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Econometric Theory, 13, 1997, 315-352. Printed in the United States of America. 

ESTIMATING MULTIPLE BREAKS 
ONE AT A TIME 

JUSHAN BAI 
Massachusetts Institute of Technology 

Sequential (one-by-one) rather than simultaneous estimation of multiple breaks 
is investigated in this paper. The advantage of this method lies in its compu- 
tational savings and its robustness to misspecification in the number of breaks. 
The number of least-squares regressions required to compute all of the break 
points is of order T, the sample size. Each estimated break point is shown to 
be consistent for one of the true ones despite underspecification of the num- 
ber of breaks. More interestingly and somewhat surprisingly, the estimated 
break points are shown to be T-consistent, the same rate as the simultaneous 
estimation. Limiting distributions are also derived. Unlike simultaneous esti- 
mation, the limiting distributions are generally not symmetric and are influenced 
by regression parameters of all regimes. A simple method is introduced to 
obtain break point estimators that have the same limiting distributions as those 
obtained via simultaneous estimation. Finally, a procedure is proposed to con- 
sistently estimate the number of breaks. 

1. INTRODUCTION 

Multiple breaks may exist in the trend function of many economic time 
series, as suggested by the studies of Burdekin and Siklos (1995), Cooper 
(1995), Garcia and Perron (1996), Lumsdaine and Papell (1995), and others. 
This paper presents some theory and methods for making inferences in the 
presence of multiple breaks with unknown break dates. The focus is the 
sequential method, which identifies break points one by one as opposed to 
all simultaneously. 

A number of issues arise in the presence of multiple breaks. These include 
the determination of the number of breaks, estimation of the break points 
given the number, and statistical analysis of the resulting estimators. These 
issues were examined by Bai and Perron (1994) when a different approach 
of estimation is used. The major results of Bai and Perron (1994) assume 
simultaneous estimation, which estimates all of the breaks at the same time. 
In this paper, we study an alternative method, which sequentially identifies 
the break points. The procedure estimates one break point even if multiple 
breaks exist. The number of least-squares regressions required to compute 
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316 JUSHAN BAI 

all of the breaks is proportional to the sample size. Obviously, simultaneous 
and sequential methods are not merely two different computing techniques; 
they are fundamentally different methodologies that yield different estima- 
tors. Not much is known about sequentially obtained estimators. This paper 
develops the underlying theory about them. 

The method of sequential estimation was proposed independently by Bai 
and Perron (1994) and Chong (1994). They argued that the estimated break 
point is consistent for one of the true break points. However, neither of the 
studies gives the convergence rate of the estimated break point. In fact, the 
approach used in previous studies does not allow one to study the conver- 
gence rate of sequential estimators. A different framework and more detailed 
analysis are necessary. A major finding of this study is that the sequentially 
obtained estimated break points are T-consistent, the same rate as in the case 
of simultaneous estimation. This result is somewhat surprising in that, on 
first inspection, one might even doubt its consistency, let alone T consistency, 
in view of the incorrect specification of the number of breaks. 

Furthermore, we obtain the asymptotic distribution of the estimated break 
points. The asymptotic distributions of sequentially estimated break points 
are found to be different from those of simultaneous estimation. We suggest 
a procedure for obtaining estimators having the same asymptotic distribu- 
tion as the simultaneous estimators. We also propose a procedure to consis- 
tently estimate the number of breaks. These latter results are made possible 
by the T consistency. For example, one can construct consistent (but not 
T-consistent) break-point estimators for which the procedure will overesti- 
mate the number of breaks. In this view, the T-consistent result for a sequen- 
tial estimator is particularly significant. 

This paper is organized as follows. Section 2 states the model, the assump- 
tions needed, and the estimation method. The T consistency for the estimated 
break points is established in Section 3. Section 4 studies a special configu- 
ration for the model's parameters that leads to some interesting asymptotic 
results. Limiting distributions are derived in Section 5. Section 6 proposes 
a "repartition method" that gives rise to estimators having the same asymp- 
totic distribution as in the case of simultaneous estimation. Section 7 deals 
with shrinking shifts. Convergence rates and limiting distributions are also 
derived. Results corresponding to more than two breaks are stated in Sec- 
tion 8. The issue of the number of breaks is also discussed in this section. 
Section 9 reports the simulation results. Section 10 concludes the paper. 
Mathematical proofs are relegated to the Appendix. 

2. THE MODEL 

To present the main idea, we shall consider a simple model with mean shifts 
in a linear process. The theory and results can be extended to general regres- 
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MULTIPLE BREAKS 317 

sion models using a combination of the argument of Bai (1994a) and this 
paper. To make things even simpler, the presentation and proof will be stated 
in terms of two breaks. Because of the nature of sequential estimation, anal- 
ysis in terms of two breaks incurs no loss of generality. This can also be seen 
from the proof. The general results with more than two breaks will be stated 
later. The model considered is as follows: 

Y,=,l +Xt, if tckoI, T 

Yt = lt2 + Xt, if kO + I c t c k2,(1 

Yt =y3 +Xt,if k? + I ' t ' T, 

where ,ui is the mean of regime i (i = 1,2,3) and X, is a linear process of 
martingale differences such that Xt = ZjYo ajet_j; k? and k? are unknown 
break points. 

The idea of sequential estimation is to consider one break at a time. The 
model is treated as if there were only one break point. Estimating one break 
point for a mean shift in linear processes is studied by Bai (1994b). A single 
break point can be obtained by minimizing the sum of squared residuals 
among all possible sample splits. As in Bai (1994b), we denote the mean of 
the first k observations by Yk and the mean of the last T - k observations 
by Yk. The sum of squared residuals is 

k T 

ST(k) =E( Yt - Yk t Y 
t=1 t=k+ 1 

A break point estimator is defined as k = argminI?k< TIST(k). Using the 
formula linking total variance with within-group and between-group vari- 
ances, we can write, for each k (1 ' k ' T- 1), 

T 

Z (y -Y-)2 = ST(k) + TVT(k)2, (2) 
t=1 

where Y is the overall mean and 

VT(k) = ((T2 ) (Yk - Yk) (3) 

It follows that 

k = argmink ST(k) = argmaxk VT(k)2 = argmaxkl VT(k) . 

Consequently, the properties of k can be analyzed equivalently by examin- 
ing ST(k) or VT(k). We define z = k/T. Both T and k are referred to as 
"estimated break points." The former is also referred to as an "estimated 
break fraction." 

One of our major results is that i is T-consistent for one of the true breaks 
Tr. It should be pointed out, however, that k itself is not consistent for 
either of the ki (i = 1,2). For ease of exposition, we shall frequently say 
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318 JUSHAN BAI 

that "k is T-consistent" with the understanding that we are actually refer- 
ring to '. 

We need the following assumptions to derive T consistency. 

Assumption Al. The c are martingale differences satisfyingE(Et| t-l) = 0, 
Ec2 = a2, and there exists a 6 > 0 such that supt E I Ct 1 26 < oo, where Tt is 
the u-field generated by E, for s c t. 

Assumption A2. 
co 00 o0 

Xt=Zajct-j, Z jIajI<oo, and a(1)=Z aj1*O. 
j=0 j=0 j=0 

Assumption A3. ,ti * Ai+,, kP = [Trf], and Tr E (0,1) (i = 1,2) with 
Ir0 <r0 T1 <72. 

Assumptions Al and A2 are standard for linear processes. As the theory 
for a single-break model is worked out by Bai (1994b), we assume the exis- 
tence of two breaks in Assumption A3. 

3. CONSISTENCY AND RATE OF CONVERGENCE 

In this section, a number of useful properties for the sum of squared resid- 
uals ST(k) will be presented. These properties naturally lead to the consis- 
tency result. Write UT( r) = T-1 ST([TT]) for r E [0, 1 ] . We define both 
ST(O) and ST(T) as the total sum of squared residuals with the full sample; 
that is, ST(O) = ST(T) = ZL (Yt- Y)2. This definition is also consistent 
with (2), as VT(O) = VT(T) = 0. In this way, UT(-r) is well defined for all 
rE [0,1]. 

LEMMA 1. Under Assumptions A1-A3, UT(T) converges uniformly in 
probability to a nonstochastic function U( r) on [0, 1]. 

The limit U(r) is a continuous function and has different expressions over 
three different regimes. In particular, 

(1 - 70) (To - To) ~-/L 4 
U(,rO) = 2 + ( -2 ) 2- ) 1 2y )2 (4, 

1-r2 

and 
0 

U(T2) = u + 1(T2 T?)(Al - A2 (5) 

where k = EX t. 

LEMMA 2. Under Assumptions A1-A3, 

sup IUUT(k/T) -EUT(k/T)I =Op(T-1/2). 
1'k'T 
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MULTIPLE BREAKS 319 

This lemma says that the objective function (as a function of k) is uni- 
formly close to its expected function. As a result, if the expected function 
is minimized at a certain point, then the stochastic function will be minimized 
at a neighborhood of that point with large probability. To study the extreme 
value of the expected function, we need an additional assumption, which is 
stated in terms of the limiting function U( r). Note that U(r) is also the limit 
of T-1EST(k) for k = [Tr]. Typically, the function U(r) has two local 
minima. To ensure the smallest value of U( T) is unique, we assume the 
following. 

Assumption A4. U( r?) < 
U(,r?). 

By (4) and (5), this condition is equivalent to 

0 0 

0P (t - A2) p ( A2 3) (6) 

Thus, the condition requires that the first break dominates in terms of the 
relative span of regimes and the magnitude of shifts. In other words, when 
the first break is more pronounced (large enough Tr and/or Il,l - (21), 

Assumption A4 will be true. The inequality will be reversed when the second 
break is more pronounced. Under Assumptions Al-A4, the estimated frac- 
tion T converges in probability to r7 because the sum of squared residuals 
can be minimized only if the more pronounced break is chosen. If the in- 
equality in Assumption A4 is reversed, then ' converges in probability to 
r2 by mere symmetry. In the next section, we examine the case U(7 ) = 
U(7r-), in which ' converges in distribution to a random variable with equal 
mass at r, and r2. 

