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Econometric Theory, 11, 1995, 403-436. Printed in the United States of America. 

LEAST ABSOLUTE DEVIATION 
ESTIMATION OF A SHIFT 

JUSHAN BAI 
Massachusetts Institute of Technology 

This paper develops the asymptotic theory for least absolute deviation estima- 
tion of a shift in linear regressions. Rates of convergence and asymptotic dis- 
tributions for the estimated regression parameters and the estimated shift point 
are derived. The asymptotic theory is developed both for fixed magnitude 
of shift and for shift with magnitude converging to zero as the sample size 
increases. Asymptotic distributions are also obtained for trending regressors 
and for dependent disturbances. The analysis is carried out in the framework 
of partial structural change, allowing some parameters not to be influenced by 
the shift. Efficiency relative to least-squares estimation is also discussed. Monte 
Carlo analysis is performed to assess how informative the asymptotic distribu- 
tions are. 

1. INTRODUCTION 

Many approaches have been suggested in the literature for estimating param- 
eter changes occurring at unknown times. Some well-known approaches 
include maximum likelihood (e.g., Quandt, 1958; Hinkley, 1970; Picard, 
1985; Bhattacharya, 1987; Yao, 1987), the least-squares method (e.g., D.L. 
Hawkins, 1986; Bai, 1994b), the Bayesian method (e.g., Zacks, 1983; Broe- 
meling and Tsurumi, 1987; Zivot and Phillips, 1994), and the nonparamet- 
ric method (e.g., Carlstein, 1988; Duembgen, 1991).l References on various 
estimation techniques can be found in the review papers by Krishnaiah and 
Miao (1988) and Zacks (1983). A survey of empirical applications of the 
structural change problem in economics is given by Perron (1993). This paper 
explores the estimation of a shift point using the least absolute deviation 
(LAD) technique. The consideration of LAD is motivated by the possible 
efficiency loss resulting from the use of least squares when the data are 
observed from a thick-tailed distribution. It is well documented that least- 
squares estimation in the usual context (no structural change) is not efficient 
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404 JUSHAN BAI 

for heavy-tailed distributions (e.g., Huber, 1981); this conclusion remains 
true when estimating a shift point. It is therefore of interest to study estima- 
tion methods less sensitive to extreme observations. 

Despite the large body of literature on estimating structural changes, 
robust parametric estimation has not been widely examined. An exception 
is Hsu (1982a, 1982b), who investigated the robust estimation (not includ- 
ing LAD) in the Bayesian context and applied his work to shifts in the vari- 
ability of stock market returns. In this paper, we study the LAD method for 
estimating models with a shift. The LAD method is perhaps the best known 
and the simplest technique that is robust against thick-tailed distributions.2 
As pointed out by Bloomfield and Steiger (1983), LAD is one of the oldest 
methods for curve fitting but was largely abandoned until recently because 
of computational difficulties. Fueled by today's advanced computing tech- 
nology, there is a growing interest in the method in both the statistics and 
econometrics literature, as evidenced by the work of Amemiya (1982), Bas- 
sett and Koenker (1978), Honore (1992), Knight (1989, 1991), Pollard (1991), 
Powell (1984), Phillips (1991), and Weiss (1991), among others. As is well 
known, LAD is a special case of Koenker and Bassett's (1978, 1982) general 
quantile regressions, which find many applications in economics (e.g., 
Buchinsky, 1994; Chamberlain, 1991). Although the analysis in this paper 
is carried out in terms of LAD, the argument extends to quantile regressions 
without essential difficulty. 

The primary concern of this paper is the joint behavior of estimated regres- 
sion parameters and the estimated shift point. Our objective is to derive their 
rates of convergence and asymptotic distributions. The analysis is conducted 
in a model of partial structural change, in which some regression parameters 
do not change, as opposed to pure structural change, in which all regression 
parameters have a shift. Partial structural change includes pure structural 
change as a special case. The assumption of partial structural change is equiv- 
alent to imposing a parameter constraint across regimes. A cross-regime con- 
straint, if valid, will yield a more efficient estimation of both the regression 
parameters and the shift point. Both independent and dependent disturbances 
are considered. The asymptotic distribution for the shift point estimator is 
studied under both fixed magnitude of shift and shift with magnitude tend- 
ing to zero when sample size increases. We also derive asymptotic distribu- 
tions in the presence of trending regressors. Finally, we perform Monte Carlo 
analysis to compare small sample distributions with asymptotic distributions. 

Under conditions similar to those described by Pollard (1991) in the 
absence of a shift, we obtain the consistency of the shift point estimator. 
Regardless of moment conditions, the rate of convergence obtained here is 
the same (up to a factor) as that obtained by Hinkley (1970) for an indepen- 
dent and identically distributed (i.i.d.) normal sequence with a shift estimated 
by the maximum likelihood estimator. Examination of the asymptotic dis- 
tribution offers further insight into the robustness of the LAD estimator: the 
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LAD ESTIMATION OF SHIFT 405 

shift point estimator has an asymptotic distribution depending inversely on 
the value of the density function at zero, not on the second moment in con- 
trast to the least-squares estimator. The asymptotic distribution also reveals 
the way in which serial correlation affects the precision of the shift point 
estimator. 

2. MODEL AND ASSUMPTION 

Consider the following linear model with a single shift: 

Yi =xi/o + Zib10 + ci i = 1, ... ko, 
(1) 

Yi =Xi'0 + Zi'620 + Ei i = ko + 1,...,n, 

where xi e RP and zi E Rq are vectors of regressors, and 00, 610, and 620 are 
unknown parameters. The shift point ko is also unknown and has to be esti- 
mated. The disturbances ei are assumed to be i.i.d. Dependent errors will be 
considered in Section 5. Model (1) is that of a partial structural change in the 
sense that the parameter vector / is constant throughout the whole sample 
period. When : plays no role (/ = 0), a pure structural change model per- 
tains (all parameters shift at ko). 

Testing for the existence of such a shift has received considerable atten- 
tion in the recent econometric literature (e.g., Andrews, 1993; Andrews and 
Ploberger, 1992; Banerjee, Lumsdaine, and Stock, 1992; Christiano, 1992; 
Chu and White, 1992; Hansen, 1992; H.J. Kim and Siegmund, 1989; 
Kramer, Ploberger, and Alt, 1988; Perron and Vogelsang, 1992). The econo- 
metric literature actually treats a more general class of models than (1), per- 
mitting dynamic regressors, integrated or cointegrated regressors, and 
integrated error processes. Earlier studies for testing a shift in means can also 
be found in James, James, and Siegmund (1987), D.M. Hawkins (1977), Sen 
and Srivastava (1975a, 1975b), and Worsley (1979, 1986), among others. 

The focus of this paper is to estimate the model under the maintained 
hypothesis that a shift exists as opposed to testing for its existence. Let 00 = 

(031,6'o,62)' E RP+2q be the true parameter, and let X0 = 61 - 62 be the vec- 
tor of magnitudes of shift. We assume X0 ? 0; i.e., at least one of the coef- 
ficients of zi has a shift. The goal is to estimate 00 and ko with LAD and 
study the statistical properties of the resulting estimators, especially their rates 
of convergence and asymptotic distributions. The shift point is a discrete 
parameter and can be estimated by a grid search over all possible integer 
values. 

Denote 0 = (/3,61,62), and define 

k n 

S(0, k) =Z Y-X X'/-z:`61 + Z IYi -Xi'3-Z'62I1 (2) 
i=l i=k+l 

This content downloaded from 101.5.205.35 on Thu, 27 Jun 2013 03:01:33 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


406 JUSHAN BAI 

Thus, S(0, k) is simply the sum of absolute deviations for each fixed k. An 
estimator of (0o, ko) is defined as a point (0, k) that minimizes the sum of 
absolute deviations. To obtain such an estimator, a sequence of LAD esti- 
mations is performed. The parameter 0 is concentrated out of the objective 
function, resulting in an objective function with parameter k only. A grid 
search is then performed to obtain k. Notationally, 

0(k) = argmin S (0, k), 
0 

k = argmin S (6 (k), k), 
k 

0 =0(k). 

We shall study the asymptotic properties of the resulting estimators. Other 
estimation methods such as least squares may also be used. Bai (1994a) esti- 
mated model (1) with least souares and established rates of convergence and 
asymptotic distributions. In light of the nondifferentiability of the objective 
function, this paper uses an entirely different approach to study the joint 
asymptotic behavior of the estimated regression parameters and shift point. 

In what follows, we use op(l) to denote a sequence of random variables 
converging to zero in probability and Op (l) to denote a sequence that is sto- 
chastically bounded. For a sequence of matrices Bn, we write Bn = op(1) if 
each of its elements is op(l) and likewise for Op(l). The notation 11 11 is 
used to denote the euclidean norm; i.e., lxii = (Zl xi')"2 for x E RP. For 
a matrix A, 11 A 11 is the vector-reduced norm; i.e., 11 A ii = supx,o 11 AxiI /ixi. 
Finally, [a] represents the integer part of a. 

We make the following assumptions. 

Al. The errors ci are i.i.d., admitting a positive and continuous density 
function in a neighborhood of zero and having a zero median. The ci are 
independent of the regressors. 

A2. Let wi = (xi', z')' and Xi = (xi', z', 0)' for i s ko and Xi =(x', 0' Z 
for i > ko; wi E CRp+ and Xi E Rpl2q. Then, both plim nE' wi w, and 
plim X i Xn XX exist, and the limits are positive definite matrices. 

A3. For large j, both 'Z'i ziz,' and its inverse are bounded above in 
probability for each f. 

