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A NOTE ON SPURIOUS BREAK

JUSHAN BAl
Massachusetts Institute of Technology

When the disturbances of a regression model follow(@hprocess there is a ten-
dency to estimate a break point in the middle of the sapgden though a break
point does not actually exidin this note we provide a mathematical proof for this
phenomenon

1. INTRODUCTION

RecentlyNunes Kuan and Newbold 1995 (henceforth NKN pointed out that
when the disturbances of a regression model follow @ process there is a
tendency to estimate a break point in the middle of the sanepien though a
break point does not actually exi$his phenomenon is called a “spurious break”
by the authors and was discovered by a simulation experinretttis note we
provide a mathematical proof for this phenomenon

It is of interest to ask the following questipand it is in fact, often asked
Given a regression model with no break poard supposing that a break pointis
entertained in estimatiomow does the estimated break point behave Klds-
note the estimated break point afithe sample sizeDefine A+ = k/T. Thus A+
denotes the estimated break fractiBor | (0) disturbancest can be shown that
the estimated break fraction converges to the boundagy either 0 or ). Be-
cause boundary values imply no break in the sarntpke estimated break point
conforms to the true model of no breéowever a different phenomenon emerges
for 1 (1) disturbancesNKN found that the estimated break point will stay in the
middle of the samplesuggesting the existence of a break politite authors call
this phenomenon spurious break in an analogy to spurious regreAittoough
the problem of spurious regression is much better understood and is well docu-
mented(see Granger and Newbol#i974 Phillips, 1986 Durlauf and Phillips
1988, the problem of spurious break is less well studiBldis note takes up the
issue In particular we shall deliver a mathematical proof thet does not con-
verge to 0 or 1corroborating and confirming the simulation findings of NKIN
should be emphasized that our analysis assumes the absence of a break in the
data-generating process

The result suggests that caution should be exercised in estimating a break point
when disturbances ai€l). Diagnostic testing should be performed prior to es-
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timating a break pointand test statistics that are robust {@) errors should be
used Vogelsang(1994a1994h proposed a number of test statistics useful for
this purpose

2. NOTATION AND ASSUMPTION
Consider the model

X Bi+e t=12,...k
Yoo {x{,B2+ & t=k+1..T

I:etél(k) be the least squares estimatopebased on the fird¢ observations and
B-(k) be the least squares estimatoBgbased on the la3t— k observations.e.,

s~ (Se) (300,

A T -1 T
Bz(k)=< > xtx{> ( > xtyt>.

t=k+1 t=k+1
Define the sum of squared residuals for the full sample as

k T
Sr(k) = 2 (yi = x{ Bu(K)*+ X (e — x{ B2(k))?

t=1 t=k+1
and define the break point estimator as
k = argminS; (k) = argmln{sr(k) 2 stz}.
1=k=T 1=k=T =1
The second equality follows becausg ; 2 does not depend dn Finally, let
Ar = mm{(/\ A= argmln[Sr([Tu]) - E & H
ueA,A]

where 0< A < A < 1. The behavior of\; can be determined by exploring the
limiting process o (k) — ={_, e2. In the absence of a breake., 81 = B, itis
easy to show that

;
Sr(k) — lef = M(k),

k " “1/ k
M (k) = <2 8txt> <2th{> <2 Xt8t>
T r/T 1/ T
+< > 8txt>( > XtXt'> ( > Xt8t>~ (1)
t=k+1 t=k+1 t=k+1

where
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To obtain the limiting process fdvl;(k), we need the following assumptigns
which are similar to those of NKN

Assumption A1 For anl (1) error process;, we assume thak —2 EEAl] et =
cfoA W2 (u) duwith W(u) being a standard Wiener process and 0 a constant

Assumption A2 There exists a diagonal matrix; such that
[TA]
DT1/2< > xtx{> DrY2= Q(A).
t=1

The matrixQ(A) is assumed to be positive definite for al>> 0, andQ(v) —
Q(u) is positive definite for alb — u > 0. In addition Q(0) = 0.

Assumption A3 For somex = 0,

[TA]

T—a/ZD_Fl/Z Z Xt & = G(A), (2)
t=1

whereG(A) is a stochastic process having continuous sample pati@gh= 0.