LEMMA 3. Under Assumptions Al -A4, there exists a C > 0, depending 
only on r,and lj (i = 1,2,j = 1,2,3) such that 

EST(k) -EST(ko) > Clk-kfl for all large T. 

The lemma implies that the expected value of the sum of squared residu- 
als is minimized at ko only. As mentioned earlier, because of the uniform 
closeness of the objective function to its expected function (Lemma 2), it is 
reasonable to expect that the minimum point of the stochastic objective func- 
tion is close to ko with large probability. Precisely, we have the following 
result. 

PROPOSITION 1. Under Assumptions Al-A4, 

0 = ,(--1/2) 

That is, the estimated break point is consistent for TI. 
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320 JUSHAN BAI 

Proof. 

ST(k)-ST(k? )=ST(k)-EST(k)- [ST(k?)-EST(k?)] 

+EST(k) -EST(k?) 

2 -2 sup I ST(j) -EST(j)I + EST(k) -EST(k?) 

>-2 sup IST(j)-EST(I)I +CI k-k?I by Lemma3. 

The preceding holds for all k E [1, T]. In particular, it holds for k. From 
ST(k) - k) C 0, we obtain 

jk-ko I C C-12 sup JST(J)-EST(Jj. 

Dividing the preceding inequality by T on both sides and using Lemma 2, we 
obtain the proposition immediately. U 

The preceding convergence rate is obtained by examining the global behav- 
ior of the objective function ST(k) (k = 1, . . . , T). This rate can be im- 
proved upon by examining ST(k) for k in a restricted range. Define DT = 

[k: Tq C k < Tr2(1 - )}, where q is a small positive number such that 
41 E (m,r2(1 - q)) and DM = Ik: Ik - k I MJ, where M < oo is a con- 
stant. Thus, for each k E DT, k is both away from 0 and away from the sec- 
ond break point for a positive fraction of observations. By Proposition 1, 
k will eventually fall into DT. That is, for every c > 0, P(k - DT) < e for 
all large T. We shall argue that k must eventually fall into DM with large 
probability for large M, which is equivalent to T consistency. 

Let DTM be the intersection of DT and the complement of DM; that is, 
DT,M -k: Tiq C k C T41(1- ),Ik - k I > Ml. 

LEMMA 4. Under Assumptions A1-A4, for every c > 0, there exists an 
M < oo such that 

P min ST(k) - ST(k) o) < e. 
kE-DT,m 

PROPOSITION 2. Under Assumptions A1-A4, for every e > 0, there 
exists a finite M independent of T such that, for all large T, 

P(T - X-11 > M) <e. 

That is, the break point estimator is T-consistent. 

Proof. Because ST(k) c ST(k?), if k E A, it must be the case that 
minkEA ST(k) c ST(kA), where A is an arbitrary subset of integers. Thus, 
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MULTIPLE BREAKS 321 

P(I k-ko I > M) c P(k 4 DT) + P(k e DT, I k- k I > M) 

<c+ + P T min ST(k) -ST(klA ) < 0) 2E 
kc=DT, M 

by Lemma 4. This proves the proposition. D 

The rate of convergence is identical to that of simultaneous estimators (see 
Bai and Perron, 1994). 

4. THE CASE OF 
U(Wr) 

= 
U(T?) 

When U(r?) = U(r?), it is easy to show that the function U(r) has two 
local minima at To and iI. This leads to the conjecture that the estimated 
break point z may converge in distribution to a random variable with mass 
at To and Tr only. Indeed, we have the following result. 

PROPOSITION 3. If Assumptions Al-A3 hold and U( T) = U(r o), the 
estimator T converges in distribution to a random variable with equal mass 
at T? and TI. Furthermore, X converges either to Tm or to r2 at rate Tin the 
sense that for every e > 0 there exists a finite M, which is independent of T, 
such that, for all large T, 

P(IT(r - T )I > M and IT(T - T?)I > M) <e. 

To prove the proposition, we need a number of preliminary results. Anal- 
ogous to Lemma 3, we have the following. 

LEMMA 5. Under the assumptions of Proposition 3, there exists C > 0 
such that for all large T 

EST(k)-EST(k?) > Clk-k0 v vkc ko(, 

EST(k)-EST(kY)> CJ - k2-k v ?2 kok, 

where ko = (ko + ko)/2. 

The choice of ko in the preceding fashion is not essential. Any number 
between ko and k2?, but bounded away from k? and k? for a positive frac- 
tion of observations, is equally valid. 

Let kt be the location of the minimum of ST(k) for k such that kc ko; 
that is, I< = argmink<k*ST(k). Let kAt = argmink*<kST(k). Note that kt 
and kA are not estimators as koA is unknown. It is clear that the global min- 
imizer k satisfies 

Ac= k, if ST(kt) < ST(k)2 (7) 
k' k:r >w X^ 

ST_ k X1^. 
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322 JUSHAN BAI 

Note that P(ST(k1) = ST(kt)) = 0 if X1 has a continuous distribution. 
Even without the assumption of a continuous distribution for Xt, the event 

ST(14) - S_(kt ) has probability approaching zero as the sample size 
increases because T-k1/2ST(kt) - ST(14)J converges in distribution to a 
normal random variable (see the proof of Lemma 7, in the Appendix). 

Let 'r = k7/T (i = 1,2). Using Lemmas 2 and 5, we can easily obtain the 
following result analogous to Proposition 1: 

T-T = Op(T-1/2) and -Tr = Op(T 

The root T consistency is strengthened to T consistency using the following 
lemma. 

LEMMA 6. Under the assumptions of Proposition 3, for every e > 0, there 
exists an M > 0 such that 

P( MiD, ST(k) - SA(k) C O) < e, for i = 1,2, 

where 

D",) = (k: Trq < k c ko*, Ik - ko > MJ, 

-2) =k:k& + 1? k? T(l - q),jk- k2l > MJ. 

Lemma 6 together with consistency implies the T consistency of kt in the 
same way that Lemma 4 (together with consistency) implies the T consistency 
of k in Section 3. Using T consistency, we can prove the following. 

LEMMA 7. Under the assumptions of Proposition 3, 

iim P (k = kt ) - 2, i = 1,2. 
T-+oo 

Proof of Proposition 3. By Lemma 7, P(T = jT) - (i = 1,2), but 
-? Ti , so it follows that r converges in distribution to random variable 

with equal mass at rl and Tr. The second part of the proposition follows 
from T consistency of z 

' . U 

5. LIMITING DISTRIBUTION 

Given the rate of convergence, it is relatively easy to derive the limiting dis- 
tributions. We strengthen the assumption of second-order stationarity to 
strict stationarity. 

Assumption A5. The process (X,J is strictly stationary. 

This assumption allows one to express the limiting distribution free from 
the change point (k?). The assumption can be eliminated (see Bai, 1994a). 
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MULTIPLE BREAKS 323 

Let [XI"l } and [Xtl2) J be two independent copies of the process of IX, . 
Define, for i = 1,2, W(')(l,X) - W(')(l,X) for I < 0 and W()(l,X) = 

W2( i)(l,X) for 1 > 0 and W") (0,X) = 0, where 

0 

W(')(l,=) -2(Iui+l - ,Ui) E XI + III(I,i+i - t,)2(1 + X), 
t=l+ 1 

W7,i'(l,X)) = 2,+ - ,ui) Z .xt(' + (i~+l - Hi)2( 1 - X), 1 = 1,2,... 
t=1 

PROPOSITION 4. If Assumptions A1-A5 hold and Xt has a continuous 
distribution, 

k -k? argmin, W ") (1, X l), 

where 

1X i \2-1 (8) 

Note that Assumption A4 (or, equivalently, (6)) guarantees that I XI < 1. 
The assumption of a continuous distribution for Xt ensures the uniqueness of 
the global minimum for the process W(l)(1, XI), so that argmin1 W(l)(1, XI) 
is well defined. The proof of this proposition is provided in the Appendix. 

When X is zero, the limiting distribution corresponds to that of a single 
break (r2r = 1) or to that of the first break point estimator for simultaneous 
estimation of multiple breaks. If Xt has a symmetric distribution and X is 
equal to zero, W(I)(l,X) and W(1)(--,X) will have the same distribution 
and, consequently, k - ko will have a symmetric distribution. Because X * 0 
in general, the limiting distribution from sequential estimation is not sym- 
metric about zero. For positive X (or, equivalently, for /2 - 1, and 3 -2 

having the same sign), the drift term of W2(1)(1, X) is smaller than that of 
W(1)((, X). This implies that the distribution of k will have a heavy right 
tail, reflecting a tendency to overestimate the break point relative to simul- 
taneous estimation. For negative X, there is a tendency to underestimate the 
break point. These theoretical implications are all borne out by Monte Carlo 
simulations. 

When k/T is consistent for r?, an estimate for r2 can be obtained by 
applying the same technique to the subsample [k, T] . Let k2 denote the 
resulting estimator. Then, '2 = k2/T is T-consistent for r2, because in the 
subsample [k, T] k2? is the dominating break. Moreover, we shall prove that 
the limiting distribution of k2 - k2 is the same as that from a single break 
model. More precisely, we have the following proposition. 
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324 JUSHAN BAI 

PROPOSITION 5. Under Assumptions Al-A5, 

k2 - k4 argmin, W(2)(l,O) 

and is independent of k - k1 asymptotically. 

The proof is given in the Appendix. The asymptotic independence follows 
because k and k2 are determined by increasingly distant observations that 
are only weakly dependent. We call k the first-stage estimator (based on the 
full sample) and k2 the second-stage estimator (based on a subsample). 