A4. n -1/2 max i,, Jwillj(logn) = op (1). Furthermore, for each e > 0, 
there exists K > 0 such tnat for all large n 

ln 

Z 11 Wil11 2h(1l Wil > K) < e n i=1 

with probability no less than 1- 

A5. ko = [70n] for some 7- E (0,1). 
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Assumptions Al and A2 are typical for LAD estimation (e.g., Pollard, 
1991). Assumption A3 requires that the sum become a positive definite 
matrix when many observations on zi are used. In our proof, we actually 
only use f = 1, f = ko, and e = n. This assumption is needed for n-con- 
sistency (defined later) of the estimated shift point. The first part of Assump- 
tion A4 is also typical for LAD except the extra term log n. Babu (1989) used 
(log n) 1/2 instead of log n to obtain strong representations for LAD estima- 
tors. The second part of Assumption A4 is assumed by Pollard (1990, p. 58) 
in a different context. If wi are i.i.d. with a finite covariance matrix or wi 
are such that Ell Wi w12 x I(Q1 will > K) is uniformly small for large K, then 
the second part is satisfied. For uniformly bounded regressors, Assumption 
A4 is obviously satisfied. For asymptotic purposes, the shift point is assumed 
to be bounded away from the two ends, as in Assumption A5. A slightly 
more general setting is that ko = T-nn, where r,, is one of the values t2/n,..., 
(n - 1)/n I such that r, -+ To for some r0 in (0,1). Our results still hold 
under this assumption. Under these assumptions, we can obtain the conver- 
gence rates for the estimated parameters. 

3. RATE OF CONVERGENCE 

Let T = k/n be an estimator for r0. Both k and i are referred to as the shift 
point estimator. 

THEOREM 1. Under Assumptions Al-A5, we have 

n - TO) = )I and )/(6 - 0) = Op(l). (3) 

The theorem states that T is n-consistent and 6 is root-n-constant. We leave 
Xo in the notation Op (-) to show explicitly the dependence of the rate of 
convergence on the magnitude of a shift (the larger the shift, the easier to 
identify it). 

It is also possible to incorporate settings in which X0 depends on n and 
II Xo 11 converges to zero as n increases. This case is also useful because the 
shift point estimator admits an asymptotic distribution not depending on the 
underlying distribution of ei, as in Picard (1985) and Yao (1987). In the rest 
of this paper, we shall treat the general case in which Xn, depends on n, using 
the notation Xn. The case of fixed Xo will be treated as a special case. For a 
fixed n, 11 jJ 11 should not be too small. More specifically, we make the fol- 
lowing assumption. 

A6. There exists b e (0,1/2) such that n(l/2)-bllX1nll m . 

This assumption, of course, is trivially satisfied when Xn does not vary 
with n and is nonzero. 
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408 JUSHAN BAI 

THEOREM 1'. Under Assumptions A1-A6, 

nU -To) = O( ,) and Vh(6 - 0o) = Op(l). (4) 

The convergence rate of (4) implies that z will be consistent as long as 
n 11 X, 11' grows without bound. 

The rate of convergence of z can be obtained by evaluating the global 
behavior of the objective function S(0, k) over the whole parameter space 
for 0 and k. It is convenient to work with a reparameterized objective func- 
tion, which will also be useful for obtaining the limiting distributions. Define 

V, (0, v) = S(60 + n -1/20, k( v)) - S(0, ko), (5) 

where k( v) = [ko + vCn] with Cn = (1l Xn 11 -2) and v is a real scalar. When 
v varies, k(v) visits all integers between 1 and n, assuming k(v) = 1 if 
k(v) c 1 and k(v) = n if k(v) 2 n. This reparameterization conforms with 
the anticipated rate of convergence but does not preimpose the rate of con- 
vergence, because 0 takes values in R p+2q and v e R without any restriction. 
The minimization problem is not changed. Let 6 and v minimize VJ (0, v); 
then 6 = @fh(6 - 00) and [I3Cn] = n(T - T0) = k - ko. Theorem 1' is equiv- 
alent to 6 = Op (1) and v = Op (1). Because V, (0,0) = 0, to prove the theo- 
rem it suffices to show that when 0 or v is large, Vn (0,0) must be large, 
thus, less likely to achieve its minimum. More specifically, Theorem 1' is a 
consequence of the following result. 

THEOREM 2. Under the assumptions of Theorem 1', 

(i) for each e > 0 and each C > 0, there exists vI > 0 such that for large n 

Pt inf inf V, (0, v) < C) < 6,(6) 
Jlvlul 0 

(ii) for each e > 0, C > 0, and vi > 0, there exists M > 0 such that for large n 

P( inf inf Vn (0, v) < C) < e. (7) 
I VI <Vl 9 ll6llM n 

This theorem describes the global behavior of V, (0, v) or, equivalently, 
the global behavior of S(b, k), the sum of absolute deviations. Expression 
(6) says that, when k is far from ko, S (4, k) simply cannot achieve its global 
minimum. A consequence of (7) is that, even when one knows the shift point, 
S (1, k) cannot be minimized when b is not near the true parameter 00. 

4. ASYMPTOTIC DISTRIBUTION 

The rate of convergence is inferred from the global behavior of the objec- 
tive function. To obtain the asymptotic distribution, we need to study the 
local behavior of the objective function. When explicit expressions for the 
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LAD ESTIMATION OF SHIFT 409 

estimated parameters are not available, examination of the objective func- 
tion is generally the only way to deduce the limiting distribution. 

The rate of convergence given in the previous section does not depend on 
a particular design of the regressors, provided relevant assumptions are ful- 
filled. The asymptotic distributions, however, depend on the behavior of the 
regressors. Two cases are to be considered. The first case concerns i.i.d. sto- 
chastic regressors, and the second pertains to trending regressors. 

A7. The regressors zi are i.i.d. (may include a constant component), and 
Eziz' = Qzz is nonsingular. 

Let {(ei,zi); -00 < i < oo be a sequence of i.i.d. random vectors, where 
ei is independent of zi for all i. We define a two-sided random walk W' on 
the integer set with a drift as follows: W#(m) = WO(m) for m < 0 and 
W#(m) = W2(m) for m > 0 and W#(0) = 0, where 

0 

W (m)= E ei-z'Xo -Eic, m=-1,-2 ...i 
i=m+l 

m 

W'(m) = i +zXI - ej, m = 1,2. 
i=1 

Thus, Wp and W2 are two independent random walks with each having a 
positive linear drift. The drift is positive because the expected value of each 
summand is positive under Assumption Al. Consequently, with high prob- 
ability, W'(m) achieves its minimum near zero. The limiting distribution of 
k is closely related to W'. 

Another case of interest is trending regressors, as follows. 

A8. The regressors are functions of time trends: zi = g (i/n), where g is 
a vector-valued function defined on [0,11 and is continuously differentiable. 

Let 

I n 
Q = plim - EXX, 

n i=1 

where Xi = (x,',z,',0) for i c ko and Xi = (xi',0'zf)' for i > ko. 

THEOREM 3. Under Assumptions A1-A6, we have the following: 

(i) The estimated regression coefficient is asymptotically normal: 

n1/2(0 - oo) 
d(,00) 

(ii) Assume Assumption A7 together with the assumption of a continuous dis- 
tribution for Ic1 ? zi )Xo l- Ii I1. Then, for X --o, 

d k - ko argmin W# (m). 
m 
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410 JUSHAN BAI 

(iii) Assuming Assumption A7 and Xr, -? 0, then 

n X' Q, Xn (7f-0) 4f(O)2 argmax I W(v)-I v I /21. 

(iv) Assuming Assumption A8 and X,n ?_ 0, then 

d 1Iv/1 
nXng(0g(0 )\n(f(O)2 argmaxvW(v)- 

where f(.) is the density function of ei and W(v) is a two-sided Brownian 
motion process on R. Finally, the distribution of n 1/2(0 - 0o) and that of 

ko are asymptotically independent for all cases. 

A two-sided Brownian motion process W( v) is defined as W( v) = WI (v) 
for v 2 0 and W(v) = W2(-v) for v < 0, where WI(v) and W2(v) are two 
independent Brownian motion processes on the nonnegative half line with 
Wi(O) = 0 (i = 1,2). 

Part (i) of Theorem 3 asserts that estimated regression parameters have a 
limiting distribution as if the shift point were known provided that the mag- 
nitude of the shift is not too small. Part (ii) gives the limiting distribution of 
the shift point estimator under a fixed magnitude of shift. The assumption 
that ei = ?, ? zi'Xo - i I has a continuous distribution guarantees the 
uniqueness (almost surely) of the minimum for W#(.) because P(Wif(m') = 

Wip(m")) = 0 (i = 1,2) for m' * m" and P(WO(m') = W20(m")) = 0 for all 
m' and m". This uniqueness enables us to invoke the continuous mapping 
theorem for the argmax functional. A continuous distribution for ei is, of 
course, not sufficient to have a continuous distribution for ei. For example, 
for zi 1 and X0 > 0, we have Iej = X0 when I ei I 2 Xo. Thus, when ci has 
positive mass outside the interval [-X0, Xo], ei cannot have a continuous 
distribution. In this case, argmin[ W#(m)1 is generally a set with more than 
one element, and the continuous mapping theorem no longer holds. How- 
ever, one can modify the result as follows. Redefine k as the smallest value 
of the set If; S(0(f),f) = minhS(6(h),h)J. Then, k - ko converges in dis- 
tribution to mint 2; W1(f) = minm W#(m)J, which is uniquely defined. It is 
not difficult to show that ei will have a continuous distribution if zi'Xo does. 
This is because, conditional on ei, ei has a continuous conditional distribu- 
tion. The distribution of ei is the average of these conditional distributions. 

The location of the minimum value of W#(m) is stochastically bounded, 
because W# has a positive drift. In other words, W#(m) converges to infinity 
very quickly as I m I grows unbounded. More precisely, argminm W#(m) = 
Op(1), which, of course, is the result of Theorem 1. The distribution of 
W#(m) (and, consequently, that of k - ko) is symmetric about zero if and 
only if I - ziXoI - Ic i I and I ei + zi Xo l- Ii I have the same distribution. 
This will be the case if either ei has a symmetric distribution about zero or 
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LAD ESTIMATION OF SHIFT 411 

zi has a symmetric distribution about zero. When zi includes a constant re- 
gressor, symmetry in W' requires the symmetry of ei. 

It is interesting to note that the asymptotic distribution of k - ko depends 
on the magnitude of shift X0 and on the distribution of ei and zi but not on 
ko nor on other parameters of the model. The distributions of ei and zi 
heavily influence the distribution of argminm W#(m), as the latter is essen- 
tially determined by a finite number of ei and zi. This is in contrast to the 
case of vanishingly small shifts (part (iii)), where an infinite number of ei 
and zi are involved as n grows, eventually bringing the Central Limit Theo- 
rem to relevance. 

