ESTIMATION OF A CHANGE POINT IN MULTIPLE REGRESSION MODELS
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Abstract—This paper studies the least squares estimation of a change
point in multiple regressions. Consistency, rate of convergence, and
asymptotic distributions are obtained. The model allows for lagged
dependent variables and trending regressors. The error process can be
dependent and heteroskedastic. For nonstationary regressors or distur-
bances, the asymptotic distribution is shown to be skewed. The analytical
density function and the cumulative distribution function for the general
skewed distribution are derived. The analysis applies to both pure and
partial changes. The method is used to analyze the response of market
interest rates to discount rate changes.

I. Introduction

ARAMETER instability for economic models is a

common phenomenon. This is particularly true for
time-series data covering an extended period, as it is more
likely for the underlying data-generating mechanism to be
disturbed over a longer horizon by various factors such as
policy-regime shift. For example, for the empirical problem
examined in this paper, we find that the response pattern of
interest rates to the changes in discount rates varies over
time. The timing of variation is consistent with the timing of
changes in the Fed’s operating procedures. It is well known
that failure to take into account parameter changes, given
their presence, may lead to incorrect policy implications and
predictions. On the other hand, proper treatment of param-
eter changes can be useful in uncovering the underlying
factors that fostered the changes, in identifying misspecifica-
tion, and in analyzing the effect of a policy change. The
purpose of this paper is to study the parameter-change
problem in multiple regressions with an unknown change
point. The main concern is the estimation of the change
point as well as the statistical theory of the change-point
estimator. We derive some useful results under fairly general
conditions.

For independent and identically distributed observations
up to a parameter shift, there is a well-developed theory
under maximum-likelihood estimation (see Hinkley (1970),
Bhattacharya (1987), and Yao (1987)). For a mean shift in
linear processes estimated with the least-squares method, the
theory is also worked out (see Bai (1994) and Antoch et al.
(1996)). For multiple regression models, the change-point
problem is also studied widely. Yet most of the existing work
focuses on testing rather than estimation (e.g., Kim and
Siegmund (1989) and Gombay and Horvith (1994)). A
number of authors investigated the consistency property for
the estimated change point, but the rate of convergence is not
obtained. These include Krishnaiah and Miao (1988), Hor-
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véath (1994), and Nunes et al. and Newbold (1995), among
others. Consistency is not enough for deriving the asymp-
totic distribution. The rate of convergence is needed for this
purpose.

In this paper we develop the asymptotic theory for the
estimated change point in multiple regressions. These in-
clude consistency, rate of convergence, and asymptotic
distribution. While we improve the existing consistency
result by deriving the rate of convergence, the conditions
required are much weaker than those in the existing litera-
ture. Our model allows for lagged dependent variables and
trending regressors. Furthermore, the disturbances can be
heterogeneous and dependent over time. In particular, we
assume the disturbances form a sequence of mixingale,
which include strong mixing, linear processes, and other
dependent structures as special cases, as shown by Hall and
Heyde (1980) and Andrews (1988). In addition, the rate of
convergence is obtained for both fixed magnitude of shift
and shrinking magnitude of shift. As for the asymptotic
distribution, we show that it is skewed except for stationary
or asymptotically stationary regressors and disturbances. We
also derive the analytical density function and cumulative
distribution function for the skewed distribution. These are
not studied by the existing literature.

Furthermore, the problem is considered in the context of
partial change, in which some of the regression parameters
hold constant throughout the sample. These parameters are
estimated using the entire sample in order to gain efficiency.
When all parameters are allowed to change, a pure structural
change model is obtained. Therefore a partial structural
change amounts to imposing parameter restrictions across
regimes. Advantages of a partial change model include more
efficient estimation of the regression parameters and better
conservation of degrees of freedom. The latter is important
for a regression problem with a limited number of observa-
tions but many regressors, which is typical for many
economic applications.

As an application, we study the relationship between
changes in market interest rates and changes in discount rate.
This relationship is found to be unstable over time. It
appears that changes in the Fed’s operating procedures
during the period of October 1979—-October 1982 alter the
response pattern. Through this application, we describe in
detail the procedure for implementing the theoretical result.
In particular, we discuss how to tackle the problem of
multiple breaks for empirical problems in a sequential way,
and how to construct confidence intervals.

The rest of the paper is organized as follows. Section II
specifies the model and the underlying assumptions. Consis-
tency, rate of convergence, and asymptotic distribution are
derived in this section. Construction of confidence intervals
is considered. Section III studies the response pattern
of market interest rates to changes in the discount rate.
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Procedures for implementing the theoretical results are
discussed. Concluding remarks are provided in section IV.
Technical materials are collected in the appendices.

II. Theoretical Result
A. Model and Assumptions
Consider the following linear regression with a change
point at ky:

yt:Wlta+Z,t81+€t’ =1721"',k0

(1
t=k0+l,...,T

Y =wie + 218 + €,

where y, is an observation on the dependent variable, w, and
7, are vectors of regressors, and €, is an unobservable
disturbance. The vectors «, 8;, and &, are unknown param-
eters. We assume 8; # 85, so that a change has taken place.
The change point ky is unknown. Our purpose is to estimate
these parameters. The analysis is based on a reparameteriza-

tion. Letx, = (w}, z,)', B = (a’, 8{)’, and & = 3, — ;. Then
equations (1) can be rewritten as
y, = xiB + €, t=1,2,...,k
, , (2)
y,=xiB+2zid+ €, t=k+1,...,T.

Now z,is a subvector of x, and & # 0. More generally, let z, =
R'x,, where R is a p X g known matrix with full column
rank. This defines z, as a linear transformation of x,. For R =
(0,1)', with I an identity matrix, a partial change like
equations (1) is obtained. For R = I, a pure change model is
obtained.

To present the model in a matrix format, further notation

is necessary. Let Y = (yy,...,yp), X = (x, %2, ..., X 1),
62(61’627'~"€T),’X]:(x17x27---axk705'-~70),’X2:
(0,.-.,0,Xk+],-..,x T),a and XO = (07""07 xk0+ls

., xr)'. The matrices X; and X, depend on k, but this
dependence will not be displayed for notational simplicity.
Define Z,, Z,, and Z; in a similar way (i.e., replace x; by z,).
Then Z, = X|R, Z, = X,R, and Z; = X,R. Equations (2) can
then be rewritten as

Y=XB + Zd + e 3)
The least-squares method is used to estimate the model.

Let S7(k) denote the sum of squared residuals when regress-
ing Y on X and Z,. The change point k is defined as

A

k = arg min Sp(k).
1=k=T

In practice, the existence of a break may not be known. A
hypothesis testing is often performed. The sup-Wald-type
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test statistic is SUpxen1.01-m71) W 1(k), Where

Wy = HEMZID @
! 62(k)
WlthM =1—-XX'X)"'X,6%k) = S;(/(T—p— q),7E

O, 2) a small number, and (Bk, Sk) being the least-squares
estimator of (8, 8) by regressing Y on X and Z,. Let S denote
the sum of squared residuals by regressing Y on X alone.
From the identity S — S(k) = 8;(Z:MZ ,)3; (see Amemiya
(1985, pp. 31-33)), we see that the Wald test statistic is a
monotonic transformation of S7(k). It follows that

k= arg mkin Sr(k) = arg mfx 8,2 (ZZ’MZZ)Sk

(5)
= arg ml?x W (k).

That is, the estimator obtained by minimizing the sum of
squared residuals is the same as maximizing Wald-type
statistics. These statistics are used in Andrews (1993) and
others for testing the existence of a change point. Christiano
(1992) uses these statistics for estimating potential changes
in U.S. gross national product (GNP). It is useful to note
that, for empirical applications, a break point estimator is
obtained automatically when the null hypothesis is rejected,
combining the testing and estimation in a single step.!

