be specified as part of a Bayesian Network.

To show how CMs are encoded as BNs, I closely follow Griffiths, Kemp
& Tenenbaum (2008). For illustrative purposes, two very simple CMs are
shown in Figure la and Figure 1b. The universe of discourse is a set of three
variables: a background cause B, a potential cause of interest, C, about the
effect of which on E—the effect variable—there is a dispute. The person, let me
call him 0, a representation of whose belief-system (Graphg) is depicted in
Figure la believes that only B and not C' causes F, while the person, whom
I call 1, with beliefs represented by Graph; in Figure 1b, believes that both
B and C exert a causal influence on E. For the time being, I’'m assuming
all believed effects to be positive, but it is later shown how to accomodate
negative effects in a principled and straight forward manner. Graphg is
encoded as follows as a Bayesian Network (or simply joint distribution).
The joint distribution of any k variables (k = 3 in this case) can be written
as the product of all of its conditionals and its marginals. In the case of
Graphg:

Py(B,C,E)=P(E|B)* P(B)* P(C)

Note that since B is believed to cause FE, the value of E is believed to
depend on the value of B and thus the term P(E|B) is included. However,
E is believed to be independent from C' and thus P(E|B, C) collapses, while
in Graph; the term would have to be P(E|B, C):

P\(B,C,E) = P(E|B,C) x P(B)  P(C).

In Griffiths, Kemp & Tenenbaum (2008) all variables are binary (i.e. they
can only take on values 0 and 1). But this must not be so.



To incorporate Hansen and Sargent’s work, which is based on continuous
variables, consider that “a decision maker’s model takes the form of a linear
state transition law”, which they formulate as

Ysy1 = Ay + Bug + Cépyq, (1)

where €& is the error: an i.i.d. Gaussian vector process with mean 0 and
identity contemporanious covariance matrix, I. y; is a state vector and wu; is
a vector of controls. In the language of Bayes Nets, we refer to u; as a vector
of action nodes. I will return to Hansen and Sargent’s work soon. There I
will present Hansen and Sargent’s interesting relaxation of Equation 1-the
class of models that represent an actor’s considered misspecifications in their
theory— but for now I will continue with the exposition of Griffiths, Kemp &
Tenenbaum (2008) and with the assumption that our data of people’s models
of the world is derived from text.

When we use text data, it is difficult to justify continuous formulations,
as we know too little about a person’s imagined functional relationships—we
only get statements of the form A causes B. We lose no information and it is
more parsimonious if we represent all variables in binary form (high or low).
One could see this assumption as coming from a theory of how ordenary
people who don’t build quantitative models think about the world—people
might coarse-grain variables as either taking on a high value (1) or a low value
(0). Alternatively, the values (0, 1) could be thought of as deviations from
some base-line, where 0 means a decrease and 1 denotes an increase (with
an innocuous assumption that the values of the underlying variables never
stay exactly the same). For a positive causal relation, when B is believed to
be the cause of E for example, we have:

P(E=1B=1)> P(E=1|B=0),

which in the case of Graphg, where there is only one causal variable, can
simply be parameterized as:

Py(E = 1|B = b) = mo b,

so that when b equals 0, the probability of E taking on the value 1 is believed
to be 0 and when b equals 1, this is believed to cause E to take on the
value 1 with probability 7o 5. Note that the effect parameters, such as m g,
are themselves taken to be drawn from some known distributions and while
Griffiths and Tennenbaum assume uniform distributions on the interval [0, 1],
for this paper all calculations have been done using a few specifications of



the beta distribution of which the uniform distribution is a special case-we
end up with two tunable parameters. The beliefs as represented in Graphy,
pertaining to Es dependence on both B and C (Py(E|B,(C)), are slightly
more difficult to parameterize. A parameterization that assumes a linear
dependence on both causes (Pi(E = 1|B = b,C = ¢) = 7 b+ m cc)
introduces a dependence between the two parameters—in virtue of preserving
the axioms of probability—which likely has not explicitly been stated as part
of the person’s beliefs (71 p+m1,c < 1). Note that with more than two causes
this becomes even more problematic. Thus, Griffiths, Kemp, & Tenenbaum
(2008) recommend to use Pearl’s 1988 Noisy-OR parameterization:

P(E=1B=bC=¢)=1—(1—mp)"(1—m0)" (2)

In Equation 2, we have that if b and ¢ are both equal to 0, the probability
of E taking on the value 1is 0. If, on the other hand, b equals 1 while ¢ equals
0, this probability is 71 p and if b equals 0 while ¢ equals 1 this probability
is m1,¢. Lastly, and this is the case for which things change compared to the
linear parameterization, when both b and ¢ are equal to 1, the probability of
FE taking on tha value 1 is:

PI(E = ]_|B = 170 = 1) = 7T1,B —{—7'['170 —7T1’B7T17C.

