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ESTIMATING AND TESTING LINEAR MODELS WITH
MULTIPLE STRUCTURAL CHANGES

BY JUSHAN BAI AND PIERRE PERRON'!

This paper considers issues related to multiple structural changes, occurring at un-
known dates, in the linear regression model estimated by least squares. The main aspects
are the properties of the estimators, including the estimates of the break dates, and the
construction of tests that allow inference to be made about the presence of structural
change and the number of breaks. We consider the general case of a partial structural
change model where not all parameters are subject to shifts. We study both fixed and
shrinking magnitudes of shifts and obtain the rates of convergence for the estimated
break fractions. We also propose a procedure that allows one to test the null hypothesis
of, say, [ changes, versus the alternative hypothesis of /+ 1 changes. This is particularly
useful in that it allows a specific to general modeling strategy to consistently determine
the appropriate number of changes present. An estimation strategy for which the location
of the breaks need not be simultaneously determined is discussed. Instead, our method
successively estimates each break point.

KeEywoRrDs: Asymptotic distribution, change point, rate of convergence, model selec-
tion.

1. INTRODUCTION

THIS PAPER CONSIDERS ISSUES related to multiple structural changes in the linear
regression model estimated by minimizing the sum of squared residuals.
Throughout, we treat the dates of the breaks as unknown variables to be
estimated. The main aspects considered are the properties of the estimators,
including the estimates of the break dates, and the construction of tests that
allow inference to be made about the presence of structural change and the
number of breaks.

Both the statistics and econometrics literature contains a vast amount of work
on issues related to structural change, most of it specifically designed for the
case of a single change.” The econometric literature has witnessed recently an
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? See the surveys of Zacks (1983), Krishnaiah and Miao (1988), and Bhattacharya (1994).
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48 J. BAI AND P. PERRON

upsurge of interest in extending procedures to various models with an unknown
change point. With respect to the problem of testing for structural change,
recent contributions include the comprehensive treatment of Andrews (1993)
and Andrews and Ploberger (1994). This issue has also received a lot of
attention in the debate on unit root versus structural change in the trend
function of a univariate time series (see Perron (1989)). Issues about the
distributional properties of the parameter estimates, in particular those of the
break dates, have also been considered (see Bai (1994a, b)).

In comparison, the literature addressing the issue of multiple structural
changes is relatively sparse. Recent developments include Andrews, Lee, and
Ploberger (1996) who consider optimal tests in the linear model with known
variance. Garcia and Perron (1996) study the sup Wald test for two changes in a
dynamic time series. In an independent study, Liu, Wu, and Zidek (1997)
consider, as we do, multiple shifts in a linear model estimated by least squares.
They study the rate of convergence of the estimated break dates, as well as the
consistency of a modified Schwarz model selection criterion to determine the
number of breaks. Their analysis considers only the so-called pure-structural
change case where all the parameters are subject to shifts. Our assumptions are
much less restrictive than those of Liu, Wu, and Zidek (1997), and our main idea
of argument differs from theirs. Our model allows for general forms of serial
correlation and heteroskedasticity in the errors, lagged dependent variables,
trending regressors, as well as different distributions for the errors and the
regressors across segments. Furthermore, we consider the more general case of
a partial structural change model where not all parameters are subject to shifts.
A partial change model is useful in allowing potential savings in the number of
degrees of freedom, an issue particularly relevant for multiple changes. We
obtain the rates of convergence for the estimated break points not only for fixed
but also for shrinking magnitudes of shifts. The latter is the basis for the
derivation of feasible asymptotic distributions and confidence intervals for the
break dates.

Our study considers, in addition, the important problem of testing for multiple
structural changes for the case with no trending regressors. To that effect, we
present sup Wald type tests for the null hypothesis of no change versus an
alternative hypothesis containing an arbitrary number of changes. We also
propose a test where the alternative specifies an unknown number of changes up
to some maximum and a test of the null hypothesis of, say, / changes versus
[+ 1 changes. The latter is useful for a specific to general modeling strategy to
determine the number of changes present. Finally our paper contains a discus-
sion of an estimation strategy for which the locations of the breaks need not be
simultaneously determined. Rather our method successively estimates each
break point.

The rest of this paper is structured as follows. Section 2 discusses the model
and the assumptions imposed on the variables and the errors. Section 3 contains
results about the consistency, the rate of convergence, and the asymptotic
distribution of the estimates of the break dates (as well as other parameters of
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the model). Section 4 proposes test statistics, derives their asymptotic distribu-
tions, and presents critical values. Section 5 discusses sequential methods to
estimate the model without treating all break points simultaneously. All proofs
are collected in an appendix.

2. THE MODEL AND ASSUMPTIONS

Consider the following multiple linear regression with m breaks (m + 1
regimes):
€)) y=xB+z8+u, (t=T,_,+1,....T),
for j=1,...,m+ 1 and where we use the convention that 7, =0and 7,, ., =T.
In this model ¥, is the observed independent variable, x, (p X 1) and z, (g X 1)
are vectors of covariates, and 8 and o; (j=1,...,m+ 1) are the corresponding
vectors of coefficients; u, is the disturbance. The indices (T\,...,T,,), or the
break points, are explicitly treated as unknown. The purpose is to estimate the
unknown regression coefficients together with the break points when 7 observa-
tions on (y,, x,, z,) are available. Note that this is a partial structural change
model in the sense that B is not subject to shifts and is effectively estimated
using the entire sample. When p = 0, we obtain a pure structural change model
where all the coefficients are subject to change.

The multiple linear regression system (1) may be expressed in matrix form as
Y=XB+Z8+U, where Y=(y,,....y,), X=(x,...,x7), U=(u,,...,u),
8=1(8],8},...,8,.,),and Z is the matrix which diagonally partitions Z at the
m-partition (Tl, T, ie, Z=diag(Z,,..., Z,,, ) with Z;=(z; . \,...,2z7).
Throughout, we denote the true value of a parameter with a 0 superscript. In
particular, 8°=(5/,...,8,, ) and (T/,...,T,) are, respectively, the true val-
ues of the parameters 6 and of the break points. The matrix Z° is the one
which diagonally partitions Z at (T},...,T,"). Hence the data-generating process
is assumed to be

"y om

) Y=XB"+Z%"+U.

The goal is first to estimate the unknown coefficients ( 8°,8/,...,8%,,, T},

LT, assummg 8" # 8", (1 <k <m). We do not impose the restriction that
the regression functlon is continuous at the turning points. For the latter,
readers are referred to Feder (1975) and Gallant and Fuller (1973) for the
special case of a polynomial trend regression. This paper focuses on discrete
shifts. In general, the number of breaks m can be treated as an unknown
variable with true value m°. However, for now, we treat it as known and discuss
methods of estimating it in later sections. We also postpone the problem of
testing for the presence of structural change to Section 4.

The method of estimation considered is that based on the least-squares
principle. For each m-partition (T},...,T,,), denoted {T}}, the associated least-

squares estimates of B and §; are obtained by minimizing the sum of squared
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residuals T2 'YT . [y, —x, B—z,8% Let BUT)) and S((T})) denote the
resulting estlmates Substituting them in the objective function and denoting the
resulting sum of squared residuals as S;(T},...,T,,), the estimated break points
(T,,...,T,) are such that

2 m

A

3) (Tl,... T )— argmin.

> m

T, ST(Tl""’T;n)

.....

where the minimization is taken over all partitions (7},..., m) such that
T.—T,_, >q. Thus the break-point estimators are global minimizers of the
Ob]eCtIVG function. Finally, the regression parameter estimates are the associ-
ated least -squares estimates at the estimated m-partition {T} ie. B B({T})
and 6= 8({T}) Note that the break points need not be obtained via an
exhaustive gr1d search. We discuss in Bai and Perron (1996) an efficient
algorithm based on the principle of dynamic programming which allows global
minimizers to be obtained using a number of sums of squared residuals that is of
order O(T?) for any m > 2.

The statistical properties of the resulting estimators are studied in the next
section under the following set of assumptions. As a matter of notation, we let

13 2

— 7 denote convergence in probability, 4 convergence in distribution,
and “ =" weak converge in the space D[0,1] under the Skorohod metric (e.g.,
Pollard (1984)).