We now consider the case in which U(r?) = U(rO). Let (k 1,k(2) 
denote the ordered pair of the first- and second-stage estimators. Let X1 be 
given in (8) and X2 = (Tr/T2 )(112 - 1)/(A/3 - I2)- We have, for i = 1,2, 

(i) k? d f argmin, W(i'(1,Xi) with probability 2i 
k 

argmin, W'i (1,0) with probability I, 

because, in the limit, ,V ) is the first-stage estimator with probability 2 
and the second-stage estimator with probability 2. When k (1) is the first- 
stage estimator, its limiting distribution is given by argmin/ W(l)(1, A1). 
When k(1) is the second-stage estimator, its limiting distribution is given by 
argmin, W(')(/,0) because it is effectively estimated using the sample [1,k2], 
which contains only a single break. The argument for k(2) is similar. 

6. FINE-TUNING: REPARTITION 

The limiting distribution suggests that the estimation method has a tendency 
to over- or underestimate the true location of a break point depending on 
whether Xi is positive or negative. We now discuss a procedure that yields an 
estimator having the same asymptotic distribution as the simultaneous esti- 
mators. We call the procedure repartition. The idea of repartition is simple 
and was first introduced by Bai (1994a) in an empirical application. Here we 
provide the theoretical basis for doing so. Suppose initial T-consistent esti- 
mators ki for k? (i = 1,2) are obtained. The repartition technique reesti- 
mates each of the break points based on the initial estimates. To estimate ko 
the subsample [1, k2] is used, and to estimate k/ the subsample [k1, T] is 
used. We denote the resulting estimators by kj, and k2*, respectively. Because 
of the proximity of ki to k?, we effectively use the sample [ki?Ul + 1,ko 1] 
to estimate k? (i = 1,2 with ko = 1, ko = T). Consequently, k, is also 
T-consistent for k?, with a limiting distribution identical to what it would be 
for a single break point model (or for a model with multiple breaks estimated 
by the simultaneous method; see Bai and Perron [1994]). In summary, we 
have the next proposition. 
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MULTIPLE BREAKS 325 

PROPOSITION 6. Under Assumptions Al and A2, the repartition esti- 
mators satisfy the following: 

(i) For each e > 0, there exists an M < oo independent of T such that, for all 
large T, 

P(1k7 -k?I >M) < e (i= 1,2). 

(ii) Under the additional Assumption A5, 

ki*- k? - +argmin, W(')(l,0) (i = 1,2). 

Note that Assumption A4 is not required. The proposition only uses the 
fact that the initial estimators are T-consistent. As is shown in Section 4, 
T-consistent estimators can be obtained regardless of the validity of Assump- 
tion A4. We note that the repartitioned estimators have the same asymptotic 
distribution as those obtained via simultaneous estimation. 

7. SMALL SHIFTS 

The limiting distributions derived earlier, though of theoretical interest, are 
perhaps of limited practical use because the distribution of argmin1 W(i) (1, X) 
depends on the distribution of X, and is difficult to obtain. An alternative 
strategy is to consider small shifts in which the magnitude of shifts converges 
to zero as the sample size increases to infinity. The limiting distributions 
under this setup are invariant to the distribution of X, and remain adequate 
even for moderate shifts. The result will be useful for constructing confidence 
intervals for the break points. 

We assume that the mean ,i, T for the ith regime can be written as ,ui, T = 

VTiii (i = 1,2,3). We further assume the following. 

Assumption Bi. The sequence of numbers VT satisfies 

VT ?O, T(1/2) VT ?? for some 6 E (O, 12). (9) 

Because VT converges to zero, the function U(r) defined in Section 2 will 
be a constant function for all r. This can be seen from (4) and (5), with uj 
interpreted as VTpj. Therefore, Assumption A4 is no longer appropriate. 
The correct condition for ' to be consistent for rT is given next. 

Assumption B2. 

p lim vT2[UT(k?/T) - UT(k2/T)] < 0. 

This condition is identical to (6), with ,Uj replaced by ,u;. 
Under Assumptions Bi and B2, we shall argue that X is consistent for ir. 

However, the convergence rate is slower than T, which is expected because 
it is more difficult to discern small shifts. 
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PROPOSITION 7. Under Assumptions A1-A3, Bi, and B2, we have 
TV2( ( - r?) = OP (1) or, equivalently, for every C > 0, there exists a finite 
M independent of T such that 

P(TI(T- - T?)I > MVT2) <e for all large T. 

The proof of this proposition is again based on some preliminary results 
analogous to Lemmas 2 and 3. First, we modify the objective function to be 

T 
ST(k) - tX7, 

t=1 

which does not affect optimization because the second term is free of k. 

LEMMA 8. Under the assumptions of Proposition 7, we have the 
following: 

T 
(a) sup UT(k/T) -EUT(k/T) - Tl E (X2 _-EX2) = Op(T- 1/2 VT) 

lCk'T~~~~~~ t- 1-k-T t=1 

(b) There exists C1 > 0, only depending on r? and ij (i = 1,2, j = 1,2,3) such that 

EST(k) -EST(k0) 2 C1v2JIk-k?I for alllarge T. 

COROLLARY 1. Under the assumptions of Proposition 7, 

T- Ti =O?P(V 

Proof. Add and subtract ST 1 (Xt - EX7) to the following identity 

ST(k) - ST(k) = ST(k) - EST(k) - [ST(k?) -EST(k?)] 

+ EST(k) - EST(k?) 

to obtain 

ST(k)- ST(kO) 

T 
>-2 sup ST(j)-EST(i)- X (X -EX ) +EST(k)-EST (k?) 

l'j'T t=l 

T 
> -2 sup ST( j)-EST(j)-Z (X2 -EX2) + CIVT jk-kp|, 

1::'j -T t=l 

where the second inequality follows from Lemma 8(b). From ST(k)- 
ST(k) 0, we have 

T 
k-kk l ' C2v2 sup ST(J)-EST(j)- (Xt2-EX). 

lsj'T t=l 
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The corollary is obtained by dividing the preceding inequality by Ton both 
sides and using Lemma 8(a). U 

Because NI7TVT X* 00, T is consistent for 4K Using this initial consistency, 
the rate of convergence stated in Proposition 7 can be proved. In view of the 
anticipated rate of convergence, we define DTM the same as DTM but replace 
M with MVT2. Thus, for k E DTM, it is possible for k - k? to diverge to 
infinity because vj2 diverges to infinity, although at a much slower rate 
than T. 

LEMMA 9. Under the assumptions of Proposition 7, for every e > 0, there 
exists an M > 0 such that, for all large T, 

kmmn ST(k) - ST(k?) C <c. 
kEDT, M 

Proof of Proposition 7. The proof is virtually identical to that of Prop- 
osition 2, but one uses Lemma 9 instead of Lemma 4. U 

Having obtained the rate of convergence, we examine the local behavior 
of the objective function in appropriate neighborhoods of ko to obtain the 
limiting distribution. Let Bi (s) (i = 1,2) be two independent and standard 
Brownian motions on [0, oo) with Bi (0) = 0 and define a two-sided drifted 
Brownian motion on 6R as 

2B1(-S) + Isj(l + X) if s < 0, 
A(s,X)- = 

2B2(S) + IsI(l -1X) if s > 0, 

with A(0,X) = 0. 

PROPOSITION 8. Under the assumptions of Proposition 7, 

T(12T - ,ulT) (T- r I)4 a(1)2u argminsA(s,XI), 
where X1 is defined in Proposition 4 with pJ replaced by -ij. 

While the density function of argmins A (s, XI) is derived in Bai (1994a) so 
that confidence intervals can be constructed, it is suggested that the repar- 
titioned estimators be used. For the repartitioned estimator, the limiting dis- 
tribution corresponds to XI = 0. 

8. MORE THAN TWO BREAKS 

In this section, we extend the procedure and the theoretical results to gen- 
eral multiple break points: 
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Yt=y1+X ~if t <ko, 
Yt = ,u2 + Xt, i +1 c ? 

(10) 

Y~=t~?1+X~, if kg 
+I?<t:5T. Yt = Am+l + Xt, ifk ctsT 

where ,u : ,i k? = [TTP]?, -T E (0,1), and rP < Ti?+1 for i = 1,... ,m with 
=r+1 = 1. Assume the process Xt satisfies Assumptions Al and A2. 

Define the quantities ST(k), VT(k), and UT(Tr) as before, and denote by 
U(T) the limit of UT(r). Again, let k = argmin ST(k) and r = kIT. From 
the proof in the Appendix for the earlier results, we can see that the assump- 
tion of two breaks is not essential. With more than two breaks, one simply 
needs to deal with extra terms. The argument is virtually identical. Therefore, 
we state the major results without proof. First we impose the following. 

Assumption A6. There exists an i such that U(r T) < U( rjo) for all j * i. 

PROPOSITION 9. If Assumptions A1-A3 and A6 hold, the estimated 
break point X is T-consistent for riP. 

PROPOSITION 10. If Assumptions A1-A3, A5, and A6 hold, 

k - k argmin, W()(l, Xi), 

where W(')(l, X) is defined earlier but uses another independent copy 
of fXJ and 

11 [l Z Xi 0- E ( - Tio)(AJ+ I - tt) + h 2; Th(h+l 
- 

Ih)| 
i4+ 1i[ Ti j=i+1 h=1 J 

Again, Assumption A6 ensures that I Xi I < 1. 
We point out that Propositions 7 and 8 can also be extended to models 

with general multiple breaks. 
A subsample [k, I] is said to contain a nontrivial break point if both k and 

I are bounded away from a break point for a positive fraction of observa- 
tions. That is, k? -k > RTo and I - k > TEo for some Eo > 0 and for all 
large T, where ko is a break point inside [k, I]. This definition rules out 
subsamples such as [l,k], where k = k1 + Op(). 