The assumptions needed for the theoretical results are
stated below. The notation ||-|| denotes the Euclidean norm,
that is, ||x|| = (22, x7)2 for x € .72 7. For a matrix A, [|A||
represents the vector-induced norm.

Al: ko= [1T], where T € (0, 1) and [ - ] is the greatest
integer function.

A2: Thedata{(yr, x7r,z7); 1=t <T,T=1ljforma
triangular array. For notational simplicity, the subscript T
will be suppressed. In addition, z;, = R'x,, where Ris p X g,
rank (R) =q,z,€ R4, x, € P, q=p.

A3: The matrices (1/j)3_, xx}, (1/])2, T—jr1 XeXes
(U)Z o1 XXl and (1)}, x,xjhave minimum eig-
envalues bounded away from zero in probability for all large
J. That is, there exists X > 0 such that for every € > 0, there
exists jo such that P(\; > N\) > 1 — e for all j > j,, where \;
denotes the minimum eigenvalue for each of the above
matrices. For simplicity, we assume these matrices are
invertible when j = p. In addition, these four matrices have
stochastically bounded norms uniformly in j. That is, for
example, sup;; [|(1//)2]_, x,x| is stochastically bounded.

A4: (X'X/T) converges in probability to a nonrandom
and positive definite matrix.

! While hypothesis testing requires that k € [Tw, T(1 — )] for small
7 > 0, the estimation theory does not require this restriction, provided that
a change point is assumed to exist. In practice, the existence of a break may
not be known a priori. If the existence is determined via a test, such a
restriction is implicitly imposed for empirical work.
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A5:  For random regressors, sup, E||x ,||**® = K for some
d>0and K <.

A6: The disturbances e} satisfy one of the following
two alternatives:

a. [e, ] form a sequence of martingale differences for % = o —
field [e;, x 441; 5 = #}. Moreover, for all 7, Ele| 4*® < K for
some K < and 8 > 0. Or

b. The disturbance e, is independent of the regressor x, for all f and
s. For an increasing sequence of ¢ fields %, le, Z} form a
sequence of L’, r = 4 + 3, mixingales with mixingale numbers
[y} and mixingale norms {c/}. See Hall and Heyde (1980, p. 21)
for the definition of L? mixingales and Andrews (1988) for
general L” mixingales. In addition, 3; j!+3s; < o for some 8 > 0
and max;|c; | < K < .

Assumption Al assumes that the shift point is bounded
away from the end points, which is used for asymptotic
purpose. Assumption A2 allows for trending regressors
written in the form (#/T), [ > 0, or, more generally, written
as any function of the time trend g(#/T'). Expressing them in
this format avoids a scaling matrix that would otherwise be
required when deriving limiting distributions. This format is
also required by assumptions A3 and A4 because no scaling
matrix is used in these two assumptions. A3 requires that
there be enough data around the change point and at the
beginning and at the end of the sample, so that the change
point can be identified. The latter half of A3 is typically
implied by the strong law of large numbers for the sequence
of {x,x}}. Assumptions A4 and A5 are standard for linear
regressions, and they are used for the central limit theorem.
Assumption A6a allows for lagged dependent regressors
(e.g., autoregressive models); A6b allows for general serial
correlation in the disturbances. A6 together with A4 and AS
imply the strong law of large numbers for x€, because
conditions in Hansen (1991) are satisfied. These conditions
are sufficient to obtain the rate of convergence for the
estimated break point. Note that no stationarity for regres-
sors or disturbances is required for consistency.

B. Consistency

We shall establish the consistency and the rate of conver-
gence for the change-point estimator. The rate of conver-
gence not only describes how fast the estimator converges to
the true value, it is also necessary in order to derive the
limiting distribution. As will be explained later, it is useful to
consider asymptotic distributions under shrinking magni-
tude of shift such that 8 depends on T with 87 — 0. Thus we
will need the rate of convergence for shrinking shifts.
Apparently the magnitude of shift cannot be too small,
otherwise it will be impossible to identify the change point.
Assume

1
A7: 8;— 0, and T2~*3; — o for some a € (0, D.
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PrOPOSITION 1: Assume the conditions of A17A6. If 87
is fixed or 8y — O but satisfying A7, then k = ko +
0,([137]172).

Similar results are obtained for identically and indepen-
dently distributed (i.i.d.) models up to a shift, as in Yao
(1987) and Bhattacharya (1987). Bai (1994) derives this
result for a mean shift in linear processes and Picard (1985)
for a Gaussian autoregressive model. To the author’s knowl-
edge, proposition 1 is the first result for multiple regression
models.? Furthermore, the conditions required in this paper
are far less restrictive than those in the existing literature.
This rate of convergence holds for models with lagged
dependent variables, so that the autoregressive model is a
special case. Our result holds for trending regressors. We
also allow for dependent and heterogeneous disturbances.
The disturbances can be a sequence of mixingales, thus
including linear processes and strong mixing processes as
special cases. Under much stronger assumptions, Horvith
(1994) proves the consistency of ¥ = k/T, but without
obtaining the rate of convergence. Proposition 1 implies that
T+(4 — 7) converges to zero in probability for any o < 1 for
57 fixed. In a recent work, Nunes et al. (1995) also prove
consistency for the estimated break fraction, but without rate
of convergence. A fixed magnitude of shift is considered by
these authors.

Let B B(k) and 5= S(k) be the estimators of 8 and 8
corresponding to k. That is, we replace Z, by Z, with k = k
and then estimate model (3). We have

COROLLARY 1: Under the assumptions of proposition 1
together with €, being uncorrelated and Ee? = o for all ¢,
then

TE-8 ]
. S N(, g2V 1)
VT3 — 37)
where
-7 r .
2 Xt Xy E X2y
1|=1 t=ko
= plim = . 6
\%4 plmT . 6)
E %X} 2 tht
Lt=ko t=ko

For serially correlated and heteroskedastic disturbances, the
variance—covariance matrix of the limiting distribution is

2 For the least absolute deviation (LAD) method, Bai (1995a) obtains the
same result under stronger assumptions.
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given by V-1UV ~1, with

. T -
> E(xixies) D, E(xzies)
1 [ij=1 i,j=ko (7)
U=1lim— .
T| r T
E E(ijl,e,ej) E E(Z,Z;E,ej)
Li.j=ko i,j=ko A

Notice that & and fg have the same limiting distributions as if
ko were known. A similar result is obtained by Bai (1994) for
a mean shift in linear processes.

C. Asymptotic Distribution

We consider two frameworks of asymptotic distribution.
One is based on the fixed magnitude of a shift, the other on a
shrinking magnitude of shift. We first consider the case of a
fixed shift. To obtain the limiting distribution, additional
assumptions are necessary. Assume

A8: The process (z,, €[ _, is strictly stationary.

We define a stochastic process W*(m) on the set of
integers as follows: W*(0) = 0, W*(m) = W (m) form <0
and W*(m) = W,(m) for m > 0, with

0

Wim)= -8 >

i=m+1

0
ZlZIIS + 28, Z;€;,
2, ®

m=-—1,-2,...

Wi(m)= —8d' >, 72} — 28" D, 7€,
i=1 i=1 9)

m=1,2,....

In case of independence for (z;, €,) over ¢, the process W* is a
two-sided random walk with (stochastic) drift.

PROPOSITION 2: Under assumptions A1-A6 and A8, and
assuming that (8'z,)? * (8'z} )€, has a continuous distribution,
then

k — ko 4, arg max W*(m).

The above limiting distribution can be extended to
nonstationary data. For simplicity, assume {z, €} are i.i.d.
(z, €M) for t =< kg and {z,, €} are i.i.d. (z?, €®) for t > ky in
model (2). Then the limiting distribution still holds if one
regards (z;, €;) in equation (8) as i.i.d. (z(V, €) and (z;, €;) in
equation (9) as i.i.d. (z?, €?).