A remaining problem is to determine the distribution of argminm W1(m). 
Although in principle the problem can be addressed using the approach of 
Feller (1971, Ch. 18), this approach does not seem to permit analytically 
tractable results. Hinkley (1970) tried to solve a similar problem with differ- 
ent forms of summands under normality assumption. The solution seems to 
be too complicated to be of practical use. We shall not attempt any analyti- 
cal solution because a solution must be solved case by case in view of the 
dependence on ci, zi and on Xo. If the distributions of ci and zi together 
with X0 are known, however, the distribution of k - ko can be easily simu- 
lated using Monte Carlo methods by constructing W#(m) directly, with no 
LAD estimation needed. Details are discussed in Section 6. 

Parts (iii) and (iv) of Theorem 3 concern the limiting distribution of the 
shift point estimator under small shifts. The asymptotic distribution does not 
depend on the distributions of cj and zi, in contrast to the case in which the 
shift has a fixed magnitude. The density function of argmaxI W( v) - v 1 /2) 
is given by 

3/2eIx14(-3JIxI/2) - 1/24(- xl/2), 

where 4 is the cumulative distribution function of a standard normal ran- 
dom variable (see, e.g., Picard, 1985). When sample size increases, because 
X,n converges to zero, more observations in a neighborhood of the true shift 
point are needed to discern the shift point so that the Central Limit Theo- 
rem eventually applies. That gives the precise reason why a Brownian motion 
is embedded in the limiting process. The size of the neighborhood, however, 
increases at a much slower rate than the sample size n (more precisely, at the 
rate 11 Xn 11 -2). A remark here is that part (iii) holds for more general regres- 
sors. The i.i.d. assumption for zi can be replaced by second order station- 
arity. As can be seen from the proof, all that is needed is 

1 ko 1 ko+f 
plim - ziz' = plim - ziz =QzZ (8) 
fe - i=ko-f e -+ i=ko+I 

for some positive definite matrix Q,. 
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The asymptotic independence of XhK(0 - 00) and n(r - r0) is due to the 
fast rate of convergence for T. The estimator X is determined by a small num- 
ber of observations near rY, whereas 0 is determined by the entire set of 
observations. Whatever values are taken by a small number of observations 
contribute little (none asymptotically) to statistics comprised of the entire set 
of observations. 

Limiting distributions are obtained by studying the local behavior of the 
objective function, i.e., the weak convergence of V, (0, v) on compact sets. 
When 0 is constrained to be in a compact set, we essentially deal with param- 
eters in an n-1/2 neighborhood of 00 in terms of original parameters. This 
analysis is legitimate only if root-n-consistency for the estimated regression 
parameters is established. A similar comment applies to the estimated shift 
point. Obtaining the rate of convergence is necessary because the argmax 
functional, which is used to deduce the asymptotic distribution, is not a con- 
tinuous functional for functions defined on an unbounded set. It is only a 
continuous functional on a set of functions with a compact domain and with 
a unique maximum. J. Kim and Pollard (1990) offered a rigorous analysis 
for the argmax functional. 

We illustrate the basic step in deriving the asymptotic distributions. Let 
D(M) = [(0, v); 11011 ' M, I vI s MI for an arbitrary M> 0. We use the uni- 
form metric for functions defined on D(M) (see Pollard, 1984, Ch. 5). The 
weak convergence of Vn on compact sets is sufficient for us to use the con- 
tinuous mapping theorem for the argmax functional because of the rate of 
convergence established in Theorem 1' (see Kim and Pollard, 1990). Central 
limit theorems and invariance principles enable us to deduce the limiting pro- 
cess for Vn(0,v). For part (iii), if we let cn = (XnQzX)n)-1, we find that 
Vn (0, v) converges weakly on D(M) for any M < oo to the process V(6, v) 
given by 

V(6' v) = 6,'Q1/2Z + f(0)6'Q6 + W(v) + f(O)l vI, 

where Z is a vector of independent standard normal random variables, f(*) 
is the density function of ei, and W( v) is a two-sided Brownian motion pro- 
cess on R independent of Z. The limiting process of V(.) has a unique min- 
imum (almost surely for each sample path) and is minimized at 

6* = Q-112z 

and 

= argmin[W(v) +f(0)I vIJ. 
v 

Using the facts that (a) W(v) 
d 

W(-v), (b) W(cv) d cl 1/2W(v), and 
(c) for any function h (x) and all a > 0, argmin, ah (x) = argmin, h (x), we 
can show that, by a change in variable, 

v* 
d 

(2f(0))-2 argmax I W(v) - I v l /2). 
v 
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The continuous mapping theorem for the argmax functional leads to 
@5(G Go) 0* ~and nc( - rO) dv *, which gives parts (i) and (iii). Parts 

(ii) and (iv) are proved in an analogous way. 

Confidence intervals. Confidence intervals for the regression parameters 
00 can be constructed in the usual way in view of Theorem 3(i). Except 
for f(O), all entities are available from LAD calculations. The density func- 
tion at zero may be estimated by some nonparametric methods such as ker- 
nel based on residuals. One histogram estimator for 4f(0)2 suggested by 
Huber (1981) and reiterated by Buchinsky (1994) is given approximately by 
n ([s] -t[t] )2/16, where t[k] represents the kth-order statistic, s = [n/2 - f], 
and t = [n/2 + f] with Q = VX. Hahn (1992) suggested the bootstrap alter- 
native for confidence intervals. Bootstrap avoids the estimation of the den- 
sity at zero. Intervals for the shift point are computed analogously. For fixed 
shift, the asymptotic distribution in part (ii) is unknown, unless the distri- 
butions of ei and zi are known so that the asymptotic distribution can be 
obtained by simulation (Section 6). One solution is to use parts (iii) and (iv) 
to approximate the distribution of part (ii). This approximation, however, 
gives a too narrow confidence interval, as illustrated by the Monte Carlo evi- 
dence in Section 6. Bootstrap Monte Carlo yields even narrower confidence 
intervals (a result not reported in Section 6). 

5. DEPENDENT DISTURBANCES 

In this section, we derive similar results for dependent errors under some mix- 
ing conditions. We assume that the sequence of random variables [ ?i IJl is 
strongly mixing with an exponential mixing coefficient toIj},-E. For the def- 
inition of strong mixing and mixing coefficients, readers are referred to 
Rosenblatt (1956). Strong mixing is a weaker assumption than many other 
mixing conditions, as discussed in Bradley (1986). Linear processes, partic- 
ularly ARMA processes, under some mild conditions, are strongly mixing 
with exponential mixing coefficients, as shown in Mokkadem (1988), Pham 
and Tran (1985), and Withers (1981). We make the following assumption. 

A9. The errors Iei form a strictly stationary and strongly mixing 
sequence with exponential mixing coefficients. The existence of a nonzero 
density function f(x) in a neighborhood zero together with a zero median 
is maintained. 

Let &2 = 1 + 2 ZO ED1 D., where Dj = sign(c1j). Thus, o2 is the spectral 
density of the sequence Di at frequency zero. We assume o2 > 0 to avoid 
degenerate limits. In addition, define 

I n n 
U = lim - E E (XIXjDiDj), (9) 

n i=1 j=1 

This content downloaded from 101.5.205.35 on Thu, 27 Jun 2013 03:01:33 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


414 JUSHAN BAI 

where Xi = (x,',zz,O) for i c ko and Xi = (xi',O',z')' for i> ko. The matrix 

U may be considered the spectral matrix at frequency zero for the vector 
I X, Di ). We assume U is positive definite. Similarly, let 

I n n 

Wz = lim - E Z E(zizJDiDi). (10) 
n i=1 j=1 

The estimators 6 and k are defined as in Section 2. Rates of convergence of 
the estimated parameters are not affected by dependence in the errors. The 
asymptotic distributions need to be modified to reflect serial correlation. 

THEOREM 4. Under Assumptions A2-A6 and A9, we have the following: 

(i) The estimated regression parameters have a limiting distribution given by 

n I/2( 
o_N(-0) QUNQ0,)4f(0)2. 

(ii) Assuming (e i, zi); -oo < i < oo I is strictly stationary, Theorem 3 (ii) holds, 
but W' consists of two dependent drifted random walks. 

(iii) Theorem 3(iii) holds with Xn Q2z)Xn replaced by (Xn, QzX Xn)2(x, Uzz Xn) 

(iv) Theorem 3(iv) holds with [4f(O)] -2 replaced by 042[4f(O)] -2, where k2 1 + 

2 2ED, DD and Di = sign (ei). 

The estimators of regression parameters and the shift point are asymptotically 
independent. 

Again, the limiting distribution for the estimated regression parameters is 
standard and is the same as if the true change point were known. The scal- 
ing factor for the estimated shift point is similarly adjusted to reflect the 
dependence. To construct confidence intervals, one needs to estimate U and 
Uzz. Methods presented in Newey and West (1987) and Andrews (1991) can 
be used to estimate the matrices U and Uzz. The matrices Q and Qz are esti- 
mated by the corresponding sample moment. When estimating these matri- 
ces, one uses k in place of the unknown ko. 

