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The Annals of Statistics 
1994, Vol. 22, No. 4, 2051-2061 

WEAK CONVERGENCE OF THE SEQUENTIAL EMPIRICAL 
PROCESSES OF RESIDUALS IN ARMA MODELS 

BY JUSHAN BAI 

Massachusetts Institute of Technology 

This paper studies the weak convergence of the sequential empirical 
process Kn of the estimated residuals in ARMA(p, q) models when the er- 
rors are independent and identically distributed. It is shown that, under 
some mild conditions, Kn converges weakly to a Kiefer process. The weak 
convergence is discussed for both finite and infinite variance time series 
models. An application to a change-point problem is considered. 

1. Introduction, notation and main results. Empirical processes based 
on estimated residuals have been studied by many authors for a variety of 
models. Koul (1969,1984), Mukantseva (1977), Loynes (1980) and Miller (1989), 
for example, examined the residual empirical processes for various linear re- 
gression models. Boldin (1982,1989), Koul and Levental (1989), Koul (1991) and 
Kreiss (1991) investigated their weak convergence for some ARMA(p, q) models. 
The literature to date has focused largely on goodness-of-fit testing. Recently, 
Koul (1991) demonstrated that the weak convergence result can have many 
important applications in robust estimation. This paper extends the above lit- 
erature by considering the sequential empirical process of residuals and its 
weak convergence for ARMA models with an aim to test for and to identify an 
unknown change point. 

Consider the following ARMA(p, q) time series model: 

(1) Xt = piXt- 1 + * * * + PpXt-p + Et + OlEt- 1 + * * * + OqEt-q 

where {Et} are independent and identically distributed (i.i.d.) according to a dis- 
tribution function F on the real line R. Assume thatXt is strictly stationary and 
invertible [Brockwell and Davis (1987)]. In the ARMA(1, 1) case, stationarity 
and invertibility restrict IP1 I < 1 and IO,I < 1. 

Given n +p observations, X_p +1, X_p + 2 ... ,Xo,x1 ... ,Xn, one can calculate 
n residuals via the recursion 

(2) Et=Xt = XtiXtt p-lEt -- 
-qt-tq 

t= 1,2,...,n, 

where (j1, . . .,) and (01, .., Oq) are the estimators for (pl,. ..,pp) and (01,. 
Oq), respectively. Let I(A) be the indicator function of the event A. Define the 
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2052 J. BAI 

empirical distribution function (e.d.f.) constructed from the first [ns] residuals: 

[ns] 
(3) F[s] (X) = ~ E EI(Egt < x), 0< s< 1, x E R, 

with F[n,1(.) = 0 for s = 0. When s = 1, the usual empirical process of residuals 
Fn(x) is obtained. The purpose of this paper is to study the weak convergence 
of the process Kn(s, x) defined as follows: 

[ns] 

(4) Kn(s, x) = [ns]n-1/2 (F[n1](x) - F(x)) = n-1/2 Z {I(t < x) - F(x)} 
t=1 

for 0 < s < 1 and x E R. The process Kn given by 

[ns] 

Kn(s,x) = n-1/2 Z {I(Et < x) - F(x)} 
t=1 

is called the sequential empirical process (s.e.p.); see Shorack and Wellner 
(1986), page 131. Thus Kn may be called the sequential empirical process of 
residuals. Our main results are presented in the following two theorems. 

THEOREM 1. Assume that the following conditions hold: 

(a.1) The Ei are i.i.d. with zero mean, finite variance and d.f F. 
(a.2) F admits a uniformly continuous density function f, f > 0 a.e. 
(a.3) \/Hi(pi - pi) = Op(l) and \/ii(Oj - Oj) = Op(l), i = 1,... ,p, j = 1,I.. ,q. 
Then 

sup IKn(s, x)-Kn(s, x) =op(l). 
sE[0,1], xE R 

The proof of Theorem 1 is given in Section 3. From the results of Bickel 
and Wichura (1971), Kn(., ) converges weakly to a Kiefer process K(*, F( .)), 
a two-parameter Gaussian process with zero mean and covariance function 
cov(K(sl, tl),K(s2, t2)) = (sl A s2)(tj A t2 - t1t2). Theorem 1 implies that Kn also 
converges weakly to a Kiefer process. An application to a change point problem 
is discussed in the next section. 

REMARKS. Assumption (a.1) is conventional for time series models. As- 
sumption (a.2) is also made in Koul (1991) and is weaker than that of Boldin 
(1982) and Kreiss (1991). Assumption (a.3) holds with the usual estimation 
procedures such as the conditional least squares under (a. 1). 