To derive the probability function of the limiting distribu-
tion, one must know & and the distribution of {z,, €,}. Hinkley
(1970) studied the case for z; = 1 and €, i.i.d. normal.
Analytical solutions for general cases are typically difficult
to obtain. An alternative asymptotic theory is to consider
small shifts, assuming the magnitude of shifts converges to
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zero as the sample size grows unbounded. The result is that
the limiting distribution is invariant to the underlying
distribution of z, and €. The resulting distribution can be
used as an approximation even for large shifts. This idea can
be found in Bhattacharya (1987), Picard (1985), and Yao
(1987) for various special models. This framework is
extended here to general regression models. Moreover, we
allow nonstationary regressors and disturbances. In this
case, the limiting distribution turns out to be nonsymmetric.
We derive the analytical density function and the cumulative
distribution function (cdf) for this general limiting distribu-
tion, so that confidence intervals can be constructed. To this
end, we amend assumption A7 to

A7": 8; = dyup, where vy is a positive number such that
or— 0 and T2~y — oo for some o € (0, %) and 8, # 0.

This amendment makes the asymptotic argument easier.
Further assume

A9a: (z, €) is second-order stationary within each re-
gime such that Ez,z, = Q; and E€> = o} for t < ky and
Ez,zZ, = Q, and E€* = o2 for t > k.

A9b: A functional central limit theorem holds for {ze€,]
within each regime. That is,

[rko]
—-12
ko 2 7€ = B (1),
=1

ko+[r(T—ko)]

>

t=ko+1

(T — ko)~ 7€, = B, (r)

where B;(r) is a multivariate Gaussian process on [0, 1] with
mean zero and covariance EB;(u)B;(v) = min {u, j€); for
i = 1,2 and Q; = lim E(k,"2k z€)* and Q, =
lim E[(T — ko)‘”zE,Tzkoﬂ 7€ 1%

Define
; 800,8 P 3€1,3 (10)
= an = .
80018 3£
Let Wi(s), i = 1, 2, be two independent standard Wiener

processes defined on [0, ), starting at the origin when s =
0. Let

Wi(=s) —[s]/2,
Z(s) =
VoW, (s) — &|s|/2, if s> 0.

if s =0
(1D

PrOPOSITION 3:  Under assumptions A1-A6, A7, and A9,

(870:87)* .

5100, k — ko)Aarg mSax Z(s). (12)

The density function and the cdf of arg max, Z(s) are
derived in appendix B. The distribution of k is not symmetric
when &€ # 1 or ¢ # 1. When Q,, {;, and (rf are the same for
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each regime (§¢ = 1 and ¢ = 1), the limiting distribution
reduces to (write O, = Q> = Qand (), = Q, = )

(STQST)
— ko) % arg max (W(s) — |s]/2} (13)

fQST
where W(s) = W (—s) for s = 0 and W(s) = W,(s) fors > 0.
Finally, when the errors are uncorrelated, we have ) = ¢2Q,

and the limiting distribution further reduces to

STQBT .

(k — ko) % arg max (W(s) — |s|/2). (14)

In this case, the distribution is symmetric about the origin.
Its density function is studied by Bhattacharya (1987),
Picard (1985), and Yao (1987).

Next we consider z, being a vector of trending regressors
such that z, = g(t/T) = [g/(tT), ..., g,(t/T)]". Clearly,
assumption A9 will not be satisfied; we need to derive the
limiting distribution separately.

PrRoPOSITION 4:  Letz, = g(/T) = [g,(T), . . ., g,(t/T)Y’,
with g;(x) having a bounded derivative on [0, 1]. Assume
that the functional central limit theorem holds for €, within

each regime. Under assumptions A1-A6,
d78(M)g(1)'dr . J
—— (k= ko) = arg max Z7(s) (15)
U s
where
Wi (—s) — |s]/2, if s =<0
Z'(s) = (16)
VLA W, (s) — |s|/2, if s> 0.
with §; = limE(k,"23%, €)? and ¢, = lim E[(T —

ST
ko) 1/22t=k0+ A

When ¢, is second-order stationary for the whole sample,
U =, =¥ =0+ 237, E(g¢)), the limiting distribution
reduces to 87 g(1)g(7)’ srq; 2(k — ko) — arg max {W(s) —
|s|/2}. Furthermore, when the €, are serially uncorrelated,
U2 = o2 = Ee’.

D. Confidence Intervals

The results derived above allow easy construction of
confidence intervals for the change point. All that is needed
is to construct consistent estimates for Q;, {);, 0'?, i=1,2,
and d7. We discuss various special cases below.

1. (z, €,) is second-order stationary for the whole sam-
ple. In this case, the limiting distribution is characterized
by equation (13) or equation (14). For serially uncorrelated
disturbances, we only need estimates for 87, O, and o2. An
estimate for 87 is already available; Q and o? are estimated
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T-'3I_ | zz/ and T7'3T | &, respectively. Define L=
STQS 7/62. It can be shown that (L — L)(k — k ¢) 2 0. Thus
equation (14) holds when &7, Q, and ¢? are replaced by their
estimators. A 100(1 — a)% confidence interval is given by

k — [c/L] = 1,k + [e/L] + 1] (17)
where c is the (1 — «/2)th quantile of the random variable
arg max |W(s) — |s|/2); [¢/L] is the integer part of ¢/L. The
quantile ¢ can be computed from the cdf formula (B.4) in
appendix B. For example, for o = 0.1, ¢ = 7.0 and for a =
0.5,c¢ =11.0.

For serially correlated disturbances we need an estimate
for ), which can be obtained by the method of Newey and
West (1987). Define L = (5:08,)%/(5,/Q8;). The confidence
interval is again given by equation (17) with this new L.

2. (z;, €) is stationary within each regime. In this case,
the limiting distribution is described by equation (12). The
quantities to be estimated are Q;, {);, i = 1, 2, and &;. We
estimate Q; by k Ek 1225 and O, by (T — k)~ ‘Et fap 21
The (); are estimated by the Newey and West method, but

), is computed using the subsample [1, k] and Q, using
the subsample [k + 1, T]. For serlally uncorrelated e,,

O = 00; of 1s estimated by k- ‘2" &and o by
(T — k) ‘21 Pl t Once these quantities are obtained, we

can estimate £ and ¢ in equation (10) by the plug-in method.

Note that 8, can be replaced by 87 in estimating & and .
(Multiply both the numerator and the denominator by v, and
use dr = dyur.) When & and ¢ are known, the quantiles for
arg max, Z(s) can be computed from the cdf formulas (B.2)
and (B.3). Let ¢, denote the (a/2)th quantile, and c, the
(1 = a/2)th quantile. Define L = 370:8:)%(57(1,57). Be-
cause Plc; < L(k —k)<c]— 1 — a,al00(l — )%
confidence interval is given by

k= [c/L1 =1, k—[c/L] + 1]. (18)

3. Trending regressors. The limiting distribution is given
in proposition 4. First consider the simple case that €, is
stationary. Let f (0) denote an estimate of the spectral density
of €, at zero (w1th0ut 21r). For serially uncorrelated €, f 0)
= 62 = T7'3" | &. Define L= STg(k/T)g(k/T) ST/f(O)
In this case, \111 = ll}z and Z¥(s ) = W(s) — |s|/2. The
quantiles are computed from equation (B.4). The confidence
interval is given by equation (17) with the newly defined L.

When the €, are only stationary within each regime,
let fl (0) be an estimate of spectral density of e, for the first
regime (using the subsample [1, k]) and f2(0) for the second
regime. We estimate {,/(s; by fz(O)/fl (0). The quantiles of
arg max Z'(s) are computed from equatlons (B 2) and (B. 3)
with & = Y/ and € = 1. Define L= STg(k /T)g(k /Ty
ST/fl(O) The confidence interval is then computed using
equation (18).