The reason why Equation 2 was given the name “Noisy-OR”, is that in
the special case where m1 p = m ¢ = 1, it becomes the OR function, so
that F takes on the value 1 whenever b equals 1, or ¢ equals 1 or both and
it takes on the value 0 otherwise. In the case of believed negative causation,
supposing a Graphy which is like Graph; except that C' is believed to have
a negative effect on E instead of a positive one, Equation 2 becomes:

P(E=1B=bC=¢)=1-(1—mp)"(1 —mc)"¢, (3)

where the relationship of this probability with the value taken on by C
is reversed:

P(E=1B=bC=1)=P(E=1B=5bC=0)
and

PyE=1B=0bC=0)=P(E=1B=5bC=1).

The Noisy-OR parameterization can also be derived (as in Tenenbaum
and Griffiths 2001 & 2005) from a psychological theory called “causal power”,
that was first suggested by Cheng (1997).

10



2.1 A Continuous Case.

Before I move on to derive a measure of diversity over mental models, I want
to point out one more interesting class of models that is subsumed within the
Bayesian Network class—that of Hansen and Sargent. The contours emerge,
of a broader theory of robust decisions with increased focus on a particular
constrain: the subspace that deciding collectives explore in the space of all
possible models.

In general Bayesian Network formulations, it is easier to think in terms
of stochastic and systematic componants (King, 1989) than in terms of er-
rors. Thus I rewrite Hansen and Sargent’s distorted model formulation in
the following way 9. The stochastic componant is:

Y41 ~ N(,“’? CZI); (5)

with systematic componant:

w = Ay + Buy.

The causal structure in this problem is the same as in one of our previous
problems—it looks like Graph;:

P(yev1,ye,ut) = P(yer1lye, ue) * P(ye) * P(uy),

where P(yi+1|ys, ue) is the Gaussian conditional density of 11, with
linear dependencies on y; and u;. We have to remember that all of the
variables are vectors and thus the graph has many more nodes.

To allow for feedbacks and time dependent true processes, Hansen and
Sargent suggest that people might guess that their models of the world with

SFollowing King, 1989, the most general Bayesian Net with the same causal structure
has a stochastic componant

Yt+1 ~ F(@, Oé). (4)

F is some probability distribution with auxiliary parameter o and systematic componant

0:

0 = gy, ue).
g(+) is some arbitrary deterministic function. For all statistical dependencies that we
admit into our Bayesian Net, we need such a formulation to calculate all conditional
pdfs. These are then to be multiplied, together with the marginal probabilities of their
arguments, to arrive at the joint distribution of all the relevant variables.

11



Figure 2: Here is a Graph of Hansen and Sargent’s formulation with two
time periods feeding back.

only limited causal possibilities (Equation 1) are misspecified and thus they
surround their models with a set of alternative models of the form

Y1 = Ay + Bug + Clep1 + wig), (6)

where ¢; is another i.i. Gaussian error process with mean 0 and identity
covariance matrix. wg41 is a vector process that can feed back in a possibly
nonlinear way on the history of y

W41 = gt(ytayt—lv .- -),

where {g;} is a sequence of measurable functions. Note the generality!
From their formulation, Hansen and Sargent seem to have intended to treat
{g:} as a nuisance parameter that belongs to the stochastic componant, but
it defines the difference between a theory of optimal decisions with rational
expectations and Hansen and Sargent’s theory of robust decisions and thus
it is central. The stochastic componant of this model, then, remains the
same, as in Equation 5, but the systematic componant is changed to

= Ayt + Buy + Coe(ye, ye—1, - - .).

The structure now no longer looks like Graph;—it looks like in Figure
2—and the joint distribution is as follows

P(ytJrl,ytaytfla .- ',Ut) = P(yt+1|yta - 7Ut)*P(yt|yt—1a .- .)*P(yt,1|yt,2, .- -)*' : '*P(Ut)-