ASSUMPTION Al: Let w,=(x},z)), W=(w,,...,w;), and VT/O be the diagonal
partition of W at (T, ..., ,f,’) such that W° = diag(W),..., W2, ). We assume for
eachi=1,....,m+ 1, with T)=1and T, , =T, that W0 Wl /(TP - T ) con-
verges in probability to some nonrandom positive definite matrix not necessarily the

same for all i.

ASSUMPTION A2: There exists an >0 such that for all 1> 10, the minimum
eigenvalues of A, = (1/1)2;01’1ww and of A% (1/1)ZTO Www, are bounded
away from zero (i=1,...,m + 1).

ASSUMPTION A3: The matrix By, = ¥\ z,z, is invertible for | — k > q, the dimen-
sion of z,.

The sequence of errors {u,} satisfies one of the following two sets of condi-
tions:

ASSUMPTION A4(i): With {F :i=1,2,...} a sequence of increasing o-fields,
assume that {u;, %} forms a L'-mixingale sequence with r =4 + 8 for some 6> 0
(McLeish (1975) and Andrews (1988)). That is, there exist nonnegative constants
{c;;i=1} and{t,lfj : ] = 0} such that $; L0 as j— o and for all i>1 and j > 0, we
have: (a) E|E(u,|%;_ )|’ <ciy, ) Elu — E(u; |37+])|’ <ciyy, (©) max; ¢, <K
<o, (d) X7 + W, Lo for some k> 0. We also assume (e) that the dzsturbances
u, are independent of the regressors w, for all t and s.
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Or:

ASSUMPTION A4(ii): Let &* = o-field {... . w,_|,W,y...,u,_5,u,_}. We assume
(a) that {u,} is a martingale dzﬁerence sequence relative to {7} and sup,Elu,|*"¢
< oo for some ¢ > 0; (b) T~' X"z, 2 =, Q(v) uniformly in v € [0,1], where Q(v)
is positive definite for v > 0 and strictly increasing in v; (c) If the disturbances u, are
not independent of the regressors {z,} for all t and s, the minimization problem
defined by (3) is taken over all possible partitions such that T, —T,_, > €T (i =
1,...,m+1) for some €> 0.

ASSUMPTION AS: T = [TA?], where 0 < A) < -+ < A) < 1.

m

Assumption Al is standard for multiple linear regressions. Assumption A2
requires that there be enough observations near the true break points so that
they can be identified. A2 can be weakened as follows. For some ¢ >0 and
1>1,, ||(3,Jrl =8Bl > cll(8, — 8Dl for B = (1/1)2;31’1 z,z, and B =
a /I)Zfo , z,Z,. In addition, for every e >0 and [ =[eT], the minimum eigen-
values of A, and AF, are bounded away from zero in probability for large 7.
A3 is imposed because the break points are estimated by a global least-squares
search. If the number of observations in each segment is at least some fixed &
(h =g, not depending on T), the invertibility requirement in A3 can be
weakened to hold for all combinations (/, k) for which [ — k > h.?

The assumptions stated in A4 pertain to two specific cases related to the
presence or absence of a lagged dependent variable in w,. The conditions
described in part (i) pertain to the case where no lagged dependent variables are
allowed in w, implied by part (e). In this case, the conditions on the residuals are
quite general and allow substantial correlation and-heterogeneity. Part (ii) of
Assumption A4 considers the case where lagged dependent variables are al-
lowed as regressors. In this case, no serial correlation is permitted in the errors
{u,}. This extra generality is obtained at the expense of some restrictions on the
admissible partitions if a lagged dependent variable is present in the z,. In such
cases, each segment considered to compute global minimizers must contain a
positive fraction of the total sample. This is not constraining from a practical
point of view since e can be arbitrarily small. Note, however, that this restriction
is not necessary if a lagged dependent variable is present only in the x,’s. In
both A4(i) and A4(ii), the assumptions are general enough to allow different
distributions for both the regressors and the errors in each segment.

The choice between assumptions A4(i) and A4(ii) can be especially interesting
in the case of dynamic models when the coefficients associated with the lagged
dependent variables are not subject to change. In this case, the investigator can
take the dynamic effects into account either in a direct parametric fashion (e.g.
introducing lagged dependent variables so as to have uncorrelated residuals) or

* Note that, for the proof of the consistency, A3 could be dispensed using generalized inverses.
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using an indirect nonparametric approach (e.g. leaving the dynamics in the
disturbances and applying a nonparametric correction for proper asymptotic
inference).

Assumption AS is a standard requirement to permit the development of an
asymptotic theory and allows the break points to be asymptotically distinct. It
considers the asymptotic experiments under the assumption that each segment
increases proportionately as the sample size increases. We refer to the quanti-
ties Ay =1(A},...,A%) as the break fractions and we let A5 =0 and A%, 6 =1.
Finally, we assume that polynomial trending regressors are written in the form
of (t/T)' (I = 0) or, more generally, written as a continuous function of the time
trend, g(¢/T) (see Bai (1994b, 1995) for the case of a single break). The
consistency and rate of convergence of the estimated break points apply to
trending regressors. However, the assumptions in Section 4 for the test statistics
rule out trending regressors.

3. CONSISTENCY AND LIMITING DISTRIBUTIONS

In this section, we analyze the consistency of the estimated break fractions
and their rate of convergence. The latter allows us to derive results about the

asymptotlc distribution of the estimates (B, 61, . ,8,,1 H,T], . m) We let
—(/\1,..., A)=(T/T,....T,/T) with corresponding true values A’ =
(A,...,A%). We shall first show that A is consistent for A’ and later that the

rate of convergence is 7.

3.1. Consistency

The main result of this section is summarized in the following proposition
which states the consistency of A for A°.

PROPOSITION 1: Under A1-A5: A, =, A, k=1,...,m.

We outline the main steps of the proof using a few lemmas that are proved in
the appendix. Denote by i, the estimated residuals and by d, the difference
between the fitted and true values. That is, &, =y, —x, 8 —z,6;, for t [T, _, +
1,71 and d,=x(f—B") +2,5,— 8", for te[T, ,+1, T,1n[T°, + 1, T"]
(k,j=1,...,m+ 1). Note that,-in general d, is defined over (m + 1)* different

segments for each of the possible m- partltlons {T}} and {T,}. Using properties of
projections,

4

and using #, =
17 1 X 1T
) La--Yuwto Y2 }:ud

t=1 t—l



MULTIPLE STRUCTURAL CHANGES 53

The proof of Proposition 1 simply uses relations (4) and (5) and the associated
limit of T7'X7_ u,d,. We start with the latter.

LEMMA 1: Under A1-AS5, we have T™'XI_ u,d, = 0,(1).

Lemma 1 together with (4) and (5) implies that T-'Y{_,d} -, 0. The proof
follows by showing that this implies A -, A’. More specn‘ically, “'yl_di -, 0
cannot hold if )\ -, /\0 for some j. ThlS is stated in the following lemma

LEMMA 2: Assume A1-AS hold and that Xj », )\? for some j; then

T
lim sup P| 7' ). d?>Cll80 — 8" I | > ¢,

To= =1
for some C >0 and €,> 0.

We are now in the position to prove Proposition 1. Using (5) and Lemmas 1
and 2, and under the supposition that some break date is not consistently
estimated, we have the inequality

T T
Ty 2> T ' Y u?+ClIs" — 8% 1> +0,(1)
1

1

holding with probability no less than some €, > 0. This is in contradiction with
the inequality (4), which holds with probability 1 for all 7. Hence, all break
dates are consistently estimated.

3.2. Rates of Conuvergence

We now consider the rate of convergence of the estimates. We start by
showing that )\k converges to its true value at rate 7. More precisely, we have
the following proposition.

PROPOSITION 2: Under A1-AS, for every m> 0, there exists a C <, such that
for all large T, P(IT(/\A WI>C)<nk=1,....,m).

It is important to remark that the rate 7 convergence pertains to the
estimated break fraction )\ and not to T the estimated break date. For the
latter, our result states that with high probablllty its deviation from the true
break is bounded by some constant C that is independent of 7, i.e. with high
probability, we have IT Tl <C.