Efficiency relative to least squares. In contrast to the least-squares esti- 
mation, the asymptotic distributions depend on the density function of c, 
evaluated at zero, not on the second moment, demonstrating the robustness 
of LAD to thick-tailed distributions. To evaluate the relative efficiency of 
LAD to least squares, we consider a simple case in which Xn -*0 and Zt- , so 
that shift occurs only in the intercept. In this case, (Xn' Qzz X)2(An Un Xn)' n 
X2 0-2. Theorem 4(iii) implies 

n X2 (+LAD-ro) __) 2 argmaxI W(v)-I v l /21, 

where 7LAD represents the LAD shift point estimator. Least-squares estima- 
tion of a change point is similar to LAD, but absolute deviation is replaced 
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by squared residuals. Bai (1994b) studied least-squares estimation and 
obtained some corresponding results. Assuming ci is an ARMA process 
such that 

Ei PIc i- + P2Ci-2 + Ppei-p + ei + Olei-I + + Aqei-q 

where ei is white noise with variance a2, the asymptotic distribution of the 
change point estimator TLS iS given by 

n nJvLSf- argmax W(V)- I /21, 
v 

where a' = u2(1 + + q)(l - PI- - pp)-. Clearly, the 
asymptotic distribution of 'LS has the same form as the LAD estimator but 
with a different scale. Also, the least-squares estimator depends on the sec- 
ond moment. So the given asymptotic distribution will not be valid if the sec- 
ond moment does not exist. The relative efficiency can be determined by 
comparing the scale coefficients. Define the rate of efficiency of LAD rela- 
tive to least squares, e, as the ratio of their asymptotic variances so that 

e = 4f(o) 2 - 2 2 ae/= 

The larger is e, the more efficient is LAD relative to least squares. When 
ci are i.i.d., the efficiency rate becomes e = 4f(0)2u2, because k2 = 1 and 
-2 2 a = or in this case. For i.i.d. normal distributions, e = 0.637, and so least 
squares is more efficient than LAD. For the double exponential distribution, 
e = 2; LAD is more efficient, indicating the robustness of LAD against thick- 
tailed distributions. When ei is contaminated normal having a distribution 
(1 - )N(0, 1) + EN(0, -y), e tends to infinity as -y grows unbounded. For a 
Cauchy distribution, the variance does not exist, so the limiting distribution 
of the least-squares estimator is not well defined. If one considers a truncated 
Cauchy distribution and allows the truncation value to increase to infinity, e 
also increases to infinity. 

More interesting is that under normality the relative efficiency of LAD 
increases as the correlation coefficient becomes larger. For simplicity, assume 
ei = pci-, + ei, where the ei are i.i.d. normal N(O,a2). The relative effi- 
ciency measure e becomes 

o a2/(I _ p)2 2(1 -p) 
42/(4f(0)2) w(12(j + p) 

Gastwirth and Rubin (1975) showed in another context that e is an increas- 
ing function of p (note that q2 depends on p in a very complicated way). 
For p = 0 (i.e., i.i.d.), e = 0.636; for p = 0.5, e = 0.828; and for p = 0.9, e = 

0.91 1. Under normality, LAD is not as efficient as least squares, as expected. 
But the efficiency of LAD improves as (positive) correlation increases. For 
other heavy-tailed distributions such as double exponential, LAD is always 
more efficient than least squares. 
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6. MONTE CARLO SIMULATION 

In this section, we report some Monte Carlo results for the behavior of the 
shift point estimator. Data are generated according to 

yi =a, + blxi + i i = ,. ..,ko, 
(11) 

yi=a2+b2xi+ ci i=ko+ l,...,n, 

where n = 100, ko = 50, xi are i.i.d. N(0,1), and ei are i.i.d. double expo- 
nential random variables. We consider three sets of parameters: (I) a2 - a, = 1, 
b2- = 1; (II) a2 - a, = V2, b, = b2; (III) a2 - a, = 1, b1 = b2. Actual 
values for ai and bi do not matter -only their differences matter. For each 
set of parameters, 10,000 repetitions are performed. Frequencies for the esti- 
mated shift point based on LAD are reported in Table 1 (columns 2, 5, and 8, 
respectively). These results serve as benchmarks for comparison with asymp- 
totic frequencies. We point out that for the last two cases the restriction 
b, = b2 is imposed, which leads to a smaller spread for the estimated shift 
points compared to the estimates when the restriction is not imposed. With 
set (II), the standard deviation of restricted estimates is 8.28 and that of 
unrestricted estimates is 10.58. With set (III), the restricted and unrestricted 
standard deviations are 4.30 and 4.67, respectively. (Unrestricted estimates 
are not reported here.) 

Accompanying the LAD Monte Carlo benchmarks are frequencies ob- 
tained from two asymptotic distributions. The first asymptotic distribution 
corresponds to Theorem 3(ii) and is used to approximate the probability 
P(k - ko = 1) by 

Asy(ii): P(argmin W#(m) = e) 
m 

The second asymptotic distribution is given in Theorem 3(iii) and is used to 
approximate the probability P(k - ko = f) by 

e+o.s 

Asy(iii): a - l h (a -(1x) dx, 
-0.5 

where h(x) is the density function of argmin{W(v) - Iv1/2) and a = 

X, Q, X, (note that 4f(0)2 = 1 for the double exponential distribution). Fre- 
quencies based on Asy(ii) are reported in columns 3, 6, and 9 of Table 1, and 
those based on Asy(iii) are reported in columns 4, 7, and 10, corresponding 
to sets (I), (II), and (III), respectively. Details of each approximation are 
explained next. 

Because the theoretical distribution in Asy(ii) is unknown, we compute the 
probability by simulations as well. The simulation involves constructing a 
two-sided random walk W#(m). Again, 10,000 repetitions are conducted. 
For each repetition, cumulative sums (random walks) on each side are com- 
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TABLE 1. Frequency of k - ko 

Set (I) Set (II) Set (III) 

Monte Monte Monte 
k - ko Carloa Asy(ii)b Asy(iii)c Carlo Asy(ii) Asy(iii) Carlo Asy(ii) Asy(iii) 

<-20 72 30 1 26 8 1 257 98 44 
-20 11 8 0 6 5 0 39 15 8 
-19 12 5 0 10 5 0 20 18 10 
-18 14 6 1 5 8 1 21 25 12 
-17 19 18 1 12 5 1 23 19 14 
-16 13 12 2 6 11 2 36 29 17 
-15 28 15 2 18 13 2 34 33 21 
-14 28 24 4 20 12 4 45 41 26 
-13 27 31 5 17 19 5 54 75 32 
-12 36 37 8 36 19 8 69 52 40 
-11 53 39 11 40 20 11 77 64 50 
-10 53 62 16 49 42 16 87 92 62 

-9 60 62 24 60 42 24 110 125 79 
-8 93 86 35 73 62 35 131 105 100 
-7 123 122 53 90 95 53 146 158 130 
-6 172 157 81 133 107 81 187 200 170 
-5 235 218 126 171 200 126 232 271 228 
-4 307 296 203 235 295 203 282 389 314 
-3 402 412 345 376 391 345 420 469 449 
-2 662 641 640 569 725 640 599 686 689 
-1 1,103 1,180 1,443 1,141 1,122 1,443 935 953 1,224 

0 2,833 3,094 3,977 3,618 3,579 3,977 2,251 2,467 2,542 
1 1,174 1,193 1,443 1,172 1,185 1,443 989 1,012 1,224 
2 666 658 640 695 805 640 633 575 689 
3 434 439 345 389 379 345 426 438 449 
4 282 268 203 258 242 203 318 307 314 
5 226 188 126 187 157 126 280 216 228 
6 177 169 81 122 112 81 179 188 170 
7 120 108 53 96 91 53 170 146 130 
8 106 81 35 77 50 35 139 103 100 
9 90 67 24 68 44 24 114 97 79 

10 59 59 16 48 35 16 82 80 62 
11 34 38 11 31 26 11 70 70 50 
12 42 33 8 29 19 8 59 67 40 
13 35 33 5 22 18 5 62 50 32 
14 28 18 4 15 8 4 61 27 26 
15 24 19 2 13 10 2 47 30 21 
16 16 14 2 10 9 2 28 31 17 
17 13 16 1 8 4 1 36 21 14 
18 11 9 1 5 3 1 32 20 12 
19 10 8 0 8 1 0 20 17 10 
20 21 3 0 4 4 0 20 10 8 

>20 76 24 1 32 13 1 180 111 44 

aFrom 10,000 repetitions. 
bBased on Theorem 3(ii). 
cBased on Theorem 3(iii). 
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puted with 500 observations ( W#(m), m = 0, + 1, . 500). The location 
of the minimum value of W#(m) is then found. This computation is 
extremely fast, because no LAD estimation is needed. The result is not sen- 
sitive to the number of observations used when constructing the random 
walk. Almost the same distribution is obtained as long as each side has more 
than 50 observations. For set (I), because I ei ? (1 + xi)I - Ii I has a con- 
tinuous distribution, argminm W#(m) is uniquely defined. This is also con- 
sistent with the results of Monte Carlo simulations. For sets (II) and (III), 
the two-sided random walk has multiple minima. Columns 6 and 8 report the 
minimum value3 of the set fargminm W#(m)). 

The frequencies in columns 4, 7, and 10 are based on the theoretical prob- 
abilities in Asy(iii) multiplied by 10,000. For set (I), Q, = diag(1,1) and 
Xn = (1,1)'; for set (II), Q, = 1 and X,n = X42. So for both sets (I) and (II), 
XnQ,,Xn = 2. Therefore, asymptotic theory based on shrinking shifts pre- 
dicts the same frequency distribution for sets (I) and (II); yet Monte Carlo 
benchmarks for sets (I) and (II) (columns 2 and 5, respectively) show signifi- 
cant differences for their underlying distributions. For set (II), the asymptotic 
distribution gives a better approximation to the finite sample counterpart. 
These results are not surprising. With set (I), the asymptotic distribution 
treats essentially a finite average of ziz/ as Qzz (see equation (A.42) in 
Appendix), which is a poor approximation particularly for large shifts, 
whereas for set (II), Qz, = 1 is an exact result. Thus, we expect that asymp- 
totic distribution gives a better approximation for set (II) than for set (I). 

Inspecting Table 1, we find that the asymptotic distribution based on ran- 
dom walks gives a very good approximation to the Monte Carlo LAD bench- 
mark for all three cases. The asymptotic distribution based on shrinking 
shifts offers an unsatisfactory approximation. Although the general picture 
agrees with the benchmark, the predicted spread is too narrow compared 
with the benchmark. 

Although not reported here, the simulated result is not sensitive to the 
choice of ko, provided ko is reasonably bounded away from the two ends. 
When ko is set to 30, a quite similar frequency pattern is observed. We point 
out that when ko is too small, however, the distribution of k will be skewed 
to the right because k -ko k- -ko, restricting the values of k from below. 
Also not reported here are some bootstrap results for estimating the under- 
lying distribution. Preliminary bootstrap simulations exhibit variation that 
is much smaller than the Monte Carlo benchmark, even smaller than that 
predicted by the asymptotic distributions. We plan to further investigate boot- 
strap methodology for estimating a shift further. 