12



Of course, y: and u; represent vectors of variables and each of the arrows
represents a vector of influence parameters. Thus, a full causal graph taken
from the class of models suggested by Hansen and Sargent can look much
more complex than the one in Figure 2. The possible range of structural
complexity in this class of models—the number of parameters—makes this
class large. In fact, even with few variables, the number of graphs that a
person has to consider for her robust decision algorithm becomes enormous.
Recall that {g;}-the part of Hansen and Sargent’s models that specifies most
of the causal arrows—is a sequence of arbitrary measurable functions over an
infinite (or very long) sequence of vector-valued variables. Figure 2 only
shows the case where the number of considered lags is 2 and even in that
limited subclass note that the added number of arrows is large compared
to the distorted model which looks like Graph;. There is an important
constraint that should be placed on {g;} and that is that causation only
travels forward in time, but even with that constraint, {g;} is too large.
Hansen and Sargent put forth that all decision makers consider Equation 1
to be a good approximation of the truth and they say that this bounds the
set of models that a person has to consider. They start with an intertemporal
measure of the size of model misspecification:

o0

R(w) = 2E Z BtJrlDKL(PgtHPO)?
t=0

where Ej is the Os period expectation operator of the distorted model,
Py (with p = Ay + Buy) and where Py, is from the large class of models
with 4 = Ay, + Bu; + Cg;. 1 will define the Kullback-Leibler Divergence,
Dk, in the next section; suffice it to say now that it is an asymmetric
measure which is often used to compare two probability distributions and
that if something is not possible under I that is possible under P, it is
unbounded. R(w) is then interpreted as a distance measure between some
true process discribed by some possibly complicated causal structure indexed
by w and the distorted model with the structure of Graph; (Equation 1).

Hansen and Sargent’s decision makers believe that the data of their ex-
perience is generated by a model that is not too far from some model in
the class described by Equation 1, or Graph;. The authors quantify this by
imposing the constraint

R(w) < no. (7)

Right away we see that whatever distribution has an event that is deemed
impossible under Py, that distribution is omited from consideration, even if

13



it places only a very low probability on the offending event. But, depending
on 1), this constraint may still leave us with too many models to sift through
in order to make an efficient decision in finite time. Note that during the
recent housing crisis, both home owners and bankers did not believe that it
was possible for housing prices to fall. Thus, their decisions were not robust—
they failed to consider some events that are—as we now know—possible.

There are thus two problems: 1) Graph; seems arbitrary as a center
around which to seach for the truth and 2) there may be many nonsensical
models in this space that represent no one’s beliefs. In human collectives—if
we assume that people have good reasons to construct models in particular
ways and that these models differ-then we have more natural constraints
on the space of considered models. If each person in the collective poses a
model—a point in model space—we may consider as relevant all models in the
convex hull defined by these points. The resulting sub space of consideration,
), is likely to be smaller but also more relevant than the class considered by
Hansen and Sargent’s agents. The importance of this point depends on how
complex reality is—how far the truth is from Equation 1. A good measure
of Cognitive Diversity, measures the size of ). Given that people build rea-
sonable (relevant) models, for more robust decisions in complex systems it
seems that the size of {2 should be large. The more of the reasonable model
space we can cover, the more reasonable concerns we capture as a collective.
A reasonable model is simply one that an intelligent person might construct
after careful consideration. In simple systems, like those governed by pro-
cesses that are almost describable by Equation 1, there might not be many
reasonable models and people’s opinions might converge so that they are all
situated in a tight ball around the system that Equation 1 describes exactly.
In those circumstances, Hensen and Sargent’s theory applies, except that
too many models are considered. When the real system is complex, diversity
in people’s opinions is likely to persist and these are also the circumstances
for which diversity is likely to make a difference. When people reason to
consider models, they don’t consider irrelevant ones that are not omited by
Hansen and Sargent’s agents, but they include relevant ones that Hansen
and Sargent’s agents may omit. In fact, if the truth is far from Equation 1,
further than 79, Hansen and Sargent by construction exclude it from consid-
eration. But the restriction implied by 79 is not based on any principle or
reason. My claim is that collectives of humans can do better by employing
causal reasoning. In complex systems, how well they can do likely depends
on how diverse is the space of models that they can consider—it will depend
on their cognitive diversity.

Another striking feature of Hansen and Sargent’s models is that action

14



nodes—or control variables—are never affected by state variables—decisions are
not contingent on reality. Thus these models don’t speak to theories of robust
learning or adaptation and they don’t allow for contingent decisions without
learning or adaptation. However, we can make our actions contingent on
the values of some state variables and we can anticipate to learn and adapt.
In order to formulate a theory of robust learning or robust adaptation or
one that allows for contingency plans we need to work with more general
Bayesian Networks that allow for contingent controls.

3 Derivation of the Jensen-Shannon Divergence for
Measures of Cognitive Distance and Diversity

3.1 Causal Support

Until recently (Tenenbaum & Griffiths, 2001, Griffiths & Tenenbaum, 2005)
Bayesian models of human learning have typically been concerned with pa-
rameter estimation rather than with the learning of causal graph structure.
However, it is the structure of people’s belief systems that 1) is likely more
important for understanding differences between people’s beliefs and 2) is
easier to obtain information about. As part of their work on causal learning—
the human learning of causal structure-Tenenbaum & Griffiths have intro-
duced a measure called Causal Support, which measures the support that
some evidence lends to a particular structural causal theory (BN) in favor
of another; it is really just a special case of a likelihood ratio, where the
usual concern for parameter estimation is replaced with a concern for causal
structure (or model selection):

P(D|Graph,) 8
PGS ) ®

where P(D|Graph;) is the probability of seeing data D, when the data
generating process is the joint distribution associated with Graph; and
P(D|Graphy) is the probability of seeing D when the truth is described
by Graphy. This should be interpreted as the support given to Graph; over
Graphg by some data D.