The rate T convergence of the estimated break fractions allows us to obtain
standard root-T asymptotlc normality of the estimated coefficients £ and 8. The
relevant results are stated in the following proposition whose proof is similar to
Corollary 1 of Bai (1994b) and is therefore omitted.
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PROPOSITION 3: Let §=(f,8) and 0°=(B°,8°). Under A1-A5, VT (6 —
8% 5 N,V DY), with V=plim T 'WOW°, &=plimT 'W"QW?°, and
N=EWUU".

Note that when the errors are serially uncorrelated and homoskedastic we
have @ = o ?I and the asymptotic covariance matrix reduces to ¢ *V"~!, which
can be consistently estimated using a consistent estimate of o 2. When serial
correlation and /or heteroskedasticity is present, a consistent estimate of @ can
be constructed along the lines of Andrews (1991), assuming identical distribu-
tions across segments or allowing the distributions of both the regressors and
the errors to differ.

3.3. Limiting Distributions of Break Dates

Note first that, as in the single break case, the usual limiting distribution of
the break dates obtained specifying fixed magnitude of changes depends on the
exact distribution of the pair {z,,u,}. On the other hand, a strategy that permits
obtaining pivotal statistics is to consider an asymptotic framework where the
magnitudes of the shifts converge to zero as the sample size increases. Even
though the setup is particularly well suited to provide an adequate approxima-
tion to the exact distribution when the shifts are small, it remains adequate even
for moderate shifts. The required conditions are stated in the next assumptions
defined for i =1,...,m.

ASSUMPTION A6: Let A, =87, ,—8), Assume Ap,=uv;4,; for some A,
independent of T, where vy > 0 is a scalar satisfying vy — 0 and T/~ Pp, -
for some 9 €(0,1/2). In addition, we assume E||z,||2 <M and Elu,lz/ﬁ <M for
some M < and all t.

Note that for a smaller magnitude of shift (small v;), which corresponds to a
smaller &, A6 requires the existence of a higher moment of u,. When v, is a
fixed constant, we can choose ¥ arbitrarily close to 1/2. In this case, the
requirement of E|u,|2/ ¥ < M reduces to the existence of 4 + & moment, as
stated in A4.

PROPOSITION 4: Under Assumptions A1-A6, we have for k=1,...,m: (i) Xk -,
\y; and Gi) for every 1> 0 there exists a C < % such that for all large T, P(|ITv2 (X,
—-AD[>C0) < 7.

Proposition 4 asserts that the estimated break fractions remain consistent
even in the case where the shifts decrease as the sample size increases. The rate
of convergence is, of course, no longer 7 but rather TvZ. This rate is sufficient
to establish root-7" consistency for the estimated regression parameters. This
result will not be presented to save space, and interested readers are referred to
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Bai (1994a, 1994b) for the case of a single break. Proposition 4 allows us to study
the limiting distribution of the estimated break dates. It asserts that we can
restrict the analysis to a “neighborhood” of length C/v# around the true break
dates 7 which makes possible the application of a central limit theorem since
this “neighborhood” increases when v, decreases. With the mixing assumptions
on the errors, each segment is asymptotically distinct and the analysis of the
limiting distribution of the break dates is similar to that in the single break case
as analyzed in Bai (1994a, 1994b). We provide, in the rest of this section, a
description of the results when the data are not trending and under the
assumption that the following conditions are satisfied.

ASSUMPTION A7: Let AT =T, — T\ |; we assume, fori=1,...,m + 1, that as
AT — oo

T“ |+ s AT] . TY +[s AT)]
(a) (arh™ Y 7z -, 50, (AT) Y u—, 507
=T +1 =79, +1
and
| T +[s AT1 T2, +[s AT"]
(ATIO) Z Z E(z,.z;u,.u,) _)p S‘Qi
r=T" +1 =7, +1

uniformly in s €[0,1];
L 7O | +[s AT]
(b) (AT)~ /2 Y. zu,=B/(S)

(=T +1

where B((s) is a multivariate Gaussian process on [0,1] with mean zero and
covariance EB/(s)B,(u) = min{s, u}(2..

Now, define for i=1,...,m: &=AQ,, | A/AQ; 4, &= 4,0, A,/40; A,

=A0,, A/AQ, . A, and let W(7(s) and W{)(s) be independent Wiener
processes defined on [0, ), starting at 0 when s = 0. These processes are also
independent across i. Also, define Z(s) = ¢, W (—s) —1s|/2, for s <0, and
Z0(s) = /€& &, ,Ws(s) — &lsl/2, for s > 0. We can state the following result.

PROPOSITION 5: Under A1-A7, (AQ, A)v3(T, — T)°) = argmax ,Z(s) (i =
1,...,m).

The limiting distribution is the same as that occurring in a single break model.
The density function of argmax Z)(s) is derived in Bai (1994b) and is nonsym-
metric. When the limits Q,, £2,, and ;* are the same for adjacent i’s, & = 1, and
¢;1 = ¢, , = ¢, in which case the limiting distribution reduces to:

(4,04

(6) a0y (T —T) =arg ms?,lx{W(")(s) —sl/2}
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which is symmetric about the origin and has distribution function (see Yao
(1987)):

H(x)=1+Qm) " *xe /8 = 1(x+5)D(—Vx /2)
+3ed(—3vVx /2),

for x>0 and H(x)=1-— H(—x), with @(x) the distribution function of a
standard normal variable. For instance the 95% and 97.5% quantiles are 7.7 and
11.0.

The results discussed above allows easy construction of confidence intervals
for the break dates. All that is needed is to construct consistent estimates of the
various parameters; 7~ 'Y7_ 7,2z, for Q, T~'XI_,4? for o?, and §,,, — o, for
v A;. When serial correlation is present, {2 can be estimated using a kernel-
based method as discussed in Andrews (1991). Note that when the segments are
not homogeneous, obtaining consistent estimates is still possible using data over
the relevant subsamples only.

The limiting distribution in the case of trending regressors is discussed in Bai
(1994b, 1995) for a single structural change model. His results remain valid for
multiple breaks. We omit the details and refer the reader to those papers.

4. TEST STATISTICS FOR MULTIPLE BREAKS
4.1. A Test of No Break Versus Some Fixed Number of Breaks

We consider the sup F type test of no structural break (m = 0) versus the
alternative hypothesis that there are m =k breaks. Let (7,...,T,) be a parti-
tion such that 7, =[TA;] (i = 1,..., k). Define

-1

A — — —1 N

e o e (ToUerDg S’R’(R(Z’MXZ) R') RS
TR A M @7 kq SSR,

where R is the conventional matrix such that (R8) = (8] — &83},...,8, — 6,, )

and M, =1—-X(X'X) 'X'. Here SSR, is the sum of squared residuals under
the alternative hypothesis, which depends on (T,...,T}). To carry out the
asymptotic analysis, we need to impose some restrictions on the possible values
of the break dates. In particular, we need to restrict each break date to be
asymptotically distinct and bounded from the boundaries of the sample. To this
effect, we define the following set for some arbitrary small positive number e:
A=, s N — Al =€, A > €, A, <1 —€). The sup F type test statis-
tic is then defined as supFr(k;q)=sup,  ,,ecaFr(A,.., 459 Tt is a
generalization of the sup F test considered by Andrews (1993) and others for
the case k = 1. The limiting distribution of the test depends on the nature of the
regressors and the presence or absence of serial correlation and heterogeneity
in the residuals. We consider the case where the following assumptions are
imposed.
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AssUMPTION A8: T 'Zllw,w, — , sQ, uniformly in s €[0,1], for Q some posi-
tive definite matrix.

Note that A8 precludes the presence of trending regressors. Extensions to the
general case where plim, .7 ' X" )w,w, = O(s), which allows trending regres-
sors, are beyond the scope of the present paper.

ASSUMPTION A9: The errors {u,} form an array of martingale differences relative
to {F)=ofield {...,w,_,w,...,u,_,,u,_\}. Also, Elu?l=a? for all t and
T 128w u, = o QV*W*(r), with W*(r) a (p+q) vector of independent
Wiener processes.

The case where {u,} satisfies the general conditions stated in Assumption A4
is discussed in Section 4.4 below. We show how the results remain valid provided
appropriate modifications are made to account for the effect of serial correla-
tion on the asymptotic distributions. The following proposition is proved in the
appendix.

