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Econometrica, Vol. 64, No. 3 (May, 1996), 597-622 

TESTING FOR PARAMETER CONSTANCY IN LINEAR 
REGRESSIONS: AN EMPIRICAL DISTRIBUTION 

FUNCTION APPROACH 

BY JusHAN BAI 1 

This paper proposes some tests for parameter constancy in linear regressions. The tests 
use weighted empirical distribution functions of estimated residuals and are asymptoti- 
cally distribution free. The local power analysis reveals that the proposed tests have 
nontrivial local power against a wide range of alternatives. In particular, the tests are 
capable of detecting error heterogeneity that is not necessarily manifested in the form of 
changing variances. The model allows for both dynamic and trending regressors. The 
residuals may be obtained based on any root-n consistent estimator (under the null) of 
regression parameters. As an intermediate result, some weak convergence for (stochasti- 
cally) weighted sequential empirical processes is established. 

KEYWORDS: Structural change, empirical distribution function, sequential empirical 
process, weak convergence, two-parameter Brownian bridge. 

1. INTRODUCTION 

MANY ECONOMIC FACTORS may cause a parametric model to be unstable over a 
period of time. Changes in taste, technical progress, and changes in policies and 
regulations all are such examples. A change in the economic agent's expectation 
can induce a change in the reduced-form relationship among economic vari- 
ables, even though no change in the parameters of the structural relationship is 
present, as envisioned by the Lucas critique. The shifts in the Phillips curve over 
time serve as one illustration (Alogoskoufis and Smith (1991)). As a result, 
model stability has always been an important concern in econometric modeling; 
see, for example, Chow (1960) and Quandt (1960) for earlier studies and 
Andrews (1993) and the references therein for more recent ones. The purpose 
of this paper is to provide additional tools for the diagnosis of parameter 
instability in linear regressions. 

Two classes of tests are proposed, resembling the prototypical Kolmogorov- 
Smirnov two-sample test. The first class is based on nonweighted sequential 
empirical processes of residuals. This class has received considerable attention 
in the i.i.d. context, for example, Csorgo and Horv'ath (1987, 1988), Deshayes 
and Picard (1986), and Szyszkowicz (1994), among others. Carlstein (1988) and 
Dumibgen (1991) proposed to estimate a break point under the alternative 

1 This paper is developed from a chapter of my dissertation written at the University of California 
at Berkeley. I thank Professors Tom Rothenberg, James Stock, and Deborah Nolan for their advice. 
I also thank seminar participants at Yale and Harvard/MIT for very useful comments on an earlier 
version of this paper. Comments from three anonymous referees and a co-editor led to a substan- 
tially improved presentation. Finally, financial support from an Alfred Sloan Foundation dissertation 
fellowship is gratefully acknowledged. All remaining errors are my own responsibility. 
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598 JUSHAN BAI 

hypothesis based on these test statistics. We extend this class of tests to apply to 
regression models with estimated parameters. 

The first class of tests has limited applicability in time series regressions 
because the tests will no longer be asymptotically distribution free when trend- 
ing regressors are included in the regression model. In this case, the second 
class of tests can be considered, obtained by constructing a weighted empirical 
process of residuals. It is interesting to note that we can construct asymptotically 
distribution free tests by choosing weighting vectors, in a natural way, in the 
construction of the empirical processes upon which our tests are based. This is 
in contrast to the well known result that goodness-of-fit tests based on empirical 
processes involving estimated parameters will generally depend upon both the 
estimated parameters and the underlying error-distribution function even in the 
limit (see Durbin (1973)). 

Testing for parameter constancy in regressions is a much studied subject. 
Various test statistics are proposed in the literature, e.g., Brown, Durbin, and 
Evans (1975), Gombay and Horvath (1994), Hawkins (1988, 1989), Huskova 
(1991), Jandhyala (1993), Kim and Siegmund (1989), and Ploberger, Kramer, and 
Kontrus (1989) to name a few. In a time series regression that allows for 
integrated and co-integrated variables, tests are proposed by Hansen (1992), 
Perron and Vogelsang (1992), and Zivot and Andrews (1992). More recently, 
Andrews and Ploberger (1994) propose some optimal tests. However, tests based 
on sequential empirical processes for regression models are not as well studied 
in the literature. In the ARMA context, Bai (1991) considers a nonweighted test, 
in which stationarity and zero mean under the null are heavily used. We 
consider in this paper a regressor-weighted test. To derive its limiting distribu- 
tion, we also establish some convergence results for stochastically weighted 
sequential empirical processes. 

This paper is organized as follows. Section 2 specifies the models and 
describes the assumptions. Section 3 defines the test statistics. Section 4 exam- 
ines the local power of the tests. Trending regressors are considered in Section 
5. Section 6 concludes. Technical materials are collected in the Appendix. 

2. MODELS AND ASSUMPTIONS 

The null hypothesis specifies the regression model: 

(1) Yt =xI 8 + et (t 12,...,.n), 

where Yt is an observation of the dependent variable, xt is a p x 1 vector of 
observations of the independent variables, et is an unobservable stochastic 
disturbance, and ,B is the p x 1 vector of regression coefficients. The distur- 
bances et are i.i.d. with distribution function F. 

The alternative hypothesis specifies the following model: 

(2) Yt=X3t+et* (t=1,2, .... n), 
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PARAMETER CONSTANCY TESTS 599 

where P, may not be constant over time and/or the disturbances e* may not 
be identically distributed. When examining the power property for the proposed 
tests, we consider the local alternative described by (13) and a more general type 
of alternatives given in Section 4.2 below. 

In what follows, the norm 11 11 represents the Euclidean norm, i.e. llx l= 

(Ep 1x 2)'/2 for x e RP. For vectors x and y, we write x <y if the inequality 
holds true for each coordinate. Furthermore, [H] denotes the greatest integer 
function, u A v = min{u, v}, and u v v = max{u, v}. 

We make the following assumptions with implications discussed below: 

(A.1) Under the null hypothesis, the et are i.i.d. with distrtibution function (d.f.) 
F, which admits a density function f, f > 0. Both f(z) and zf(z) are assumed to be 
unifonmly continuous on the real line. Furthermore, there exists a finite number L 
such that Izf(z)l < L and If(z)l < L for all z. The mean of et is zero if this mean 
exists. 

(A.2) The disturbances Et are independent of all contemporaneous and past 
regressors. 

(A.3) The regressors satisfy 

1 [ns] 

plim- E x x = sQ uniformly in s E [0,1], 
n t-1 

where Q is a p X p nonrandom positive definite matrix. 

(A.4) MaXl < t < nn -1/2 11Xt II = op(1). 

(A.5) There exist a random variable Z,n and a constant K (1/2 > K ? 0) such that 
for all s and s, (s, s, E [0, 1] and s 2 sl), 

1 [ns] 

- E lxtii < (S-s1)ZnK a.s. 
n 

t=[nsl] 

In addition, for some p > 2 and M < so: 

(3) P(iZn, > C) <M/CP. 

(A.6) There exist y > 1, a > 1, and K < oo such that for all 0 < u < v < 1, and for 
all n, 

(4) - , E(x'x,)7 < K(v-u) and E(- x'xt)<K(v-u) 
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600 JUSHAN BAI 

where i = [nu], j = [nv]. Because Iv - uI < 1, we can assume a < y. We shall 
choose a such that, for K in (A.5), 

y - 1 
(5) >1+2K, 

a-1 

which is possible by choosing a close to 1. 