7. DISCUSSION 

This section considers potential avenues leading to improvements and gen- 
eralizations of the results of this paper.4 
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Heteroskedasticity. The i.i.d. and zero median assumptions for the errors 
can be relaxed to a zero conditional median, allowing for an unspecified form 
of heteroskedasticity. Newey and Powell (1990) proposed an efficient esti- 
mation technique using weighted absolute sums, with weight equal to the 
conditional density at zero of disturbances. They also show how to estimate 
the conditional density at zero to make the approach feasible. Their approach 
can be adapted to estimate models with a shift to generate efficient estima- 
tion for both the regression coefficients and the shift point. Another direc- 
tion of generalization is to consider more efficient estimation under serial 
correlation. For this purpose, a more concrete specification of the correla- 
tion structure seems necessary. Although we have not considered how to esti- 
mate the shift point efficiently, an efficient estimator for the regression 
parameter can be constructed by a one-step adaptation. Let sign(e) be the 
vector of sign(ei) (i = 1,.. .,n) and denote Esign(e)sign(e)' by Qnxn. Let 

6 = 6 + (X 1Xf'X'9' sign(?), (12) 

where Q is an estimate of Q based on sign( c) and X is an n x (p + q) matrix 
consisting of X' as its rows (with ko replaced by k). All the entities with a 
circumflex are constructed based on preliminary estimators k and 6. When 
Q only depends on a fixed number of parameters irrespective of the sample 
size (e.g., a moving average process for ej) the right-hand side of (12) will 
be a good approximation for the corresponding quantity of a known 9. The 
matrix X always behaves like X because of the fast rate of convergence for 
the shift point. The estimator 6 is more efficient than 6 and has an asymp- 
totic variance U-'. 

Quantile regression. The analysis presented in this paper can be extended 
to quantile regressions proposed by Koenker and Bassett (1978). Let q, (x) = 
x[V2I(x> 0) - (1 - 4)I(x <0)] for some s6 e (0,1). The quantile regression 
estimator of (0o, ko) is obtained by minimizing 

k n 

S( 0, k) =Eqk (y Y-Xi': -Z z, 1) + E qv, (y Y-Xi':- Z'62 ) 
i=1I i=k+ I 

Zero median of Assumption Al is now changed to zero i-quantile. All 
remaining assumptions are maintained. All the proofs of this paper can be 
extended to quantile regressions without essential difficulty. Theorem 3 holds 
with 4f(0)2 replaced by (4 ((1 - i lf(0)2. The random walk summands in 
part (ii) become qu (ei - z'Xo) - qk (ei). Theorem 4 also holds with similar 
amendment. 

Multiple shifts. The model considered in the paper is restrictive for appli- 
cations in economics because of the assumption of a single shift. An im- 
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portant generalization is to allow for more than one shift. A number of ques- 
tions arise in this context. How should the hypothesis of s shifts versus s + Q 
shifts be tested? How can the computation problem be solved? What are the 
statistical properties of the resulting estimators including the shift point esti- 
mators? These issues may be addressed under the general quantile regression 
framework allowing for heteroskedasticity and serial correlation. The present 
study serves as a starting point for further research in this area. 

8. SUMMARY 

In this paper, we developed the asymptotic theory for the LAD estimation 
of a shift in linear regressions. We examined the joint statistical behavior of 
the estimated regression parameters and the estimated shift point. We showed 
that the asymptotic distribution of estimated regression parameters is the 
same as if the shift point were known, owing to the fast rate of convergence 
for the shift point estimator. We also derived the asymptotic distribution of 
the shift point estimator both in the case in which the magnitude of shift is 
fixed and in the case in which the magnitude becomes vanishingly small. 
Under the former, the asymptotic distribution is related to a drifted two-sided 
random walk defined on the integer set. For the latter, the asymptotic dis- 
tribution is related to a drifted two-sided Brownian motion on the real line. 
Trending regressors and dependent disturbances are also considered. Monte 
Carlo analysis reveals that the asymptotic distribution based on random 
walks gives a very good approximation for the underlying distribution, but 
the asymptotic distribution based on Brownian motions is less satisfactory. 

We conducted our analysis within the partial structural change framework, 
allowing some of the parameters to stay constant throughout the sample 
period. This generates a more efficient estimator for the regression param- 
eters if the constraint is valid. For the shift point estimator, its asymptotic 
distribution is the same whether or not one imposes such a constraint. But 
in small samples, there is some gain in efficiency, as suggested by the Monte 
Carlo evidence. 

NOTES 

1. More extensive references can be found in the annotated bibliography of Hackl and West- 
lund (1989). 

2. It should be pointed out that the notion of robustness here is not in the strict sense of Ham- 
pel (1974) or Huber (1981) because of the nonsmoothness of the objective function at zero. For 
further discussion, see Bloomfield and Steiger (1983). 

3. One can also use the maximum value of this set as well as the median of this set, provided 
the LAD estimator k is defined correspondingly. 

4. A referee suggested several of the ideas presented here. 
5. Interested readers are referred to an earlier version of this paper (Bai, 1993). 
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APPENDIX: PROOFS 

Proof of Theorem 2. For simplicity, we assume the regressors xi and z, are deter- 
ministic. All proofs go through for stochastic regressors by using conditional argu- 
ments because of the assumed independence of regressors and disturbances. We shall 
consider the case of v c 0 without loss of generality because of symmetry. For v c 0, 
implying k(v) c ko, V,(0,(v) can be written as 
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k( v) 

Vn (0 v) = E (I - -xi'n -1/2 -z/61 n-1/21 - leil) i-l~~~~~~~~~~~~~~~~ 
ko 

+ ( ?i-- xiOn 1/2-Zi'62n- /2 
Z'XnJ l?i l) 

n 

+ ( (ei - xi''On '12 - z52n '121- l). (A.1) 
i=ko+ 1 

Letting wi = (x,',z,')' and 

i 

Un (j, 1, s) = (I ?i - wi 'n I - I2 i l) 

we have 

V,(06 v) = U,(l,k( v),k) + Un(k(v) + l,ko, 0jn X + ck2) + Un(kO,n, 2), (A.2) 

where k1 = (0,61), k2 = (,62), and X* = (O',X)'. (Note that |X = Ilk].) To 
study the behavior of Vn, it is sufficient to study the behavior of Un(l,k, o) for all 
k and all 0. We shall call U,(1,k, 0) the sequential objective function (s.o.f.) and 
inf, Un (1, k, 0) the optimized s.o.f. The following lemma gives various properties of 
the s.o.f. The results are general enough to allow us to deal with both fixed shifts and 
shrinking shifts. 

LEMMA A. 1. Under the assumptions of Theorem 2, we have the following: 

(i) For each 6 e (0,1), 

k 

sup inf > (Ici - wi,' - KI) = op(1). 
n-k-nb 4 i=I 

(ii) 

k 

sup inf E (I ci - wi' - c1) = Op(log n). 
I?k?n f i=l 

(iii) For each 6 e (0,1), c > 0, and D > 0, we have for large n 

k\ 
P inf inf > (I e - w'kn -'21 - ei ) < Dlogn < E. 

n-k-n6, 11>11-Iogn kDg 

(iv) For each E > 0 and D > 0, there exists an M < oo such that for large n 

k 
P inf inf > (I ?i - wj' n - 12 - I ?i 1) < D <,E. 

n-k-n 6 ||01 1-M i 

(v) Let hn and dn be positive sequences such that hn is nondecreasing and dn - + 0O 

and (h, dn2) /n-+ h > 0, where h < oo. Then, for each E > 0 and D > 0, there 
exists an A > 0 such that 

k 
Pr inf inf (I ji - wi'On - 

1/21 - Ii 1) < D < . 
n?k?Ahn 1111-d, i=l 
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(vi) Under the same hypotheses as in part (v), we have for any given A > 0 

k 

sup inf E (I ci - w1'4n1/2j - 1jC,) = Op(l). 
k-Ahn, 110f11 -dn = 

The proof of the lemma is technical; we thus postpone its proof and take it as 
granted for the moment. Let us now look at some implications of the lemma. Part 
(i) simply says that when a positive fraction of data is used (k 2 n6), the optimized 
s.o.f. is then stochastically bounded (uniformly in k ? n6). Part (ii) concerns the 
global behavior of the s.o.f. The optimized s.o.f. is uniformly bounded in k by 
Op (log n). Parts (iii) and (iv) assert that when 11 4111 is large Un (1, k, 4) will also be 
large, thus less likely achieving its minimum for large 4. Part (v) is similar to part (iii) 
but does not require that a positive fraction of data be used. The last part is similar 
to part (i), but again no positive fraction of data is required. 

Proof of (6). This proof uses some ideas of Picard (1985). We divide the set t(0, v); 
0 E R, v c -v 1 into three regions: 

B1 = t(O,v); 110211 < In 1/2IIXnII,n6 < k(v) c k(-vl)], 

B2 = I(0, v); 11 021 ' I n nl2 IIXnll,0 c k(v) c n61, 

B3 = t(0, v); 1140211 2 n? 2 11,0 c k(v) c k(-vl ), 

where 6 is a small positive number such that 6 < r0. We examine the behavior of 
Vn (.) on each of the three sets. 

On BI, the behavior of U,(l,k(v),4I) and U,(ko,n,42) (the first and third terms 
of (A.2) on the right-hand side) is governed by Lemma A.1(i) because both terms 
involve a positive fraction of data. Because iln 1/2 X* + 412 2 n 1/2 Xn 111211 
n 1/2 n 11 /2, we apply Lemma A. 1(v) with dn = n 1/211 Xn 11 /2, hn = K-2, and A = v, 
to deduce that Un(k(v) + l,ko,n' 2X* + 412) 2 D with high probability for any 
D > 0 as long as v, is large. (Note first that we have applied Lemma A. 1(v) with the 
data order reversed, treating ko as the first observation. Second, note that at least 
ko-k(-vl) 2 vl 11 Xn 11-2 observations are involved.) Thus, Vn 2 Op (1) + D + Op (1), 
with high probability. Because D > 0 can be arbitrarily large by choosing a large vl, 
Vn is large if v, is large. 