The result of Theorem 1 holds for infinite variance ARMA models as well. 
We have the following result. 
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SEQUENTIAL EMPIRICAL OF ARMA RESIDUALS 2053 

THEOREM 2. Assume that the following conditions hold: 

(b.1) The el are i.i.d., with d.f F belonging to the domain of attraction of a 
stable law with an index ca (O < ae < 2). 
(b.2) The d.f F admits a bounded derivative f, f > O a.e. 
(b.3) na(p5 - pi) = op(1) and n'Y(Oj - Oj) = op(l), where a = (1/2)I(a > 1) + 

(1/e - 1/4)I(a < 1). 

Then 

sup &kn(s, x) -Kn(s, x) = op(l). 
sc [0,11, xER 

Under assumption (b.1), the estimated parameters have a faster than root 
n rate of convergence. Kanter and Hannan (1977) showed that, for autoregres- 
sive models, n"Y(j - pi) -) 0, a.s. for any-y < 1/a, where the Pi are the least 
squares estimates. Bhansali (1988) obtained analogous results for moving av- 
erage models. Using this fact as assumed in (b.3), one can prove Theorem 2 in a 
much similar way to the proof of Theorem 1. Details can be found in Bai (1991). 
Note that the uniform continuity in (a.2) is weakened to boundedness in this 
case. 

2. An application to a change-point problem. Let Z1, z2,. Z[n., 
Z[n-rI + 1) . ) Zn be n random variables. Suppose that the first [n-ri r.v.'s are i.i.d. 
with d.f F1 and the last n - [nT] are i.i.d. with d.f F2, where T E (0, 1) unknown. 
The objective is to test the null hypothesis (Ho) that F1 = F2. Nonparametric 
tests used by Picard (1985) and Carlstein (1988) are based on sequential e.d.f.'s. 
Let F[ns] and Fn - [ns] be the e.d.f.'s constructed from the first [ns] and the last 
n - [ns] observations, respectively. Consider the process 

T,~~~ (s,x n 
n 

1 - 
ns) (F[nsl (x) -Fn* - [ns] W)) 

and the test statistic Mn = sups E [0, 11, xE R ITn(s,x)l. One rejects Ho when Mn 
is too large. This test has many desirable properties as discussed in Carlstein 
(1988). 

The result of Theorem 1 allows one to test whether there is a distributional 
change in the innovations et. Since the et are unobservable, it is natural to use 
the estimated residuals instead. Define 

(5) T,(s,x) = /n_[S (1 - n2) (F[ns](x)-Fn - [n-l W)) 

where F[ns] and Fn - are e.d.f's based on the residuals. Define Mn correspond- 
ingly. Note that Tn and Tn can be written as Tn(s,x) = Kn(s,x) - n- 1[ns]K.(l,x) 
and Tn(s, x) = Kn(s, x) - n- [ns]Kn(l, x), respectively. Thus Theorem 1 implies 
that Tn and Tn have the same limiting null distribution. Furthermore, from 
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Bickel and Wichura (1971), Tn(., ) and hence Tn(., ) converge weakly under 
the null hypothesis to a Gaussian process B( ,F(.)) with zero mean and co- 
variance function EB(s, u)B(t, u) = (s A t - st)(u A v - uv), where F denotes 
F1 = F2. Accordingly, Mn -)d SUpO < <1 supo <t< 1 IB(s, t)I whose d.? is tabu- 
lated in Picard (1985). Needless to say, many other tests based on Tn(s, x), such 
as the Cramer-von Mises type, have the same limiting distributions as those 
based on Tn(s, x). 

3. Proofs. We prove Theorem 1 for the case of p = 1 and q = 1. The proof 
for general p and q and the proof of Theorem 2 are similar and can be found in 
Bai (1991). The proof extends some ideas of Koul and Levental (1989). Omit the 
subscripts on the parameters and rewrite the ARMA(1, 1) as Et = Xt - pXt - 1 - 
Oct - 1 and the residuals as E't = Xt - f5Xt - 1 - O't - 1. Subtract the first equation 
from the second on both sides to obtain 

(6) St -Et = -O( t-l -t-1)-(P'-P)Xt - -(O-O)Cti. 