Support, ; = log <

3.2 Cognitive Distance

Departing from Tennenbaum and Griffiths, let us now suppose that the data
is repeatedly drawn from the first model specified by Graph; (a large number

15



of times). The average Causal Support of that (correct) model, Graphy, vis-
&-vis another model, Graphg, can then be seen as the degree to which the
first model can be distinguished from the second one, if the first one in fact
specifies the correct data generation process. The resulting quantity is what
Hansen and Sargent use in their treatise on robust dynamic decisions and
it is known as the Kullback-Leibler divergence of Information Theory (also
Information Divergence, Information Gain, Relative Entropy, or KLIC):

Py(D)
Py(D)

DKL(PlHP()):El(lOg( >), with D ~ P,

where Fj(-) is the expectation operator under Graph; (not the effect vari-
able)”. However, in this example as in many others, it is clear that
Dy (P1]|Py) is not defined, because Graphg puts zero probability on D =
(B = 0,C = 1,E = 1), which will in expectation be drawn P;(C =
1) % m ¢ * N times for every N draws.

The Kullback-Leibler Divergence is relevant when an assymetric measure
of distance is sought, as in Baldi and Itti (2009) who define surprise as an
assymetric distance between a prior and a posterior model®.

Definition Define the amount of Surprise one bit of data D has on a
Bayesian Network, G as
P(G)

Di1(G,G|D) = / P(G)log g 5G.

where Dk (+) is the relative entropy or Kullback-Lieber Divergence. It is a
quantification of the effect that one bit of data, D had on the model G.

But unlike surprise, distance between two people in cognitive space
should be symmetric and finite. While surprise is likely to be finite, if it
is not it has a specific interpretation—something thought to be impossible
has proven to be possible. In the case of distances between models, there

"For notational convenience, I write Pi(D), Po(D), instead of P;(D|Graph;) and
Py(D|Graph,).

8Baldi and Itti (2009) argue that for a measure of surprise, asymmetry better matches
intuitive notions: “A broad prior distribution followed by a narrow posterior distribution
corresponds to a reduction in uncertainty, while a narrow prior distribution followed by a
broad posterior distribution corresponds to an increase in uncertainty, and both lead to
different subjective experiences,” where broad and narrow joint distributions are defined as
higher and lower entropy distributions respectively. Entropy is the most general measure
of uncertainty—for arbitrary distributions—which is guaranteed to satisfy a set of desirable
axioms (Cover Thomas, 2006).
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could be many things that one person holds as possible and another person
holds as impossible. If we end up with an infinite distance every time one per-
son finds something impossible that another finds possible, then we can not
distinguish between pairs of people who have multiple such disagreements
and those who only disagree about the possibility of one event. Further, the
measure of distance must be less sensitive to zero probability beliefs than the
Kullback-Lieber Divergence, if it is needed to distinguish between pairs of
people who completely disagree about the possibility of an event—one finds
it likely, while the other finds it impossible-and pairs of people who almost
agree in that one person finds the event again impossible while the other
finds it almost impossible.

To guarantee that our distance measure is finite and symmetric, let M =
AP, + (1 — M) Py denote the mixture of the two joint distributions, with
A € (0,1). It is then guaranteed that Dgr (P1||M), the average causal
support of Graphj, vis-4-vis the mixture, M, when Graph; generates the
data, takes on finite values—for all the calculations in this paper A = %
because it makes the JSD symmetric. The same can then be done in reverse
where the average causal support of the second model, Graphg, over the
mixture M, is calculated with data repeatedly drawn from the distribution
specified by Graphy:

Py(D)
M(D)

The JSD for the two models is then obtained by taking a weighted average
over these two expectations:

DKL(P()HM) = Eg(log ( )), with D ~ P,.