When it is known that the subsample [1, k] contains at least one nontriv- 
ial break point, the same procedure can be used to estimate a break point 
based on the sample [ 1, k] . That is, the second break point is defined as the 
location where Sk () is minimized over the range [1, k]. The resulting esti- 
mator must be T-consistent for one of the break points, assuming again 
Assumption A6 holds for this subsample. Furthermore, the resulting estima- 
tor has a limiting distribution as if the sample [I, k? ] were used and thus 
has no connection with parameters in the sample [kp + 1, T]. This is be- 
cause the first-stage estimator k/T is T-consistent for Tr. A similar conclu- 
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sion applies to the interval [k, T]. Therefore, second-round estimation may 
yield an additional two breaks and, consequently, up to four subintervals are 
to be considered in the third-round estimation. This procedure is repeated 
until each resulting subsample contains no nontrivial break point. Assum- 
ing knowledge of the number of breaks as well as the existence of a nontriv- 
ial break in a given subsample, all the breaks can be identified and all the 
estimated break fractions are T-consistent. 

In practice, a problem arises immediately as to whether a subsample con- 
tains a nontrivial break, which is clearly related to the determination of the 
number of breaks. We suggest that the decision be made based on testing the 
hypothesis of parameter constancy for the subsample. We prove below that 
such a decision rule leads to a consistent estimate of the number of breaks 
and, implicitly, a correct judgment about the existence of a nontrivial break 
in a given subsample. 

Determining the number of breaks. The number of breaks, m, in practice 
is unknown. We show how the sequential procedure coupled with hypoth- 
esis testing can yield a consistent estimate for the true number of breaks. The 
procedure works as follows. When the first break point is identified, the 
whole sample is divided into two subsamples with the first subsample con- 
sisting of the first k observations and the second subsample consisting of the 
rest of the observations. We then perform hypothesis testing of parameter 
constancy for each subsample, estimating a break point for the sub- 
sample where the constancy test fails. Divide the corresponding subsample 
further into subsamples at the newly estimated break point, and perform 
parameter constancy tests for the hierarchically obtained subsamples. This 
procedure is repeated until the parameter constancy test is not rejected for 
all subsamples. The number of break points is equal to the number of sub- 
samples minus 1. 

Let mi be the number of breaks determined in the preceding procedure, and 
let mo be the true number of breaks. We argue that P(mt = mo) converges 
to 1 as the sample size grows unbounded, provided the size of the tests slowly 
converges to zero. To prove this assertion, we need the following general 
result. Let 

Yt = it + Xt, if -ni + 1 <5 t c o, 

Yt = it + Xt, if I c t:c n, (1 

Yt = ,2 + Xt, if n + 1 t -< n + n2, 

where n is a nonrandom integer and n1 and n2 are integer-valued random 
variables such that ni = Op (1) as n -* oo. The first and the third regimes 
are dominated by the second in the sense that ni/n = Op (n -1). Let N = 

n + n1 + n2. The sup F-test is based on the difference between restricted 
and unrestricted sums of squared residuals. More specifically, let SN = 
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t=-n+ Y+l )2 and SN(k) = -nl+l Yk) + tt=kl(Y- Yk)2, 
where Yk represents the sample mean for the first k + n, observations and 
Yk represents the sample mean for the last n + n2 - k observations. The 
sup F-test is then defined as, for some X E (0, ), 

SN-SN(k) SupFN= SUP - 
N,2 k1N( 1-2) a 

where a' is a consistent estimator of a(1)2af. Note that a(1)2uX is propor- 
tional to the spectral density of Xt at zero, which can be consistently esti- 
mated in a number of ways. 

LEMMA 10. Under model (11) and Assumptions Al and A2, as n -- oo, 

d JB(T) - TB(1)12 
SupFN +sup - ,(12) 

,rTsl-,I T(l - T) 

where B(*) is standard Brownian motion on [0, 1]. 

The limiting distribution is identical to what it would be in the absence 
of the first and last regimes in model (11). This is simply due to the sto- 
chastic boundedness of n1 and n2. We assume that the supF-test is used 
in the sequential procedure and that the critical value and size of the test 
are based on the asymptotic distribution. Let t denote the random vari- 
able given on the right-hand side of (12). Then, for large z (see, e,g., De- 
Long, 1981), P(Q > z) c K,z1"2 exp(-z/2) c K, exp(-z/3), where Kr, = 
(2/ir)1/210g[(1 -_ )2/_02]. It follows that if P(Q > c) = ae, then c < 
-3 log(a/K,,). In particular, for a = K,,/T, we have c < 3 log T. Using 
these results and Lemma 10, we can prove the following proposition. 

PROPOSITION 11. Suppose that the size of the test UT converges to 
zero slowly (aT - 0 yet lim infTOO TaT > 0), then under model (10) and 
Assumptions Al and A2, 

P(,h=mo)--1, as T-+o. 

Proof. Consider the event [m' < moi0. When the estimated number of 
breaks is less than the true number, there must exist a segment [k, I] con- 
taining at least one true break point that is nontrivial. That is, kjo - k > TEo 
and 1 - k > TEo for some Eo > 0, where kjo E (k, 1) is a true break point. 
Then, the sup F-test statistic based on this subsample is of order T.V That is, 
there exists 7r > 0 such that, for every e > 0, P(sup F ? 7rT) > 1 - for all 
large T. For aT = KT-1, then CT c 3 log T (see the discussion following 
Lemma 10). Under this choice of a T and hence CT, we have P(sup F 2 CT) > 
1 - e for all large T. Or, equivalently, P(sup F 2 CT) --+1 as T-+ oo. Thus, 
one will reject the null hypothesis of parameter constancy with probability 
tending to 1. This implies that P(mt < mo) converges to zero as the sample 
size increases. (Note that the argument holds for every OaT > K,T-1.) 
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Next, consider the event t m[ > mo J. For mr > m0 to be true, it must be the 
case that for some i, at a certain stage in the sequential estimation, one rejects 
the null hypothesis for the interval [ki,k, k+I , where ki k?P + Op (1) and 
k+ = ki?+1 + Op (l). That is, the given interval contains no nontrivial break 
point, but the null hypothesis is rejected. Thus, 

P(mr > mo) < P(3i, reject parameter constancy for [k,,kik+1) 

P(reject parameter constancy for [ ki, ki,1 ]), 
i=O 

where ko = 1 and km0+i = T. Because ki - kI? + Op(M) and ki+l = ko?I + 

Op(l), if one lets n = ko?1 k? and N = k,i+I - ki, then by Lemma 8 the 
test statistic computed for the subsample [ki,k,*,1], denoted by supFf,, 
converges in distribution to {, the right-hand side of (12). From aT -? 0, we 
have CT ?+ o. Thus, for large T (and hence large n), P(sup FN > CT) -- 0. 
Thus, P(mi > mo) c (mO, + 1)max0?ic,moP(supFj > CT) O+ 0, provided that 
aT -O (i.e., CT-+ o?) . 

Bai and Perron (1994) proposed an alternative strategy for selecting the 
number of breaks. We first describe their procedure for estimating the break 
points when the number of breaks is known. In each round of estimation, 
their method selects only one additional break. The single additional break 
is chosen such that the sum of squared residuals for the total sample is min- 
imized. For example, at the beginning of the ith round, i - 1 breaks are 
already determined, giving rise to i subsamples. The ith break point is cho- 
sen in the subsample yielding the largest reduction in the sum of squared 
residuals. The procedure is repeated until the specified number of break 
points is obtained. It is necessary to know when to terminate the procedure 
when the number of breaks is unspecified. The stopping rule is based on 
a test for the presence of an additional break given the number of breaks 
already obtained. The number of breaks is the number of subsamples upon 
terminating the procedure minus 1. Again, assuming the size of the test ap- 
proaches zero at a slow rate as the sample size increases, the number of 
breaks determined in this way is also consistent. A further alternative was 
proposed by Yao (1988), who suggested the Bayesian Information Criterion 
(BIC). His method requires simultaneous estimation. 

9. SOME SIMULATED RESULTS 

This section reports results from some Monte Carlo simulations. The data 
are generated according to a model with three mean breaks. Let (,ll, . . . ,U4) 
denote the mean parameters and (Ic?, k0, k3 ) denote the 'break points. We 
consider two sets of mean parameters. The first set is given by (1.0, 2.0, 
1.0, 0.0), and the second by (1.0, 2.0, -1.0, 1.0). The sample size T is taken 
to be 160 with break points at (40, 80, 120) for both sets of mean parameters. 
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The disturbances XJ l are independent and identically distributed standard 
normal. All reported results are based on 5,000 repetitions. 

Estimating the break points. We assume the number of break points is 
known and focus on their estimation. To verify the theory and for compar- 
ative purposes, three different methods are used: sequential, repartition, and 
simultaneous methods. The sequential procedure employs the method of Bai 
and Perron (1994), "one and only one additional break" in each round of 
estimation. A chosen break point must achieve greatest reduction in total sum 
of squared residuals for that round of estimation. 

Figure 1 displays the estimated break points for the first set of parameters 
(called model (I)). Because the magnitude of shift for each break is the same 
in model (I), we expect the three estimated break points to have a similar 
distribution for the repartition and simultaneous methods. This is indeed so, 
as suggested by the histograms. For sequential estimation, the distribution 
of the estimated break points shows asymmetry, as suggested by the theory. 
This asymmetry is removed by the repartition procedure. 

Figure 2 displays the corresponding results for the second set of param- 
eters (model (II)). Because the middle break has the largest magnitude of 
shift, it is estimated with the highest precision, then followed by the third, 
and then by the first. Note that the sequential method picks up the middle 
break point in the first place. This has two implications. First, the first and 
third estimated break points will have the same limiting distribution as in the 
case of simultaneous estimation, even without repartition. This explains why 
the results look homogeneous for the three different methods. Second, only 
the middle break point will have an asymmetric distribution for the sequen- 
tial method. This asymmetry is again removed by repartition. 