On B2, applying Lemma A. (ii), (iii), and (i), respectively, to the three terms on 
the right-hand side of (A.2), we find that Vn 2 Op(logn) + Dlogn + Op(l). 
Because D can be arbitrarily large, so is Vn. Note that we have utilized the fact that 
In 1/2 )n + 412 11 ? n 1/2 11 Xn 11 /2, which is larger than log n by Assumption A6. 

On B3, we have Vn > Op (log n) + Op (log n) + D log n by Lemma A. I (ii) for the 
first two terms and by Lemma A. l(iii) for the third term of (A.2). Again, Vn can be 
large because D is arbitrary. 

Proof of (7). The set {(0, v); 1 02 M, -v1 < v < 01 is contained in the union of 
D1 and D2, where 

D2 = I(0,V); 11011 ? Vt In12X +41211 ?2n'/2IIX,,II,-v1 v 

D = t(0,v); IIn172Xn + 41211 2 2n'21IXn II-VI v V 5 01. 

On D1, by Lemma A. l(iv), either U, (1, k(v),11) or U,, (ko n, 02) is large because 
either 1141l >Mor 111211 >M. The term U, (k(v) + l,ko,n1/2Xn + 412) is stochas- 
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tically bounded in view of Lemma A. 1 (vi) by choosing dn, hn, and A as on set B1. 
Thus, VJ' will be large if M is large. 

On D2, notice that 11 2 1 n 1/2 X* + q211J-n 1- 2 11 Xn 11 2n 1/2 IXIn I n 1/2 121I = 

n1/2 11 Xn 11 >? log n. Therefore, by Lemma A. 1 (iii), Un (ko, n, 02) D (log n) for any 
D > 0 with high probability. The first two terms of (A.2) on the right are not less 
than - Op(log n)I by Lemma A. 1(ii). Thus, Vn is large on D2, completing the proof 
of Theorem 2. R 

LEMMA A.2 (Babu, 1989, Lemma 1). Let Zi be a sequence of independent ran- 
dom variables with mean zero and I s d for some d > 0. Let V I Zk= EZ2. 
Then,forall 0<s< 1 and0ca? V/(sd), 

P( E Zz >>a) s 2expl -a 2s(1 - s)/VI . (A.3) 

Proof of Lemma A.1. To prove this lemma, we use some results of Babu (1989) 
that are concerned with the strong representation of LAD estimators. The difficulty 
of the proof lies in the sequential nature of the problem. We need to bound the 
sequential objective function over all k (k - 1). 

Proof of (i). Denote fk = argmin5 XY= IIei - w,'4l. Then, supkNfl>nIkl = 

O(n -1/2) (Babu, 1989, Theorem 1). Thus, it is sufficient to prove that, for each 
M> 0, 

k 

sup sup E ci - wi' n -1/21 - I (il = op() 
n-k-nb 1111M i=l 

However, a stronger result holds once 0 is restricted to lie in a compact set. The 
requirement of k ? n6 is no longer necessary. We have 

sup sup lGk,,(q)l = Op(l), (A.4) 
n-k~-l 11 f11 cM 

where Gk,n (;) = Z el ( -e n- n12wi'ki - cj). This result can be proved easily 
using an argument of Pollard (1991). Denote Di = sign(Ei). Then, EDi = 0 by the 
assumption of zero median. Letting 

Ri,n ()= ei - n -2w,i' - lei n- n112k'wiDi, (A.5) 

we have 

k k 

Gk,n() =n - /2 of ZwiDi + Z Ri,n(O)- (A.6) 
i=1 i=1 

Because the Di are bounded, zero mean, and independent random variables, the 
invariance principle implies that 11 n- 1/2 ZI1 wiDi is Op (1) uniformly in k (k c n). 
It remains to show that 

k 

sup sup E Ri, n () = Op (1). (A.7) 
I kcn 1111-'M i=I 

By Pollard (1991), 

Ri,,n ( )f < 2Mn -1/2 1j wi l I(I ei ? C Mn -1/2 11 will) (A.8) 
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Thus, 

k n 

E Ri', n() c 2Mn -112 E l Will I(q i l cMn -112 l Wi ll) vk. 
i=l i=1 

By the mean value theorem (el has a continuous density function at zero by assump- 
tion), (A.7) follows from 

E n- 1/2 1Wi 11 (1I piIc Mn -1/2 11Will)3 <2M maxif(aj)l)( 1j2, 

where Iai I Mwill n--1/2. By Assumption A4, maxj ajI converges to zero. Thus, 
maxjlf(aj)l = 0(1). 

Proof of (ii). Lemma 6 in Babu (1989) implies that for some CO > 0, <kII ' 

Co(k-' log k)1/2 with probability 1 for large k. Thus, for every C > 0, we can choose 
a C > 0 such that 

P( 3k > 1 such that IIk > C(k 1 log k) 1/2) < c. 

Denote ,i (0) = e - w I - ei and Mk = C(k'- logk) 1/2. Then, forA > 0, 

Pn sup kinf i(0) > 2A logn) nz-k>l I i= 1 

s P(3k such that H|kII > Mk) + P sup inf E vi(0) > 2A logn) 

k 

S E+P sup sup ZE mqi(O) >2Alogn (A.9) 
n-k>1 ||11 1Mk i=I 

The right-hand side of equation (A.9) is small if we can show that with probability 1 

k 

lim sup sup Xmi () (log k) sA (A.10) 
k-|| 11k11<Mk i= 

for some A > 0 (A to be determined later). This is because (A. 10) implies that for 
any E > 0 there exists no such that with probability not less that 1 -E 

k 

sup E 77 (0) < 2A log k ? 2A log n (A.11) 
111'-Mk i=l 

for all k such that no < k < n. For k < no, because I 71i (0)I < I w1'I 11 w, 11 Mi, we 

have q,i 71E(4)I ? Zi, I71X(o)I < C(Zno ||wi w)no(log no)"'2 <A logn for large n. 
Thus, (A. I 1) holds for all k 2 1, implying that (A.9) is small. To prove (A. I0), we 
use a similar approach to that for the proof of Lemma 5 in Babu (1989). Divide the 
region < Mk into Cp,qk(P+q)/12 cells such that for g and h belonging to the same 
cell IIg - h c < Mkk -2, where Cp,q is a constant only depending on p + q. Notice 
that for a 4r in the rth cell 

k k k 

sup i m(0) ? sup Z 71i(r,) + sup | I ti(g) - 1i(h)) . (A.12) 
1111-Mk i=l r i=1 llg-hll'Mkk 112 i=- 
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Because 

k k 

( rqi (g) -,qi (h )] /log k c 1 wi g1 - gh 11/log k c 
C, (log k) -1/2 O- , (A. 13) 

for g, h in the same cell (Cl ? C( Zi1 w,ll) for all k), we need only consider 
the first term on the right-hand side of (A.12). Now Ek=- m(Ir) = Zi=1 (i('r) + 

Zi=IE71i(4r), where {i(0) = i(4) - Eqi(). But for w>'f near zero 

Eni (0) = O'wi w'of(O)(l + o(1)), (A.14) 

implying that, for < Mk, 

k /k \ 
_E i (0,) |w 2f(O) /4( Zwiw ? 2(0)Mlogk, (A.15) 

where M is a constant such that 11 k w1 VE= wi' wl C M for all k. Next, we shall bound 
the tail probability of Eki=1 (i(kr) by Lemma A.2. Notice that for each 0, (I) is a 
mean zero sequence with < ' 211 will 14 and, thus, Var(ti(k)) c 411 will 2 ll4 lV2. 
Because 11lrl ? Mk = C(k- log k)12, we have 

1 {i (Or)l c 2Cmax 14 wi llMk < 2Cmax 11 Will0 k -12(log k) 1/,(A.16) 
i,k i'k 

k k 
k 

k 
o 

Ei=(1r) C 4Mk2i= 11Will2< 4c2 k-1 Z 11Wi112 log/ k Mlogk, (A.17) 

for some M < oc. Applying Lemma A.2 with Zi equal to $,i (Or), d equal to the right- 
hand side of (A. 16), V equal to Mlog k, s = 1/2, and a equal to X log k, we have 

P | (O&) > X log k) s 2 expl-LX2 log k1 = 2kLx, (A.18) 

where L = l/(4M), a constant not depending on k. (Note that a < 2WV(sd) is satis- 
fied because d -+ 0 by Assumption A4.) Thus, 

/ ~~~~k X 
pe sup xogk>) ?2Cp,qk(p+q)12k-L 

r?Cp,qk (p+q)/2 i=l 

By choosing a large X, the preceding is less than k-2. The Borel-Cantelli Lemma 
leads to 

k 

lim sup sup o gi(?r) k c X (A.19) 
k-o r i 

with probability one. 
Proof of (iii). Because 71i (4) = - n -12I - ?i I is convex in 4, it is enough 

to consider 11 11 = log n (the notation ni ( ) differs from the previous one in the extra 
factor n l'2). Let mi(k) = (i(0) + E-1i (). From (A.14) (replacing O by 0/1-sI), 

k I k = )2 E (0) O' -> ww" Wif(O) [1I + o (1)] ?_ 3 (log n)L, vk ?- n 6, .0 
1=1 = k~n j=i. ' 
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where L > 0 by Assumptions A2 and A3. Next, we show 

k 

sup sup E (j) = (log n )3/2Op(). (A.21) 
n-k?n6 11?11 = logn i1 

The proof is similar to that of (ii). Only the outline is given here. Divide the region 
11X11 = log n into n (p+q)/2 cells with the diameter of each cell not exceeding 
log n/Vii. Then, incremental values within a cell are negligible (see the similar argu- 
ment in (A. 13)). For a point X, in the rth cell, we apply Lemma A.2 with Zi = 
{i (Or), d = maxin 11 wi 11 n -1/2 log n, V = M(log n )2, s = 1/2, and a = X (log nr)3/2 to 
deduce a similar inequality to (A. 18). This leads easily to the inequality 

k 

lim sup sup sup E (O(?r)/(log n)3/2 < A, 
n-o 1 ckcn r i 

which holds with probability one for some A > 0. Combining (A.20) and (A.21), we 
have 

k 

inf inf ZE (k) > (log n) t-jOp(1)I(log n)1/2 + 8(log n)LJ. 
n6-k-n jj?||=1ogn i=1 

The right-hand side is larger than D log n for any D > 0 with high probability when 
n is large. 

