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When the disturbances of a regression model follow anI ~1! process there is a ten-
dency to estimate a break point in the middle of the sample, even though a break
point does not actually exist+ In this note, we provide a mathematical proof for this
phenomenon+

1. INTRODUCTION

Recently, Nunes, Kuan, and Newbold~1995! ~henceforth NKN! pointed out that
when the disturbances of a regression model follow anI ~1! process there is a
tendency to estimate a break point in the middle of the sample, even though a
break point does not actually exist+This phenomenon is called a “spurious break”
by the authors and was discovered by a simulation experiment+ In this note, we
provide a mathematical proof for this phenomenon+

It is of interest to ask the following question, and it is, in fact, often asked+
Given a regression model with no break point, and supposing that a break point is
entertained in estimation, how does the estimated break point behave? LetZk de-
note the estimated break point andT the sample size+ Define ZlT 5 Zk0T+ Thus, ZlT

denotes the estimated break fraction+ For I ~0! disturbances, it can be shown that
the estimated break fraction converges to the boundary~i+e+, either 0 or 1!+ Be-
cause boundary values imply no break in the sample, the estimated break point
conforms to the true model of no break+However,a different phenomenon emerges
for I ~1! disturbances+ NKN found that the estimated break point will stay in the
middle of the sample, suggesting the existence of a break point+ The authors call
this phenomenon spurious break in an analogy to spurious regression+ Although
the problem of spurious regression is much better understood and is well docu-
mented~see Granger and Newbold, 1974; Phillips, 1986; Durlauf and Phillips,
1988!, the problem of spurious break is less well studied+ This note takes up the
issue+ In particular, we shall deliver a mathematical proof thatZlT does not con-
verge to 0 or 1, corroborating and confirming the simulation findings of NKN+ It
should be emphasized that our analysis assumes the absence of a break in the
data-generating process+

The result suggests that caution should be exercised in estimating a break point
when disturbances areI ~1!+ Diagnostic testing should be performed prior to es-
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timating a break point, and test statistics that are robust toI ~1! errors should be
used+ Vogelsang~1994a,1994b! proposed a number of test statistics useful for
this purpose+

2. NOTATION AND ASSUMPTION

Consider the model

yt 5 Hxt
'b1 1 «t t 5 1,2, + + + ,k

xt
'b2 1 «t t 5 k 1 1, + + + ,T+

Let Zb1~k! be the least squares estimator ofb1 based on the firstkobservations and
Zb2~k! be the least squares estimator ofb2 based on the lastT2kobservations, i+e+,
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t51
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Define the sum of squared residuals for the full sample as

ST~k! 5 (
t51
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and define the break point estimator as

Zk 5 argmin
1#k#T

ST~k! 5 argmin
1#k#T

HST~k! 2 (
t51

T

«t
2J +

The second equality follows because(t51
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2 does not depend onk+ Finally, let
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where 0, tl , Nl , 1+ The behavior oflT can be determined by exploring the
limiting process ofST~k! 2 (t51

T «t
2+ In the absence of a break, i+e+, b1 5 b2, it is

easy to show that
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To obtain the limiting process forMT~k!, we need the following assumptions,
which are similar to those of NKN+

Assumption A1+ For anI ~1! error process«t , we assume thatT22 (t51
@Tl# «t

2 n

c*0
l W2~u! du with W~u! being a standard Wiener process andc . 0 a constant+

Assumption A2+ There exists a diagonal matrixDT such that

DT
2102S(

t51

@Tl#

xt xt
'DDT

2102 n Q~l!+

The matrixQ~l! is assumed to be positive definite for alll . 0, andQ~v! 2
Q~u! is positive definite for allv2 u . 0+ In addition, Q~0! 5 0+

Assumption A3+ For somea $ 0,

T2a02DT
2102 (

t51

@Tl#

xt «t n G~l!, (2)

whereG~l! is a stochastic process having continuous sample path withG~0!50+1

The assumptions here are quite general, encompassing many models used in
practice+ Various special cases ofG~l! andQ~l! are given in NKN+ Typically,
G~l! is a functional of a Gaussian process+

3. MAIN RESULT

In this section, we characterize the limiting behavior ofMT~k!+When«t is I ~0!,
MT~k! has a proper limit fork [ @aT,bT# with a,b [ ~0,1! anda , b+ This will
not be true when«t is I ~1!+ A normalization is required+ Define

MT
*~k! 5 T2aMT~k!+

We also note thatZk 5 argmaxkMT~k! 5 argmaxk MT
*~k! becauseT2a does not

depend onk+ Under Assumptions A1–A3, it can be shown that~see NKN!

ZlT
d
&& argmax

l[@ sl, Nl#
M *~l!, (3)

where

M *~l! 5 G~l!'Q~l!21G~l!