556

III. Empirical Result

In this section we analyze the response of market interest
rates to the changes in the discount rates. The discount rate is
the rate at which the Fed lends and is set by the Fed. It has
been noted by many researchers that discount-rate changes
of the same size can have different effects on market interest
rates (see Dueker (1992) and the references therein). The
differentials in the response may reflect different causes that
prompted the Fed to change the discount rates or reflect the
conditions of the economy. Here we model the response of
market interest rates to discount-rate changes by a simple
linear model and examine the response pattern over time. As
an additional purpose, this application illustrates the proce-
dures for implementing the theoretical results.

A. The Data

Data used in this analysis can be found in Dueker (1992).
The yields of three-month T-bills are used as the market
interest rates. The range of data spans 1973 to 1989. Over
this period, there were 56 changes in the discount rate made
by the Fed. An observation is obtained every time there is a
change in the discount rate. A change in interest rate is
calculated as the closing T-bill rate on the day of a
discount-rate change, minus the closing T-bill rate the day
before the change. Thus the data are in daily level (fre-
quency). Because discount rates are changed irregularly, the
observations are not equally spaced in calendar time.
Changes in the discount rate are plotted in figure 1 along
with changes in interest rates. The vertical dotted lines
represent the size and direction of the discount-rate changes.
The solid line represents the changes in interest rate.

B. The Model

The following simple linear regression is used to describe
the response relationship:

ATB; = a + BADR; + €; (19)
where ADR,; denotes the change in the discount rate for the
ith observation, ATB; denotes the change in the market
interest rate, and ; is a stochastic disturbance. Because the
data have daily frequency and two adjacent observations are
generally far apart over time, it is reasonable to assume that
the €; are uncorrelated over time. In particular, under the
efficient-market hypothesis, €; will be a sequence of martin-
gale differences. In this case, equation (19) describes the
market’s reaction to the “news” of the Fed’s discount-rate
changes. This model is similar in spirit to the one used by
Roley and Wheatley (1990) in their study of interest-rate
response to the money announcement surprises. The appro-
priateness of this model is further discussed in the comment
section below.

The above simple linear relationship assumes that a
change in the discount rate of the same size in absolute value
(regardless of an increase or a decrease) has the same effect
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FIGURE 1.—CHANGES IN DISCOUNT AND INTEREST RATES (DOTTED VERTICAL
LINES—DISCOUNT-RATE CHANGES; SOLID CURVE—INTEREST-RATE CHANGES)
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0.0
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on market interest rates. It is possible that an increase in the
discount rate has a different impact on interest rates from a
decrease, if the direction of discount-rate changes carries
economic or financial information. Therefore we suggest a
modified response model,

ATB; = a + BADR; + yADR; + ¢ (20)
where ADR* = max {0, ADR} and ADR~ = ADR* —
ADR . When this model is fitted to the data, the adjusted R?
shows a marked improvement over equation (19). Also, the
hypothesis of equal coefficients for ADR* and ADR™ is
easily rejected. Both models are to be examined. The first
will be referred to as the symmetric response model, and the
second as the asymmetric response model. We will compare
the estimation results. In particular, we examine how the
estimated change points are affected by model specification.

C. Estimation Procedure

For empirical problems, more than one break may exist,
as evidenced by the empirical application here. We discuss a
procedure capable of detecting and locating multiple breaks.
The procedure is based on hypothesis testing and works as
follows. Starting from the whole sample, perform a param-
eter constancy test. If the test rejects the null hypothesis,
then estimate a break point and divide the sample into two
subsamples at the estimated break point. Perform a param-
eter constancy test for each subsample. Estimate an addi-
tional break whenever the subsample fails the constancy
test. Divide the subsample at the estimated break point (if
any) into nested subsamples and do the same analysis. This
step is repeated until all the subsamples do not reject the null
hypothesis. If the number of break points is known a priori,
then no hypothesis testing is necessary. In this case, one just
estimates the break points sequentially in the ordering for
which the sum of squared residuals is reduced the most, until
the specified number of breaks is obtained. This is discussed
in Bai and Perron (1994). Analogously, if it is known that the
number of breaks is at least m, then no testing is necessary
for the first m break points.
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When all of the break points are obtained, a refinement is
needed. An estimated change point should be reestimated if
it is obtained from a sample or subsample containing more
than one break. This reestimation procedure is called
refinement. Suppose there are only two breaks and they are
identified as k1 and kz, k1 < kz If k1 is identified in the first
place (i.., from the whole sample), then ky should be
reestimated using the subsample [1, k,]. Similarly, if k2 is
identified in advance of kl, then tl)e second break should be
reestimated using the subsample [k, T']. Each refined estima-
tor has the same asymptotic distribution as if the sample had
a single break point, so that our asymptotic theory can be
applied, as asserted by Bai (1995b). This procedure was first
suggested in an earlier version of this paper. A refinement
may be performed prior to the complete estimation of all of
the breaks.

It is important to note that the Wald statistic is designed
for a single break point; it has less power when multiple
breaks exist. This is because 62(k) in equation (4) is not a
consistent estimator of o2 and is biased upward in the
presence of multiple breaks. Although for large samples (or
for a large magnitude of shift) one will reject the null
hypothesis regardless of the consistency? of G2(k), the lack
of power may not be negligible for small or moderate
samples. Fortunately, the problem can be overcome by a
simple modification of the test statistic.* In constructing the
test statistic (4), the residual variance in the denominator is
estimated by allowing for more than one break. For moder-
ate sample sizes, two or three breaks should be good enough
in adjusting the denominator of equation (4). In our empiri-
cal application, this adjustment is made for the full sample
test. Critical values of the hypothesis testing are obtained
assuming 15% precent “trimming” and 10% significance
level. The size of a test should be large for small samples, as
we choose here. The critical values are 10.01 for ¢ = 2 and
12.27 for g = 3. Here g denotes the number of coefficients
that are allowed to change (see Andrews (1993)).

D. Test and Estimation Results

Symmetric Response Model: 'When the whole sample is
tested for parameter constancy, the sup-Wald statistic is
8.05, occurring at October 9, 1979 (k = 28). The test does
not show instability compared with the critical value of
10.01. However, if we proceed to divide the sample into two
subsamples at the estimated break date and test for param-
eter constancy for each subsample, we will find that the
second subsample has a sup-Wald statistic of 15.20, occur-
ring at December 4, 1981 (k = 38). This indicates the
existence of a break. In addition, if we use the subsample
[1, 37] to test parameter constancy, the sup-Wald is 58.15,

3 Because S — Sr(k) converges to infinity as the sample size increases
and <2(k) is stochastically bounded, it follows that the Wald test statistic
becomes arbitrarily large as the sample size grows.

4 When the null hypothesis can be rejected without this modification, it
will imply a stronger evidence of instability.
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achieved at October 9, 1979 (k = 28), strongly rejecting the
null. Moreover, when the subsample [38, 56] is used, we
uncover another break point at August 27, 1982 (k = 42)
with sup-Wald 11.44. Further tests for each resulting sub-
sample do not show instability. Our analysis indeed indicates
the existence of multiple breaks. The failure to uncover any
break with the full sample proves the lack of power for the
sup-Wald test in the face of multiple breaks. As a verifica-
tion, if we use the adjustment mentioned earlier by estimat-
ing the variance using residuals based on two breaks (at
observations 28 and 38), the sup-Wald statistic for the whole
sample becomes 11.96, thereby rejecting the null.

The final model has three breaks, occurring at the dates
October 9, 1979, December 4, 1981, and August 27, 1982.
(In terms of observation numbers, they are 28, 38, and 42,
respectively.) Because the middle break is estimated with the
subsample [28, 56], a refinement is obtained by reestimating
the middle break with the subsample [28, 41]. When this is
performed, the same break point is obtained, but the
sup-Wald becomes 33.00. The other two breaks are refined
already. These estimates are summarized in table 1. The first
break point marks the beginning of the Fed’s October
1979—October 1982 operating procedure changes. The last
break is near the end of the Fed’s procedure changes. It
remains an open question as to what economic activity
induces the second break. The estimated regression coeffi-
cients are reported in table 2.