These simulation results are entirely consistent with the theory. Also 
remarkable is the match rate for the repartition and simultaneous methods. 
They yield almost identical results in the simulation. The match rate for 
model (I) is more than 92Wo, whereas for model (II) the rate is more than 
99.5Vo. 

Determining the number of breaks. Although the asymptotic theory 
implies that the sequential procedure will not underestimate (in a probabi- 
listic sense) the number of breaks, Monte Carlo simulations show that the 
procedure has a tendency to underestimate. The problem was caused in part 
by the inconsistent estimation of the error variance in the presence of mul- 
tiple breaks. When multiple breaks exist and only one is allowed in estima- 
tion, the error variance cannot be consistently estimated (because of the 
inconsistency of the regression parameters) and is biased upward. This de- 
creases the power of the test. It is thus less likely to reject parameter con- 
stancy. This also partially explains why the conventional sup F-test possesses 
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FIGURE 1. Histograms of the estimated break points for model (I): (a) sequential 
method, (b) repartition method, and (c) simultaneous method. 

less power than the test proposed by Bai and Perron (1994) in the presence 
of multiple breaks. This observation is of practical importance. 

The problem can be overcome by using a two-step procedure. In the first 
step, the goal is to obtain a consistent (or less biased) estimate for the error 
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FIGURE 2. Histograms of the estimated break points for model (II): (a) sequential 
method, (b) repartition method, (c) simultaneous method. 

variance. This can be achieved by allowing more breaks (solely for the pur- 
pose of constructing error variance). It is evident that as long as m 2 mO the 
error variance will be consistently estimated. Obviously, one does not know 
whether m 2 in0, but the specification of mn in this stage is not as impor- 
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tant as in the final model estimation. When m is fixed, the m break points 
can be selected either by simultaneous estimation or by the "one additional 
break" sequential procedure described in Bai and Perron (1994) (no test is 
performed). In the second step, the number of breaks is determined by the 
sequential procedure coupled with hypothesis testing. The test statistics use 
the error variance estimator (as the denominator) obtained in the first step. 
This two-step procedure is used in our simulation. 

In addition to the two sets of parameters considered earlier, we add a 
third set of parameters (1.0, 2.0, 3.0, 4.0) (referred to as model (III)). For 
comparative purposes, estimates using the BIC method are also given. Fig- 
ure 3 displays the estimates for both methods. The left three histograms, 
(a)-(c), are for the sequential method, and the right three (a')-(c'), are for 
the BIC method. The sequential method uses a two-step procedure as already 
described. We assume the number of breaks is 4 in the first step. The size of 
the test is chosen to be 0.05 with corresponding critical value 9.63. 

For the first set of parameters, the BIC does a better job than the sequen- 
tial method; the latter underestimates the number of breaks. For a signifi- 
cant proportion of observations, the sequential method detects only a single 
break. For the second set of parameters, the two methods are comparable. 
Interestingly, the sequential method works better than the BIC for the third 
set of parameters. 

The sequential method may be improved upon in at least two dimensions. 
First, the sup F-test, which is designed for testing a single break, may be 
replaced by, or used in conjunction with, Bai and Perron's sup F(l)-test for 
testing multiple breaks. The latter test is more powerful in the presence of 
multiple breaks. Other tests such as the exponential-type or average-type tests 
can also be used (see Andrews and Ploberger, 1994). Second, the critical 
values may be chosen using small sample distributions rather than limiting 
distributions. There are certain degrees of flexibility in the choice of sizes, 
as well. In any case, the sequential procedure seems promising. Further inves- 
tigation is warranted. 

10. SUMMARY 

We have developed some underlying theory for estimating multiple breaks 
one at a time. We proved that the estimated break points are T-consistent, 
and we also derived their limiting distributions. A number of ideas have been 
presented to analyze multiple local minima, to obtain estimators having the 
same limiting distribution as those of simultaneous estimation, and to con- 
sistently determine the number of breaks in the data. The proposed reparti- 
tion method is particularly useful because it allows confidence intervals to 
be constructed as if simultaneous estimation were used. Of course, the repar- 
tition estimators are not necessarily identical to simultaneous estimators. 
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NOTES 

1. To see this, suppose the sample [1, T] has a break point at ko = [TTo] with prebreak 
parameter 8A and postbreak parameter A2. By (2) and (3), ST - ST(ko) = TVT(ko)2, where 

ST is the restricted sum of squared residuals (no break point is estimated). But VT(ko)2 -k 

(T0( - )( - ,L2)2. Thus, ST - ST(k) -ST - ST(ko) = TVT(ko) = Op(T). This implies that 
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the sup F-test based on the sample [ 1, T] is Op (T). When the sample [ 1, T] contains more than 
one break point (under the setup of Section 8), the sup F-test is still of order T because VT(k) 
for k = [Ti-] has a limit, which is not identically zero in -r. 
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APPENDIX: PROOFS 

The first two lemmas in the text are closely related. We first derive some results com- 
mon to these two lemmas. We need to examine UT(k) for all k C [1, T]. 

For k < ko 

Yk = 8l + E Xt, 
k t=l 

1 T k?-k + k1 2 T-k , 1 t 

T -t==+1 T -k T -k T -k T -k tk?l 
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Throughout, we define ATk and A* as 

I*k * 1 T 

ATk-Z Xt, ATk- Z x. 
-k t= 

& 
kT- kt=k+l 

Thus, 

k k k \2 k 

Z (yt Y)- 
=2 X t- - xi =Z(Xt-A Tk)2 (A.1) 

t=1 k i=1 t_l 

and 

T 

Z (Y-_ k)2 
t=k l 

ki k2 T 

-Z (,l? X _k)2+ j (O2+Xt_k)2+ (3+Xt_ k) 
t=k+l ko+1 k2+1 

0 
ki 

= k - T- - /AL2) + (T- k2o)(A2- 3) + Xt- ATk] 
t=k+l T- k 

0 
k? 

+ x [Tk(ko - k)(2- ) + (T- ko)(A2 - AA3)J + Xt TA7h]2 
k?+1 T -k 

The latter expression can be rewritten as 
0 

T kp 

Z (Yt-Yt)2 (k -k)Tk+ 2aTk Z (Xt ATk) 
t=k+1 t=k+ I 

k21 

+ (k2- ko)b+2bTkZ (Xt.-A* 

tkCT + 

brk = {(T-k? (T-k2) + (T- k)(2 -X 3), 
T- k 

bTk- ~~~ Z (((Xt(2-1 -A (Tk)2 (A.2) T-k~~~~~~~T 

CTk = 1 
I 

t(k - k)(2 J) + (k2?- )(j2- AM1 

T - 
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Rewrite 

1 )2 1 T x2 T-Ac 2 
- Z (Xt-A*k)2 =- Z X -(A-k)2 (A.3) 
Tt=k+1 T tk+ 1 T 

and 

- E (XI -Ark) ( x (A.4) 
t= T T=k 

Combining (A.1) and (A.2) and using (A.3) and (A.4), we have for kc kA 

UT(k/T) = - ST(k) 
T 

(kc-A k) 2 (kc-ko) (T- k2 TX2 R 
r2k+ A2?) b 2k+ (- c2? C_r_TZX2RlT(;3 

(A.5) 

where 

RIT(k) =[2aTk Xt + 2bTk Z Xt + 2CTk Z Xt 
TL t=k+1 kp+1 k2 +1 

-- [(k - k)aTk + (k2? - ko)bTk + (T-k2 )cTk]A*k 

11 1 k \2 F -Ac 
- - -Z -= ) T k(A* (A.6) T Vk =i / T T 

We shall argue that 

RI T(k) = Op(T -/2) uniformly ink E [1, kA]. (A.7) 

Note that aTk, bTk, and CTk are uniformly bounded in T and in kc ? [TFr] and 
A*k = Op(T- 1/2), it is easy to see that the first two expressions on the right-hand 
side of (A.6) are Op(T- 12) uniformly in k c [FT-r]. The second to the last term is 
F1OP(log2 F) because supl<k<rI (/lk)kl Xil= Op(log T). Finally, the last 
term is Op(T-') because ATk = Op(T-1F2) uniformly in k < kA. This gives RIT(k) = 
Op(T-1/2) uniformly in k < kA. 

Next, consider k E [Akc + 1,Ak]. We have 

y=k Al + k- 2+ ATk =k-k k + T- +A+kA* 

Thus, 

I 
(Al-142) + Xt -ATk if t E [1,ko], 

yt - P = 

ki A 
k(A2- Al)+ Xt- ATk if t C-[ko + I,k], 
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I k2 (A2- 3)+Xt-A AkiftE[k+l,k2]I 

yt -Y = 

k2 k y-)+X-*kif t E- [k2? + 1, T] . 