JSDA(P1|[Po) = ADgL(PA|[M) + (1 = A) D (FPol[M). 9)

This quantity, JSDy, can be interpreted as the average distinguishability
between two joint distributions (cognitive models in this case) given one bit
of data (DeDeo, Hawkins, Klingenstein and Hitchcock 2013)-it measures
the total divergence to the average or the Information Radius (IRad). The
information radius quantifies the amount of information that is lost if we
were to describe two processes, P| and P», by their average M. Also note
that this measure, unlike Dy, is symmetric when A is set to % (I drop the
A subscript when A = 3):

JSD(P||Q) = JSD(Q||P), VP, Q.
When in addition the base 2 logarithm is used we have that
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0 < JSD(P||Q) <1,VP,Q

Lastly, if we take the square root of this quantity, we obtain a metric
so that the triangle inequality holds (Endres and Schindelin, 2003). One
implication is that with this metric the Banach fixed-point theorem holds
for the model space (Palais, 2007). Thus we have a symmetric and finite
measure that is defined everywhere, satisfies the triangle inequality and is
non-negative, vanishing only when P = ()—these are all important properties,
if the measure is meant to compare distances between different belief systems
so that we can make statements such as “the distance between Q and P
is larger than that between P and R”. The resulting metric can then be
interpreted as the “cognitive distance” (CD) between any two models:

CD(P||Q) = \/ISD(P]IQ). (10)

3.3 Cognitive Diversity

An extension to the JSD—the n-point Jensen-Shannon Divergence, or JSD,,—
can be defined as:

n
JSDu(Py, Py, ..., Py) =Y wiDkr(Pi|P), (11)
i=1
where P is the mixture of all n models and where the w;s are weights that
sum to 1. In the special case where all distributions are defined over a finite
set, Equation 11 can be expressed as

JSD, (P, Py,...,Py) = H <Z wiPz) =) wiH(P), (12)
=1 =1

where H(-) is defined as the Shannon Entropy. In the case that
w; = %7 V i, Gallager (1968) proved that the JSD,, is a convex function in
(Py, P,...,P,). This measure can be interpreted as the amount of informa-
tion that is gained from one arbitrary data sample, about which among the n
distributions is the closest one to the underlying true distribution describing
the system. Note that from the outset, a measure was sought that would
measure a collective’s cognitive diversity as the size of its current available
theoretical tool kit and the JSD,, has this quality; theoretical distributions
are compared to a data sample and the greater is the numerical value of
the JSD,,, the more theoretical material there is among the models to make
sense of the data.
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3.3.1 A Correction for Group Size and Redundancy

Note that the maximum value of the JSD,—which I call the potential
diversity—is an increasing and concave function of n as should be intuitive,
or more precisely it is:

Potential Diversity(n) = logy(n), (13)

which in the special case where n = 2 is equal to 1. It follows from Equation
11, that 0 < JSD,, <logy(n).

Further, for any tuple of probability distributions—for example the two-
tuple (P, @)-the JSD,, has the same numerical value over just that tuple
as the JSD,k, over any tuple with multiples of this tuple’s entries (k times
the same entries as in the original tuple, where k is a positive integer). For
example JSDy(P, Q) = JSD4(P, P,Q, Q). Taken together, Equation 13 and
this last point represent a problem for a measure of diversity! Two different
view-points in a collective of two people seems to mean, intuitively, that the
collective of two is diverse, while having two even radically different view-
points in a collective of a hundred people makes the collective decidedly less
diverse. The measure—so far—violates this intuition. But luckily, there is an
easy fix: correct every comparison for group size by deviding the JSD,, by
its maximum potential value, loga(n):

1
Cognitive Diversity,, (P1, Pa, ..., P,) = \/log()JSDn(Pl, Py, ..., P,).
2 n

(14)
The cognitive diversity as defined in Equation 14, as it is normalized for
group size, allows to compare the cognitive diversity of collectives with dif-
ferent numbers of individuals, as well as collectives with an equal number of
individuals. With this measure, as it discounts the diversity of a group in-
creasingly with group size, a greater number of people is not likely to lead to a
greater magnitude in diversity and thus, unlike most existing instruments of
diversity research, it is not meant as a tool with which to ask questions about
the absolute diversity of any group. It is meant to ask questions related to a
group’s diversity, relative to how diverse it could be. We can then seperate
group size and diversity and if we include both in our analysis, we can see
how each seperately affects the quality of a collective’s decisions—provided
that we have a measure for decision quality.
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4 Causal Explanations of the 2008 Foreclosure Cri-
sis

Since the economic crisis” commenced in 2008, many narratives seeking to

explain the onset of this costly phenomenon have appeared in public discus-
sions (including four congressional committees), speeches, newspaper arti-
cles, academic papers and books. I thus use the statements of a few impor-
tant analysts of the crisis to show how beliefs can be represented as Bayesian
Networks and how the cognitive diversity of a collective of such experts is
then approximately measured!?. The material, alongside some explanations
of how it is used to construct the cognitive maps, exhibited in Figure 3, can
be found in the Appendix, but I give an example here: In the Financial Crisis
Inquiry Commission Staff audiotape of the interview with Warren Buffett on
the 26th of May, 2010, Mr. Buffet was recorded as saying the following;:

The basic cause was, you know, embedded in, partly in psy-
chology, partly in reality in a growing and finally pervasive belief
that house prices couldn’t go down. And everybody succumbed,
virtually everybody succumbed to that. But that’s, the only way
you get a bubble is when basically a very high percentage of the
population buys into some originally sound premise . ..