PROPOSITION 6: Let W, () be a q-vector of independent Wiener processes on
def
[0,1]. Under A8-A9 and m =0, sup Fr(k;q) = sup F;_, = SUP, e aF (A,

ooy Ay q), with
FCA, oo A5 q)
aef 1K AW,y ) = A O] [AW, (AL ) = A W, (0]

- Z i\ "Nt

kql.=1 ’\i/\i+1(’\i+l _’\i)

Note that the asymptotic distribution of the test statistic depends on the value
of € in A.. As € converges to zero, the critical values of the limiting random
variable of supF,(k;q) diverge to infinity. Because the computed test statistic
for a given sample is finite, a small positive value of € can improve the power
significantly; see Andrews (1993) for further details. In what follows, we have
adopted € =0.05. No critical values for k >2 are available except those of
Garcia and Perron (1996) for k=2 and ¢ = 1.

Asymptotic critical values are obtained via simulations. The Wiener process
W,(A) is approximated by the partial sums n~'/*El"\e; with e; iid. N(0,1,)
and »n = 1,000. The number of replications is 10,000. For each replication, the
supremum of F(A,..., A;;q) with respect to (A,,...,A,) over the set A, is
obtained via a dynamic programming algorithm. We present, in Table I, critical
values covering cases with up to 9 breaks (k=1,...,9) and up to 10 regressors
(g =1,...,10) whose coefficients are the object of the test. The values reported
are scaled up by g for comparison purposes. The column corresponding to k = 1
can also be found in Andrews (1993). Because supF(1;¢q) <2sup F(2;q) <
ksup F(k; q), the consistency of the supF,(k; q) (k > 2) follows from Andrews
(1993) who proved the consistency of supF;(1; ¢) for various alternatives includ-
ing multiple breaks.
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TABLE I

ASYMPTOTIC CRITICAL VALUES OF THE MULTIPLE-BREAK TEST.
THE ENTRIES ARE QUANTILES X SUCH THAT P(supFy , <x/q) = a.

Number of Breaks, k

q a 1 2 3 4 5 6 7 8 9 UDmax WDmax
1 .90 802 787 707 661 614 574 540 5.09 4.81 8.78 9.14
.95 963 878 7.85 721 6.69 623 586 551 520 1017 1091

975 11.17 981 852 7.79 722 670 627 592 556 1152 1253
.99 13.58 1095 937 850 785 721 675 633 598 1374 15.02
2.9 11.02 1048 961 899 850 806 7.66 732 7.01 11.69 12.33
.95 12.89 11.60 1046 9.71 912 865 819 7.79 746 1327 14.19
975 1453 12.64 11.20 1029 9.69 9.0 8.64 818 7.80 14.69 16.04
.99 16.64 1378 1206 11.00 1028 9.65 9.11 8.66 822 16.79 18.11
390 1343 1273 11.76 11.04 1049 10.02 959 9.21 886 14.05 14.76
.95 1537 1384 12.64 11.83 1115 10.61 10.14 971 932 1580 16.82
975 17.17 1491 1344 1249 11.75 1113 10.62 10.14 9.72 17.36  18.79
.99 1925 1627 14.48 13.40 1256 11.80 11.22 10.67 10.19 1938  20.81
4 .90 15.53 14.65 13.63 1291 1233 11.79 11.34 10.93 1055 16.17  16.95
.95 17.60 15.84 14.63 13.71 1299 1242 1191 1149 11.04 17.88 19.07
975 19.35 16.85 15.44 1443 13.64 13.01 1246 11.94 1149 1951  20.89
.99 21.20 1821 16.43 1521 1445 13.70 13.04 1248 12.02 21.25 2281
5 .90 1742 1645 1544 14.69 14.05 13.51 13.02 1259 1218 17.94  18.85
.95 19.50 17.60 16.40 15.52 14.79 14.19 13.63 13.16 12.70 19.74  20.95
975 21.47 1875 1726 16.13 1540 14.75 14.19 13.66 13.17 21.57 23.04
.99 23.99 20.18 18.19 17.09 16.14 1534 14.81 14.26 13.72 24.00 25.46
6 .90 19.38 1815 17.17 16.39 15.74 15.18 14.63 14.18 13.74 1992  20.89
.95 21.59 19.61 1823 1727 1650 1586 15.29 14.77 1430 21.90 23.27
975 2373 20.80 19.15 18.07 1721 16.49 15.84 15.29 1478 23.83  25.22
.99 25.95 2218 2029 1893 17.97 17.20 16.54 15.94 15.35 26.07  27.63
7 .90 21.23 19.93 1875 17.98 17.28 16.69 16.16 15.69 15.24 21.79  22.81
.95 23.50 2130 19.83 1891 18.10 17.43 16.83 16.28 15.79 23.77  25.02
975 2523 2254 20.85 19.68 1879 18.03 17.38 16.79 1631 2546 2692
.99 28.01 24.07 21.89 20.68 19.68 18.81 18.10 17.49 16.96 28.02  29.57
8§ .90 2292 2156 2043 1958 1884 1821 17.69 17.19 16.70 23.53  24.55
.95 2522 23.03 2148 2046 19.66 1897 1837 17.80 17.30 2551  26.83
975 27.21 2420 2241 2129 2039 19.63 1898 1834 17.78 2732  28.98
.99 29.60 25.66 23.44 2222 2122 2040 19.66 19.03 1846 29.60  31.32
9 .90 2475 2315 21.98 21.12 2037 19.72 19.13 18.58 18.09 25.19  26.40
.95 27.08 24.55 23.16 2208 21.22 2049 19.90 19.29 18.79 27.28  28.78
975 29.13 2592 24.14 2297 2198 21.28 20.59 19.98 19.39 29.20 30.82
.99 31.66 2742 2513 24.01 23.06 22.18 21.35 20.63 19.94 31.72 3332
10 .90 26.13 2470 23.48 2257 21.83 21.16 20.57 20.03 19.55 26.66  27.79
.95 2849 26.17 2459 2359 2271 2193 21.34 20.74 20.17 28.75  30.16
975 30.67 27.52 25.69 24.47 2345 2271 21.95 21.34 20.79 30.84 3246
.99 33.62 29.14 2690 2558 24.44 2349 2275 22.09 21.47 33.86 35.47

Notes: 1. The test UDmax is defined as max ¢ 4 < 55Upy,
given in (9) multiplied by ¢, and M is chosen to be 5.

4.2. A Double Maximum Test

The test discussed above requires the specification of the number of breaks,
m, under the alternative hypothesis. It is of interest to consider tests of no
structural break against an unknown number of breaks given some upper bound

aoe A FQy Ay q) multiplied by ¢. 2. The test WDmax is
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M. Consider the following new class of tests, called the double maximum tests:

(8) DmaXFT(Maq7a1a~..,0M) = max a, sup FT(/\U‘ c /\m; q)’
l<m<M Agsens An)E A,

m

defined for some fixed weights {ay, ..., a,,}. Note that the asymptotic distribution
of this class of tests is easily obtained from Proposition 6. Indeed, we have

DmaxF;(M,q,a,,...,a,,) = max a,, sup F(A,oos Ay q).
Lsm<M () .. A€,

m

The weights may reflect the imposition of some priors on the likelihood of
various numbers of breaks. Apart from such considerations, precise theoretical
guidelines about their choice remain an open question. An obvious candidate is
to set all weights equal to unity and we label this version of the test as
UDmax F(M, q) = max, ., < ySUPy, . aye aFr(Ap.05 A5 q). For a fixed m,
F(Ay,..., A,; @) is the sum of m dependent chi-square random variables with g
degrees of freedom, each one divided by m. This scaling by m can be viewed, in
some sense, as a prior imposed to account for the fact that as m increases a
fixed sample of data becomes less informative about the hypotheses being
confronted. Since for any fixed ¢ the critical values of the individual tests
Sup, e aFr(Ap .05 A, q) decrease as m increases, this implies that the
marginal p-values decrease with m and may lead to a test with low power if the
number of breaks is large. One way to alleviate this problem is to consider a set
of weights such that the marginal p-values are equal across values of m. This
implies weights that depend on ¢ and the significance level of the test, say a. To
be more precise, let c(gq, @, m) be the asymptotic critical value of the test
SUP(, . ae a (A 0s A5 @) for a significance level @. The weights are then
defined as a, =1 and for m > 1 as a,, = c(q, a,1)/c(q, a, m). This version is
denoted

c(gq,a,1)
9 WDmax F;(M,q) = max ————
1<m=<m c(q, a,m)
X sup  Fr(A,..,0,,59).
(/\l """ /\IH)EAE

The last two columns of Table I report the asymptotic critical values of both
tests for M =35 and e=0.05. This should be sufficient for most empirical
applications. In any event, the critical values vary little for choices of the upper
bound M larger than 5. The consistency of the tests follows directly from the
consistency of supF,(k; q).