By repeated substitution and making use of E^o = 0, we have 

t - 1 
Et -?t = ()t teo - p) 

(7) -j=0 
_ (S _~O-Et 1) _eliit1j. 

j=0 

Denote = (-O, v/(- p), /n(9 - 0)) and = (u, v, w) E R3. Define 

t-i t-1 

(8) Aot = ut Eo + n- 1/2 VjuE jXt _ 1_ j+ w ,Uj"t _ z_ j =t Eto + n- 1/2f,0t. 
j=o j=o 

It follows from (7) and (8) and its definition that F[n,1(x) can be written as 

[ns] 
(9) F[ns](x) = [ns] ZI(Et < x + A+t), 

where Ait is Aot with 4 replaced by q. Thus 

[ns] 

(10) Kn(s,x)-Kn(s,X) = n 1/ Z{I(Et < x + At)-I(Et < x)}. 
t= 1 

To study the process Kn(s, x) - Kn(s, x), it suffices to study the auxiliary process 

[ns1 

(11) Gn(sGx,Sd)) = n-1/2 E {I(Et < x + At) -I(Et < x)}. 
t= 1 
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SEQUENTIAL EMPIRICAL OF ARMA RESIDUALS 2055 

Since 101 < 1, there is O > 0 such that 101 < 0 < 1. Define Db = [-0,0] x 
[-b, b]2 for b > 0. In view of assumption (a.3), Theorem 1 is implied by the 
following: 

(12) sup sup IGn(js,x,0)) = op(l) for every b > 0. 
0EDb SE[0,1I,XEER 

Next, define 

[ns] 

Zn(s, x, 4)) - n1/2 3 {I(Et < x + Aot) - F(x + Aot) - I(Et < x) + F(x)}, 
t= 1 
[ns] 

Hn(s, x, ) - n-1/2 sE {F(x + Aqt) - F(x)}. 
t= 1 

Then it is easy to see that IGn(s, x, 0) ? jZn(s, x, 0)) + IHn(s, x, 4))I. Therefore, to 
prove Theorem 1, it suffices to prove the following two propositions. 

PROPOSITION 1. Under the assumptions of Theorem 1, we have 

(13) sup sup IZn(s,x,40))=op(1) foreveryb>O. 
q E Db S E [O 1], X ER 

PROPOSITION 2. If the assumptions in Theorem 1 hold, then 

(14) sup sup IHn(s,x,))J = op(1) for every b > O. 
q5E Db sE[O,1],xER 

PROOF OF PROPOSITION 1. Let 1t = CE _TJ(IXt - 1 -jl + t - 1 -jl) for some 
C > 0 and r E (0, 1). Define for every A E R, 

Zn(S,xX, 4, A) 
[ns] 

= n1/2 / {I(Et < x + Ft(4), A)) - F(x + Ft(), A)) - I(Et < x) + F(x) 
t= 1 

where Ft(4), A) = utEo + Atlt - I + n-'1265,t + An-1/27r. Since Pt(o, 0) = Akt, it 
follows that Zn(s, x, 4), 0) = Z (s, x, 4). As in Koul (1991), we shall argue that 
Proposition 1 is a consequence of the following: 

(15) sup Z4(S,X,4), A) = op(l) for every given 4 and A. 
s [0,1],xEER 

For any 6 > 0, due to its compactness, the set Db can be partitioned into a 
finite number of subsets such that the diameter of each subset is not greater 
than 6. Denote these subsets by A1, A2, ... , Am(. Fix r and consider Ar. Pick 
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Or = (Ur, Vr, Wr) E Ar. For all 4 = (u, v, w) E Ar, we will find an upper and a lower 
bound for Akt in terms of A4,rt and random variables not varying with qb and r. 
To this end, use the inequality 

(16) lu -u'- I < Iu-u'IiOS1 for allj > O if u,u' [- ], 

to obtain lutE% - uto I < 6tW 1l EI 
and for Zt = Xt and 

Et 
to obtain 

t-l t-l1{t-l 

W>EUjZt-1-j-Wr>3UjZt--j <6{E>(0J+bjfiJ1) E t- 
j=0 j=0 j=o 

Choose r E (0, 1) and C large enough to assure Si + bjO 1 <CrT. Thus 

(17) IA#t - A?,,tI < t 1lOeo I + 6n-'112rt for all 4 E Ar. 