The proof of (iv) is quite similar and is thus omitted. 
Proof of (v). Because of convexity, we assume 1 = c i,=dn. Define vi(+) and (f 

as in the proof of (iii). In our application, dn = ni1 An 11 and h, = 11 In 11 -2. Thus, 
11i 11 /#1 = dn /Vii is either a fixed constant or converging to zero depending on the 
magnitude of shift Xn. We first consider the case that both dnl/V>i and hn are con- 
stant (not depending on n). Then, (v) is equivalent to (absorbing n -1/2 into ?), 

k 

inf inf Z (I e - w1' - ci 1) 2 D (A.22) 
n2k-A 1IX11=Cii1 

with high probability, where C > 0. To prove the preceding, we show that the expected 
value of the sum is large and its deviation from its expected value is small. Note that 
the summands do not depend on n. Also, M(yt) = E(I ci - y I - Icji l) has a unique 
minimum at zero and M(y) increases in I y 1. These facts together with Assumptions 
A3 and A4 assure 

k 

EZ (Iei - w'l - i1) )- k77, for all large k 
i=l 

uniformly over = C, for some 77 > 0. For k 2 A, k-1 2 Anl > D if A is large. Thus, 
to prove (A.22), it is sufficient to show that for large A 

Pr su sup - 1 (k e - w,kI - Ii|) - E(|e, - w,4I - I ei) > 12 < E. 
n-k A i4oI=lc k j=2 

However, the preceding is implied by the uniform strong law of large numbers of 
Pollard (1990, Theorem 8.3, p. 41). Pollard (1990, Ch. 8) proved that the summands 
are manageable for their envelops 1211 w, 11 C] . Also, we can show Z II Wi 11 2/i2 < 00 
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(see the identity (A.31) below and the proof of (A.30)). Thus, the conditions of Theo- 
rem 8.3 of Pollard are satisfied. 

The proof for dl/-hn -*0 is more demanding. First we show that for some L > 0 
and for all large enough k and large n with k c n 

k 

E>Z (I ?i - - _ ?i 1 ) 2 Lkd,'/n, for all d,1 = dn . (A.23) 
i=l 

Write 1i (4) = i - wiOn-1-2 cji . Then, 

k k k 

E >ji ri( ) = E j ni(k)I(tI wi s K) + E j 1i(0)I(Il wi,1 > K). (A.24) 
i=l i=l i=l 

Let M(,) = E(j c - y I- cIi 1). There exists a C > 0 such that M(,I) c CA2 for all 

it C R (because M(t) =f(0)J2 + o(/A2) for small t, I (j ?- tI -jI-c ) |< I I,and 
I[,I < I[LV2 for I iI > 1). Thus, for the E and K in Assumption A4, 

|?()I(lIwitl > K) < C- o' > K))< <,eCkd2'n. (A.25) 
i=l ~~~~~~n i=1 

Next, for jjwill c K (vi), we have wj'nf-l12 = o(1) uniformly in i c n and uni- 
formly over jj = dn. Thus, by Taylor expansion at zero, 

k I/k 

E L ,()1(1lwi 11 < K) = ' wW, I(Il Will < K) Of(O) (I + ? (I)) 

k - 11 0112f(O)A/2 = k (d,2/n)f(O)A/2 (A.26) 
n 

for some A > 0 (taking A as one-half of the smallest eigenvalue of Q = plim I Wi Wi' 

is enough, because for large k and large K, Assumptions Al and A4 assure xEk X 

w iw'I(jl will < K) > Q/2). It follows from (A.24)-(A.26) that 

E ( - i n -1/2 | _ i|) I kd,2/nf(0)A/2 - ECkd2/In, 

so (A.23) is obtained by letting L = f(O)A/2 - cC, which is positive for a small E. 
Now for k > Ahn, we have Lkdn2/n > LAh_d2/n > LAh/2 > D for large A, where 

h is the limit of hnd,2/n. Thus, the expected value is large if A is large. To prove (v), 
it suffices to show that the quantity of interest is dominated by its expected value (or 
the deviation from the mean is small). More precisely, we shall show that for every 
c > 0, when A is large 

I 1~~~~Ik 1 
Pt sup sup - Z ) > - (dn/n)Li < e, (A.27) 

n2k2Ahn 1II 11=dn k i=1 2 

where ti(O) = E(f)- Eni(k). By (A.5) and (A.6), we have 

l k 1 k I k 

Z ) = n-1/2 'Z wiDi + - j [Ri n() - ERi,n(O)]. (A.28) 
k i=1 ~k i=1 ki= 
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We first prove that for large A 

/ I1k L 
P sup - > wjDi >-dn/ \/II< E. (A.29) 

n-k?Ahn k i=1 4 

Let nI be the smallest integer no less than Ahn. By the Birnbaum and Marshall 
(1961) inequality, the left-hand side of (A.29) is bounded by 

16(Ld, /h)2En E WiDi |+ 16(LdnlFn , 11 wjii21k2 (A.30) 
nl i=l k=nl+l 

We now show that Zjk=nl+l 11 wjl2/k2 ? 5M/n1, where M? Z w112 for all k. 
Apply the identity 

n n-I 

> (ak- ak-l)bk = anbn -ambm+l + _ ak(bk -bk+l) (A.31) 
k=m+ I k=m+l1 

to ak = LiwI2 and bk = l/k2 and notice that bk-l k+ < 3/k3; we have 

1i1 
1 2 '2 

_ _ Ik M1+ M + 3 i/ 
k=m+l n m k=m+l k i=1 

c2-M+3M Z 1/k2?5M/m. 
m k=m+ I 

Thus, (A.30) is bounded by 

16L 2 (d2/n) - (- 
- 

wI l 2) + 16L -2(d/nf)-1(5M/nj) < C(njd?21n)-', 
n, n, j=1 

where C = 96ML- 1. By the definition of n1, (nI d,/nl )c (Adhn d/n -1, which is 
small if A is large because hnd,2/n has a positive limit. This proves (A.29). 

Next, consider the second term of the right-hand side of (A.28). Note that Ri, () = 

Ri (0/V ), where Ri() = i - w |j ci |- 'wiDi not depending on n (see 
(A.5)). We shall prove 

P sup sup - [R ) - ERi ( )] d2n < e. (A.32) 
n-k-Ah, jl 1l =d,/1J- k i=1 4 

By Pollard (1991, p. 63), 

1 k 
- > [Ri) -ERi(l)] = op(Ilk I/ Ik) 
k j=1 

uniformly in k and uniformly over V in shrinking neighborhoods of the origin. Note 
that k -+ oo implies n -- oo. Thus, A, = {I,; 11 ?11 c dn/ViI forms a sequence of 

shrinking neighborhoods of the origin as k grows. Also note that I X; dInI = 
is a subset (boundary) of An. Thus, Pollard's result implies 

I k 
sup - I [Ri() -ERi(4)] = o,(,I&I/<k) = op(dn1/nk), 

Ikb =dn /'n k i=I 

uniformly in k c n. 
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Now for all k > Ahni dn/lJ,ik c/ dnnAh`, which is less than Ld,/(4n) if A is large 
because of the existence of a positive limit for h,d,,/n. This proves (A.32). Combin- 
ing (A.28), (A.29), and (A.32), we obtain (A.27). 

Proof of (vi). For 11 11 ' dn, we have 

ln X1 (Ahn) 1/f(Ahn) 'n-l2n c (Ahn)-2, cI-,zM 

for some M' and M' > 0 because of the existence of a limit for hnd,2/n. Thus, the 
set I n 1/2 ; <l C dn 1 is contained in the set I n1 1/2I; 114'll M"). Consequently, 

k k 

sup inf Zm1i(o) < sup sup | (lei - n 'w1/u - 2I|) 
1 -k-Ahn 11 '011-dn i=1 1-k-n I 11 11-M'M j=1 

I i l lEl 

It follows from (A.4) that the right-hand side is Op (1). U 

Proof of Theorem 3. We begin with the following lemma. 

LEMMA A.3. Let an be a sequence of integers such that a,/n' -p0 for some 
6 > 0. Then, under the assumptions of Theorem 1, 

k 

Z ( le - wikn - 1/21 - I c,) = op (i) (A.33) 
.=I 

uniformly in k < a_ and 11 c M. 

Proof. Divide the region 11 < M into O(n (p+q)/2) cells such that the diameter of 
each cell is less than Mn -1/2 As before, incremental values within a cell are negli- 
gible. Consider a point Or in the rth cell. Let Zi = ti(,r), d = maxi.an Iwi11n I2 
V = Man /n, a = E, and s = -an/; then, Lemma A.2 implies 

P( | t.i (r); > ) < 2 exp(-LV~1n)_< 2exp(-Lnb) 

for some b > 0 because of the assumption on an. The preceding bound does not 
depend on k and r. The lemma follows from ann(P+q)/2 exp(-Lnb) 0. 

We shall prove the weak convergence of Vn (0, v) on the compact set 1(0, v); 11 I 11 < M, 
v I c M . Again, we will only consider the case for v c 0, i.e., k ( v) c ko, because the 

case of v>Ois similar. For v<0, V (0,v) is given by (A.2). Rewrite U(l,k(v),41) = 
U(l,ko 01) - U(k(v) + l,ko,01). The second term is negligible. Because ko - k(v) < 
Mil Xn 11 -2, applying Lemma A.3 with an =(11 Xn 11 -2I), we have U(k(v) + 1, ko 0,1) = 
op(l) uniformlyin 0v --Mand Il< M.Now U(l,ko, 1)+ U(kO+ l,n,02) 

can be written as 

n 

(I e,- [xH3B + z, I(i < ko)bl + zhI(i >kO)62]n'l2 - c,!), (A.34) 
i=l1 

where I(.) is the indicator function. Standard results of LAD estimation (e.g., Pol- 
lard, 1991) imply that the preceding is 

n X20'ZX,Di +f(0)0'(!-ZXiX0 + op(l), (A.35) 
=1 / = 
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where 0 = ((j3',6,6')'), Xi = (xi,zi,0)' for i c ko and Xi = (xi,0,z')' for i > ko, and 
Di = sign(ei). The op(l) is uniform on any given compact set of 0. Thus, the pre- 
ceding converges weakly on compact set to 

,Q 1/2Z + f(0)'Qo, (A.36) 

where Z is a vector of independent standard normal random variables and Q is defined 
previously. 