Hence, for k E [k? + 1, k ] 

k ~~ ~ ~~~~~ko ko 

(Yt- Yk)2 = kd + 2dTk (Xt-ATk)+ Z(X-ATk) 
t=l t=l t=l 

k k 

+ (k - kl)eTk + 2eTk (Xt - ATk) + E (Xt-ATk)2, 
t=k p+1 t=k p+I 

where dTk = [(k - k)/k] (i, - AD) and eTk = (kolk)(2- A), and 
k0 k0 

T k2 2 

E (Yt- = (k2?- k)f2k + 2fTk Z (Xt-A*k) + > (Xt -A*) 
t=k+ I k+l k+l 

T T 

+(T k2 )Tk +2 Tk (t Tk+ (t Tk) 
k 0+1 k0+1 

(A.8) 

where fTk = [(T- k2 )/(T -k)] (A2 - 3) and gTk =[(ko?- k) /(T -k)] OA3 /A2)- 

Therefore, 

UT(k/T) = - ST(k) 
T 

k 12 +kk e2(k + 2 kf2+ T 2 

T t=l 7' T 

T 

+ 2+ 

T t=l 

_ko(k -ko) (,k2O,- k2 ( T -)k2k) 

- kT 
(A I2+ T(T -k) (A3 A2)2 

+ - ZX2 + R2T(k), (A.9) 

where 
0 ~~~~~~~~~0 

1 k1 k k2 T 

R2T(k)= T[2dTkiXt + 2eTk > Xt + 2fTkZ Xt + 2gTk x X, 
T t=l ~~t=k?+l k+1 k0+1 J 

- 
2 

[k?dTk + (k - kO)eTk + (ko - k)fTk + (T7-k2)gTk]A* 

k Tk)2 
T -k 

2 -- (AT) - ~~(A*k2 (A.10) 
T T T 
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Using the uniform boundedness of dTk, eTk, fTk, and gTk as well as ATk = OP(T 1/2) 
andA*k= OP(T- /2) uniformly in k E [ ko + 1, k , we can easily show that R2T(k) = 

Op(T-1/2) uniformly in k E [ko + I,k ]. As for k > ko, using the symmetry with 
the first regime, we have 

UT(k/T) = T hTk + k T PTk + qTk + XT + 3(k), (A.11) 
T T T q T + tX+R=l) 

where, similar to before, R3T(k) = OP(T T1/2) uniformly for k E [k2, T] and 

hTk = - [(k - ko)(Al - /2) + (k - k2)(A2- 1, 

PTk = k [(A2- Al) + (k - k)(A-23)], k I 

qTk = 
I 

[ kjQ(A2 - Al )+ k2(A3 - A2)]A 
k2 

Proof of Lemma 1. Because aTk, bTk,.. ,qTk all have uniform limits for k = 
[T-r] and the stochastic terms in (A.5), (A.9), and (A. 11) all have uniform limits in 
pertinent regions for -r E [0,1], the uniform convergence of UT(T) follows easily. 
The uniform limit of UT(T) is also easy to obtain. Note that (4) and (5) are obtained, 
respectively, by taking k = ko and k = k2? in (A.9) and letting T-+ oo. U 

Proof of Lemma 2. The only stochastic terms in (A.5), (A.9), and (A. 11) are 
RiT(k) (i = 1,2,3), each of which is Op(T-1/2) uniformly over pertinent regions for 
k. Furthermore, it is easy to see that ERiT(k) = O(T-) uniformly in k (i = 1,2,3). 
These results imply Lemma 2. U 

To prove Lemma 3, we need additional results. 

LEMMA 11. There exists an M < oo such that for all i and all j > i 

t=l s-i+l ) 
Proof. Let y (h) = E(XtXt+h) . Then, under Assumptions Al and A2, it is easy 

to argue that Zh=I hJ'y(h)I < 0. Now, 

|E ( EX)(E Xs) E E y (s- t) c Z h ly (h)l c Z h l y (h)l < oo. 
t=l s=i+l t=l s=i+l h=l h-I 

We will also use the following result: there exists an M < oo, such that for arbi- 
trary i < j, 

F (, X) <M. (A.12) 
JIt=i+1 

In the sequel, we shall use aTk and aT(k) interchangeably. Similar notations are 
also adopted for ATk and A*k as well as for bTk, CTk, . 
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LEMMA 12. Under Assumptions AI-A3, there exists an M < oo such that 

TIERIT(k) - ERIT(k?)l c - - 
I 

I M. I T 
Proof. The expected value of the first two terms on the right-hand side of (A.6) 

is zero. We thus need to consider the last two terms. For k < ko 

0~~~~~~~~~ 

-( E~ j7 Xt) -- 2 Xt)zXIx 

_ (__ 0 ( EXt -2 k?(5? X) t Xt Z ) X tk+ 

= - k) (?x ) -2 ? (?x') (,xI) -k ko ( -kx t=k) 

(A.13) 

Apply Lemma 11 to the second term above and apply (A. 12) to the first term and 
the third term above; we see that the absolute value of the expectation of (A. 13) is 
bounded by MI k? - k I /T. This result holds for k > kl (we only need to use St= I 

t-+ t=k?+l in the proof). By symmetry, 

(T - k)E(A-(k))2 - (T - ko)E(A*(ko))2 c Mjk? - kl/T. 

Combining these results, we obtain Lemma 12. U 

Note that the expected values of R1T(k) forj = 1,2,3 have an identical expression 
as functions of k. We thus have 

1k? - kj 
TIERiT(k) - ERiT(k?)I ' - -T M (i = 1,2,3). (A.14) I T 

LEMMA 13. Under Assumptions A1-A3, for k < k 

EST(k) - EST(k?) 2 T[ERIT(k) - ERIT(k?)l > -M[k - klI/T (A.15) 

and, for k ? k?, 

EST(k) -EST(k2) > TIER3T(k) -ER3T(k2)I > -MIk2 - kIT. (A.16) 

Proof. For k c kl, using (A.5) with some algebra we obtain 

EST(k) - EST(k?) 

= (ko - k)aT(k)2 + (k2 - ko) [bT(k)2 - bT(ko)2] 

+ (T- k?) [CT(k)2- CT(kO)2] + T(ERIT(k)-ERIT(k?)j 

ko- k 

(1-k/T)(I -Ik/T) [(1- k/T)(1ct - IA2) + (1 - k2/T)(,2 _ - 

)2 

+ TtERIT(k) -ERlT(k?)J. (A.17) 
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MULTIPLE BREAKS 343 

The first term on the right-hand side of the preceding is nonnegative. This together 
with Lemma 12 yields (A. 15). Inequality (A. 16) follows from symmetry (which can 
be thought of as reversing the data order). U 

LEMMA 14. Under Assumptions Al-A3 and U(TO?) C U(7T2) (equality is al- 
lowed), for k c k%, there exists a C > 0 such that 

EST(k)-EST(k?) 2 Cjk-kO j for all large T. 

Proof. Because I(kP/T) - T c T - (i = 1,2), we can rewrite (A.17) as 

EST(k) - EST(k?) 

ko- k 

(I - k/T)(l - k?/T) [(I T?)(IL-/L2) + (1-TO)(I12- 

+ 0( k k) + TfERIT(k) - ERlT(k?)]. TI 

We claim that when U(r?) c U(T2), 

C = (1-1 'i) (Al1- AD + O1- T2?)(A2 - /3) 0 ? (A.18) 

Condition U(TO) S U(T20) is equivalent to 
172~~~ 

12T (IA2 - A3 )2 < O 
1 

(Ul _ A2 )2. 
1-r? T 

Multiplying (1 - r2) (1 -T) on both sides of the preceding and using (1 -T2 )-r/o4? < 
1 - we obtain 

(-T2O)2(i2 -8)2 < (1-rO1)2(AlX -82. 

This verifies (A. 18). Together with Lemma 12, we have, for all large T, 

ESr(k) EST(k?) : (kl?- k)C20- ( k) > (ko - k)C2/2. (A.19) 

Proof of Lemma 3. For k < k?, Lemma 3 is implied by Lemma 14. For k E 
[k? + 1,k2?], use the last equality of (A.9) with some algebra, 

EST(k) -EST(k?) = (k-k?)[+ (-2 ko)1)2- (T-k)( - 21 

+ TfER2T(k) -ER2T(k?)}. (A.20) 

Factor out k2/k, and use k(T - k2)/tko(T - k)} c 1, for all k c ko 

EST(k) - EST(kI) 2 (k - ko) k2 [k 2-1)2 (T -k) (At3 - 2)21 

+ TtER2T(k) - ER2T(kl)}. 

Denote C* = (4T/r20)(A2 - [ A)2 - [(1-2)/(1 - 'r)] (3 - M2)2. By (6), C* > 0. 
From 
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Ac? TrO=O(T-) T-k? A2 2T 0(T-) (A.21) 

we have 

EST(k) - EST(kAc) 

2 (k - kA) k2 C* - (k - kc)O(T-1) + TfER2T(k) -ER2T(kc)) 

Ac - ko? 
(k - kO)C* - M I ~T 

for some M < oo by (A. 14). Thus, for large T, 

EST(k) - EST(kAc) 2 (k - k)C*/2. (A.22) 

It remains to consider k ce [ko + 1, T]. From (A.16), EST(k)-EST(Ac ) 2 
-(k - k)M/T 2 - (T - ko)M/T. Thus, 

EST(k) - EST(kAc) = EST(k) - EST(kA ) + EST(k2A ) -EST(kAc) 

2 EST (Ak) - EST (Ak) - (T- Tko)M/T 

(k-c)T$- k2o [EST(k A )-EST(kA ) MJ 

the last inequality follows from (k - kA)/(T- kAc) < 1. Using (A.22) with k = k?, 
we see that the term in the bracket is no smaller than [(,ro - T )/(1 - To)] C*/4 
for large T. Thus, 

EST(Ac) - EST(Ac?) 2 (k - A) T- T 
C*/8 (A.23) 

for all large T. Combining (A. 19), (A.22), and (A.23), we obtain Lemma 3. R 

Proof of Lemma 4. Rewrite 

ST(k) - ST(A ) = ST(k) - EST(k) - [ST(kA) - EST(kA)] + EST(k) - EST(k?). 

From Lemma 3, ST(k) - ST((kA) C 0 implies that 

[ST(k) - EST(k) - [ST(kA) - EST(kc)]J/Ik - k- l '-C. 