By the monotonicity of the indicator function and inequality (17), we have 

Zn(S) X), ) < Zn(S, X, Or, 6) + n-1/2 E {F(x + Pt(qr) 6)) - F(x + A kt)} 
t= 1 

and a reverse inequality with 6 replaced by -6, for all 4) e Ar. But 

[ns] 
n-1/2 > {F(x + rt(or) ? 6)) - F(x + Aot)} 

t= 1 
n 

* n-1/2 > |F(x + Ft(or) ?6)) - F(x + At)I 
t= 1 

n 
< 2611f Iln-/2 > (tW - 

llol + n -1/2rt) = SOp(l) by Lemma 1 below, 
t=1 

where the Op(l) is uniform for all s E [0, 1], all x E R and all 4 E Db. Therefore, 

sup sup IZn(s,x, v)I < max sup IZn(S, XiOr, 6)1 
qEDb sE [0,1], xER r<m(6) sE [0,1], xER 

+ max sup IZn(S' X, )r6)I+6Op(1). 
r <nm(6)s C [0,1], xER 

The term 6Op(l) can be made arbitrarily small in probability by choosing a 
small enough 6. Once 6 is fixed, the first two terms on the right are op(l) due to 
(15), thus leading to Proposition 1. 

To prove (15), we need the following two lemmas. 

LEMMA 1. Under assumption (a.1), for every given 4 = (u, v, w) E Db and 
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SEQUENTIAL EMPIRICAL OF ARMA RESIDUALS 2057 

every A E R, we have 
n 

(a) n-1/2 E (IUtol + tot IoI) =op(l), 
t=1 

(b) ~~~~n-1/2 <ma<xl( + 17t)= op() (b) _ <_ 

n 

(c) n-1 (I:tI + Anti) = Op(l). 
t= 1 

PROOF. The proofs of(a) and (c) are trivial since lu l, 0 and T all are in (0, 1). 
Thus consider (b). From its definition, I(?tj < b(1 - lul)-1maxo?<j<n_(LXjj 
+ I ej) for all t < n and similarly Irntl < C(1 - r)- 1maxo?<j<ni(lXjI + I ej) 
for all t < n. Now (b) follows from the fact that n-1/2max1<j<n1 Zj1 = op(l) 
for arbitrary identically distributed r.v.'s {Zj} with finite variance [see Chung 
(1968), page 93]. 0] 

LEMMA 2. For every d E (0, 1/2), every q = (u, v, w) E Db and every A E R, 
n 

sup n-1/2 E IF(y + Ft(q5 A)) - F(x + Ft(4, A)) =op(l), 
(x,y) E B., d t = 1 

where Bn,d = {(x,y) E R x R; IF(x) - F(y)I < n-1/2-d}. 

The proof of this lemma is analogous to that of Lemma 2.1 of Koul (1991) and 
is thus omitted. However, the use of the n-1/2 - d_grid instead of Koul's n-l/2 is 
similar to Boldin (1982). 

We are now in the position to prove (15). LetN(n) be an integer such thatN(n) 
= [nj/2 +d] + 1 where d is as in Lemma 2. Following the idea of Boldin (1982), 
we divide the real line into N(n) parts by points -oo = xo < xi < < XN(n) = x 
with F(xi) = iN(n)-1. Write rt for Pt(o, A). With Xr < X < Xr+ 1, since I(et < x) 
and F(x) are nondecreasing, we have 

[ns] 

Zn(s,x),,A) < Zn(S,Xr+l kA)+n-1/25{F(xr+i +Ft)-F(x+Ft)} 
t=1 

[ns] 
+ n-1/2 5 {I(et < Xr+ 1)-F(Xr+ 1)-I(Et < x) + F(x)} 

t= 1 

and a reverse inequality with Xr + 1 replaced by Xr. Therefore, 

sup lZn(s, x, ?, A)I < max sup lZn(S, Xr, k, A)j 
s, x r s 

[ns] 
(18) + max sup n-1/2 {F(xr+ 1 + rt - F(Xr + rt)} 

r 

[nsl 

(19) + sup n-1/2 Z {I(et < F-1(g)) - g - I(et < F-1(h)) + h} 
s, Ig-hhl < ?(nY-' t = 1 
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That expression (19) is op(l) follows from the tightness of sequential empiri- 
cal processes based on i.i.d. random variables and N(n)1 = o(1) [Bickel and 
Wichura (1971)1. Convergence to 0 in probability for (18) follows from Lemma 2, 