The assumptions here are quite genegatompassing many models used in
practice Various special cases &(A) andQ(A) are given in NKN Typically,
G(A) is a functional of a Gaussian process

3. MAIN RESULT

In this sectionwe characterize the limiting behavior bf; (k). Whene, is 1(0),
M+ (k) has a proper limit fok € [aT,bT] with a,b € (0,1) anda < b. This will
not be true when; is I (1). A normalization is requiredDefine

M1(k) = T " *M1 (k).

We also note thak = argmaxM+(k) = argmax M (k) becausel ~* does not
depend ork. Under Assumptions A1-A3t can be shown thasee NKN)

At % argmaxM*(A), 3)
AE[AA]
where
M*(2) = G(A)'Q(V)'G(A)
+[G(1) - GW)]'[Q() — QW] H[G(1) — G(A)]. 4)

Whene, is | (0), a similar limiting process will be obtainedhis implies that
in the absence of a break paittie estimated break point is a random variable
with supportin[ A, A]. This is true regardless of whether the error(®) or | (1).
Thus if the attention is focused on the compact intefwal ], not much differ-
ence between the two cases can be discerdhélimportant to explore the be-
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havior ofM*(\) for A near the boundaryor(0) error process;, NKN proved
thatM(A) — o0 asA — 0 or 1, thusA; — {0,1}, if A — 0 andA — 1 (also see
Andrews 1993. In their Remark 1(p. 742), NKN pointed out that they were
unable to characterize the limiting behaviodf(A) for A near O or 1Through
simulation they found thatM *(A) does not diverge to infinity as decreases to
zero or increases ta 1

In the following we shall prove tha#*(A) is a well-defined process d0,1]
and is uniformly bounded in probability ovEd,1].

In Assumption A3we shall assume that= 2. This is true whenevex; con-
tains a nonzero mean regreséeg., a constant or a trendWhen all components
of x; arel (0) and have zero meansis possible thatr = 1 (for an examplesee
NKN). (Actually, anl (1) dependent variable with0) regressors is unlikely to be
a useful mode) In any caseour proof does not apply to the situation for which
0 < a < 2 and thus is not considered in this paper

THEOREM 1 Assume that AssumptioAd—A3 hold. For the a defined in
(2), assumer = 2. We hae

sup M*(A) = Oy(1). (5)
A€(0,1)
Proof of Theorem 1 For an arbitrary vectaz and an arbitrary projection ma-
trix P, we havez'Pz= z'z. Apply this inequality toM{ (k) to obtain

T

.
Mi) =T« e2=T 23 62 forallke [LT], (6)
t=1

t=1

from o = 2. BecauselT 23, &2 does not depend ok and it has a limit by
Assumption A1l M{(k) is uniformly bounded in probabilityThus its limit
M*(A), is uniformly bounded in probability fon € (0,1). u

Therefore M*(A) is stochastically bounded even whenr- {0,1}. This is in
contrast to the case ¢f0) errors for which the corresponding process grows
without bound as\ tends to the boundaryo rule out the possibility thats —
{0,1}, we need to further examine the behaviorMf(A) for A near 0 and 1
Strictly speakingM *(A) is not defined yet ah = 0 andA = 1. As the limit of
M*(A) whenA — 0, M*(0) should be defined as

M*(0) = G(1)'Q(D)*G(1), (7)

which is obtained from(4) by taking G(A) = 0, Q(A) = 0, and
G(A)'Q(A)IG(A) = 0 for A = 0. Note that the termG(A)'Q(A)1G(A) is
the limit of the first term of(1) on the right-hand side divided by~ Now

K " 1/ k K K
Ta(EXt8t><2XtXt> (2Xt8t> 5T7d2835T7228t2,
t=1 t=1 t=1 t=1 t=1
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which converges to zero in probability for any givieor for k = [TA] with A —
0. It follows thatG(A)'Q(A) 1G(A) — 0 in probability as\ — 0. Thus the defi-
nition of (7) is the limit of M*(1) asA — 0. As a resultM*(A) becomes contin-
uous atA = 0. Similarly, we can defingas the limit ofM*(A) asA — 1, M*(1) =
M*(0). This extension oM (1) makes it continuous at = 1. We next show that
the maximum oM *(A) is attained neither at 0 not 1

THEOREM 2 Under the conditions of Theoreinwe hae
(i) With probability1,

M*(0) = M*(1) = M*()), forevery0O <A<l (8)
(ii) 1f G(X) has a continuous distribution for each then with probabilityl,

M*(0) = M*(1) < M*(A), forevery0 <A<l (9)