This further implies that the absolute value of the left-hand side of the preceding is 
at least as large as C. We show this is unlikely for k E DTM. More specifically, for 
every E > 0 and -q > 0, there exists an M > 0 such that for all large T 

P sup IST(k) - EST(k) - [ST((kA) - EST((kA)]/ Ik - ko I > -) < E. 
kGDT, M 

First, note that 

IST(k) - EST(k) - (ST((kA) - EST(kAc)11 

= ITRlT(k) - ERlT(k)J - T{RlT(kA) - ERlT(kc)1 

' IT{RlT(k) - RlT(kc)1I + M'ljk - ko?IT 
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for some M' < oo by Lemma 12. Thus, it suffices to show 

P( sup TIRIr(k) - RIT(k)l/Ik - ko I > 1) < E. (A.24) 
kE-DT, M 

We consider the case k < ko. From (A.6), 

TIRIT(k)- RIT(kl )I 
0 0 

=2(aTk Xt) +2([bTk-bT(ko)I Xt) +2([CTk CT(kO )1 x,) 
t=k+lI kp+lI k2 +1 

-(ko-k)aTkA Tk-(kO-k?)[bTkATk-bT(k?)AT(k?)*J 

-(T-k2 ) [cTkA-k-cT(k?)A* (k?)I 
0 

+ [k? (~ xr) -k~ (?i~ x,)21 + [(T- ko)(AT(ko ))2 -(T- k)(A*k)2]. 

(A.25) 

We shall show that each term on the right-hand side divided by ko - k is arbitrarily 
small in probability as long as Mis large and Tis large. Because aTk, bTk, and CTk are 
all uniformly bounded, with an upper bound, say, L, the first term divided by ko - k 

is bounded by LI[l/(ko - k)]E kl+, XtI, which is uniformly small in k < k- M for 
large M by the strong law of large numbers. For the rest of the terms, we will use 
the following easily verifiable facts: 

IbTk-bT(k)I 
I 

k-k |C, ICTk-CT(k)j < k k C, (A.26) 

for some C < oo, and 

ko?-k T k? 
A* (k?) - A* (k) = k?-k T 17 

(T- k)(T- ko) tko t -kt=k (A.27) 

By (A.26), the second term on the right-hand side of (A.25) divided by ko - k is 
bounded by 

i _ _ _ _ __~k 2 -l \ 1 k2 
c xt =C xt < C' ~ ~ xt T-k 0 

| X, = C 
T-k (k , k-l k k2- ko 

k1 +1 ICk-? CkokoI k?+1 

for some C' < oo, which converges to zero in probability by the law of large num- 
bers (note that T-k k> T(1 - r2) for all k E DT) . The third term is treated simi- 
larly. The fourth term divided by ko - k is bounded by LIAk I = Op(T-1/2) 
uniformly in k e DT. The fifth term can be rewritten as 

(k2 - ko)tbTk- bT(k?)]A*k + (k2 - ko)bT(k?) [A*(k?) -A*(k)j. (A.28) 

Using (A.26), the first expression of (A.28) divided by ko - k is readily seen to be 
op(l ). The second expression divided by ko - k is equal to, by (A.27), 

k)-k? 0 , T k (- (A.29) 
(T -k)(T - ko) t=ko k 
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with the first term being op(l ) and the second term being small for large M. Thus, 
the fifth term of (A.25) is small if M is large. The sixth term is treated similarly to 
the fifth one. It is also elementary to show that the seventh term and the eighth term 
of (A.25) divided by ko - k can be arbitrarily small in probability provided that M 
and T are large. This proves Lemma 4 for k < ko. The case of k > ko is similar; 
the details are omitted. R 

Proof of Lemma 5. We prove the first inequality; the second follows from sym- 
metry. For k ' ko, Lemma 5 is implied by Lemma 14, which holds for U(r?) = 

U(rO). Next, consider k E [ko + l,ko ]. From (A.20), (A.21), and the condition 
U(Tr) = U(Tr) (i.e., (r?/T2)(212 = [(1 - r2)/(1 - -l)] (A3 - 22)2), we have 

EST(k) - EST(k?) 

-(k- ko)( ) T- _) 

+ (k - k?)O(T-1) + T(ER2T(k) -ER2T(k?)J. (A.30) 

Note that for all k c ko = (ko + k2 )/2 

k2 T-k2 (k2-k)T ?221 (k?-k)T k?-k? o o 
_- _?- a> 2 2 > 1 2 -f 
k T-k k(T-k) k(T-k) T 

The last two terms of (A.30) on the right-hand side are dominated by the first term. 
The lemma is proved. i 

Proof of Lemma 6. It is enough to prove the lemma for i = 1. The case of i = 2 
follows from symmetry. The proof is virtually identical to that of Lemma 4. One uses 
Lemma 5 instead of Lemma 3. The rest can be copied here. M 

Proof of Lemma 7. We shall prove P(ST(k) -ST(kI) < 0) 2+ or, equiva- 
lently, P(T- /2ST(kf)-ST(14)J < 0) -. Because k, = k? + Op(l), ST(ki) = 

ST(kA) + Op(l) (see the proof of Proposition 4). Because T-'2OI(l) - 0, it suf- 
fices to prove 

P(T-2 SAO) - S )T(k)} <0) 2 

Using I(k,0/T) - ? l< I/T, it is easy to show that I EST(k) -TU(r?)I < A for 
some A < oo. This implies IEST(k?) - EST(k2?)l < 2A because U(-r) = U(T?). 
Thus, 

T-/2[SA(kO) - ST(k2)) = -fT R2T(ko) - R2T(k2)} + O(T 2), 

whereR2T(k?) = T-tST(k?)-EST(ki)J (i= 1,2) (see(A.9)). Notethatwehaveused 
the fact that ST(k), when k = ko, can be represented by both (A.5) and (A.9) and we 
have used (A.9). Thus, it suffices to prove P(-/T[R2T(k?) - R2T(k2?)1 < 0) 2 
From (A.l0), 

1 k2 1 T 
T/2R2T(k A ) = 2fT(k?) - Xt + 2gT(kf ) - Xt + Op(T1/2). 

VTkp+l 0+1 
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The preceding follows from (ko? - ko)fT(k?) + (T - k ?)gT(k?) = 0 and 
(T- ko)T-'1/2 (A* (k?)) = Op(T- 12). Similarly, 

T2R k) 2d( 1 kp/ 1k2 

2(k20) =2dT(k2?) v E Xt + 2eT(k?) Z Xt + Op(T-). 2 T 
2Vt=i\2Tk 

2 

Thus, T 12tR2T(k?) - R2T(k?)J converges in distribution to a mean zero normal 
random variable by the central limit theorem. The lemma follows because a mean zero 
normal random variable is symmetric about zero. U 

Proof of Proposition 4. Consider the process ST(ko + 1) - ST(k) indexed by 
1, where I is an integer (positive or negative). Suppose that the minimum of this pro- 
cess is attained at f. By definition, I= k - ko . By Proposition 2, for each E > 0, there 
exists an M < oo such that P(I k - ko I > M) = P(Iil > M) < E. Thus, to study the 
limiting distribution of 1 = k - ko, it suffices to study the behavior of ST (ko + 1) - 
ST(kA ) for bounded 1. We shall prove that ST(ko + 1) - ST(k?) converges in distri- 
bution for each Ito (1 + X1)W(')(l,X), where XI and W(')(l,Xl) are defined in the 

d 
text. This will imply that k - kI -? argmin1(I + X1)W (l,X1) (see Bai, 1994a). 
Because (1 + X1) > 0, argmin(l + XI)W(')(l,Xl) = argmin, W()(l,X12), giving rise 
to the proposition. First consider the case of I > 0 and I c M, where M > 0 is an arbi- 
trary finite number. Let 

k+1 1 T 

o= +I Y and T= k?-I E Yt, (A.31) 

1 Ic? I T (Ak32) 

k?=-mZYt and 2 T- 0 Yt. (A.32) 
I1- t=1 t=k1 +l 

Thus, A* is the least-squares estimator of Al using the first ko + I observations and 
A* is the least-squares estimator of a weighted average of I2 and 3 using the last 
T Ik - / observations. The interpretation of Ai (i = 1,2) is similar. The estimators 
,(i = 1,2) depend on 1. This dependence will be suppressed for notational simplic- 
ity. It is straightforward to establish the following result: 

1 -Al = Op(T-' 2) and Al - = O(T-2) (A.33) 

1-ro 
2 - /2 - 0 3 - AD2) = Op(T-2) and 

l - 

2-- 1 - 
7-2 

3 -A = Op(T-1/2) (A.34) 

- = Op(T-') (i = 1,2) (A.35) 

where the Op (-) terms are uniform in I such that III c M. Now, 

ko kop+l T 

SAO + 1) = EYt_ 
- I _+E _A*)2. (A.36) Ai 0 

t=l t=kp+l k?+l+l 

Similarly, 
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kp ~~k, +I T k 0 
k~~~0+ 

0 Sr(k?)= ( _ (Y-y)2 + 2 (t2)2 + A2 (t2)2. (A.37) 
t=1 t=k? ?I k?+1+ 1 

The difference between the two first terms on the right-hand sides of (A.36) and 
(A.37) is 
ko ko 

(Y- (Yt = k( - = (T (A.38) 
t=1 t=1 

Similarly, the difference between the two third terms on the right-hand sides of (A.36) 
and (A.37) is also Op(T-1). Next, consider the difference between the two middle 
terms. For te [1k + 1,1], Yt t2 + Xt. Hence, 

k +l k p +l I ~~~~~?I 
(yt _ A*)2 _ Z AY 2)2 ~~~~~ ~ ~ ~ ~~(y 

t=kp+1 t=kp+1 

k0+l 

= 2{82-8-(82-82) E Xt + 1(82 - A*)2 (28)2 }. (A.39) 
t=k1 ?1 

From (A.33) and (A.34), we have 

2- 1-(A2 - 2) = (A2 - I)(I + X1) + Op(T-1/2) 

and 

(y-1)2-( 8)2 
_ 

( tI-)2(1 _ X2) + OP(T- 1/2. (tA2 - -T (t2 - A2= -A I ~ ~T~) 

Thus, (A.39) is equal to 

k0+ 

2Q82 - 8t1)(l + X1) EII~ Xt + l(/L2 - i)2(l _ X2) + Op(T-1/2). (A.40) 
t=k1?l 

Under strict stationarity, Etk +1 Xt has the same distribution as l=, X,. Thus, 
(A.40) or, equivalently, (A.39) converges in distribution to (1 + X1 ) W21(( 1, X 1 ). This 
implies that ST(ko + 1) - ST(k?) converges in distribution to (1 + X1)W(1)(l,,X1I) for 
I > 0. It remains to consider I < 0. We replace I by -I and still assume I positive. In 
particular, A* and A* are defined with -l in place of 1. Then, (A.36) and (A.37) are 
replaced, respectively, by 

k?-I T 

ST(ko 1) = (t8)2+ Yt t A*2+ Yt8)2 (A.41) 
t-1 t=k?-1+1 k?+l 

and 

kp0- kp T 

ST(k?) = Z (Yt-H1) + >2 (Yt- A)2 + 3 (Yt-j2)2. (A.42) 
t=l t=k? -1+1 k +1 

The major distinction between (A.36) and (A.41) lies in the change of 4* to j4 for 
the middle terms on the right-hand side. One can observe a similar change for (A.37) 
and (A.42). Similar to (A.38), the difference between the two first terms on the right- 
hand sides of (A.41) and (A.42) is Op(T-1). The same is true for the difference 
between the two third terms. Using Yt = LI + Xt for t c kl, we have 
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k0 0o 

E (y A * )2 E (ty AI)2 
t=k?-l+1+ t=k1-1?1 

0 k? 