Asymmetric Response Model: The adjusted sup-Wald
statistic for the full sample is 13.56, rejecting the null
hypothesis® (the critical value is 12.27 for g = 3). The
maximum is again achieved on October 9, 1979 (k = 28).
For the subsample [1, 27], the sup-Wald statistic is 9.23,
which is not significant compared with the critical value of
12.26. For the subsample [28, 56], only two of the three
coefficients (the intercept and ADR *) are allowed to change,
because of the lack of variation in the data. The sup-Wald
statistic is 10.001, which is just shy of significance com-
pared with the critical value of 10.01 (note that g = 2). The
maximum is attained on August 27, 1982 (k = 42). This date
will be treated as a break point for an additional reason
besides the closeness of the test statistic to the critical value.
When the subsample [1, 41] is used to refine the first break,
the sup-Wald statistic is 37.07, more than triple the value
computed for the full sample (see footnote 5). This is a sign
of multiple breaks. The refined break point is on September
19, 1979 (k = 27).

Further hypothesis testing for each resulting subsample
does not reveal additional breaks. In particular, the middle
break point (k = 38) associated with the symmetric response
model does not show up here. The sup-Wald statistic for the
subsample [28, 41] is only 6.55, as opposed to 33.00 under
the symmetric response model. Thus the middle break point
identified in the first model is accounted for by the asymmet-
ric response. In summary, two break points are identified.

5 The adjustment assumes two breaks in estimating the variance. Without
this adjustment, the sup-Wald statistic for the full sample is 10.25.
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TABLE 1.—TEST STATISTICS, BREAK POINTS, AND CONFIDENCE INTERVALS SYMMETRIC RESPONSE MODEL

95% Confidence Interval

Critical® )
Sample Data® Sup-Wald Value k Symmetric® Skewedd
[1, 56] 1/15/73-2/24/89 11.96° 10.01 28
[1,27] 1/15/73-9/19/79 8.59 10.01 —
[28, 56] 10/9/79-2/24/89 15.20 10.01 38
[38, 56] 12/4/81-2/24/89 11.44 10.01 42
[42, 56] 8/27/82-2/24/89 2.21 10.01 —

Refinement"

[1,37] 1/15/73-11/2/81 58.15 10.01 28 [26, 30] [25,29]
[28,41] 10/9/79-8/16/82 33.00 10.01 38 [37,39] [37,39]
[38, 561 12/4/81-2/24/89 11.44 10.01 42 [39, 45] [39, 44]

Notes: * Beginning and ending dates covered by sample.

b Critical values corresponding to 15% trimming and 10% significance level. For ¢ = 2, the value is 10.01, and for g = 3, the value is 12.27. (See

Andrews (1993).)
¢ Based on symmetric distribution.
d Based on skewed distribution.

¢ Adjusted value. Without adjustment, the value is 8.05. See section ITIC for explanation.

f See section IIIC for explanation.

These two breaks correspond to the October 1979-October
1982 change in the Fed’s operating procedures. These results
are reported in table 3. The estimated regression coefficients
for the final model are provided in table 4. The middle
regime exhibits a higher response to discount-rate changes,
particularly to discount-rate increases.

E. Confidence Intervals

Symmetric Response Model:  For this model, three breaks
are identified, at the dates of October 9, 1979, December 4,
1981, and August 27, 1982. (The observation numbers are
28, 38, and 42, respectively.) We first consider constructing
confidence intervals using the symmetric limiting distribu-
tion (derived assuming homogeneous data). Those using the
skewed limiting distribution are given later. The first break is
estimated with the subsample [1, 37]. From table 2 we see
that & = (—0.403, —0.171)". For z, = (1, ADR))', the
estimated scale factor L is §(37 z,z',)s/s2 = 7.95, where s>
is the estimated error variance. The 97.5% quantile of the
limiting distribution is 11.0, obtained from equation (B.4).
By equation (17), the upper boundary of the 95% confidence
interval will be 28 + [11.0/7.95] + 1 = 30. By symmetry,
the confidence interval is [26, 30]. The second break is

estimated with the sample [28, 41] with & = (1.028, 0.373)".
The estimated scale factor is L = 8(114 28 L 2,2,)8/s2 = 24.35.

TABLE 2.—ESTIMATED REGRESSION COEFFICIENTS, DEPENDENT VARIABLE ATR
SYMMETRIC RESPONSE MODEL

Sample Date Intercept ADR,  dyk)  di(k)ADR, R?
[1,56]  1/15/73-2/24/89 0.046 0.338 0.35
(1.23)  (5.57)

[1,37] 1/15/73-11/2/81 0.415 0.340 -0.403 -—0.171 0.73
k=128 10/9/79 (7.98) (6.54) (6.36) (1.84)

[38,56] 12/4/81-2/24/89 0.008 0.164 —0.622 —0.197 045
k=42 8/27/82 0.11)  (1.13)  (1.62) (0.33)

Notes: r-statistics are provided in parentheses. The variable d,(k) is a dummy variable with d,(k) = 1 for

t < kand O for r = k; d,(k)ADR, is the interactive term.

Thus the upper boundary of the confidence interval is 38 +
[11.0/24.35] + 1 = 39. Again by symmetry, the confidence
interval is [37, 39]. Using the same method, the confidence
interval for the third break point is found to be [39, 45].
These results are reported in table 1. Confidence intervals in
calendar time are provided in table 5. The first two breaks
are estimated with more precision, the last one has a larger
interval.

In the above construction it is assumed that the two
neighboring regimes surrounding each break have homoge-
neous data. By visual inspection of figure 1 we see that this
is not the case. For example, the magnitude of the regressors
for the second regime, October 79-August 89, is typically
twice the magnitude for the first regime. This suggests that
Q, is not equal to Q,. Thus Q; and Q, should be estimated
separately. In addition, the disturbances may not have
common variance cross regimes, thus confidence intervals
based on a skewed limiting distribution might be more
appropriate. For the first break point, we estimate Q; by

L 271 7,2y and Qz by 102, »g 227 Then g is estimated by the

ratio of &' ( gz,z )8 and d' ( 21 2.7, )8’ This gives
& = 1.08. The ratio o3/07 is estlmated by s3/s3, yielding
2.556. Thus the estimated ¢ is (so/s;)% = 2.771. Using
equations (B.2) and (B.3) for £ = 1.085 and & = 2.771, the
97.5% quantile is 28.0, the 2.5% quantile is —9.2. The scale
factor L = 8'Q,3/07 is estimated to be 10.72. From equation
(18), the lower boundary of the interval is 28 — [28/10.72]
— 1 = 25. The upper boundary is 28 — [9.2/10.72] + 1 =
29. Thus an asymmetric 95% confidence interval is [25, 29].
Using the same method, the confidence interval for the
second break is [37, 39], and for the third break it is [39, 44].
The skewed confidence intervals are similar to the symmet-
ric ones, except that the first is wider.

Asymmetric Response Model:  For this model, two break
points are identified, the first is September 19, 1979, and the
second is August 27, 1982. (The observation numbers are 27
and 42, respectively.) Assuming homogeneous data, the
confidence interval for the first break is found to be [25, 29],
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TABLE 3.—TEST STATISTICS, BREAK POINTS, AND CONFIDENCE INTERVALS ASYMMETRIC RESPONSE MODEL

. 95% Confidence Interval
Critical R
Sample Date Sup-Wald Value k Symmetric Skewed
[1,56] 1/15/73-2/24/89 13.56? 12.27 28
[1,27] 1/15/73-9/19/79 9.23 12.27 —
[28, 56] 10/9/79-2/24/89 10.00 10.01 42
[28,41] 10/9/79-8/16/89 6.55 10.01
[42, 56] 18/27/82-2/24/89 2.01 10.01 —
Refinement

[1,41] 1/15/73-8/16/89 37.07 12.27 27 [25,29] [22,28]
[27,56] 9/19/79-2/24/89 12.30 10.01 42 [38, 46] [38, 47]

Notes: See footnotes to table 1.
2 Adjusted value. Without adjustment, the value is 10.25.