(A.7) Let 13 be an estimator of 18. Under the null hypothesis, 

(X'X)1/2( 
A_ 

- 1 (3)) 

where X = (X1,X2 ..., Xn) - 

(A.8) There exist a 8 > 0 and an M < cc such that 

E(_ E IIXtII3(1+6)) <M and E(-E IIXtII3) <M Vn. 

(A.9) Finally, 

1 [ns] 

plim- >xt = SX uniformly ins E [0,1], 
n t=1 

where x is a p x 1 constant vector. 

We make some comments pertaining to these assumptions. Assumption (A.1) 
is typical for residual empirical processes; see Boldin (1989), Koul (1984, 1992), 
and Kreiss (1991). Assumption (A.2) allows for dynamic variables. Assumptions 
(A.3) and (A.9) are needed to assure that the nonweighted test Mn (below) is 
asymptotically distribution free. These two assumptions, however, are redundant 
for the weighted test Mn* (below). Moreover, (A.3) and (A.9) rule out trending 
regressors, which are discussed separately in Section 5. When a constant 
regressor is included, (A.9) is implied by (A.3). Assumption (A.4) is conventional 
for linear models and is used for obtaining normality. Assumptions (A.5) and 
(A.6) assure the tightness of sequential empirical processes (Theorem A.1 in the 
Appendix). In (A.5), ZnnK may be taken to be 4/n =max1<i<j<n1(- 
i'Ei=_i xt I. When ElIxtIIP<M for all t(p>2), it can be shown that (A.5) 
holds for K = i/p. When E(x'xt)2 ?M for all t, then the first half of (A.6) is 
satisfied with y = 2 and a = 2, because E(E j=ixtxt)2 < {Eji=[E(x' xt)2]1/2}2 by 
the Cauchy-Schwarz inequality. Furthermore, by choosing a = 3/2, inequality 
(5) is also satisfied. When the disturbances are i.i.d. and have finite variance, 
Assumption (A.7) is fulfilled by the least squares estimator. For infinite variance 
models, robust estimation such as the LAD has to be used to assure (A.7). 
Finally, Assumption (A.8) is used to prove the tightness of sequential empirical 
processes based on estimated residuals. It can be shown that when the sixth 
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PARAMETER CONSTANCY TESTS 601 

moment of the regressors is uniformly bounded, (A.4)-(A.6) and (A.8) are all 
satisfied. In particular, these assumptions are satisfied when the regressors are 
themselves uniformly bounded. 

3. THE TEST STATISTICS 

The test statistics are based on estimated residuals. The model is estimated 
A 

under the null hypothesis. Let ,3 be an estimator of ,3 (e.g., least squares 
estimator) and t =Yt - xt 3. Let us first introduce the nonweighted test. For 
each fixed k, define the empirical distribution function (e.d.f.) based on the first 
k residuals as 

Fk(Z)=k AtI(st?z) 
t= 1 

and the e.d.f. based on the last n - k residuals as 

1 n 
Fflk(z) -k E I( 

A 
Z) n - k t=k+ 1 

where I(z) is the indicator function. Further define 

( n -n ( )n (k nFf-k(Z)) 

and the test statistic 

Mn = max sup ITn(k/n, z)I, 
k z 

where the max is taken over 1 < k < n and the supremum with respect to z is 
taken over the entire real line. For each fixed k, the supremum of Tn with 
respect to the second argument gives the weighted Kolmogorov-Smirnov two- 
sample test with weight [(k/n)(1 - k/n)]1/2. Thus the test Mn looks for the 
maximum value of weighted Kolmogorov-Smirnov statistics for all possible 
sample splits. This test was considered by Bai (1991) for testing changes in the 
innovations of an ARMA process, and is an extension of Csorgo and Horv'ath 
(1987, 1988) and Deshayes and Picard (1986) for i.i.d. settings. To obtain the 
asymptotic null distribution for Mn, we shall prove the weak convergence for 
Tn(s, z) and then apply the continuous mapping theorem. 

We have the following identities: 

k )k k 
(6) Tn-z=-n 

\fl t=1 n t=1 
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602 JUSHAN BAI 

k 

(7) = n- 1/2 ,: {I(^s < Z) -F(z)} 
t=1 

k n 
--n -1/2 E {II(^ < z) -F(z)}. 

t=1 

Equation (7) holds for an arbitrary function F, although F will be assumed to 
be the distribution function of et. Writing in the form (7) will be convenient for 
studying the limiting distribution of Tn and hence of Mn. 

As will be shown, the test Mn is asymptotically distribution free and has 
nontrivial local power against changes in the scale parameter of the distur- 
bances. However, like the CUSUM test, when testing shifts in the regression 
parameters local power disappears if the mean regressor is zero; see Kramer, 
Ploberger, and Alt (1988, henceforth KPA). In addition, if a trending regressor 
exists, Mn will not be asymptotically distribution free. To circumvent these 
undesirable features, we introduce a new class of tests based on the regressor- 
weighted empirical distribution functions of residuals. Let Xk = (xl,... , Xky and 

(8) Ak = (XX) / (XkXk)(X'X)-1/2. 

Analogous to (6), define the p x 1 vector process Tn*, 

(k = XX "2k n z 
(9) T*(-,z)=(X'X) 1/2 Xt1(^ <z)-A (X) 1/2 A 8( <z) 

t= t= 

and the test statistic 

Mn*=maxsup Tn* -,z 
k z nflJ 

where I Iy I = max{1y1 I,..., IypI}, the maximum norm. The process Tn* and test 
Mn* reduce to Tn and Mn, respectively, when xt = 1 for all t. The process Tn* 
only takes on n2 different values; its maximum value gives rise to Mn*. The 
actual computation of Mn* is straightforward. A programmable formula for Mn* 
is given by 

(10) M* = maxmax (X,X) Y XD(E I(Di<k) 

-(XkXk)(X'X) E2XDi) 

where Di is the location (index) of the ith order statistic s(i). 
If there is a constant regressor (and we shall assume this), then the following 

identity holds: 
k n 

(11) (XXY-1/2 Ext -Ak(X'X) 1/2 E Xt=0, Vk, 
t=1 t=1 
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PARAMETER CONSTANCY TESTS 603 

so that T*(k/n, z) can be written alternatively as 
k 

(12) (XXX{1/2 Exz{IG?t?z)-F(z)1 
t=1 

n 

-k(XfX) EX'{I(? < Z) -F(z)}, 
t=1 

for any F. Again, F will be chosen to be the distribution function of Et. 
Expression (12) is a weighted version of (7) and is useful for deriving the limiting 
process of Tn*. The choice of matrix Ak turns out to be important. It plays two 
key roles. First, because of (11), we can express Tn* in (12), which is a 
conditionally centered process if ^ is replaced by Et. This is why (12) is useful 
for studying the limiting process of Tn*. Second, the choice of Ak makes the test 
statistic asymptotically distribution free under the null. 

Let B(u, v) be a Gaussian process on [0,1]2 with zero mean and covariance 
function 

E{B(r, u)B(s, v)} = (r A s - rs)(u A v - uv), 

which we shall call a two-parameter Brownian bridge on [0,1]2. In what follows, 
the notation " " is used to denote the weak convergence in the space of D(T) 
or D(T) X D(T) X x.. X D(T) where T = [0, 1]2 under the Skorohod J1 topology; 
see Pollard (1984). 

THEOREM 1: Under model (1) and Assumptions (A.1)-(A.9), 

(i) Tn { -)B(-, F(-)) 

and 

(ii Tn* (- JB* (-, F(-)) 

where B* = (Bi, B2, .. ., BPY is a vector of p independent two-parameter Brownian 
bridges on [0,1]2. 