As Mr. Buffett only spoke of one cause, I will humerously name it C'D:
Cognitive Diversity, (virtually everybody succumbed) and as Mr. Buffet
blamed the onset of the crisis on the lack of CD, I arrive at Mr. Buffet’s
CM (Figure 3h).

4.1 The Cast of Characters

e Ben Bernanke (economist and chairman of the US Federal Reserve
Bank, Figure 3a),

e Henry Paulson, Jr. (past CEO of Goldman Sachs and Secretary of the
US Treasury at the time of the crisis, Figure 3b),

9As it is generally accepted that the economic crisis was the result of a housing fore-
closure crisis, or subprime mortgage crisis, these terms are here used as if they were
interchangable. This is a simplification that should not matter, as one could add to every
belief system the same extension, which has the same effect on the discussed measures as
if this extension is simply collapsed into one effect node which includes all of these terms.
10The python code for this exercise can be found on my github site.
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AR

) Bernanke ) Paulson ¢) Morgenthau ) Becker
e) Stiglitz ) Born g) Greenspan ) Buffett
i) Krugman ) Rodrik ) Soros

Figure 3: C: Crisis, R: Regulation, S: Supervision, I: Interest Rate,
T: Transparency, O: Offshoring, GSE: Government Promotion of Home-
Ownership, B: Banking Behavior, M C: Misguided Incentives, CD: Cogni-
tive Diversity
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e Robert Morgenthau, (District Attorney for New York County at the

time of the crisis, Figure 3c¢),

e Joseph Stiglitz (economist, Figure 3e),

e Brooksley Born (Commissioner on the Financial Crisis Inquiry Com-

mission and past chair of the Commodity Futures Trading Commission,
Figure 3f),

e Alan Greenspan (economist and past chairman of the US Federal Re-

serve Bank, Figure 3g),

e Warren Buffett (CEO and largest shareholder of Berkshire Hathaway,

known as the “Oracle of Omaha”, Figure 3h),

e Paul Krugman (economist, Figure 3i),

e Dani Rodrik (economist, Figure 3j)

and

e George Soros (Chairman

of Soros Fund Management and philan-
thropist, Figure 3k).

4.2 Cognitive Distances
Committee Bernanke Paulson Morgenthau Becker Stiglitz ~Born  Greenspan Buffett Krugman Rodrik Soros
Bernanke 0.0
Paulson 0.3483 0.0
Morgenthau 0.3791 0.3778 0.0
Becker 0.3592 0.3394 0.4345 0.0
Stiglitz 0.3965 0.3783 0.4295 0.4651 0.0
Born 0.1823 0.3968 0.4209 0.3162  0.3999 0.0
Greenspan 0.3104 0.2415 0.3791 0.2636  0.4134 0.3151 0.0
Buffett 0.3483 0.3128 0.3778 0.3968 0.3783  0.3968 0.3483 0.0
Krugman 0.2415 0.3128 0.3778 0.447  0.3465 0.3394 0.3483 0.3128 0.0
Rodrik 0.2636 0.3968 0.4209 0.3162  0.4472  0.238 0.2636 0.3968 0.3394 0.0
Soros 0.3104 0.3483 0.399 0.3151  0.3198  0.2636 0.3104 0.3483 0.3483 0.3151 0.0
After adjustment for Joseph Stiglitz:
Stiglitz 0.2636 0.3968 0.4345 0.3162 0.0 0.1764 0.3151 0.3968 0.3394 0.238  0.1823