4.3. Test of l versus [ + 1 Breaks

This section considers a test of the null hypothesis of / breaks against the
alternative that an additional break exists. Ideally, one would base the test on
the difference between the sum of squared residuals obtained with / breaks and
that obtained with [+ 1 breaks. The limiting distribution of this test statistic is,
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however, difficult to obtain. Here, we pursue a different strategy. For the model

with [ breaks, the estimated break points, denoted by fl, e, f,, are obtained by
a global minimization of the sum of squared residuals. Our strategy proceeds by
testing each (/ + 1) segment (obtained using the estimated partition 7,...,7,)
for the presence of an additional break. We assume the magnitude of shifts is
fixed (nonshrinking) in this section.

The test amounts to the application of (/ + 1) tests of the null hypothesis of
no structural change versus the alternative hypothesis of a single change. It is
applied to each segment containing the observations 7; , +1to 7; (i=1,...,
[+ 1) using again the convention that 7, =0 and 7,,, = T. We conclude for a
rejection in favor of a model with (/ + 1) breaks if the overall minimal value of
the sum of squared residuals (over all segments where an additional break is
included) is sufficiently smaller than the sum of squared residuals from the !/
break model. The break date thus selected is the one associated with this overall
minimum. More precisely, the test is defined by

(10)  Fp(I+1|) = {Sr(fl,...,f",)

— min inf ST(fl,...,YA",-_I,T,YA“,»,...,YA",)}/cV,

l<i<l+1lre A,

where
an A, ={nt + (T -1 )n<r<T,—(1,-T_,)n)

2 2

and ¢° is a consistent estimate of o“ under the null hypothesis. Note that for
i=1, S(1,....,T,_,7,T,...,T)) is understood as S;(r,7T,,...,T;) and for i =
[+1as S;(T),...,T;,,7). We have the following result, proved in the Appendix:

PROPOSITION 7: Under Assumptions A8-A9 and m = I: lim, _, . P(F;(I+ 1]]) <
x)=G, ()" with G, ,(x) the distribution function of sup, _ , o, W, () —

q,m
W, (DI /(1 = w)).

The critical values of this test for different values of / can be obtained from
the distribution function G, ,(x). A partial tabulation of some percentage points
can be found in DeLong (1981) and Andrews (1993) (see also the first column of
our Table I). However, the grid presented is not fine enough to allow obtaining
the relevant percentage points of Gq,n(x)/ *1, Accordingly, we provide a full set
of critical values in Table II calculated with n = .05. These were obtained using
a simulation method similar to that used for Table I.

Note that 62 is only required to be consistent under the null hypothesis for
the validity of the stated asymptotic distribution. The test may, however, have
better power if 6?2 is also consistent under the alternative hypothesis. Also, it is
important to note that the results carry through allowing different distributions
across segments for the regressors and the errors. That is, Proposition 7 remains
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TABLE II

ASYMPTOTIC CRITICAL VALUES OF THE SEQUENTIAL TEST F(I + 1[/).
THE ENTRIES ARE THE QUANTILES ¥ SUCH THAT G, , (x)/ ™! = a.

q.m

!

q a 0 1 2 3 4 5 6 7 8 9
1 .90 8.02 956 1045 11.07 11.65 12.07 1247 1270 13.07 13.34
.95 9.63 11.14 1216 12.83 13.45 14.05 1429 1450 14.69 14.88
975 11.17 12.88 14.05 1450 15.03 15.37 1556 1573 16.02 16.39
.99 1358 15.03 15.62 1639 16.60 16.90 17.04 17.27 1732 17.61
2 .90 11.02 1279 1372 14.45 1490 1535 1581 16.12 1644 16.58
.95 12.89 14.50 1542 16.16 16.61 17.02 17.27 1755 17.76 17.97
975 1453 16.19 17.02 17.55 1798 1815 1846 1874 1898 19.22
.99 16.64 17.98 18.66 19.22 20.03 20.87 20.97 21.19 2143 21.74
3 .90 1343 1526 1638 17.07 17.52 1791 1835 1861 1892 19.19
.95 1537 17.15 17.97 1872 19.23 19.59 19.94 20.31 21.05 21.20
975 17.17 1875 19.61 2031 2133 21.59 21.78 22.07 2241 22.73
.99 19.25 21.33 22.01 2273 23.13 23.48 23.70 23.79 23.84 24.59
4 .90 1553 17.54 1855 1930 19.80 20.15 20.48 20.73 20.94 21.10
.95 17.60 19.33 2022 20.75 21.15 21.55 21.90 2227 22.63 22.83
975 1935 20.76 21.60 2227 22.84 2344 23.74 24.14 2436 24.54
.99 21.20 22.84 24.04 2454 2496 2536 2551 2558 25.63 25.88
5 .90 17.42 19.38 20.46 2137 2196 2247 2277 2323 2356 2381
.95 1950 21.43 2257 2333 2390 2434 24.62 25.14 2534 2551
975 21.47 2334 2437 2514 2558 25.79 2596 2639 26.60 26.84
.99 23.99 2558 2632 26.84 2739 27.86 2790 2832 2838 28.39
6 .90 19.38 21.51 22.81 23.64 24.19 2459 2486 2527 2553 25.87
.95 21.59 23.72 24.66 2529 2589 2636 26.84 27.10 2726 27.40
975 23.73 2541 2637 27.10 2742 28.02 2839 2875 29.13 29.44
.99 25.95 2742 28.60 29.44 30.18 30.52 30.64 30.99 31.25 31.33
7 .90 21.23 2341 24.51 2507 2575 2630 2674 27.06 27.46 27.70
.95 23.50 25.17 2634 27.19 2796 28.25 28.64 28.84 2897 29.14
975 25.23 2724 2825 2884 29.14 29.72 3041 30.76 31.09 31.43
.99 28.01 29.14 30.61 31.43 3256 3275 3290 33.25 3325 33.85
8 .90 2292 2515 2638 27.09 27.77 2815 28.61 2890 29.19 29.49
.95 25.22 27.18 2821 2899 29.54 30.05 3045 30.79 31.29 31.75
975 27.21 29.01 30.09 30.79 31.80 3250 32.81 32.86 33.20 33.60
.99 29.60 31.80 32.84 33.60 34.23 3457 3475 35.01 3550 35.65
9 .90 2475 2699 2811 29.03 29.69 30.18 30.61 30.93 31.14 31.46
.95 27.08 29.10 30.24 30.99 31.48 3246 3271 32.89 33.15 3343
975 29.13 31.04 3248 32.89 3347 3398 3425 34.74 34.88 35.07
.99 31.66 33.47 34.60 35.07 3549 37.08 37.12 37.23 37.47 37.68
10 .90 26.13 2840 29.68 30.62 31.25 31.81 3237 32.78 33.09 33.53
.95 28.49 30.65 31.90 32.83 33.57 34.27 3453 3501 3533 35.65
975 30.67 32.87 3427 35.01 3586 36.32 36.65 3690 37.15 3741
.99 33.62 35.86 36.68 3741 3820 3870 3891 39.09 39.11 39.12

valid under A7 instead of A8—-A9, provided 62 is replaced by 6. in

Appendix.
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(44) of the

We next argue that the test based on Fr(I+ 1|I) is also consistent. If there
are more than / breaks and a model with only / breaks is estimated, there must
be at least one break that is not estimated. Hence, at least one segment contains
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a nontrivial break point in the sense that both boundaries of each segment are
separated from the true break point by a positive fraction of the total number of
observations. For this segment, the supF,(1; ¢) test statistic diverges to infinity
as the sample size increases since it is consistent. Accordingly, the statistic
F;(I+ 1| (computed for /+ 1 segments) also diverges to infinity. This shows
consistency.