TABLE 4.—ESTIMATED REGRESSION COEFFICIENTS, DEPENDENT VARIABLE ATR ASYMMETRIC RESPONSE MODEL

Sample Date Intercept ADR/ ADR; dy(k) d,(k)ADR} R?

[1, 56] 1/15/73-2/24/89 —0.253 0.847 0.205 0.48
(2.90) (5.76) (1.32)

[1,26] 1/15/73-8/17/79 0.024 0.178 -0.201 0.23
(0.32) (1.13) (0.95)

[27, 56] 9/19/79-2/24/89 —-0.617 1.414 1.087 —0.525 0.483 0.69

k=42 8/27/82 (3.36) (3.13) (3.27) (3.40) (1.41)

and for the second it is [38, 46]. For nonhomogeneous data,
the confidence intervals are found to be [22,28] and
[38, 47], respectively. These intervals are given in table 3.
The corresponding intervals in calendar time are given in
table 5.

F. Some Comments

1. Changes in the interest rates may be affected by many
other variables, such as money growth, unemployment, and
industrial production. These macroeconomic variables are
relatively smooth (lower frequency data) compared with the
daily interest rates. We believe that these variables are
reflected more in the level of the interest rates than in the
changes. Changes in the daily interest rates may be treated as
white noise in the absence of “news” under the efficient
market hypothesis. On the day that the discount rate is
altered, the change in the interest rate consists of two
components: a response to a change in the discount rate, and
an idiosyncratic variation, at least in the absence of other
“news.”” This is the rationale for considering models (19)
and (20). Nevertheless, the condition of the economy may
affect the strength of a response. One might argue, for
example, that high unemployment spurs a stronger reaction.

If this is the case, then an interactive term of ADR, and the
unemployment rate may be added as a separate explanatory
variable. In this case, the simple model (19) amounts to an
omitted-variable specification. However, one aspect of the
structural change method is (or can be viewed as) identify-
ing misspecification. Our result shows that the misspecifica-
tion is due, perhaps, more to the omission of the Fed’s policy
as a variable than to the lack of inclusion of other macroeco-
nomic variables. ‘

2. We point out that observation 42 (August 27, 1982) is
unusual. The discount rate was cut down by a half-point,
whereas the market interest rate rose by 0.7 point. Three cuts
were made in the month of August, each by a half-point.
This is the only month in which the Fed changed the
discount rate so frequently. The market reacted strongly to
the first two cuts. Even though the timing of discount-rate
changes is generally not easily predicted (see Dueker
(1992)), the third cut seems to have been anticipated by the
market. The day before the cut, the market interest rate was
the lowest of that week.

When a dummy variable is made to account for this
observation, the result is not altered much for either the
symmetric or the asymmetric response models. The number

TABLE 5.—CONFIDENCE INTERVALS OF BREAK DATES (IN CALENDAR TIME)

Symmetric Response Model

Asymmetric Response Model

95% Confidence Interval 95% Confidence Interval
Break Break
Date Symmetric Skewed Date Symmetric Skewed
10/9/79 9/19/79-2/15/80 7/20/79-2/15/80 9/19/79 7/20/79-2/15/80 10/16/78-10/9/79
12/4/81 11/2/81-7/20/82 11/2/81-7/20/82
8/27/82 7/20/82-12/14/82 7/20/82-11/22/82 8/27/82 12/4/81-4/9/84 12/4/81-11/23/84
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of breaks and their locations are the same, except that the last
break is identified at observation 44 (November 22, 1982)
rather than at 42. This change is not dramatic and is not
unexpected, because observation 42 is the boundary of a
regime in the absence of this dummy. Tests and estimation
results for this case are not reported here.

3. The 1979 and 1982 breaks are identified under both the
symmetric and the asymmetric response models, suggesting
a stronger evidence in supporting these two breaks. The
1981 break appears only under the symmetric response,
illustrating the sensitivity of break point estimation to model
specification. The asymmetric response model appears to be
a reasonable one. In the absence of breaks, the asymmetric
model fits the data better in terms of the adjusted R2 The
regression coefficients of ADR* and ADR ™ are significantly
different. With breaks, direct comparison of R? is not
appropriate, as regression equations cover different time
periods. An asymmetric response model will be meaningful
if the sign of the discount-rate changes provides information
about the Fed’s monetary policy objectives. At any rate, the
hypothesis of asymmetric response deserves further exami-
nation in future research.

IV. Conclusion

We have studied the change-point problem in multiple
regressions where some or all of the coefficients have a shift
occurring at an unknown time. Consistency and the limiting
distribution are established for the change-point estimator
computed by the least-squares method. The results are
obtained under very general conditions. In particular our
results hold for a wide range of regressors such as determin-
istic and stochastic regressors, lagged dependent variables,
and time trend. Dependent and heteroskedastic disturbances
are allowed. We derived a skewed and parameter-embedded
analytical density function and a cumulative distribution
function for the asymptotic distribution of the change-point
estimator. The result includes the symmetric distribution in
the prior literature as a special case and is useful for
constructing confidence intervals for the true break. The
empirical analysis examined the relationship between the
interest-rate responses to the changes in the discount rate.
This response pattern is found to be unstable. The instability
seems to be caused by the Fed’s change in operating
procedures during the period of October 1979-October
1982. In addition, we documented the asymmetry in the
response pattern. The regression result suggests a larger
response to an increase in the discount rate than to a
decrease.
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APPENDIX A

Proof of Proposition 1

Define V;(k) = Si(Z,’MZ,)5,. By equation (5), k = arg max; V;(k).
Notice that 8, = (Z5MZ,)~(Zy MZy)d7 + (ZsMZ,)~' Z3Me and §;, = 7 +
(ZMZy)~ ' ZoMe. 1t follows that

Vi(k) = Vtko)= d7(ZoMZy)ZSMZ,) ™ (Z3MZy)

— (ZoMZy)Jor + Hr(k)
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where
Hy(k) = 237(ZoMZ, ) (Z5MZ,) 1 Z\Me — 287Z( Me (A.1)
+ €' MZ,(Z\MZ,) " 'Z5Me — € MZW(ZoMZy) ™' Z{Me.  (A.2)
Define for k # k,
S1(ZoMZy) — (ZoMZ,)(Z:MZy)  (Z5MZo oy
Gr(k) = (A.3)
ko = k|
When k = ko, define Gr(ky) = 8787. We have the following identity:
Vrk) = Vilky) = — ko — k|Gr(k) + Hr(k), for all k. (A4)

LetX, =X, — X, = (0, . ..,
—X—X) = (0, ...,

0, X415 - -

s Xigs 0,...,0) fork <kyX, =
0, KXkg+1s =+ = s Xps 0, .

0) fork > ky,and X, = 0

for k = kq. It follows that X, = X, + X, sgn (ko k). Denote Z, = X,R.
LEMMA A.1:  The following two inequalities hold:
(ZoMZy) = (ZoMZ,)\(Z3MZy) ™ (Z5MZ,) (AS)
=R’ (XiXa)(X5Z2) ' (X6Xo)R, k<k
(ZoMZy) = (ZoMZy)\(Z5MZy) ™ (Z5MZ,) (A6)

ZR'XAXA(X'X — X5X,) ' (X' X— X Xo)R, k =k,
For a proof see the previous version of this paper, which is available
upon request.

LEMMA A.2:  Assume the conditions of A2—-A4. There exists A > 0 such
that for every € > 0, there exists C < o such that infj,_ ko>clo~2 Gr (k) =
N|87]|2 with probability at least 1 — e.