Table 1: The pair-wise cognitive distance measure, \/JSDs(i,j), for each
pair of experts.
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Table 1 shows the Cognitive Distance, /JSDa(i,7), between any two
experts. The five largest distances are, in order from greatest to lowest mag-
nitude, those between 1) Stiglitz and Becker (0.465), 2) Stiglitz and Rodrik
(0.447), 3) Krugman and Becker (0.447), 4) Morgenthau and Becker (0.4345)
and 5) Stiglitz and Morgenthau (0.429). The cognitive maps of both, Joseph
Stiglitz (Figure 3e) and Gary Becker (Figure 3d) are present in three out of
the five largest diadic distances, while that of Robert Morgenthau (Figure
3c) is involved in two of the five largest distances. The maps of Stiglitz and
Morgenthau are structurally more complex than all others in the collection,
in that they both include a mediating variable through which two other vari-
ables causally affect the onset of the crisis, instead of being composed of 1
to 3 direct causes which is the case of all other maps. Also, Morgenthau’s
map includes a variable, T' (transparency) that is absent from all other maps,
while Stiglitz’s map includes a variable MC' (misguided incentives) which is
present in only one other map (Soros’s, Figure 3k). Gary Becker’s map is
unique in that it includes a positive causal relation from R (financial regula-
tion) to the onset of the crisis, C', while all others who considered R argued
that its lack was responsible and not that there was too much of it. Becker
stated that the regulators were in part to be blamed for the crisis, as they
were “cheerleaders for the banks,” and it is important to note that my choice
to code Becker’s partial blame on the regulators as a positive causal relation
from R to C' is debatable. Indeed, R might not be the right variable, if R is
the symbol that is used for all others to denote the quantity of regulation,
and what might be needed is an additional variable RB (the behavior of the
regulators). In order to keep a bound on the number of variables (to keep

things simple) I choose to code Becker’s statement as R S c , with the ex-
plicit caveat that this assumption might cause to exaggerate the magnitudes
of some of my measures.

The five shortest distances, in order of increasing magnitude, are between
1) Bernanke and Born (0.182), 2) Rodrik and Born (0.238), 3) Bernanke and
Krugman (0.241), 4) Greenspan and Paulson (0.241) and 5) Becker and
Greenspan, Rodrik and Greenspan, Bernanke and Rodrik and Born and
Soros (all with distance 0.2636). The shortest cognitive distance is that
between Ben Bernanke (Figure 3a) and Brooksley Born (Figure 3f), whose
cognitive maps are essentially the same, except that Born’s map includes
one additional positive edge from B, the behavior of the banks, to the onset
of the crisis, C'. The second shortest cognitive distance, that between Dani
Rodrik (Figure 3j) and Brooksley Born (Figure 3f), is already much greater
in magnitude; it is by a factor of 1.3 greater than the smallest, where the
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(a) Stiglitz (be- (b) Stiglitz (after
fore adjustment) adjustment)

Figure 4: A plausible simplification of Joseph Stiglitz’s CM, variables are:
C: Crisis, R: Regulation, B: Banking Behavior, M C: Misguided Incentives.

maximum distance is by a factor of about 2.6 greater. This jump in magni-
tude, from the shortest to the second shortest distance is no surprise when
one looks at the two graphs involved in the calculation; Rodrik’s and Born’s
maps have one causal relation in common and are similar in structure, but
each has two causes that the other has not.

4.3 Sensitivity of the Measures

It is important to experiment with these measures in order to get a better
understanding of their meaning. For example, with these representations of
beliefs, Joseph Stiglitz might be further removed in distance than is truly
warranted, from Born, Bernanke, Rodrik and Krugman, simply because his
map includes behavior as a mediating variable, mediating between incentives
as well as regulation and the onset of the crisis, where the others very likely
have the same in mind but see this as too trivial to make explicit (hence
their maps look very different). Making an adjustment that simplifies Joseph
Stiglitz’s map (see Figure 4), decreases the overall diversity measure, from
0.302 to 0.289. For Joseph Stiglitz, his distance to Bernanke decreases to
0.264, his distance to Paulson increases to 0.397, while the decrease of his
distance to Born is most dramatic, decreasing from 0.4 to 0.18, an adjustment
which makes them the closest in terms of cognitive distance for the whole
collection. Thus, it is clear that these measures are very sensitive to the
exact specification of beliefs and that therefore great care must be taken in
the elicitation and processing of people’s statements. However, I see this
sensitivity as a strength, rather than a weakness of the measuring approach,
as the diversity that results from differences in exact communication patterns
and thoughts (such as the inclusion and exclusion of potentially important
mediating variables), might be precisely what leads to a collective’s greater
understanding of the world.
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4.4 Constructing Diverse Collectives

Committee Bernanke Paulson Morgenthau  Becker — Stiglitz Born Greenspan  Buffett Krugman  Rodrik Soros
n=11 -0.0112 -0.0055 0.0054 -0.0018  0.0058  -0.0091 -0.0107 -0.003 -0.006 -0.007  -0.0099
n =10 -0.0078 0.0049 -0.0036  0.0049 -0.0094 -0.0135 -0.0047  -0.0067  -0.0081 -0.0125
n=29 -0.009 0.004 -0.0037  0.0027 -0.0125 -0.0073  -0.0099  -0.0094 -0.0161
n=2=8 -0.0133 0.0015 -0.0049 0.0031  -0.015 -0.0111 -0.0145  -0.0126
n="7T -0.0206 -0.0016 -0.0037  0.002 -0.0175 -0.0192  -0.0116
n==~6 -0.0053 -0.0041  -0.0002 -0.0236 -0.026 -0.0213

Table 2: This table represents the algorithm of iterated deletion of diversity
minimizing elements (the algorithm is as in Equation 15). Morgenthau,
Becker, Stiglitz, Buffett, Krugman and Rodrik survived the iterated deletion
of diversity minimizing elements, for a maximally diverse group of 6.