4.4. Extensions to Serially Correlated Errors

The tests discussed above can be applied without the imposition of serially
uncorrelated errors as specified in Assumption A9. A simple modification is to
use the following version of the F test instead of that specified in (7):

T—(k+1q—p
kq

A A A -1 A
(12) F7"f(/\l,...,)\k;q)=( )S’R’(RV(S)R’) RS6,
where V(8) is an estimate of the variance covariance matrix of & that is robust
to serial correlation and heteroskedasticity; i.e. a consistent estimate of

(13) V(8 =plimT(ZMyZ) Z'MyQMZ(Z'M,Z)

Note that it can be constructed allowing identical or different distributions for
the regressors and the errors across segments. In some instances, the form of
the statistic reduces in an interesting way. For example, consider a pure
structural change model ( 8= 0) where the explanatory variables are such that
plim T7'Z'QZ = h (0)plim T~'Z'Z with h,(0) the spectral density function of
the errors u, evaluated at the zero frequency. In that case, we have the
asymptotically equivalent test

Ff(Apse M @) = (62 /R O) Fr(Ay, .y A ),

with ¢2=T"'Y7_ 4% and h,0) a consistent estimate of #,(0). Hence, the
robust version of the test is simply a scaled version of the original statistic. This
is the case, for instance, when testing for a change in mean as in Garcia and
Perron (1996).

The computation of the robust version of the F test (12) can be involved
especially if a data dependent method is used to construct the robust asymptotic
covariance matrix of 6. Since the break fractions are 7-consistent even with
correlated errors, an asymptotically equivalent version is to first take the
supremum of the original F test to obtain the break points, i.e. imposing
0 = o*I. The robust version of the test is obtained by evaluating (12) and (13) at
these estimated break dates.

5. SEQUENTIAL METHODS

In this section we discuss issues related to the sequential estimation of the
break points. We start, in Section 5.1 with results about the limit of break point
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estimates in underspecified models. An interesting by-product is a sequential
algorithm to estimate models with an unknown number of breaks discussed in
Section 5.2.

5.1. The Limit of Break Point Estimates in Underspecified Models

In this section, we show that the estimate of the break fraction in a single
structural change regression applied to data that contain two breaks converges
to one of the two true break fractions. In independent work, Chong (1994)
obtains a similar result (see also Bai (1994¢) for an earlier exposition). To
present our arguments, we consider a simple three-regime model:

(14) y,=u;t+e, if [T)\j_l]+lsts[T)\j],

for j=1,2,3 and with € ~i.i.d.(0, 0.?). Assume @, # ty, My # 3, and A; < A,,
so there are two break points in the model. Let T, denote the estimated single
shift point. Our aim is to show that f"a /T is consistent for either A, or A,
depending on the relative magnitudes of the shifts and the spell of each regime.
To verify this claim, we examine the global behavior of S(7), the limit of
T7'S;(T7). We let $7(0) andS;(T) be the sum of squared residuals for the full
sample without a break and S;([T7]) is then well defined for all 7€ [0,1]. It is
not difficult to show that the convergence of T-'S,([Tr]) to S(7) is uniform in
7€ [0,1]. In particular

(1= )My —A)
11—,

1
(15)  ZSpATAD =, S(A) =07 + (s — ps),

1 A R
16) ST, D =, S(A) =7 + A—‘uz — AR, = )

Without loss of generality we consider the case where S(A;) < S(A,); our result
is stated in the following lemma.

LeEMMA 3: Suppose that the data are generated by (14) and that S(A)) <S(X,);
the estimated single break point T,/ T is consistent for A,.

The assumption that S(A;) <S(A,) implies that the first break point is
dominating in terms of the relative magnitudes of shifts and the regime spells.
The above lemma shows that the sum of squared residuals is reduced the most
when the dominating break is identified. Given that 7, /T is consistent for A,
one can use the subsample [7,,T] to estimate another break point associated
with a minimized sum of squared residuals for this subsample. The resulting
estimate is then consistent for A,. This follows from the same type of argument
because only A, can be the dominating break in the sample [7,,T], even if
T, <[T\]
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It is relatively straightforward to extend the argument to the case where a
one-break model is fitted to a relationship that exhibits more than two breaks.
The estimate of the break fraction converges to one of the true break fractions,
namely the one which allows the greatest reduction in the sum of squared
residuals. It is also conjectured that a similar result holds when, say an m, break
model is fitted to a relationship that has m, breaks (with m,>m,). Such a
general result is not, however, needed for the arguments that follow.

5.2. Sequential Estimation of the Break Points

The arguments in Section 5.1 showed that T /T is consistent for one of the
true break points, the one that allows the greatest reduction in the sum of
squared residuals. Suppose, as above, that this break point is A, which, in
general, may not be known. In that case, we choose one break point either in
the intervals [1, T] or [T T], such that the sum of squared residuals for all
observations [147T] is minimized. Let 7 be this estimator. With probability
tending to 1 as T increases, it is easy to show that the estimated break point 7
will be in the interval [7,, T]. Similarly, if T is actually consistent for A, (thls
will be true if S()\ ) > S(/\ )), the second estlmated break point will be in [1, 7,1
Generally, let (Nl, N ) be the ordered version of (T 7) such that N < N Then
(N,/T,N,/T) is consistent for (A}, A,). The preceding argument implies that
we can obtain consistent estimates of )\1 and A, in a sequential way.

5.2.1. Sequential Estimation with a Known Number of Break Points

The above analysis suggests a straightforward sequential algorithm for esti-
mating models with multiple break points. Consider first the case of a known
number of break points, say m. Once the first break point is identified, the
sample is split into two subsamples separated by this first estimated break point.
For each subsample, a one break model is estimated and the second break point
is chosen as that break point (of the two obtained) which allows the greatest
reduction in the sum of squared residuals. The sample is then partitioned in
three regimes and a third break point is selected as the estimate from three
estimated one-break models that allows the greatest reduction in the sum of
squared residuals. This process is continued until the m break points are
selected. It yields consistent estimates of the break points though the estimates
are not guaranteed to be identical to those obtained by global minimization.
Interestingly, it allows the estimation of models with any fixed number of
structural changes using least-squares operations that are only of order O(T).

5.2.2. Sequential Estimation with an Unknown Number of Breaks

Consider now the case of an unknown number of breaks which is likely to be
of particular relevance in practice. A standard problem is that an improvement
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in the objective function is always possible by allowing more breaks. This
naturally leads to the consideration of a penalty factor for the increased
dimension of a model. Yao (1988) suggests the use of the Bayesian Information
Criterion and Liu, Wu, and Zidek (1997) suggest a modified Schwarz’ criterion;
see also Yao and Au (1989). We propose an alternative method directly related
to the sequential procedure outlined above. Start by estimating a model with a
small number of breaks that are thought to be necessary (or start with no
break). Then perform parameter-constancy tests for every subsample (those
obtained by cutting off at the estimated breaks), adding a break to a subsample
associated with a rejection using the test F,(/ + 1[/). This process is repeated by
increasing / sequentially until the test fails to reject the null hypothesis of no
additional structural changes. A distinct advantage of such a model selection
device over those based on information criteria is that it can easily allow and
take into account the effect of possible serial correlation in the errors.

Note that the application of the test F(/ + 1|/) in this sequential context is
different from that discussed earlier. Indeed, the result of Proposition 7 is based
on having the first / breaks obtained as global minimizers of the sum of squared
residuals assuming / breaks. The limiting distribution of the F.(/ + 11/) test in
the sequential setup is the same because rate 7 convergence still holds, as
shown in Bai (1997), when the break points are obtained sequentially.