Let G(O) denote the d.f. of the r.v. supo<u<1supo < <1B(u,v)I. We have the 
following from the continuous mapping theorem: 

COROLLARY 1: Under the assumptions of Theorem 1, 

lim P(Mn < a) =G(a), a > 0 
n -x 

and 

lim P(M* < a)- [G(a)]p, a > 0. 
n -oo 
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604 JUSHANQ BAI 

Thus the tests are asymptotically distribution free despite parameter estima- 
tion. Some selected critical values are reported in Table I. These values are 
obtained via simulation with 100,000 repetitions and n = 200. In each repetition, 
a sequence of i.i.d. uniformly distributed random variables on [0,1] is generated. 
The process Tn(k/n, z) (0 < z < 1) is constructed using this sequence. The value 
of Mn is then obtained by maximizing Tn(k/n, z) with respect to k and z. 

OTHER TESTS: Besides the sup-type tests, the mean-type test can be used. Let 

1 k \ 2 1 2 

An=-2 EE|T(- ?)| and A*= 2 EE * - 
kJ I k 

The result of Theorem 1 implies that An converges in distribution to 
JoloB(s, t)2dsdt and A* converges in distribution to Jolfol iP 1Bi(s,t)2dsdt, 
where B,..., BP are independent copies of B(-, ). Many other tests can be 
constructed based on the weak convergence of Theorem 1. 

4. LOCAL POWER ANALYSIS 

Two types of alternatives will be considered. The first type is associated with 
changes in regression parameters and scales. The second is associated with 

TABLE I 

SELECTED ASYMPTOTIC QUANTILES OF THE TEST Mn* 
lim n -ooP(Mn* < x) = a: 

p 85% 90% 95% 99% 

1 0.712 0.750 0.811 0.935 
2 0.773 0.809 0.866 0.980 
3 0.806 0.841 0.897 1.005 
4 0.829 0.864 0.916 1.018 
5 0.848 0.882 0.933 1.032 
6 0.862 0.894 0.945 1.042 
7 0.874 0.906 0.955 1.053 
8 0.884 0.915 0.964 1.060 
9 0.891 0.923 0.972 1.063 

10 0.901 0.932 0.979 1.068 
11 0.908 0.938 0.984 1.074 
12 0.914 0.943 0.990 1.085 
13 0.919 0.948 0.993 1.087 
14 0.923 0.953 0.997 1.091 
15 0.930 0.957 1.004 1.095 
16 0.934 0.962 1.007 1.098 
17 0.938 0.966 1.010 1.101 
18 0.941 0.971 1.013 1.104 
19 0.945 0.974 1.015 1.107 
20 0.948 0.976 1.018 1.109 
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PARAMETER CONSTANCY TESTS 605 

changes in error distribution functions. Examination of the second type shows 
that the proposed tests are able to detect changes that may occur beyond the 
second moment. 

4.1. Changes in Regression Parameters and Scales 

We consider model (2) with the class of local alternatives studied by KPA: 

(13) pt = J + A1g(t/n)n-1/2 and ?* = et(1 + A2h(t/n)n-1/2)l 

where et are i.i.d. with distribution function F and density function f. The 
functions g and h are defined on [0, 1] and are Riemann-Stieltjes integrable. 
Define the vector function 

(14) Ag(s) = fSg(v) dv - sf g(v) dv 
0 

and the function 

(15) Ah(s) = fh(v) dv - s h(v) dv. 
o o 

If h is a simple shift function such that h(v) = 0 for v < r and h(v) = 1 for 
v > r, where r E (0, 1), then Ah(s) =-(- A s)(1 - rV s). This is similarly true for 
Ag. 

THEOREM 2: UnderAssumptions (A.1)-(A.9) and the local altematives (13), we 
have 

(16) M s sup IB(s,u) + Alp(u)x'Ag(s) + A2q(u)Ah(s)I 
o<s<1 O<u<1 

and 

(17) Mn* sup sup IIB*(s,l) + Ap(U)Q1/2Ag(s) 
o<s<?1 O<<1 

+ A2q(u)Q-1/2xAh(S)11 

where p(u) = f(F- 1 (u)) and q(u) = f(F- 1 (u))F- 1 (u). 

Several observations are made here. First, when A2 = 0, Theorem 2 gives rise 
to the limiting distribution for changes in regression parameters only, and when 
A1 = 0, the theorem reduces to the case of changes in scale only. Second, in 
testing for changes in the regression parameters, Mn behaves like the CUSUM 
test of Brown, Durbin, and Evans (1975) in the sense of lacking local power 
when the mean of regressors x is orthogonal to the vector function g, as shown 
by KPA and Ploberger and Kramer (1990, 1992). The test Mn*, however, does 
have local power irrespective of the relationship between x and g. Thus Mn* 
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606 JUSHAN BAI 

behaves like the fluctuation test of PKK. Third, when testing for a shift in the 
scale parameter, the local power of M* vanishes if each component of the 
regressor mean, x, is zero. Of course, if a constant regressor is included, then 
M* will have nontrivial local power for testing changes in variance. 

The classical statistical literature (e.g., Durbin (1976)) suggests that the 
Kolmogorov-Smirnov test is less efficient than the t test for a mean shift under 
normality assumption. It is reasonable to expect that the tests proposed in this 
paper are less efficient than the sup-F type tests under normality. However, the 
proposed tests are more efficient for heavy-tailed distributions. This is also 
confirmed by a small Monte Carlo simulation. The simulation considers a 
sequence of i.i.d. random variables (n = 100) with a mean shift in the middle 
(n/2) and with a magnitude of shift c. We compare the power of Tn and that of 
the sup-Wald test (e.g., Andrews (1993) with wo = 0.05) at the 5% significance 
level. For normal random variables, the number of rejections from 1,000 
repetitions is 509 with c = 0.5 and 984 with c = 1.0 for the test Tn and 502 and 
989, respectively, for the sup-Wald test. For double exponential random vari- 
ables, the corresponding result is 527 and 971 for Tn and 260 and 842 for 
sup-Wald test. Thus the test Tn performs better than sup-Wald for heavy-tailed 
distributions. It also fares well even for normal random variables. 

REMARK 1: When the regressor xt contains endogenous variables, as in the 
case of a structural equation of a simultaneous equations system, the weighting 
vector should be replaced by a vector of instrumental variables. Similar tests can 
then be constructed. For the instrumental-variable weighted test to have non- 
trivial local power, the instrumental variables must be valid in the usual sense. 
That is, the instrumental variables are uncorrelated with the disturbances and 
correlated with the regressors. The details can be found in an earlier version of 
this paper. 

REMARK 2: Upon the rejection of the null hypothesis, it is often of interest to 
estimate the shift point as well as the pre-shift and post-shift parameters if a 
one-time shift model is thought to be appropriate. The point k of (k, z) at which 
Tn(k/n, z) is maximized may serve as a reasonable estimator for the shift point 
(Dumibgen (1991)). Once the shift point is obtained, it is straightforward to 
estimate the pre- and post-shift parameters. Another framework for estimating 
the changing regression parameters and changing variances is proposed by 
Robinson (1989, 1991). Robinson's approach is nonparametric and is suitable for 
parameter shifts in the form of (13). 