Proof: Suppose k < ky. Let A(k) = (kg — k)1 X2 X2 (X2’ X)) (X ¢ Xo).
Note that A(k) is symmetric and is positive definite when XX, is
invertible. This is because A(k) can be written as [1/(ky — k)[(X Xo) ™' +
(X2X A)"'17L. Then by lemma A.1, Gr(k) = 8/ R'A(k)Rd; = N(k)||d7 2,
where A7(k) is the minimum eigenvalue of R'A(k)R. It is sufficient to argue
that, with probability tending to 1, (k) is bounded away from zero as k, —

k increases. For large ko — k, XiXy = 3, x, will be positive definite
with large probability by A3. Now [|AKk)~'| = |[1/(kg — k)X AXA17"|
(| (X3X>)(X6Xo)~"[|. But [|(X2X2)(X0Xo) ™" | = [ X' X|[[|(X6X,)~"|| is bounded
by A3 and A4. In addition, the minimum eigenvalue of [1/(ky — k)]1X 4’ X, is
bounded away from zero by A3 with large probability, so ||[1/(ky — k)
X X171 is bounded with large probability for all large k, — k. Thus
[|ACk)~"| is bounded with large probability for all large k, — k. This implies
that the minimum eigenvalue of A(k) is bounded away from zero for all
large ko — k. This is also true for R'A (k)R because R has full common rank.

LEMMA A.3: Under assumptions A4—A6 there exists a B < o such that
forevery ¢ > 0and m > 0,

1 k
sup - 2 2/€;
=1

T>k>m

B
>cl=—.

A7
e (A7)

This lemma generalizes the inequality of Héjek and Rényi (1955) for
martingale differences to mixingales. A similar result for €, being a linear
process is proved in Bai (1994). A complete proof is available upon
request.

LemMA A.4: Under assumptions A1-A6, for every € > 0 and m > 0, there
exists Ty > 0, so that when T > Ty, P(|k — ko| > Tm) <.

For a proof see Bai and Perron (1994) as well as an earlier version of
this paper.

We are now in the position to prove proposition 1. Because VT(k)
Vr(ko) by definition, it suffices to show that for each € > 0, there exists C >
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0 such that

P(C sup  Vip(k) = Viky)) <e (A.8)

lk=ko| >Clorl~*
By lemma A 4 it is sufficient to show that

P( sup Vy(k) = Vy(ky)) <€
kEK(C)

where K(C) = {k: |k —ky|> C||87]| 72 and Tq <k =< (1 — m)T} for a
small number m > 0. By equation (A.4), Vy(k) = V;(k,) is equivalent to
Hy(k)/|ky — k| = Gy(k). By lemma 2 it is sufficient to prove that

sup (A.9)

kK (C)

A PN
ko — k !

Note that Hy(k) is defined in expressions (A.1) and (A.2). Consider
expression (A.1). Use Zy = Z, — Z, sgn (ko — k) twice, and we can rewrite
expression (A.1) as

WZEMZ)(ZIMZy) "\ Z5Me — 28475 Me

= 28}Z5Me — 287(Z \MZ,)(ZIMZ,) ™! A10)
X Zj3Me sgn (ko — k) — 28,Z{Me ’
= [287Z \Me — 23(Z xMZ,)(Z3MZ,)~ ' ZsMe] sgn (ko — k).
Now Z Me = Zye — Z,X(X'X)"' X'e. Note that Z X = |ky — k|O,(1) and

(X'X)"'X'e = T~120,(1). For example, for ky — k > 0, ZX = Sk
72X, = |ko — klO D). Thus 3rZiMe = 37 Zye — |ky — k|T7125; ||0 (1.
Similarly, [(ZAMZy)| = |ko — k|O ,(1), and (Z3MZ,)"! Z:Me = T2
0,(1) uniformly on K(C). This implies that equation (A.10) is

2877 ze sgn (ko — k) + |k — k|T~'2(|3]0,(1).
Furthermore, it is easy to argue that expression (A.2) is O,(1) uniformly on
K(C). In summary,

Hry(k) = 287Z se sgn (ko — k)

) (A.11)
+ ko = K[T7'2[87]|0, (1) + O, (D).
Thus,
Hr(k) 2 .k
= A —
‘ko_k‘ T‘ko_k‘ AeSgn(o )
(A.12)

+ T71/2”8T"0F(1) + ﬂ
ko — k|

We can now prove expression (A.9) using equation (A.12). Consider k <
ko. First,

>‘"8T”2
P| s
(kE}(l ?C) 1%1 “ T
1 & NSzl
SP( sup 2 Z/€; >—.
k=ko-C o772 ko — Kk 1S53 6

By lemma A.3 (applied with reversed data order), the right-hand side
above is bounded by

36 1 R
B ————=B—<-
NlISrPClisAI? N3

for large C. Next, P(T~'2||57]|0,(1) > \||87]1%/3) = P(O,()/(T"?
[I871) > N/3) < €/3 because (T'2||8;]|)~! — 0. Finally, for k < k, —

ClI37]172, we have O,(1)/|ky — k| = ||3720,(1)/C. Thus, P(supekc)
0,(Di ko — k| > N||371%3) = P(0,(1)/C > \13) < &3 for large C.
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Summarizing these results yields expression (A.9). The proof of proposi-
tion 1 is complete.

Proof of Corollary 1:  Let Z, denote Z, when k is replaced by k. Then
the estimators 3 and 8 are obtained by regressing Y on X and Z,. The true
model can be rewritten as Y = XB + Zyd + €* with €* = € + (Z, — Z)d.
Proceeding in the usual way, we have

_[B-B\ [1[xx xZ\"'
VT, ==l A
5—8] |T\Zvx ZuZ,
1 [X'e + X' (Zo— Z25)8r
\ﬁ 265"‘26(20 _20)8T .

All we have to show is that the limit of the right-hand side is the same as
the limit when Z is replaced by Z,. Let us show plim (1/ \ﬁ")X "(Zy — Zy)
8 = 0. Consider k = ky. Then

1 R
TT‘X,(ZO — Zy)d7
v
ko
= PR EAE
\Ew“8 7l =1
1
=— 0,(1) = 0,(1).
VT8 7]
Note that the sum involves O,([|87]72) terms, so ||2, i1 X271 =
O,(1). Next,
Hl Z E 3712
~ZyZy — _Zé 0 %4 T
T T Tnaruz It
0 (1) = o0,(1).
Tl '

All other entries are handled similarly. The normality follows from the
central limit theorem.

Proposition 1 implies that k will not lie in K(C) for large C with large
probability. Let D(C) denote the complement set of K(C) such that
D(C) = {k: |k — ko| = C||37|| ~2). To study the limiting distribution, we
study the behavior of V(k) on D(C).

LEMMA A.5: Under assumptions A1-A6, for 8; = & fixed or for dr
satisfying A7,
Vr(k) — Vr(ko) = —87Z aZxd7 + 287Z fe sgn (kg — k) + 0,(1)

where 0,(1) is uniform on D(C).

Proof: We prove first that |k, —
Zy = Z, — Zp sgn (ko — k) to obtain

k|Gr(k) = 81Z 4 Zxdr + 0,(1). We use

ko — k|Gr(k) = 87((ZyMZ,) — (ZoMZ,)
X(Z5MZy) ™ (Z3MZ,))o7
= 31(ZiMZy)d1 — 31(ZiMZ,)
X (Z5MZ,) N (Z5MZy ).

(A.13)

Now ||(ZAMZ)|| = 0,,(1)||8T||‘2 and (Z,’MZ,)"! = OI,(T"). Thus the
second term of equation (A.13) is bounded by O,(D/(T||37]|?) = o,(1).
Next,

SHZAMZy o7 = SpZ 4Zadr + SFZIX(X'X)™'X ' ZuSr.