With probability approaching 1 as the sample size increases, the number of
breaks determined this way will be no less than the true number. The procedure
does not provide a consistent estimate of the true number of breaks, say m,,
since it implies a nonzero probability of rejection under the null hypothesis
given by the level of the test, say «. However, the asymptotic probability of
selecting a model with a larger number of breaks, say m, +j, is given by a’
which decreases rapidly. Hence, there is no need (with large probability) to
estimate models with more than the true number of breaks. The sequential
procedure could be made consistent by adopting a significance level for the test
F,(I 4+ 1]1) that decreases to zero, at a suitable rate, as the sample size increases.
A result to that effect is presented in the next proposition whose proof is similar
to that of Hosoya (1989) and is, therefore, omitted.

PROPOSITION 8: Let 1t be the number of breaks obtained using the sequential
method based on the statistic F;({ + 111) applied with some size o, and let m, be
the true number of breaks. If oy converges to 0 slowly enough ( for the test based
on Fp(1+ 11D to remain consistent), then, under Assumptions A1-AS, P(1ii = m)
= 1,as T — =,

6. CONCLUSIONS

Our analysis has presented a comprehensive treatment of issues related to the
estimation of linecar models with multiple structural changes, to tests for the
presence of multiple structural changes and to the determination of the number
of changes present. Our results being asymptotic in nature, there is certainly a
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need to evaluate the quality of the approximations and the power of the tests in
finite samples via simulations. We present such a simulation study in a compan-
ion paper, Bai and Perron (1996). Among the topics to be investigated, an
important one appears to be the relative merits of different methods to select
the number of structural changes. There are, of course, many other issues on
the agenda: for instance, extensions of the test procedures to include tests that
are optimal with respect to some criteria and extensions to nonlinear models. In
addition, while the consistency and rate of convergence for the estimated break
points apply to trending regressors, the limiting distributions of the various tests
for structural change remain to be studied in the presence of trending regres-
SOrS.
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MATHEMATICAL APPENDIX

As a matter of notation, for a sequence of matrices By, we write Br=o0,(1) if each of its
elements is 0,(1) and likewise for O,(1). For a matrix 4, M, =I— P, with P, =A(A4A4)'4'. We
use |||l to denote the Euclidean norm, i.e. [|x|| = (£fx?)/? for x € R”. For a matrix A, we use the
vector-induced norm, i.e. || 4|l = sup, . o/l Axll/llx|l. Note that the norm of A is equal to the square
root of the maximum eigenvalue of A'A4, and thus || 4|l < [tr(A4'4)]'/2. Also, for a projection matrix
P, [|PAll < | All. Limits are taken as T, the sample size, increases to infinity. We start with a series of
lemmas that will be used subsequently. Assumption AS is assumed throughout.

LEMMA A.1: Let S and V be two matrices having the same number of rows. Then the matrix S'M, S
is nondecreasing as more rows are added to the matrix (S,V).

PrOOF: Write S =(S},S5) and V' =(V{,V;). We need to show that for an arbitrary vector «
(having the same dimension as the number of rows of S and V) &'S'My Sa > a'S] My, S, a. Note
that 'S'My Sa (a'S{My,S; @) is the sum of squares of the residuals from a projection of Sa (S; @)
on the space spanned by V' (V;). The inequality is verified using the fact that the sum of squared
residuals is nondecreasing as the number of observations increases (here the number of rows of S,
and §). See, e.g., Brown, Durbin, and Evans (1975). Q.E.D.

LEMMA A2: Under A1, supr,, . 1 (X'MzX/ T)~' = 0,(1), where the supremum is taken over all
possible partitions such that {T,_; —T)|>q (i=1,...,m + 1).

Proor: We have the identity X'MzX=X{M; X, + - +X»’n+1Mz,,,+.Xm+1- Each partition
(Ty,...,T,,) leaves at least one true regime intact. In other words, there exists an i such that (X, Z;)
contains (X, Z") as a submatrix. We have XM, X,>X"Mz0X? using Lemma A.l. Hence
(X'MzX/T)"" < (X"MyzpX/T)" . This implies [(X'Mz X /T)™ || < max, (X Mo X /T)""| for
all partitions. The lemma now follows from Assumption A.1. Q.E.D.
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LEMMA A.3: Under A1, sup, TI"X'MZZO =0,(T).

PrROOF: Because M7z is a projection matrix, we have | X'MzZ°|<|XIIMzZ<IXIIZ°l
uniformly over all partitions. The lemma follows from ||X|| < [tr(X'X)]"/? = O,(T'/?) and similarly
1Z°%1 = 0,(T'/?). Q.E.D.

LEMMA A.4: Under A4, there exists a<1/2 such that supy, 71, IIPzUll=0,(T®), where the
supremum with respect to (T,...,T,,) is taken over all possible partitions such that |T,_ | —T;|>q
(i=1,...,m+ 1) under Assumption A4(i) and over partitions such that |T,_ | — T;| > €T for some €> 0
under Assumption A4ii).

Proor: Consider first the case where A4(i) is assumed to hold. Because of the independence
between z; and u,, we can treat the z,’s as nonstochastic, otherwise conditional arguments can be
used. We shall prove that IU’PZU|=OP(T2") uniformly in T),...,7,,. Note that U'PzU is the
summation of the m + 1 terms

Tiv1 " Tipy T,

’
T N I e I I e |
Tit 1 Tot 1 T+ 1

for i =0,...,m. Thus it suffices to prove that
1
Y&
t=k
with [ —k =g and & = &(k,D) = (A,) 7'z, with Ay =1]_;z;z]. Now
! T T {
Y >T‘“) <y ¥ P( Y ¢ >T“)
t=k k=1l=k+gq t=k
T 2s

)] sup
l<k<lsT

=0,(T*)
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By the mixingale property, we can write u, = Yj_ _.u;, with w; = E(u |%_;) — E(u |5 _;_,) and
for each j, {u;,%_;} is a sequence of martingale differences. Hence, we have Y &=
Ti —wZiok &, where &, =(A4,)~"/?z,u;,. By Minkowski’s inequality,

25 2571/2s 2

- %

<| ¥ |E

\i=-=

! 1
(19) E|Y ¢ Y &
t=k t=k

A key point is that for fixed j, k, and I, {§,-,,Z_1~} (t=k,...,I) form a sequence of martingale
differences. Thus by Burkholder’s inequality (Hall and Heyde (1980, p. 23)) there exists a C > 0, only
depending on ¢ and s, such that

! ! s { :
Y& sCE( anj,nz) sC( Z(Eltg,-,ll“)m) ,
t=k

t=k t=k
where the second step follows by Minkowski’s inequality. Now Il.fj,llz=z;(Ak,)‘lz,uf,. Thus
(Ellfj,llzs)l/z=z;(Ak,)"lz,(EIuj,Izs)l/S. By A4(a), for r=2s, we can show (see Hansen (1991))
(Elu )2 < 2,4y, < 2Amax,e )y < Ky, for all j. It follows that (E|&,II*)V° <

Z)(Ay) ™"z, K 5. Thus from (20),
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where we have used the fact that Yz A lz, = tr((A4;) " "Xk z,2,) = tr(I) = q. Using (21) and
(19), we have EIX/_, &I** < Cq°K*(X7_ _.;)** <. Since the bound does not depend on k and
I, this implies, in view of (18), that with / —k = ¢, P(sup, ., <, 7IX!_  EN> T*) < C, T2 *2 for
some C; > 0. Let s =2+ ¢ /2 (the moment of order 4 + ¢ of u, exists by A4(i)); we can choose an
@ €(0,2/(4 +¢)) such that 772272 — 0. This proves (17) and hence the lemma when A4(i) holds.

Consider now the case where A4(11) is assumed to hold. Here, 7~ ' £IT [%rH 12,2, = 0(v) — O(w),
and hence (77" S0 1. 12,2) 7" = (Q(v) = Q)™ uniformly in ¢ and u such that v —u > e> 0.
Also, T-'/2X{T. 11 2,4, = O,(1) uniformly using a functional central limit theorem for martingale
differences. Accordingly, |[U'PzU|= O,(1) uniformly in Ty,...,T,, and the statement of the lemma
holds with a = 0. 0.E.D.

Lemma  AS: Under A1-A4, for some a<1/2, (a) supy,

7, X'PzU=0,T**1/?), (b)
supr TZ 'P;U = O,(T*1/2).

Proor: This follows from Lemma A.4, ]|X|I=OP(T‘/2), and | X'PzU| < || X|I||PzU|l. Similar
arguments apply for part (b). Q.E.D.