4.2. General Type of Altematives 

We now consider a more general type of changes in the error distribution 
functions. Although changes in regression parameters can be treated as a special 
case of this general type, we shall assume there is no change in the regression 
parameters and instead focus on changes in error distributions. The tests 
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developed in this paper are capable of detecting heteroskedasticity other than in 
the form of changing variances. Let 

Ynt =X'n, t+ -nt (t = 1e2, . . ., n), 
where ent has a density function Fnt (t = 1, 2,..., n). Assume Fnt admits a 
density function fnt. The null hypothesis is that Fnt =F for all t <n, where F is 
a density function not necessarily known. Let -nt = Ynt- X'nt3 for some estima- 
tor 18. We shall assume that 13 can be consistently estimated as in (A.7) under 
the local alternatives. Even under nonlocal alternatives, this assumption is still 
reasonable as long as the means of ent are zero and the variances are uniformly 
bounded (recall the least squares estimator can be root-n consistent under 
heteroskedasticity). 

We consider the nonweighted test Mn only for simplicity and examine the 
behavior of the test under both fixed and local alternatives. The fixed alternative 
is specified as 

H1: Fnt =Ffort<[nTr]andFnt =G,for t> [nT], 

where F + G. The local alternative is 

H2: Fnt=F,fort<[nr]and 

nt= (1 - n12)F + An -2H, for t > [nTr] 

where A > 0 and An-1/2 < 1, and F + H. Thus under the local alternative, the 
errors ent (t > [nr]) have a mixture distribution. 

Let KF denote a Kiefer process on [0,1] x R with KF(O, 0. A Kiefer 
process is a Gaussian process with mean zero and covariance function 
E{KF(r, y)KF(s, z)} = (r A s){F(y A z) - F(y)F(z)}; see Bickel and Wichura 
(1971). Let KG be another Kiefer process independent of KF with KG(O*) = 0. 
Define 

(18) K(s, z) = KF(s A r, z) -sKF(, z) 

+ KG(s -s A T, z) -sKG(l - r, z). 

Then we have the following theorem. 

THEOREM 3: Assume F, G, and H are distribution functions satisfying (A.1). 
Also assume (A.2)-(A.9) hold. Then: 

(i) Under the fixed altemative H1, 

Mn = suplK(s,z) + x/7(s A r)(1 -s V r)(F- G)I + Op() 
s, z 

where 9p(1) is uniform in s and z. 
(ii) Under the local alternative H2, 

n 
sup IB(s, F(z)) + A(s A r)(1 - s V r)(F - H)I. 
s, z 
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The Kiefer processes KF and KG are uniformly bounded in probability and 
consequently K is also uniformly bounded in probability. This together with 

n (s AT )(1 -s V T)(F - G)l -> co (for some s and z if F * G) implies that the 
test Mn is consistent under H1. Part (ii) implies that Mn has nontrivial power in 
testing local shifts in error distributions. Note that the assumption F * G (or 
F * H) can be true even though the two distributions have the same mean and 
same variance. 

5. TRENDING REGRESSORS 

The computation of the test statistics is still the same with the presence of 
trending regressors. The limiting distributions of the tests, however, are differ- 
ent. We consider the following model: 

(19) yt = z' a + yo + yl(t/n) + + yq(t/n)q + 8t 

where zt is a r X 1 vector of stochastic regressors and {zU; s < t - 1} are indepen- 
dent of et. Let xt = (zt, 1, t/n, ..., (t/n) )' be a p X 1 vector, with p = r + q + 1. 

The polynomial trends {(t/n)'; 1 < i < q} could be written without dividing 
through by n. Writing in the fashion of (19) saves notations by eliminating the 
weighting matrix such as diag(n-1/2, ... n- (q + 1)/2) that would otherwise be 
needed. We shall maintain all assumptions (A.1)-(A.8) of Section 2, except 
changing (A.3) to 

1 [ns] 1 [ns] 
(A.3') plim - E x x = limnE E Xt = Q(s), uniformly in sE [0,1], 

n t- n t =1 

where Q(s) is positive definite for s > 0 and Q(O) = 0. Assumption (A.3') 
actually admits a much wider class of models than (19). 

In the presence of trending regressors only the weighted version, Mn*, is 
asymptotically distribution-free, as noted in the Appendix. We shall assume that 
there is a constant regressor. The process Tn* and test statistic Mn* are defined 
exactly the same as before. Note by (A.3'), we have, uniformly in s, 

p[s 
A(s) = Q(1) 

- 1/2 
Q(s )Q(l) 

- 1/2 

THEOREM 4: UnderAssumptions (A.1)-(A.8) with (A.3) replaced by (A.3'), we 
have 

Tn* ([n */n,.) -B* (, F(.)) 

where B* (s, u) is a vector Gaussian process defined on [0, 1]2 with zero mean and 
covariance matrix 

E{B* (r, u)B* (s, v)} = {A(r A s) -A(r)A(s)}{u A v - uv}. 
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PARAMETER CONSTANCY TESTS 609 

COROLLARY 2: Under the assumptions of Theorem 4, 

d 
M* sup JIB*(s,u)IIJ. 

O?s, u s 1 

The behavior of the test under the local alternative (13) can again be 
analyzed. Extending Lemma 4 of KPA, we can show that 

(20) -E x,x'g(t/n) | sQ(1)(v)g(v) dv 
n t= 

and the convergence is uniform in s, where Q(')(v) = dQ(v)/dv. The above 
integral exists if g has bounded variation on [0,1]. Of course, we also assume 
the derivative of Q(v) exists and is integrable. When Q(v) = vQ(1), (20) reduces 
to the result of KPA. Let 

A* (s) = fsQ(1)(v)g(v) dv- Q(s)Q(1)-1 f'Q(1)(v)g(v) dv, 
o 0 

A,k(s)=f Q(1)(v)eh(v)dv -Q(s)Q(1)- f1Q(1)(v)eh(v)dv, 

where e = (1, O,.. ., OY. 

THEOREM 5: Under the local alternative (13), 

M, * sup IIB*(s,u) +p(u)A,Q(1/'2 Ag(s) 
0?s,u?1 

?q(u) A2Q(1) -1/2A(S)II 

where p( ) and q( ) are given in Theorem 2. 

Again, the test possesses nontrivial local power. Other tests dealing with 
trending regressors include MacNeill (1978), Sen (1980), Chu and White (1992), 
among others. 

6. CONCLUDING REMARKS 

In this paper we propose a class of tests for parameter constancy in linear 
regressions. The proposed tests are based on regressor-weighted sequential 
empirical processes. We show that the proposed tests are able to detect changes 
in regression parameters as well as changes in variances. An important feature is 
that these tests can detect heteroskedasticity not necessarily manifested in the 
form of changing variances. In particular, the proposed tests are able to 
diagnose changes in higher moments or, more generally, changes in error 
distribution functions, whereas the conventional tests such as the sup-F test may 
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610 JUSHAN BAI 

not be suitable for this purpose. These tests are also less sensitive to departure 
from normality. 

The assumption that the disturbances are independent is restrictive. This 
assumption may be weakened to linear processes on the lines of Boldin (1989) 
and Kreiss (1991). Another possible extension is to use recursive residuals in 
constructing the tests. To obtain the limiting distribution, some corresponding 
weak convergence result needs to be first established. 

Dept. of Economics, E52-274B, Massachusetts Institute of Technology Cam- 
bridge, MA 02139, U.S.A. 

Manuscript received February, 1994; final revision received January, 1995. 