Interesting is also to measure how much each individual view of the cri-
sis contributes to the diversity of the collection of views, so that an [ person
team of experts can be constructed with the goal of maximizing diversity in
mind (if that were to be found desirable)!!. There are two ways in which
a maximally diverse group of, say 6, could be constructed from a group of
11: one way is to repeatedly subtract that person from the group whose
presence contributes the least to (or subtracts the most from) the diver-
sity of the group, (i.e. Equation 15) and the other is to, starting from the
cognitive distance of two people’s graphs, repeatedly adding that additional
person whose inclusion maximizes the cognitive diversity of the larger group
(Equation 16):

min ([ 25Pn() _ [ISDu1(Sh\ Graphy) ) 06 (15
L\ oz logy(n — 1)

where  is the collection of all graphs and Q2 \ Graph, is the collection of all
graphs, except Graph;: the graph whose exclusion maximizes the diversity
over the remaining n — 1 graphs (see Table 2 for an illustration).

max J5Dr1 (S © Graphy) [ JSDr(Sy) , for ,7=1,...,4, (16)
' logy ()

i logy (7 + 1)

"n practice of course, there are many more conciderations aside from just cognitive
diversity and it is likely never advisable to be entirely directed by such a uni-dimensional
goal.

25



The Beta Distribution
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Figure 5: The beta distribution for two different parameterizations («, 3).

where S is initiated as one of those elements, with the largest cognitive
distance in the group to some other element (here Joseph Stiglitz, before the
adjustment) and then is incremented each time to maximize the diversity of
Sr @ Graph;, the collection that includes all members in S and the additional
member i, whose graph maximizes the diversity of the resulting collection
with size 7 + 1.

4.5 Causal Intensity: the Parameters

Recall that for any belief system (Graph;), the probability of a data point,
D, given the beliefs is calculated as

1 1
P(D|Graph;) = / . / P;(D|Graphy, w0, ..., m k) P(mio, ..., | Graph) )dm o . .. dm i
0 0

for k causal effect parameters, where the “Noisy-OR” parameteriza-
tion is used. The effect parameters themselves are drawn from the joint-
distribution, P(m;, ..., m;|Graph;), which in this case is simply the prod-
uct of the marginals (I assume parameters to be drawn independently from
their marginal distributions). Further, as a speaker’s emphasis is harder to
evaluate, I assume all effect parameters to be drawn from the same beta
distribution, B(«, ) with shape parameters, a and (3 (see Figure 5). The
greater both parameters are in value, the smaller is the variance of the beta
distribution and the greater is the ratio, %, the greater is the density for
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believed causal effects closer to 1. These parameters, of course, also effect
the magnitude of the diversity measure and its sensitivity. Before the ad-
justment of Stiglitz’s belief system, the diversity increases from 0.316 to 0.45
if a is changed from 2 to 4 while 3 is held constant and after the Stiglitz
adjustment, it changes from 0.289 to 0.403. Since the difference between 0.45
and 0.403 is comparable in magnitude (judged by the relative magnitudes
of the pairwise distances) to the difference between 0.316 and 0.289, « does
not seem important in ordinal terms (i.e. if the goal is to judge between
group differences in diversity). If the goal is to judge the diversity between
structural beliefs as accurately as possible (having only information about
structure and not about believed causal strength), it is advisable to choose
higher as and fs, as well as higher ratios, %, as that makes the measures
more sensitive to smaller structural differences (it also assumes people to be
more certain and to have stronger beliefs). Of course, if more information is
available about the strengths of individual beliefs, o and 8 can be adjusted
so as to take this information into account.

5 Conclusion

By connecting ideas from various disciplines; cognitive science (Griffiths and
Tenenbaum, 2001, 2003, 2005, 2008), political Science (Axelrod 1976) and in-
formation theory (DeDeo et. al 2013), this paper demonstrates how a theory
of human causal learning, naturally gives rise to some meaningful measures.
I show how these measures may be combined with texts from utterances of a
collective’s members, to measure that collective’s cognitive diversity. Using
recent opinion pieces and testimonies about the 2008 financial crisis as an
example data set, I describe and demonstrate “hiring and firing” algorithms,
if cognitive diversity were to be seen as a goal. I see this paper as a first step
toward a theory of robust collective decisions that can be confronted with
empirical data.
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