Theorem 2i) implies that as long a#l *(A) is not a constant procesbe max-
imum value oM * () will not be attained at 0 or.Let A* = argmaxe, 1M *(A).
Assume that there exists\a such thaiM *(A,) > M*(0) (this is true if the process
is not a constant ThenA* 4 0,1 asA — 0 or A — 1. This assertion follows from
the continuity oM *(A) at 0 and 1(there exists a neighborhod of A = 0 such
thatM*(A) < M*(A,) for all A € Np; the same is true fok = 1). In summary
whenM*(-) is not a constant proces®t only doedM *(-) not attain its maximum
at 0 or 1 but also the extreme point & *(-) on any subset df0,1] is bounded
away from O or 1

From (3), A1 — A" This implies that the estimated break point will also be
bounded away from 0 and provided thatM *(A) is not a constant procesSf
courseif M*(-) is a constant procesany point of{0,1] is an extreme pointt is
difficult to construct an exampl@r mode) such thatM *(-) does not depend on
A. For the various concrete examples given in NK¥I*(-) is not a constant
Theorem 2ii) gives a sufficient condition to guarantee the nonconstantness of
M*(+). The result of partii) is much stronger than needed for the occurrence of
spurious breaks

To prove Theorem,2ve need the following lemmdor a symmetric matriA,
we write A > 0 if it is positive definite

LEMMAL. Forarbitrary positive definite matrices Aand BwithAB(pX p),
and arbitraryvectors x and y p X 1), we hae

XA Ix—yBly—(x—y)(A-B) (x—y) =0. (10)
Proof of Lemma 1 Define the matrix

<(A—B)‘1—A‘1 -(A-B)? )
H= .

~(A-B)? (A-B)1+B! 1D
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It suffices to proveH to be positive semidefinite because the left-hand side of
(10) is equal to—z'Hzfor 2’ = (x,y’). LetD=(A—B) 1+ B 1> 0. LetC

be a matrix with the firsp rows (1,(A — B)"*D ') and secong rows (0, 1).
Using the identity

(A-B1-Al=(A-B) D }A-B)?
we obtain
C'HC = diag(0,D) = 0.

ThusC'HC is positive semidefiniteThis implies thaH is positive semidefinite
becauseC has full rank This proves the lemma u

Proof of Theorem 2 The inequalityM *(0) = M*(A) is equivalent to
G(1)'Q(1)G(D) — G QNG
- [G(D) - GWI'[Q(D) — QW] [G(D) - G(A)]=0.

Clearly, part(i) of Theorem 2 follows from Lemma 1 by lettidg= Q(1), B= Q(A),
x=G(1),andy = G(X). Next, considefii). LetA= Q(1) andB = Q(A) and letH
be defined i11). ThenM*(0) < M*(A) is equivalent to-£'H¢ < 0, whereé =
(G(1),G(A)')". LetI be an orthogonal matrix such tHaHT = diag(A4,...,Azp)
with Ay = A, = --- Ay, Wherel;’s are the eigenvalues éf. Becauséd = 0 and
H # 0, the maximum eigenvalue &f is positive It follows that

—¢'HE = —(T¢) diag(Ay, ..., A2p) T = =)y,

wheren is the first component ofé. WhenG(A) has a continuous distribu-
tion, so doest. ThusTé is a vector of continuous random variabl@splying
—n2); < 0 with probability 1 becaus®(n? = 0) = 0. That is —£'Hé < 0
with probability 1 u

The preceding analysis applied @) regressors with(1) disturbancedn this
case Q(A) in Assumption A2 is a random positive definite matratl the pre-
ceding argument applieBhe details can be found in B&i996. This implies that
for spurious regression modgi§ a break is allowed in estimatiom spurious
break will occur

All these results lend support to the observation that when it coméglto
processe®ne should be careful about making the hypothesis of a break |ftoint
is well known that a process with a break point may be mistakeflagPerron
1989; the converse is also tru@ur result is simply a rigorous proof of this fact
However wheny, andx; arel (1) but are cointegrate@ spurious break will not
arise because the underlying disturbancesl &g Furthermore should there
indeed exist a shift in the cointegrating relationslife break point can be esti-
mated more precisely thdit0) models(given the same magnitude of shifEs-
timating a break pointin cointegrating relationship was studied bylBansdaine
and Stock1997) and by an earlier version of this paper
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NOTE

1. The corresponding assumption in NKBke thei(A3’)) is stated in terms of; rather thare,
which applies toy; beingl (1). The current form allows; to depend on deterministic regressors and
on an additive (1) error process
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