APPENDIX A: PROOFS 

Write 

[ns] 

K* (s, z) = (X'X) 1/2 E Xj{I(^ < z) -F(z)}; 
t= 1 

then, by (12), 

(21) Tn* ( z) = Kn n(s,z)-A[fl]K,* (1,z) 

Thus to study T*, it suffices to study Kn*. Denote 

[nsj 

Hn(s, z) = (XX) 1/2 E xt{I(et < z) - F(z)}. 
t=1 

Let 9-= [0,1] x1X be the parameter set with metric p({r, y}, {s, z}) =Is - rl + IF(z) - F(y)I. Let 
D[9'] be the set of functions defined on 9'that are right continuous and have left limits. We equip 
D[9S] with the Skorohod metric (Pollard (1984)). The vector process Hn belongs to the Cartesian 
product space D[L9]P, equipped with the corresponding product Skorohod topology. The weak 
convergence of Hn in the space D[9-]P is implied by the finite dimensional convergence together 
with stochastic equicontinuity. 

THEOREM A.1: Under Assumptions (A.1), (A.2), (A.5), and (A.6), the process Hn is stochastically 
equicontinuous on (.9' p). That is for any e > 0, q > 0, there exists a 8 > 0 such that for large n, 

P supIIHn(r, y)-Hn(s, z)II> <) 

[81 

where [8] = {(1,2); =(r,y),T2=(S,Z),P(1,T2)< 8} with [8] c.9rx.9; 

When xt = 1 for all t, the equicontinuity of Hn is proved by Bickel and Wichura (1971). This 
theorem states the stochastic equicontinuity holds for (randomly) weighted sequential process. Let 
Ut = F(st); then Ut are i.i.d. uniform on [0,1]. Define 

[nsl 
(22) yn(s, u) = n 1/2 E Xt{I(Ut < u)-u}; 

t=1 
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then Hn(s, z) = (X'X/n)- '1/2'Yn(s, F(z)). By assumption, (X'X/n) -- Q(1), a positive definite ma- 
trix, so Yn and Hn are equivalent in terms of stochastic equicontinuity. Thus the proof focuses on Yn. 

LEMMA A.1: Assume the conditions of Theorem A.1 hold. Then there exists a K < oo, such that for all 

Si <52 and u1 < u2, where 0 < si, ui < 1 (i = 1,2), 

Elln(s2, U2) - Yn(Sl, U2 - (s2ul) + S n(Sl, Ub)112, 

< K(U2-U1)a (S2-1 )a + n (- 1)K(U2 - U)(S2 -1 )- 

Without the loss of generality, one can assume a < y, because Iu2 - u11 < 1 and IS2 -s11 ? 1. 
Moreover, for a constant 7 > 0, when 

(23) Tn-(y- 1)/2(a - 1) < - u1 and n-(y- 1)/2(a 1) ?52-5 

the Lemma implies 

(24) EllYn(s2, U2) - Yn(s1, u2) - (2, ui) + n(Sl, ui)112y 

< K[1 + f- 2(al- )](u2 ) (u2)(2 -51) 

This inequality is analogous to (22.15) of Billingsley (1968, p. 198). 

PROOF: Write ?It = I(ul < Ut < u2) - u2 + ul and Yn* = Yn(S2, u2) - Yn(s1, u2) - Yn(s2, u) + 

Yn(s1,u1) for the moment. Then Yn*=n-1/2Eyi<t<xtgt with i=[ns1] and j=[ns2]. Note that 

{Xtgj,t-} is a sequence of (not necessarily stationary and bounded) vector martingale differences, 
where g is the o-field generated by . . ., xt, xt+ i; ... ., Ut -1, Ut. By the inequality of Rosenthal (Hall 
and Heyde (1980, p. 23)), there exists a constant M < oo only depending on ry and p such that 

(25) EI I Yn*II2y =E{ (- Xtn X 
(25) (( [,~~ni<t<j ]i<h_ j )) 

<ME(- E E{(x'xt)ntj2It-11) +Mn-T E E{(x'xt) r1t27} 
n i< t< j i<t<j 

Note that xt is measurable with respect to g- and ?It is independent of -1. In addition, 

E71t2 < U2 - u1 and E?lt21 < u2 - ul. These results together with Assumption (A.6) provide bounds for 
the two terms on the right of (25). The first term is bounded by 

M(u2 - ui)YE(- E (xtx)) <MK(u2-u1)'(S2-51) n i<t<j 

and the second term is bounded by 

Mn-(- '(u21 - u2)- E E(x'xt)' < MKn (u -u1)(s2-s1). 

Renaming MK as K, the Lemma follows from (u2 - ud)/ < (u2 - ul)a, for y > a. 

LEMMA A.2: Under (A.5), we have for s1 < s < s2 and u1 < U < U2, 

IlYn(s, u) - Yn(s1, u)11 < Ilyn(s2, u2) - Yn(S1, u)11 + Znn 1/2 K[(U2 - u) + (2 -5I)] 

where Zn and K are defined in (A.5). 
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612 JUSHAN BAI 

PROOF: First notice that all of the components of xt can be assumed to be nonnegative. 
Otherwise write xt=EP lxE+(i)-P jx7(i) where x(i)=(0,..., 0,xtj,0,...,0Y if xti20 and 

x-(i) = (0,...,0, -xti,0,...,0Y if xti < 0. In this way, }n can be written as a linear combination (with 
coefficients 1 or -1) of at most 2p processes with each process having nonnegative weighting 
vectors. In addition, Ijx+(i)jj < lxtil and Jjx-(i)lj < lixtl. So assumption (A.5) is satisfied for x(i) and 

x-(i). It is thus enough to assume that the xt are nonnegative. In what follows, for vectors a and b, 
we write a < b if a_ < bi for all components. Since xt 2 0, the vector functions xt1(U < u) and xtu 
are nondecreasing in u. This implies that 

Yn(s, u) - Yn(Si,uli) 

< Y(s2, U2) -Y(s1, U1) 

1 [ns ( + 12 1 [ns21 
+ nl n t Xt (U2 - U) + nl/ n 

t, EXt{I(Ut < U2) -U2) 

(I t=i n, t=[nsI t]2 

< 
Yn(S2, U2) )- Yn(sl ul) + n /2 (- 11X4II ( U2 -U) + n 1/2 n F, llt ll 

and 

(1 [ns] (1 [ns] 

Yn(sl ,u1) )-Yn(s, u) < n1121n Ex( -U1) + nt2 n t E Ux{I(1 ? U) 

\ t=l n t~=[ns1I 

<n /2-|xtil)(u - U) + n /- F, llxtill 

The lemma follows from (A.5). 

PROOF OF THEOREM A.1: We shall evaluate directly the modulus of continuity. Define 

Cl8(yn) = Sup{llYn(s',U') - YV(S",u")II; Is' -s"I < 8, Iu'- u"I < 8, s', S, U', u e [0, 1] 

We shall show that for each ? > 0 and -i > 0, there exist a 8 > 0 and an integer no, such that 

(26) P(w,(Yn)>s)<-q, n>no. 

Since [0, 1]2 has only about 8- 2 squares with side length 8, it suffices to show that for every e > 0 
and r1> 0, there exist a 8 e (0,1) and an integer nO such that 

(27) P( suplIYn(s,u)-Yn(sj,uj)II> 5e) <282 , n > no, 
<8> 

for all (sl,u1)e[0,1]2, where (8> = <8,sl,ul> ={(s,u); s <?s <?s + 8, ul ?u <ul + 8n [0, 1]2 
(see Billingsley (1968, p. 58) for processes indexed by a single parameter). 

Because of (3), for a given 8 > 0 and q > 0 we can choose C (to be determined later) large 
enough such that 

(28) P(IZn > C) < 8271. 