- 2(g 4-*) E Xt + (it-, *)21f O(T 1/2) 
t=k?-1+1 

0 
ki 

=-2(A2- )l1)(1 + X1) E Xt + (2- _i)2(l + XI)21 + Op(T 12). 
t=k1-l?l 

Ignoring the Op(T-1/2) term and using strict stationarity, we see that the preceding 
has the same distribution as (1 + X1)W(( -1, XI). In summary, we have proved that 
ST(kA + 1) - S(k) converges in distribution to (1 + xI)W01) (i,X1). This conver- 
gence implies that k- -* argmin,(l + X1)W(')(l,X ) - argmin, W(1)(l,X1). The 
proof of Proposition 4 is complete. X 

Proof of Proposition 5. The argument is virtually the same as in the proof of 
Proposition 4. The reason for X = 0 is that regression coefficients can be consistently 
estimated in this case, in contrast with the inconsistent estimation given in (A.34). 
The details will not be presented to avoid repetition. U 

Proof of Proposition 6. By the T consistency of ki11 and ki+1, we see that k29 
is a nontrivial and dominating break point in the interval [ ki_ I, ki+ I ]. Thus, the T 
consistency of ki* for kio follows from the property of sequential estimator. The argu- 
ment for the limiting distribution is the same as that of Proposition 5. i 

Proof of Lemma 8. 

(a) First, consider k ' ko. From (A.5), 

T 

UT(k/T) -EUT(k/T) - T- (X2-EXt) = IRIT(k) -ERT(k)l. 
t= 1 

(A.43) 

The first two terms of RIT(k) (see (A.6)) are linear in ktiT and, thus, are 
VTOp(T- 1/2). The last two terms do not depend on MiT but are of higher 
order than VTOp(T -l/2). Moreover, ERlT(k) = O(T-1) uniformly in k. 
Thus, IRlT(k) - ERlT(k)I = Op(T-12 VT) uniformly in k ? ko. This proves 
the lemma for k c ko. The proof for k 2 ko is the same and follows from 
RiT(k) - ERiT(k) = Op(T-1/2 VT) (i = 2,3). 

(b) Consider first k ' ko. By the second equality of (A. 17), the first term of 
EST(k) - EST(k?) on the right-hand side depends on the squared and the 
cross-product of MiT - IA(i+?)T (i = 1,2) (hence, on V2). Factor out v2 and 
replace ,u; by Aj; the rest of proof will be the same as that of Lemma 3. This 
implies that 

EST(k) - EST(k?) ?- V(ko - k)C2/2, 

where C is given by (A. 18) with ,j in place of it. The proof for k > ko is sim- 
ilar and the details are omitted. U 

Proof of Lemma 9. As in the proof of Lemma 4, it suffices to show that for 
every r, > 0 there exists an M > 0 such that, for all large T, 
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( sup Tf RIT(k) - R1T(k?)I/Ik-k?I > ,v) <,e. (A.44) 
kEDT, M 

The preceding is similar to (A.24) with v replaced by qv2 and DT,M replaced by 
DTM. Note for k E DM we either have k < k- MVT2 or k > ko + MVT2. Con- 
sider k < k- MVT2. We need to show that each term on the right-hand side of 
(A.25) divided by ko - k is no larger than 'qv2 as long as M is large and T is large. 
The proof requires the Hajek and Renyi inequality, extended to linear processes by 
Bai (1994b): there exists a C1 < oo such that for each I > 0 

( 1 k ) Cl Pi sup - >jxt >a< 

Now consider the first term on the right-hand side of (A.25). Note that I aTk C VTL 
for some L < oo. Thus, it is enough to show 

Pi sup 1 XI > ?7VTL < E 
0k<k-MvU2 ko - k /=k1) 

for large M. By the Hajek and Renyi inequality (applied with the data order reversed 
by treating ko as 1), 

Pt sup k Xt > 
1VTL 

) 
<22- C1L2 _ L k<k -Mv2 ko - kt=+ 77VTMV mv- 1 m 

The preceding probability is small if M is large. The proof of Lemma 4 demonstrates 
that all other terms are of smaller or equal magnitude than the term just treated. This 
proves the lemma for k less than k?. The proof for k > ko is analogous. U 

Proof of Proposition 8. The proof is similar to that of Proposition 4. In view 
of the rate of convergence, we consider the limiting process of AT(S) = ST(kA + 
[svjc2]) - ST(k?), for s E [-M, M] for an arbitrary given M < oo. First, consider 
s> 0. Let 1 = [sv-2]. Define fi, and Ai as in (A.31) and (A.32), respectively. Then, 
(A.33)-(A.35) still hold with j interpreted as 1jT. For example, 

k0+ 
V7tVT(A~2 -Itl) T 1 kI+ -KIT) = 

k4o12 I + --k?T+ Xt=0=(l). 

This follows because, from Ill c MV-2, the first term on the right-hand side is 
of 0(1/(NVTVT)), which converges to zero, and the second term is Op(l). Equa- 
tions (A.36) and (A.37) are simply identities and still hold here. Similar to the proof 
of Proposition 4, the difference between the two first terms and the difference be- 
tween the two third terms of (A.36) and (A.37) converge to zero in probability. Equa- 
tion (A.40) in the present case is reduced to 

k?+1 

2(1 + X1)(A2 - flj) VT E Xt + IV(2 -AI)2(l - X1)2 + O 1/2). 
t=k? +1 

Note that XI is free from VT because it is canceled out due to its presence in the 
denominator and the numerator. From I = [sv-2], using the functional central limit 
theorem for linear processes (e.g., Phillips and Solo, 1992), 
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k p+ [svf2 ] [sv I2] 

VT Xt = VT j Xko > a(l)a,B2(S), 
t=k?+1 t=I 

where B2(s) is a Brownian motion process on [O,oo) and 

T [svT2] VT S uniformly in s e [O,M]. 

In summary, for s > 0, 

SAOk + [SV-2])- (k =21 +X)8-A)a(1)or,B A)+(H-)2 X2-). 

The same analysis shows that for s < 0 

ST(kA + [SVuj]) - ST(k1) 

> 2(1 + XA1)(2 - I)a(l)u,BI(-s) + IS(2 _A1)2(1 + X1)2, 

where B1 (.) is another Brownian motion process on [O,oo) independent of B2(). 
Introduce 

r 2a(1) aBl (-s) + IsI(l + X) if s < 0, 
F(s, X) = 

,-2a (1),o,B2(S) + ISIO - XY if s > O, 

with (, x) = 0. The process r differs from A in the extra term a(1) E, By a change 
of variable, it can be show that argminsr(s,X) - a(1) q, argminsA(s,X). Now, 
because cBi (s) has the same distribution as Bi (c2s), we have 

ST(kA + [SVT]) - ST(k?) =; (1 + Xl)r((i2 -_)A5SXo) 

This implies that 

TvU-r -+ argmins(1 + x,)r((A2- 
d 
= (A2-A1 -2 argmin I' (v,X1) 

- (A2 - i?)2a(l )2u argmin0 A(v,X1). 

We have used the fact that argmin, af(x) = argmin, f(x) for a > 0 and 
argminx f(a2x) = a-2 argminx f(x) for an arbitrary function f(x) on (R. U 

Proof of Lemma 10. From identity (2), SN- SN(k) = NVN(k)2, where VN(k) = 
{(k/N) ( - k/N)3 1/2(k* k- Yk). It is enough to consider k such that k E [ nyq, n (1 - )] 
because N and n are of the same order. Now, 

N1/2 VN(k) 

I n+n2 1 k 

=N/2 j(k1N) ( -k1N) 1/2n+n- 
' 
Xt- + n xt n+n2-k k-- k+nI -nj+1 

++ 
+ n2 

A2 
n2 

I 
n+n2-k n n+n2-k 

nl I _k_n 

k+n1 k+n1 
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=N1/2 (k/N)(1-k/N)1/2( 1- n 1 k E + E - 
n+n2-k k>I k+nl -nl+l n 

1/k/2 )1 k 1/2 /1 -1/21 =-n (kln)(I -kn)}I n -k z - - tJ + Op(n) n -kkl ? k'1/ 

-(kln) (l- kln) -/ - ( EXt) - @ZX,| + Op(n ) 

where the second equality follows from ni = Op (1) and k - (n 1) the third 
follows from the asymptotic equivalence of N and n, and the fourth follows 
from some simple algebra. For k = [nf], N1/2 VN(k) converges in distribution to 
a(l)at(l 'r)V'12LrB(l) - B(r)]. This gives the finite-dimensional convergence. 
The rest follows from the functional central limit theorem and the continuous map- 
ping theorem. U 
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