Next, adding and subtracting terms, U(k(v) + 1, ko, fnJ X* + )2) can be written as 

ko 

Z (I zi 1Z'XI n i l) (A.37) 
i=k(v)+1 

ko 

+ EI ( l i-X1( an -/2-1'2nZi' -2-Zi' Xn l - Zei-zXn l) (A.38) 
i=k( v)+lI 

Expression (A.38) is op(l), which follows from Lemma A.3 by simply renaming 
i- ZiXn as ei. Thus, the limiting process of Vn (6, v) is equal to (A.36) plus the limit 

of (A.37). The latter does not depend on 6. The limiting process is minimized with 
respect to 0 at Q-'12Z/(2f(0)). By the continuous mapping theorem for the argmax 
functional (e.g., J. Kim and Pollard, 1990), we obtain part (i) of Theorem 3. 

We point out that for v > 0 the corresponding term to (A.37) is given by 

k(v) 

Z (I Ei +ZiXl - lZel) (A.39) 
i=ko+ 1 

Thus far, the assumption that Xn converges to zero has not been referenced. The 
argument applies to a shift with a fixed magnitude and to shrinking shifts satisfying 
Assumption A6. To characterize the limiting distribution for the shift point estima- 
tor, we shall consider the two cases separately, as they possess different limiting dis- 
tributions. The first case is that Xn Xo, not varying with sample size n. In this case, 
k(v) = ko - yc, does not change with n for a fixed v. Therefore, we do not need to 
use v as a parameterization; instead, we consider directly the convergence of S(00 + 
n-72 0,k) - S(00,ko). Let W*(k) - Zk+o I -Ii - O EiI for k < ko (take 
W*(ko) as 0) and W*(k) = Eki=ko+ IIci + z'Xoj - iI for k > ko. Then, W*(k) 
has the same distribution as W#(k - ko), where Wo(-) is defined previously. Let 
k - ko = m. Combining (A.35), (A.37), and (A.39), we have 

S(00 + n'-720,m + ko) - S(00,ko) 6 0'QQ/2Z + 0'QOf(0) + W#(m) (A.40) 

on the set 11 011 < M and I m I < M for an arbitrary given M. Assuming I ei ? zi Xo I - 
I cI I has a continuous distribution, argminm W#(m) is uniquely defined. This implies 

-- d 
k k0-ko argminm W#(m) by the continuous mapping theorem. 

Note that Z depends on (ci,zi) appearing in (A.37) only through U(k(v) + 1, 
ko, 02), which is op (1), as shown earlier. The case of v > 0 is analogous. Thus, Z is 
independent of W*(k) for k - ko I < M for any given M > 0. This implies that the 
limiting distributions of 6 and k are independent. 

Proof of (iii). If Xn -? 0, then (A.37) can be written as 

ko /ko \ 

E + Ej Zzi') Xnf(0) + op(l), (A.41) 
i=ko+vcn i=ko+vc, / 
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which is a consequence of the standard result for the equivalence between (A.34) and 
(A.35) with a rescaling (n-'/2 is replaced by Xn because k(v) = ko + VO(l)X\nII-2)). 
Because Cn = O(I IXn I2) --* oo, we have 

1 ko 

EZ zizi' v vIQzz . (A.42) 
Cn i=ko+vcn 

If we choose c specifically such that cn = (Xn Q, X,) -1, then the second term of 
(A.41) converges to I v If(O). The first term of (A.41) converges weakly to a Brown- 
ian motion process, denoted by WI (-v), by the invariance principle for independent 
random variables (see, e.g., Billingsley, 1968). (Again, the scaling factor is Xn instead 
of n'-12.) Thus, (A.41) converge weakly to WI (-v) + I vlf(O). The counterpart of 
(A.41) in the case of v > 0 (the sum is from ko + I to ko + Ven) has a limit W2(v) + 
I v If(O), where W2 ( v) is another Brownian motion process on the positive half line. 
The two processes are independent because they involve nonoverlapping disturbances. 
Thus, a two-sided Brownian motion process W( v) can be defined based on the two 
processes so that Vn(0, v) converges weakly to 

0QU72Z + O'QOf(O) + W(v) + f(0)l vI. 

Part (iii) follows from the continuous mapping theorem. 
Proof of (iv). Trending regressors zi = g(i/n) satisfy all assumptions required for 

consistency. It is thus enough to consider the limiting process of (A.41). By adding 
and subtracting terms, we can rewrite the second term of (A.41) (ignore f (0)) as 

(ko - k)Xng(TO)g(TO)'X, (A.43) 
ko 

+ Xn E [g(i/n) - g(0)] [g(i/n) - g(To)]'Xn (A.44) 
t=k+ I 

ko 

2+ 2A 
[g(i/n)-()](O n (A.45) 

t=k+ 1 

where k = k(v). Let cn = (Xng(rO)g(rO)'Xn)-'. Expression (A.43) converges to 
= i vI uniformly in v E [-M,O] because ko - k =-[vcn1 ]. It is easy to show 

that (A.44) and (A.45) are both op(l) uniformly in v E [-M,O]. For example, 
(A.44) is bounded by 

dg (X) 2 kco 2 2 12 312 
sup XIXn Z (i-k-)2/2ko B1lXn l2(kO-k)3/n2 x dx n 

ik 

?B2 (nl2 11Xn 1j4f1 _,0, (A.46) 

for some constants B, and B2. Next, the first term of (A.41) is 

ko ACo ko 

XI 
n 

g(iln)Di = X'g(koln) 
, 
Di + Xn 

E 
[g(i/n) -g(koln)]Di. (A.47) 

i=k+ I i=k+ I i=k+ I 

The second term of (A.47) is uniformly negligible because its variance is equal to 
(A.44), which is op(l) in view of (A.46). Thus, the limiting distribution of (A.47) is 
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determined by Xg (rt) 1ICk+ I Di. Because C, = (XAg(Tr0)g(Tr0)'X)- 1, by the invari- 
ance principle for independent variables 

ko 

X/ g (ro) Ej Di ==: WI v-). (A.48) 
i=k( v)+l1 

Thus, (A.41) converges weakly to WI (-v) +f(0)I vi. Part (iv) is obtained by con- 
sidering the case of v > 0 and then using the continuous mapping theorem. U 

Proof of Theorem 4. The rate of convergence is not affected by the assumption 
of dependence under strong mixing with exponential mixing coefficients. This is 
because Lemma A. 1 still holds. In proving Lemma A. 1, we use some results of Babu 
(1989), which are still valid under the dependent assumption. The exponential inequal- 
ity of Lemma A.2 is replaced by a similar inequality suitable for mixing process (see 
Babu, 1989, Lemma 7). We can also use an exponential inequality of Carbon (e.g., 
Gyorfi, Hardle, Sarda, and Vieu, 1990). The Birnbaum and Marshall inequality is 
replaced by an inequality due to Serfling (1970, Theorem 5.1). All arguments for con- 
sistency carry over to the dependent case. Details are omitted.5 Thus, we focus on the 
asymptotic distribution. 

Proof of (i). The equivalence of (A.34) and (A.35) is still a standard result under 
the mixing assumption (e.g., Babu, 1989). The limit of (A.35) is 0'U1 2Z + 
f(O)O'QO. This quadratic form is minimized at [2f(0)]-1Q-1U'2Z, which is 
N(0, [2f(0)] -2 Q - I UQ - ). 

Proof of (ii). Recall that (A.37) determines the limiting distribution of the shift 
point estimator. Combined with (A.39), we still have a two-sided random walk as a 
limit. It is noted that Wf and WI are no longer independent. The correlation 
between W (k) and W2(j) does not disappear even when Ik - j I becomes large. 

Proof of (iii). The goal is to determine the limit of (A.41) under strong mixing. For 
Cn = (Xn'Q,,Xn)Y1, the second term of (A.41) has the same limit. Suppose 

lim n zz 
X 

2 > Uo 
n-o. X)n Qzz An 

Then, functional central limit theorems for dependent variables (e.g., Wooldridge and 
White, 1988) with a rescaling imply that 

ko 

' Z ziDi=*7rW1(-v). 
i=ko+vcn 

For the case of v > 0, the corresponding limit is irW2(v), a separate Brownian 
motion process. The processes Wi (i = 1,2) are independent. To see this, assume for 
simplicity that zi are bounded such that ilzill ' M. Then, by an inequality of 
Ibragimov and Linnik (1971), 

' ko \ / ko+c \V( 

E An zE iDi) Zi Di) c < 4M2 XnA X t 
i=ko+vcn i=ko+l 

which converges to zero as n increases to infinity, implying the independence of WI 
and W2 (where the aj are the mixing coefficients). Thus, we can define a two-sided 
Brownian motion process as before, so the limit of (A.41) under dependence is 
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7rW(v) +f(O)J vl . This implies that nX QzzX7r -2(i - To) -d [2f(O)] -2 argmax,j W(v) - 
v 1/2), proving part (iii) in view of the definition of r2. 

Proof of (iv). We only need to revise the limit of (A.48) under dependence. Because 

hh 

lim - E Z E(Di Dj), 
h hI I 

where 02 is defined previously, by the invariance principle for dependent variables, 
we have 

ko 

Xng(rO) E Diz*OW,(-v). 
k(v)+l 

Similar to the argument of (iii), this implies n X'g(TO)g(TO)' Xnq)-2 is the scaling fac- 
tor for (T - To), establishing (iv). U 
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