Next, Lemma A.2 implies (see (22.18) of Billingsley (1968, p. 199)), when IZnl ? C, 

(29) supIIYn(s,u)-Y,(sj,uj)jj<3 max IIYn(sl +ien,ul +en) -Yn(sl,ul)11+2e 
<(> t?i,j<m 
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where ?n = e/(nl/2+KC) and m = [8/sn] + 1. Write 

X(i,j) = Yn(s1 + is, u1 +jet) -Y(Sl ul) 

Then 

(30) P supjjYn(s,u)- Yn(sj,uj)jj > 5s) 
(8> 

<P(IZ,I> C) +P(iZni I C supIlY,(s,u) -Y(s1,ul)11 > 5?) 
(8> 

< 527 + P( max IIX(i, A)l > ?) 
1 <i, j <m 

Now for fixed i and k (i 2 k) write Z(j) = X(i, j) -X(k, j). We shall use (24) to bound Z(j). But 
(24) requires condition (23). This condition is met here because 

( Cn(1)/2(a -1) < (?Cn(/2)- K-=?n < jen j 2 1 

which follows from n-( '- 1)/2(a- 1) _< n-(1/2)- K in view of (5). By (23) and (24), 

(31) EIIZ(j) Z(l)112y < KC[ (i -k)en]a[(j - l)n]a, 1 < 1 <j < m, 

where, from (24) by letting T = s/C, 

(32) C, = [1 + (C/S)2(a 1)] < 2(C/S)2(a- 1) for small s. 

Thus by Theorem 12.2 of Billingsley (1968, p. 94, applied with Si = Z(j)), we have 

/ ~ ~ ~~ K, KC2 
aM.na <K2C, 2 

(33) P( ma IIZ(j)ll > &) ?- k m [i - (ik)OsnI 

where K1 is a generic constant and K2 = 2 aKK. The last inequality follows from (m en) < 28 for 
large n. Because 

maxjjX(i,j)jj - maxjjX(k,j)jj < maxjjX(i,j) -X(k,j)Il = maxjjZ(Q)II, 

if we let V(i) = max, I X(i, 1)1, then (33) implies 

K2C ] 
P(IV(i) - V(k) > s) < 2y n- k)S Iaa, 1 < k < i < m. 

S 

Thus by Theorem 12.2 of Billingsley once again (applied with Si = V(i)), we obtain 

K'K2C KC 
P( max IV(i)I > ) < 2^ (m n) 8? - 2y 

where K' is a generic constant and K3 = 2aK'K2. Note that maxIV(i)I = maximaxjjjX(i,j)jj. Thus 
by (30) 

P( supIIYn(s,u)-Yn(s1,u)11>5.) 
< 71 + K3C2 82a. 

By (32), the second term on the right-hand side above is bounded by 

K3C2,62a 62 2K3 _(c)2(a-1) (34) - 82(y+ a - (C) (a) 
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By (3), one can choose C = (-1/M)P -2/P to assure (28) so that the right-hand side of (34) becomes 
82K(s, 7,)8a, where K(s, r) is a constant and a = (p - 2)(a - 1)/p > 0. By choosing 8 such that 
K(s, n,)8a < , (27) follows. The proof of Theorem A.1 is completed. Q.E.D. 

COROLLARY A.1: Under Assumptions (A.1)-(A.6) with (A.3) replaced by (A.3'), the process H" 
converges weakly to a Gaussian process H with zero mean and covariance matrix 

(35) E{H(r, y)H(s, z)} = Q(1) / Q(r A s)Q(1) /2 [F(z Ay) - F(z)F(y)]. 

PROOF: The finite dimensional convergence to a normal distribution follows from the central 
limit theorem for martingale differences. This, together with Theorem A.1, implies that Hn 
converges weakly to some Gaussian process H. To verify (35), we consider the covariance matrix 
function of Yn = n -/2(X'X)'/2H . For r < s and u = F(z) < v = F(y), using double expectation 
and the martingale property, we obtain 

1 [nr] 
(36) E{Y,(r, u)Y,'(s, v)} = -E t xx (u - UV) 

n \ =i I 

which tends to Q(r)(u - uv). From (X'X/n)- 1/2- Q(1) , we arrive at (35). Q.E.D. 

COROLLARY A.2: Under the assumptions of Corollaty A.1, the process V" defined as 

V,1(s, z) = Hn(s, z) -A[ns]Hn(l, z) 

converges weakly to a Gaussian process V with mean zero and covariance matrix 

(37) E{V(r, y)V(s, z)'} = {A(r A s) -A(r)A(s)}{F(y A z) -F(y)F(z)}. 

PROOF: The stochastic equicontinuity of Vn follows from the stochastic equicontinuity of Hn and 
the uniform convergence in s of A[ns] to a deterministic matrix A(s). The limiting process of Vn is, 
by Corollary A.1, 

V(s, z) = H(s, z) -A(s)H(1, z). 

Now (37) follows easily from (35). Q.E.D. 

Note that (A.3) is a special case of (A.3'). When Q(s) = sQ for some Q > 0, the covariance matrix 
of V becomes (r A s - rs){F(z Ay) - F(z)F(y)}I, where I is the p xp identity matrix. Thus V(-, ) 
has the same distribution as B*(-, F()), where B* is a vector of p independent Brownian bridges 
on [0,1]2. 

We next examine the asymptotic behavior of the sequential empirical process constructed using 
regression residuals. Under model (1), ' < z if and only if et < z + x4( ,3 - ,3), thus K * under Ho is 
given by 

[ns] 

(38) K,* (s, z) = (X')12,X{(?<Z t Xtt( p- ))F(z)} . 
t= 1 

Under the local alternative of (13), ? < z if and only if 

St <z{1 + A2h(t/n)n-1/21 +x'{( ,l -,l3) + Alg(t/n)n-1/2}{1 + A2h(t/n)n1/2}. 

Thus K* becomes, under H1, 

[ns] 

(39) K * (s, z) = (X'X) 1/2 XJ{I(st < z(l + atn- 1/2) +bn- 1/2) -F(z)} 
t= 1 
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where 

(40) at = A2h(t/n), and bt =x't{n( ,X3-13) + Alg(t/n)}{l + A2h(t/n)n-'/2}. 

Choosing the weights xt = 1 in (39), K* becomes the nonweighted sequential empirical process of 
residuals. 

It is observed that K* possesses a common form under the null and alternative hypotheses, only 
with different a's and b's. This suggests the need to study a general sequential empirical process 
that can be specialized to various cases. 

Let a = (a1, a2,..,an) and b = (bl, b2l.-,bn) be two 1 x n random vectors, and let C= 

(cl, c2... c , cY be a n x p random matrix (q 2 1). Introduce 

[ns] 
Kn(s, z, a, b) = (C'C)Y12 c1{I(st < z(1 + an12 +btn- 1/2) - F(z)}. 

t=1 

For ct =xt, at = 0, and b= x'nt2( - 13), Kn(s, z, a, b) becomes (38). For a, and bt in (40), 
Kn(s, z,a, b) becomes (39). 

We impose the following conditions: 

(B.1) AssumptionA.1 holds. 

(B.2) The variable et is independent of 1where 

1I = o-field{a5+1,b5+1,c+1, es; s <t- 1}. 

(B.3) For some positive definite matrix Q, 

1 1 n p 
-C'C=-E >ctc-t Q. 
n n t= t 

(B.4) n-I/2max1 , i < nl7i I = op(1), for 7 = ai, bi, ci. 

(B.5) Assumption A.5 holds for xt = ct. 

(B.6) Assumption A.6 holds for xt = ct. 

(B.7) There exist y > 1 and A < oo such that for all n 

E (-E IctlV2(1atj + Ibtl)) } <A and -E E{[11c,112(latI + IbtI)I } <A. 