1 @G~1! 2 G~l!# ' @Q~1! 2 Q~l!#21 @G~1! 2 G~l!# + (4)

When«t is I ~0!, a similar limiting process will be obtained+ This implies that,
in the absence of a break point, the estimated break pointZlT is a random variable
with support in@ tl, Nl# + This is true regardless of whether the error isI ~0! or I ~1!+
Thus if the attention is focused on the compact interval@ tl, Nl# , not much differ-
ence between the two cases can be discerned+ It is important to explore the be-
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havior ofM *~l! for l near the boundary+ For I ~0! error process«t , NKN proved
thatM~l! r ` asl r 0 or 1, thus ZlT r $0,1%, if tl r 0 and Nl r 1 ~also see
Andrews, 1993!+ In their Remark 1~p+ 742!, NKN pointed out that they were
unable to characterize the limiting behavior ofM *~l! for l near 0 or 1+ Through
simulation, they found thatM *~l! does not diverge to infinity asl decreases to
zero or increases to 1+

In the following, we shall prove thatM *~l! is a well-defined process on@0,1#
and is uniformly bounded in probability over@0,1#+

In Assumption A3, we shall assume thata $ 2+ This is true wheneverxt con-
tains a nonzero mean regressor~e+g+, a constant or a trend!+When all components
of xt areI ~0! and have zero means, it is possible thata 5 1 ~for an example, see
NKN !+ ~Actually, anI ~1! dependent variable withI ~0! regressors is unlikely to be
a useful model+! In any case, our proof does not apply to the situation for which
0 , a , 2 and thus is not considered in this paper+

THEOREM 1+ Assume that AssumptionsA1–A3 hold+ For the a defined in
~2!, assumea $ 2+We have

sup
l[~0,1!

M *~l! 5 Op~1!+ (5)

Proof of Theorem 1+ For an arbitrary vectorzand an arbitrary projection ma-
trix P, we havez'Pz# z'z+ Apply this inequality toMT

*~k! to obtain

MT
*~k! # T2a (

t51

T

«t
2 # T22 (

t51

T

«t
2 for all k [ @1,T # , (6)

from a $ 2+ BecauseT22 (t51
T «t

2 does not depend onk, and it has a limit by
Assumption A1, MT

*~k! is uniformly bounded in probability+ Thus its limit,
M *~l!, is uniformly bounded in probability forl [ ~0,1!+ n

Therefore, M *~l! is stochastically bounded even whenl r $0,1%+ This is in
contrast to the case ofI ~0! errors for which the corresponding process grows
without bound asl tends to the boundary+ To rule out the possibility thatZlT r

$0,1%, we need to further examine the behavior ofM *~l! for l near 0 and 1+
Strictly speaking, M *~l! is not defined yet atl 5 0 andl 5 1+ As the limit of
M *~l! whenl r 0, M *~0! should be defined as

M *~0! 5 G~1!'Q~1!21G~1!, (7)

which is obtained from ~4! by taking G~l! 5 0, Q~l! 5 0, and
G~l!'Q~l!21G~l! 5 0 for l 5 0+ Note that the termG~l!'Q~l!21G~l! is
the limit of the first term of~1! on the right-hand side divided byT2a+ Now

T2aS(
t51

k

xt «tD'S(
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k

xt xtD21S(
t51

k

xt «tD # T2a (
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which converges to zero in probability for any givenk or for k 5 @Tl# with l r

0+ It follows thatG~l!'Q~l!21G~l! r 0 in probability asl r 0+ Thus the defi-
nition of ~7! is the limit of M *~l! asl r 0+ As a result, M *~l! becomes contin-
uous atl 5 0+ Similarly, we can define, as the limit ofM *~l! asl r 1,M *~1! 5
M *~0!+ This extension ofM~l! makes it continuous atl 51+We next show that
the maximum ofM *~l! is attained neither at 0 nor 1+

THEOREM 2+ Under the conditions of Theorem1, we have

~i! With probability1,

M *~0! 5 M *~1! # M *~l!, for every 0 , l , 1+ (8)

~ii ! If G~l! has a continuous distribution for eachl, then with probability1,

M *~0! 5 M *~1! , M *~l!, for every 0 , l , 1+ (9)

Theorem 2~i! implies that as long asM *~l! is not a constant process, the max-
imum value ofM *~l! will not be attained at 0 or 1+ Letl*5argmaxl[@ tl, Nl# M

*~l!+
Assume that there exists al1 such thatM *~l1! . M *~0! ~this is true if the process
is not a constant!+ Thenl*r0 0,1 as tl r 0 or Nl r 1+ This assertion follows from
the continuity ofM *~l! at 0 and 1~there exists a neighborhoodN0 of l 5 0 such
thatM *~l! , M *~l1! for all l [ N0; the same is true forl 5 1!+ In summary,
whenM *~{! is not a constant process, not only doesM *~{! not attain its maximum
at 0 or 1, but also the extreme point ofM *~{! on any subset of@0,1# is bounded
away from 0 or 1+