[ns] 

maxsupn-12 S {F(xr+ 1 + Ft) - F(Xr + Ft)} 

< maxn 1/2 5F(xr + I + t) - F(xr + Irt)1 =op(l), r 
t=1 

because (xr,xr+i) c BR,d. It remains to show 

(20) max max Zn(I/njxr, ,A)j =oP(1). 1< r<N(n)1<j<n 

Notice that 

(21) 
P(maxmaxtZn(if/nxr1,?bA)j> 

?) 
< N(n) max P(ma 1Z(i /n7x, q5, A)i > ) 

We shall bound the probability in the right-hand side above. Let 

d,,t = I(et < x Ftr) - F(x +rt) - I(t c x) + FW) 1 < t < n; 
k 

Snk = Ednt, k = -field{s, i < ik}, 1 < k < n. 
t= 1 

By construction, {(Snj, TY); I < j < n} is a martingale array and 

Z% Q/n, xHtO, A) = n j2SJ. 

Therefore, by the Doob inequality, 

P( max lZn( j/n, x, q, A) I > E) < C-4n-2E(S4nj. 

Next, by the Rosenthal inequality [Hall and Heyde (1980), page 231, 

fvn 2 n 

E(S4n) < CE E nt w1) }+CEE(d4) 
t=1 t=l 

for some C < oo. Because rt is measurable with respect to Yt - 1, we have 
E(d2 1t - ) JF(x + rt)-F(x)l<llfi ? frtll where 1fll =supx f(x)J. Therefore, 

(2n E2 t N f 2 n 
(22) E) EE(d2nt I Tt - 1) lif ll2El:E irti < Ilf 112 nEE(r2) 
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by the Cauchy-Schwarz inequality. From the definition of Ft, 

P1t! < Mtt -l?oI + n-1/2 {4tl + IAItl) t > 1, for someM < oo. 

Moreover, it is not difficult to show that, for some C < o and for all t > 1, 

E((2t) < C and E(7rt2) < C. 

Thus = 1E(JE2) = O(1) and by (22), E{n=t= AE(dn t _ 1)}2 = 0(n). Next, because 
dntI < 2, En= ,E(d4t) ? 16n. Combining these results, we obtain 

n2E(Snn) = 0(n1). 

The above rate does not depend on x. Thus 

N(n) maxP( max jyZn( j/n,jXr, 4, A) > n) ? 4nl/2+d(n-l) = o(M) 

for d E (0, 1/2). The proof of (20) and thus Proposition 1 is now complete. 0 

PROOF OF PROPOSITION 2. Let us first show 

(23) sup IHn(s X, x4)I = op(l) for every given q. 
SE [0,11, xER 

Apply the mean value theorem twice to obtain 

jH.(s,x,o)j = n- 1/2 Z{ F(x + uteo + n-1/2st) -F(x)} 
It = 1 

[ns] n 
< 

Ef(?t)(Ot + Ilf iln-1/2 E lUtEo) 
t=1 t=1 

where Yt is between x and x + n-/26pt. The second term on the right is op(l) 
uniformly in s and x by Lemma l(a). Now maxi 1-zY - xl < n-1/2 maxi 1(,i I = op(l) 
uniformly in x by Lemma l(b). Therefore, by the uniform continuity, f(-Yi) = 
f(x) + ei with maxi IeiI = op(l) uniformly in x. Thus 

SUp - E Zf(7t)Xt < sup (llfIl- [ ,t +maxjeiij-|t1) 
se[O1],ERnt=l 101,e t=1 nt=1 

sup IlIflI- E t OP()OP(l). 
s E[0, 1] n _ 

It remains to show sups n'- i n=s](,' = op(1). However, using an invariance 
principle for linear processes [Billingsley (1968), page 191], one can even ob- 
tain the stronger result sups n E1nsi (, = Op (n-1/2). Details can be found in 
Bai (1993). 
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We next argue that (23) holds uniformly in 4 E Db. Partition Db as before 
and consider 4 E A,. By the monotonicity of F and the inequality of (17), 

[ns] 
Hn(s, x, g) n-/ [ {F(x + A,,rt + 8t(/ - 1ko1 + -fl1 2rt) -F(x)} 

t=1 

< Hn(sx, ?r) + 6j1f1I (n 1/2 tW t i,, I + _ 77t 

where the second inequality follows from the mean value theorem. A reverse 
inequality holds when 6 is replaced by -6. Moreover, the last term in the above 
inequality is 6Op(l) by Lemma 1. Therefore, 

sup sup IH,(s,x,4) < max sup IHn(S,X,4)r)I +6Op(l), 
sE[O,1I,xECR q$EDb r<r(m) sE[O,1],xeR 

which implies Proposition 2 in view of (23). 0 
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