Obviously, (B.2) is not satisfied if bt = x n1/2( 13- 13) because bt depends on the entire date set 
through ,3. It suffices to consider bt = xt a with a varying in an arbitrary compact set. We then need 
some uniformity result with respect to a. This will be explained further below. 

THEOREM A.2: UnderAssumptions of (B.1)-(B.7), we have: (i) 

-1/2 1~1 Ins] (1[nsl 
(42) +n( ff( a, b)=1k z , 

(42) + (C'C/n) )f(z'z E ctat +f(Z) - Ect bt + op(l) 
where op(n t=1 /fn t 

where op(l) is uniform in s and z. 
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(ii) Let bt =x'a, where a ED, with D an arbitrary compact set of RP. Then (i) is still valid. 
Moreover, the op(1) is also uniform in a E D. In particular, (i) holds for bt =xn1/2( 1n-113) as long as 
n 1/2( -13) = Op(l). 

PROOF: Introduce an auxiliary process: 

1 Ens] 
(43) Zn(s Z a, b) = -E ct{I(Et < Z(l + atn + btn- 

t=l 

-F(z(l + atn-l /2) + btn- 1/2)}. 

The summands in this process are conditionally centered, conditional on Yt 1 in view of (B.2). By 
adding and subtracting terms, we have 

Kn(s, z, a, b) = Kn(s, z,O,O) 

+ (C'C/n) ' /2{Zn(S z, a, b) - Zn(s, ZO, O )} 

Ens] 
+ (C!C) - /2 E: ct{F(z(l + atn - 1/2) + btn- 1/2) - F(z)}. 

t= 1 

That the second term on the right-hand side is op(l) follows from Theorem A.3(i) and (ii) below and 
Assumption (B.3). Taylor expansion of the last term gives rise to (42). Q.E.D. 

THEOREM A.3: Under the assumptions of Theorem A.2, we have 

(i) sup IIZn(s, z, a, b) - Zn(s, z, 0,0)II = op(1). 
O<s< 1,zeR 

(ii) Let bt =xi a for a in an arbitrary compact set of D of RP and denote b(a) = (x1 a,..., x, a). 
Then 

sup sup IIZn(s, z, a, b( a)) - Zn(s, z,O,O)II = op(l). 
aeD O<s<1,zeR 

(iii) Let at = rtT; rt, E- R' for some 1 2 1; aE S, a compact set of R'. Thus the scale parameter at is a 
linearfunction of the random vector rt, a specialform of heteroskedasticity. Denote a(T) = (rjT,..., r'iT) 

and assume (B.1)-(B.7) hold true when 1atI is replaced by IIrtI1. Then, 

sup sup sup IIZn(s,z,a(T),b(a))-Zn(s,z , 00)1 = op(1). 
TES aEDO<s<1 ,zER 

Part (ii) allows b, to depend, in some way, on the entire data set, e.g., bt = x'4( 3 - 3 ) provided 
(i-,l1) = Op(1). This is because for any r1> O, there exists a compact set D such that 

P(y4'( 13 - 1 ) e D) < ql. Similarly, (iii) allows a scale parameter to be estimated. In our application, 
(i) and (ii) are sufficient. Part (iii) is not needed because no scale parameter is estimated in the 
model; its presence is solely for the purpose of completeness. 

To prove Theorem A.3, we need the following lemma. 

LEMMA A.3: UnderAssumptions (B.1)-(B.4) and (B.7), for every d E (0,1/2) 

1 n 
sup g; , lIctF(y*) - ctF(z* )I = op(1) 

wherey* =y(l +atn-1 /2) + b n - 1n/2, z* =z(1 +an- 1n/2) + b n - 1/2 and the supremum extends over 
all pairs of (y, z) such that IF(y) -F(z)l < n -(/2)d. 
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PROOF: Follows from the mean value theorem; see also Lemma 1 of Bai (1991). 

PROOF OF THEOREM A.3 (i): Note that (B.3) is required for Theorem A.2 but not for Theorem 
A.3, because Theorem A.3 obviously holds when c, = 0 for all t. Further, we can assume ct 2 0 for 
all t as argued in the proof of Lemma A.2. 

Let N(n) be an integer such that N(n) = [nl/2+dI + 1, where d is defined in Lemma A.3. 
Following the arguments of Boldin (1982), divide the real line into N(n) parts by points -oo = zo < 
Zl < < ZN(n) = ?? with F(zi) = iN(n)-1. Because ct Iet < z) and ctF(z) are nondecreasing in z, 
we have for Zr <Z <Zr+1, 

Z"(s, z,a,b) -Zn(s, z,0,0) < Zn(S,zr+j,a,b) -Z(s, Zr+1y0?0) 

1 [ns] 

+ E ct{I(e:t < Zr+1) - F(zr+1) - Ast < Z) + F(z)} 
n t=l 

1 [ns] 

+ - E ct{F(zr+ 1( + atn 2) + btn-12) 
7n t=l 

-F(z(1 + atn-1/2) + btn-1/2)}. 

A reverse inequality holds when Zr+ 1 is replaced by Zr. Therefore, by the inequality Iyl < max(IxI, Izi) 
for x<y<z, 

sup I I Z, (s.Z, a, b) -Zn (s, Z, 0,0)II 
s, z 

< max SUpIIZn(s, Zr, a, b) - Z,(s, Zr,O, 0)11 
r s 

1 [nsj 
+ sup E ct{Iet < x)-F(x)-I et < y) + F(y)} 

s,IF(x)-F(y)i<N(n) Y' t=1 

1 [ns] 
+ sup = Ct{F(Zr+ I(' + atn 2) + btn-1/2) 

s t=l 

-F(zr(l + atn- 1/2) + btn- 1/2)}| 

Because IIE5nsi * II < En 1 * 11 and IF(Zr+ 1) -F(Zr)l <n- /2-d by construction, the last term on the 
right is op(l) by Lemma A.3. The second to last term is op(l) because of Theorem A.1 (applied with 
xt = ct) and N(n)-* - 0 (the conditions of Theorem A.1 are satisfied under (B.1)-(B.7)). It remains 
to show 

(44) max max 1lZn(Q/fn,Zr)l=Op(1) 
O<r<N(n) 1<j<n 

where Zn(j/n, Zr) = Zn(s9 Zr, a, b) - Zn(s, Zr 0,0). But 

P( max max Il-n(I/ln Zr)ll > e) < N(n) maxP( maxlIZn( I/n, Zr)ld > 
O<r<N(n) 1?j?n r / 

The remaining task is to bound the above probability. Let 

etCt(I(=t?Zr(1+ $ I) + ) 

-F(Zr(1 + $at) + bt) -I(et<Zr)+F(Zr)} 
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Then (Qt, Y7) is an array of martingale differences and 

Z, (jln, z,) = n 
- /2 E 

t= 1 

By the Doob inequality, 

(45) P (max ?n-M1/2 E > <S 2- 2YMyE n-/2 
t= 1 t 

where Ml is a constant only depending on p and -y. By the Rosenthal inequality (Hall and Heyde 
(1980, p. 23)), there exists M2 > 0, such that 

(46) E(| ,| < M2E E E(ll t,11_j)) M Ell et 11 
2 

for all n. Because (ai, b, cl) is measurable with respect to -g l and Si is independent of -g l by 
(B.2), 

(47) Efll (i 112 Ig-_ I 

< IlCiI2{F(zr(1 + ain -1/2) + bn-2) _ F(zr)} 

1 2 < lilc1ll2L(lail + lbl) 

where L is an upper bound for both lf(z)l and Izf(z)l for all z. Using the above inequality and 
Ell 4:|l2Y -E{E(lI4,ll2 i_ 1)}, we have 

(48) Ell {ill2y < n -/2LYE{llci12 (jail + lbil)1. 