From ~3!, ZlT r l*+ This implies that the estimated break point will also be
bounded away from 0 and 1, provided thatM *~l! is not a constant process+ Of
course, if M *~{! is a constant process, any point of@0,1# is an extreme point+ It is
difficult to construct an example~or model! such thatM *~{! does not depend on
l+ For the various concrete examples given in NKN, M *~{! is not a constant+
Theorem 2~ii ! gives a sufficient condition to guarantee the nonconstantness of
M *~{!+ The result of part~ii ! is much stronger than needed for the occurrence of
spurious breaks+

To prove Theorem 2,we need the following lemma+ For a symmetric matrixA,
we writeA . 0 if it is positive definite+

LEMMA1 + For arbitrary positive definite matrices A and B with A. B~ p3p!,
and arbitraryvectors x and y~ p31!,we have

x 'A21x 2 y'B21y 2 ~x 2 y!'~A 2 B!21~x 2 y! # 0+ (10)

Proof of Lemma 1+ Define the matrix

H 5 S~A 2 B!21 2 A21 2~A 2 B!21

2~A 2 B!21 ~A 2 B!21 1 B21D + (11)
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It suffices to proveH to be positive semidefinite because the left-hand side of
~10! is equal to2z'Hz for z' 5 ~x ', y'!+ Let D 5 ~A 2 B!21 1 B21 . 0+ Let C
be a matrix with the firstp rows ~I,~A 2 B!21D21! and secondp rows ~0, I !+
Using the identity

~A 2 B!21 2 A21 5 ~A 2 B!21D21~A 2 B!21

we obtain

C 'HC 5 diag~0,D! $ 0+

ThusC 'HC is positive semidefinite+ This implies thatH is positive semidefinite
becauseC has full rank+ This proves the lemma+ n

Proof of Theorem 2+ The inequalityM *~0! # M *~l! is equivalent to

G~1!'Q~1!21G~1! 2 G~l!'Q~l!21G~l!

2 @G~1! 2 G~l!# ' @Q~1! 2 Q~l!#21 @G~1! 2 G~l!# # 0+

Clearly,part~i! ofTheorem 2 follows from Lemma 1 by lettingA5Q~1!,B5Q~l!,
x5 G~1!, andy5 G~l!+Next, consider~ii !+ Let A5 Q~1! andB5 Q~l! and letH
be defined in~11!+ ThenM *~0! , M *~l! is equivalent to2j 'Hj , 0, wherej 5
~G~1!',G~l!'!'+ LetG be an orthogonal matrix such thatG 'HG5diag~l1, + + + ,l2p!
with l1 $ l2 $ {{{ l2p, wherel i ’s are the eigenvalues ofH+ BecauseH $ 0 and
H Þ 0, the maximum eigenvalue ofH is positive+ It follows that

2j 'Hj 5 2~Gj!'diag~l1, + + + ,l2p!Gj # 2h2l1,

whereh is the first component ofGj+ When G~l! has a continuous distribu-
tion, so doesj+ ThusGj is a vector of continuous random variables, implying
2h2l1 , 0 with probability 1 becauseP~h2 5 0! 5 0+ That is, 2j 'Hj , 0
with probability 1+ n

The preceding analysis applies toI ~1! regressors withI ~1! disturbances+ In this
case, Q~l! in Assumption A2 is a random positive definite matrix; all the pre-
ceding argument applies+The details can be found in Bai~1996!+This implies that
for spurious regression models, if a break is allowed in estimation, a spurious
break will occur+

All these results lend support to the observation that when it comes toI ~1!
processes, one should be careful about making the hypothesis of a break point+ It
is well known that a process with a break point may be mistaken asI ~1! ~Perron
1989!; the converse is also true+Our result is simply a rigorous proof of this fact+
However, whenyt andxt areI ~1! but are cointegrated, a spurious break will not
arise because the underlying disturbances areI ~0!+ Furthermore, should there
indeed exist a shift in the cointegrating relationship, the break point can be esti-
mated more precisely thanI ~0! models~given the same magnitude of shift!+ Es-
timating a break point in cointegrating relationship was studied by Bai,Lumsdaine,
and Stock~1997! and by an earlier version of this paper+

668 JUSHAN BAI



NOTE

1+ The corresponding assumption in NKN~see their~A3'!! is stated in terms ofyt rather than«t ,
which applies toyt beingI ~1!+ The current form allowsyt to depend on deterministic regressors and
on an additiveI ~1! error process+
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