The second term above is also O,(1)/(T|37]|*) = o0,(1). This proves
that |kg — k|Gr(k) = 8;Z4Zxdr + 0,(1). Next consider Hy(k). Because
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|ko — k| = C||37]| 72, the second term on the right-hand side of equation
(A.11) is bounded by CT~'2||37]|7'0,(1) = 0,(1). The last term of
equation (A.11), O,(1), which stands for expression (A.2), can be easily
shown to be 0,(1) uniformly on D(C). Combining these results together
with equations (A.4) and (A.11), we obtain the lemma.

Proof of Proposition 2

For k < k,

—'ZxZxd + 28'Z ze sgn (kg —

ko
= —5(2 22 + 28 2 z€.

t=k+1 t=k+1

(A.14)

Under strict stationarity, the above has the same distribution as W;(k — k;)
defined in equation (8). Similarly, for k > ko, the left-hand side above is
—8’(21;,(0+ 1 22)d — 28’2’{=k0+, z,€, which has the same distribution as
W,(k — ko). Thus lemma A.5 implies that V7(k) — Vr(ky) converges in
distribution to W*(k — k,) and the convergence is uniform on any given
bounded set of integers around k,. Now the process W*(m) has a unique
maximum with probability 1 when (8'z)? + 28’z has a continuous
distribution, because P(W*(m) = W*(m')) = O for m # m'. Let m* =
arg max,, W*(m), then m* is O,(1) because W*(m) — —oc with probability
tending to 1 as [m| — . We thus have that for every € > 0, there exists
K < o such that P(Jm*| > K) < e. Similarly by proposmon 1, P(k -
ko| > K) < €. Let kyx = arg maxy—, <k Vr(k) and mx = arg max,<x
W*(m). The uniform convergence of Vy(k) — Vr(ky) to W*(k — ko) on any
bounded set of integers (the difference |k — ko| is bounded) implies that
121( ko_‘mx —ko=J)— P(mx —J)|<€f0f
all \JL< K. However, 1f\k kol = 'K, thenk ki and if [m* | < K, then m*
= myg. Thus the dlfference |P(k k o.=Jj)— P(m* =) \ is bounded by
|Plhs — ko = j) — Plmg* = )| + P(JF - ko|>K) + P(|m*| > K) <3e.
Since € can be arbitrarily small and K can be arbitrary large, the
proposition is proved.

Proof of Proposition 3

Because 8; = 3y, proposition 1 implies thatk = ko + O, (vr 2). For any
given C > 0, we shall derive the limiting process of Vy(k) — V(k,) for k =
ko + [sv;z] and s € [—C, C]. Consider s = 0 (i.e., k = ky). By lemma A.5,

ko

ko
Vrk) — Vrlky) = —86(11% 2 22,180 + 286(1)7- 2 €

1=k+1 t=k+1

+ 0,(1).

By assumptions A4 and A9, for k = ky + [sv72], 22X, ., 22, — |s]Q;. In
addition, vTEfng 7€, = B,(—s), where B(x) is a Brownian motion
process on [0, ®©) with variance x{);. Because 8;B,(—s) has the same
distribution as (8y2;3,)"2 W,(—s), where W;(-) is a standard Wiener
process on [0, ), it follows that, for s = 0, Vy(ky + [sv;z]) = Vitky) =
— 5|80 Q180 + 2(85£2,80)12 W;(—s). Similarly, for s > 0, Vy(ky + [sv72])
— Vilky) = —5800:0¢ + 2(35%:00)'> W,(s), where W, is another Wiener
process on [0, ) independent of W,. In summary,

Vr(ko + [SV;Z]) = Vrlko) = G(s)

- ‘5|86Q150 + 2(3002189) "W, (=),
—5860280 + 2(86€2,80)"* W, (s),

ifs<0 (A.15)

if s =0.

By the continuous mapping theorem, ZJZT(IE — ko) 4 arg max; G(s).

However, by a change in variable s = by with b = (8,2,3,)/(8¢ Q,8)?, it

can be shown that arg max, G(s) = b arg max, Z(v), where Z(v) is defined

in equation (11). This implies that b“va(IE — ko) N arg max, Z(v). But
= (870,837 Q,87) in view of 87 = dyur.

Proof of Proposition 4

The proof is similar to that of Bai (1995a, p. 434). The details are
omitted.
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APPENDIX B

Density Function of arg max, Z(v) (see equation (11))

Recall that the process Z(v) involves two independent Brownian
motions with different scales (b # 1) and two different drifts £ # 1. To
obtain the density function of /* = arg max, Z(v), we use the argument of
Bhattacharya and Brockwell (1976), who considered the case in which the
two Brownian motions have the same scale. In addition to the density
function, we also derive the cdf of I*, which is useful for obtaining
quantiles when constructing confidence intervals. Let m be the maximum
and / the location of the maximum of X(¢) = \B(t) — 6#/2, t = 0, where
B(t) is a standard Brownian motion process on [0, ). That is, [ =
arg max, X(¢) and m = max, X(¢). Using the result of Bhattacharya and
Brockwell (1976) with a scale transformation, we obtain the joint density
of (I, m) as

_® 21)-! X
Jim G, y) = )\( ) lexp|—6 g
(B.1)

1(y? L0
X exp 2)\2x +)\y s x>0, y>0.
The marginal distribution of m is exponential with mean \%/6. Now let
(1;, my) be the location and the maximum of {W,(—v) — |»|/2}, » < 0. The
joint density of (I;, m,) is f;(| x|, y), where f; is the same as equation (B.1)
with 8 = N = 1. Let (I, m;) be the location and the maximum of
&)W, (w) — §vj_2_], v > 0, with joint density f,(x, y) (given by equation
(B.1) with A = /¢ and 0 = §). Because (I}, m,) is independent of (I,, m,),
the joint density of (Iy, my, L, my) is fi(|x|, y)fo(x',y"). Let I¥ = arg
max, Z(v). Then I* = [, if m; > m, and I* = 1, if m; < m,. Thus the density
function g(x) of I* forx < 0 is

gx)dx=P(l, € (x,x + dx), m; > m,)

= dxj;w‘fldx ,Y) j:j;yfz(x',y’)dx’dy’

dy

= dx " fillxl. )P my < ) dy

= ax [ i(lxl. |1 — exp

]
- Fy dy.
Carrying out the integration we obtain
g() = 2710(—271[x]) + 271(1 + 20) exp [27'a(1 + a)x[]

X @[-27'(1 + 20)\[x[l,

where a = £b~! and ®( - ) is the cdf of a standard normal random variable.
Similarly, for x > 0, g(0) = Jy" foCe, WPy < y)dy = [ falx,y) (1 -

x<0
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e ) dy. Carrying out the integration, we obtain
g(x) = —271B2D(—27'Bx) + (¢ + 271B) exp 271 (d + £)x]
X q)[_(d)llz + 2718)\/)—‘]» x>0
where 8 = £/¢!2. The cdf G(x) for x < 0 is then obtained as
G(x) = —(2m)~"2|x["exp (=87"[x[)
— cexp (alx[)P(—b|x|"?) (B.2)
+(d =2+ 27 x| )D(—27" x|, x<0
where
2_16(1+§) b 1+§ b + 28)
a= - =, ==-+—, c=—,
¢ é 2 4 & + 9
PR
(b +8¢ "
Similarly, for x > 0,
G(x) =1+ §¢—1/2(21T)—1/2xl/2 exp (_871§2¢—1x)
+ cexp (ax)®(—bx"?) + (—d + 2 — 2787 ) (B.3)
X q)(_zflgd)—l/Zx 1/2)’ x>0
where
d+E b 20 + & §2¢ + )
a=——-o1, = , c=—"",,
2 N (CRURIL
Lo
b+

The density function and the cdf specialize for the symmetric case when
¢ = 1and § = 1, yielding (see Yao (1987))

1
Gx) =1+ 2m)~ "2 [xe 8 —E()H- 5)

x| 3 3yx
_V_ +_exd)__\/_
2 2 2

forx>0and G(x) = 1 — G(—x).

(B.4)