Combining (46), (47), and (48), we have for M3 = M2 LY, 

E (n- 1/2 | E )Y <?M3nY- /2E _ llEclt12 (latl1 + lbtl)) 

1n y 

+ Mi3n y/2-(y- 1) E E{llctll2(la,l + 1b12)1 
t=1 

< 2M3An-72. 

The last inequality follows from Assumption (B.7). The above bound does not depend on Zr Thus 
for M4 = 2M1M3A, 

P(max maxlin(j/n,zr)l> ? <' 2YM4N(n)n- /2 = 8-2YM4n-1(Y-1)/2]+d 

because N(n) = n(l/2)+d. The above converges to zero if we choose d E (0,(y - 1)72) in Lemma 
A.3. The proof of (i) is completed. Q.E.D. 

PROOF OF THEOREM A.3 (ii): This really follows from the compactness of D. We use similar 
arguments as in Koul (1991). Since D is compact, for any 8 > 0, the set D can be partitioned into a 
finite number of subsets such that the diameter of each subset is not greater than 6. Denote these 
subsets by D,, D2, ..., Dm(8). Fix k and consider Dk. Pick a?k E Dk. For all a E Dk 

(Xtak - 8l1xXtll) < xa < (xt ak + 8l1Xtll) 
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because 11a Ak-all< ?. Thus if we define the vector b(k, A) = (xl ak + AlIlx1l*.XX' ak + AlIx||), then 
assuming again ct 2 0 for all t, we have for all a E Dk, by the monotonicity of ctI(?t < z), 

Zn(s, z a, b(a)) 

1 [ns] 
< Zn(s, z, a, b(k, 8)) + - ct{F(z(1 + atn'l2) + (Xak + 8IIxtlI)n-'2 

-F(z(1 +a n- 1/2) +x.an- 1/2)} 

and a reversed inequality holds when 8 is replaced by -8. Using the mean value theorem and 
Assumption (B.1), it is easy to verify that the second term on the right is bounded (with respect to 
the norm 11-11) by 8Op(l), where the Op(l) is uniform in all s E [0, 1], all z E R, and all a E D. Thus 

sup supIlZn(s, z, a, b(a)) - Zn(s, Z,O,O)ll 
a s,z 

< max sup IlZn(s, z, a, b(k, 8)) - Zn(s, z,0,0)ll 
k s,z 

+ max sup IIZ(s, z, a, b(k, -8) - Zn(s, z,0, 0)11 + 8Op(l) 
k s,z 

where the supremums are taken over a E D, s E [0,1], z E R, and k < m(8), respectively. The term 
8Op(l) can be made arbitrarily small in probability by choosing a small 8. Once 8 is chosen, m(8) 
will be a bounded integer. The first two terms on the right-hand side are then op(l) by part (i). 

Q.E.D. 

PROOF OF THEOREM A.3 (iii): This follows from the same type of arguments as in the proof of (ii). 
Instead of using the result of part (i), one uses the result of part (ii). The proof of the theorem is 
completed. Q.E.D. 

We are now in the position to prove Theorems 1 through 5. 

PROOF OF THEOREM 1 AND THEOREM 4: Under the null hypothesis, St = -x'( -,l3) So et ? Z 

if and only if et < z +x'(F ,3 ). By applying Theorem A.2 with at = 0, bt = x ( ,3 - ,3), and ct = xt 
(under these choices, Kn(s, z, a, b) becomes Kn* (s, z) given in (38)), we have 

(49) Kn* (S, Z) -A[ns]Kn* (1, Z) 

= Hn(s, z) -A[ns]Hn(l, z) 

1 [ns] _ 1 n 
(50) +f(z)(X'X/n) - xtbt -f(z)A[nsl](X'X/n) 1/2 xtbt 

n t=1 nt=1 

(51) + op(1). 

Expression (50) is identically zero for all s E [0, 1] when bt = x'b( ,l3 - 13). That is, the drift terms of 
K* (s, z) and A[fS]Kn* (1, z) are canceled out. Theorem 4 now follows from Corollary A.2. Theorem 1 
(ii) follows as a special case because Q(s) = sQ and A(s) = sI in the absence of trending regressors. 
To prove Theorem 1(i), take xt = 1 and A[ns] = [ns]/n in the above proof, reducing (50) to 

1 [ns] [ns] n (i[ns] _ns 
] 

(52) f(z) - Ebt -f(z) -E1:bt =f(z) - 1:xt - -E 1:x t ) n(,B '-,B 
nt=1 = = = 

which is op(l) under Assumptions (A.7) and (A.9). The limiting process of Hn(s, z) -A[ns]Hn(l, z) 
reduces to the one stated in Theorem 1(i) when xt = 1 for all t. Q.E.D. 
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We note that if xt = t/n, a linear time trend, then (52) cannot be op(l) because the two terms in 
the larger parentheses do not have the same limit. This implies the test Mn will not be asymptoti- 
cally distribution free with the presence of a trending regressor. 

PROOF OF THEOREM 2: Under local alternatives (13), Kn(s, z, a, b) becomes (39) with at and bt 
given by (40). Under these local alternatives, f3 is still estimable with root-n consistency. Note that bt 
is dominated by x'Vn( 1- _8) + Alx'g(t/n), with the remaining term being negligible in the limit. 
Moreover, when b8 = x'T( 13-,3), from the previous proof, the drift term of Kn* (s Z) - 
A[S]Kn*(1, z) is negligible. We can thus assume bt = Alxg(t/n). Now by Theorem A.2, for 
at = A2h(t/n) and ct =xt, 

(53) Kn*(s,z)-A[ns] n*(,z 

W ns, z) -A[ns]Hn(1, Z) 

xtx - 1/2 1 fnsi x Ix 1/2 1n 

(54) +f(Z)zA2 () nE xth(t/n) -AExs] - xth(t/n)} 
n n t=1 

n n ~~~~~~~~~t= 1 

( f XtX) -1/2 1 [ns] / X'X\ -1/2 1 n 

(55) +f(z) Al - n - xtx'g(t/n) -A t - ) -Extxg(tln) 

+op(l). 

By the results of KPA, under (A.3) and (A.9) 

1 Ins] 
(56) -E xth(t/n) - xt h(v) dv, 

nt= 1 

i [ns] 

(57) -E1 xtx'tg(t/n) 4 Q 
fg(v) dv. 

t= 1 

Furthermore, under Assumption (A.3), 

(58) A n]('/n-/2 P SQ- 1/2. 

From these results, (54) converges to f(z)zA2Q-1/2xAh(s) where Ahis given by (15); and similarly, 
(55) converges to f(z)A1Q'12Ag(s) where Ag is given by (14). Thus (17) is obtained and (16) is 
obtained similarly by choosing ct = 1. The proof is completed. Q.E.D. 

PROOF OF THEOREM 3: The proof makes use of Theorem A.3. The details are omitted here and 
the complete proof is available upon request from the author. 

PROOF OF THEOREM 5: The proof is virtually identical to that of Theorem 2, except under (A.3'), 
(56)-(58) are replaced by 

1 [ns] 
- E xth(tln) I4 Q(l)(v)eh(v) dv, 

1 Ins] p 

n t= 1 0 

A (X'X/n) -1/2 p Q(1)- 1/2 Q(s)Q(l) -1, 

respectively, where Q(1)(v) is the derivative of Q(v) and e = (1, 0,... , OY. The first convergence is a 
special case of the second due to the presence of a constant regressor. Q.E.D. 
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