PROOF OF LEMMA 1: By the definition of d,, Liu,d, = U'X(— %)+ U'Z*5— U'Z"%° where

Z* is the diagonal partition of Z at a..., m) To prove the lemma, it suffices to show
T'U'X(6- 8" =o0,(1) and T~ '(U'Z* 5 — UZ(’BO)—O (1). We shall prove a stronger result. Let
(Tl,. .,T,,) be an a1b1t1a1y partition and Z be the dssoaated diagonal partition of Z. Also let

/§({T}) and 3({T,}) be, respectively, the estimates of 8 and 8 corresponding to this same partition.
We shall prove

1 N
(22) sup - IUXCAUT) — BO)I = O,(T™172) =0, (D),

1, _
(23) sup ?JU'ZS({T_,-}) —U'Z%"1=0,(T*""/?) =0,(1),

where o is given in Lemma A.4. First consider (22). We can rewrite
(24) BUTY — By = (X'MzX) ™' X'M7Z%° + (X'MzX) ™' X'MzU.

The first term is O,(1) uniformly over all partitions by Lemmas A.2 and A.3. The second term is
O,(T*"1/%) =0P(l) by Lemmas A.2 and A.4 (note that X'MzU = O,(T**'/2)). Thus SUT) — B°

= O,(1) uniformly over all partitions. This implies (22) since U'X = O (T'/?). Next, from §({T}}) =
(ZM Z)"'Z'MyY, My X =0, and (2), we obtain

(25) U'ZS(T)) ~ U'Z%"
—UZ(ZMyZ) ' ZMyZ% + UZ(ZMyZ)  ZMyU—U'Z%".
From the identity
ZMZ) ' =22+ 2D @XM x) X Z(ZT)
the first term of (25) is equal to
(26) UZ(ZMyZ)  Z'MyZ%" = U'P;[ My + X(X'MyX)~ ' X'P;My1Z°%".

Because Pz and My are projection matrices, ||MyZ |l </|Z°]= O(T'/*) and || X'PzMyZ°|| <
NXNZ0) = O,(T). Hence, this term is O, (T ** 172y uniformly over all partltlons using Lemmas A.2,
A4, and A5, Slrmlal arguments show that the second term of (25) is O,(T*®). The last term of (25)
is O,(T'/?). Combining these results and noting that 2a < &+ 1/2, we have U’ Z5(TH - U'Z%"° =

o, (T““/-) This implies (23). Q.E.D.



MULTIPLE STRUCTURAL CHANGES 69

0

PROOF OF LEMMA 2: If there exists a break, say A which cannot be consistently estimated, then

with some positive probability €, > 0 there exists a n > 0 such that no estimated break falls in the
interval [T(/\}'; 7). T(A) + 7)) for a subsequence of 7' (without loss of generality, assume this
subsequence is the same as 7'). Suppose this interval is classified into the kth regime, namely,

ﬁﬂgru}wpmdﬂw+w<ﬁ'mmd=vm—3%+ﬂa—gnmmewu}w1nm
and d, =x/(f— B +z(5, — 8% ) for [TA) + [, T(A) + )] We have

T
7 Z 2> Y d¥+ Y d?
= 1 2

B-p" 21;
3,\. — 5,“ Zz,.\'; Z:,z; ék - 510
|

NPTV DI DY -
-8 > B B—B

2 NG
=" ]| Yo Yoz |\ -8,

where X, extends over the set T(A! — 1) <1 < TA) and £, extends over the set TA) + 1 <1< T(A
+m). Let y; and y3 be the smallest cigenvalue of the first and second matrices in (27). Then

Ydi+ Ydiz e [IB= B +18, = 80| + v [18= 8O +18, - 50 17
1 2

> min{y, y:}‘}(llé/\. - 5,-””2 +115, — 5 1“2)
= (1/2)min{y;, yiH§! — 5% A7
The last inequality follows from
(x—a)A(x—a) + (x = b)Y A(x = b) = (1/2)a = b) Ala —

for an arbitrary positive definite matrix A and for all x. Now the first matrix in (27) can be written as
(Tn)(l/T"r))Z“ Ay
from zero. Thus the smallest eiuenvqlue of (Tn) Ay, vy, is of the order 7. The same can be said for
v#. Therefore, L1d; > TCHS0 /+ 1% for some € > 0 with probability no less than e, > 0. Q.E.D.

)w,w,’ =(Tn) Ay, say. By A2, the smallest eigenvalue of Ay is bounded away

ProoF oF ProposiTioN 2: Without loss of generality, we assume there are only three breaks
(m = 3) and provide an explicit proof of T-consistency for /\7 only. The analysis for )\1 and /\; is
virtually the same (and actually simpler) and is thus omitted. For each €> 0, let V. ={T,T,.T3)
IT, = T"| < eT}. From Proposition 1, PUT,, T4, T} € V) — 1. Therefore we only need to examine the
behavior of the sum of squared residuals, S7(T), T, T3), for those 7; such that |7; — 7| < eT for all
i. Also using an argument of symmetry, we can, without loss of generality, consider the case T < 7%.

For C > 0, define
VAC)={(T\,T,,T3); |T,— T'| < eT, 1 <i<3,T,— Ty < —C}.

Thus, V.(C) C V.. Because ST(f], 7. YA";,) < S»,-(fl, 7y, 7,) with probability 1, it is enough to show that
for each 7>0, there exist C>0 and e>0 such that for large 7. Pmin{S (T, T-,T3)—
ST\, T, T;)} < 0) < x, or equivalently,

(28) P(min{[Sy(T,.T5,T3) = Sp(T\. TY. TP /(T = T5)} < 0) <7,
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where the minimum is taken over the set V.(C). Such a relation would imply that for a large C,
global optimization cannot be achieved on V_(C). Thus with large probability, |T2 T{| < C. Now
denote SSR, = S;(T,,T,,T;), SSR,=S4(T,,TS,T;), and introduce SSR;=S;(T,,T,,T?,Ts). By
definition, we have

(29) Sp(T,, Ty, Ts) — Sp(Ty, T, T5) = (SSR, — SSR5) — (SSR, — SSR5).

This latter relation is useful because it allows us to carry the analysis in terms of two problems
involving a single structural change, the first allowing an additional fourth break at time T between
T, and T, and the second an additional fourth break at time T, between the T; and Ty. It is then
casy to derive exact expressions for (29) in terms of estimated coefficients. Let (8}, 8, 5,, 8%, 54')
denote the estimator of (61,62,32,83,64) based on the partition (T},T,,Ty,T;) (note 89 is
repeated once). In partrcular 3 is an estimate of &7 associated with the regressor (0, ...,0, Zrs 1

5 27,,0,...,0), (SA is an estimate of 87 associated with the regressor Z, = (0,...,0, Zryptseees

zTg,O,...,O), and 63 is an estimate of 83 associated with the regressor (0,...,0, zTZH,...,zTB,O,
.,0Y. Now consider SSR; — SSR3; we have (e.g., Amemiya (1985, p. 31)),
Sp(T, Ty, T3) - ST(TI’TZ’T207T3) = (Sf - SA)'ZAC_\MP_VZA(S;‘ - 54)7
where W=(X,Z), with Z the diagonal partition of Z at (T},T,,T5). Similarly, we have for
SSR, — SSR.,
Sp(Ty T9,Ty) = Sp(Ty, Ty, T9, Ty) = (8% — 8,) Zy My Z, (8% - 5,
where W = (X, Z) with Z the diagonal partition of Z at (T}, T?,T;). Thus
(30) SSR, — SSRy = (8% — 8,) ZuMp Z, (85 — 8,) — (85 — 8,) ZuMy Z, (8, — 8,)
= (8% = 8, ZyMy Z,(8% - &) — (8% - 8,) Z,2,(8% - 5.
The inequality is due to ZyM; Z, < Z, Z,. From the definition of My, we have
(31) (SSR, — SSR,) /(T9 — T,)
> (85 - 81242, /(T9 — THI(SF - 8,)
— (8% = 8 1Z\W/(TO = THUW'W/T) ' [W'Z,/T8% — &)
— (85 — 84242, /(TP = TY(85F — 8)
=) - —-UI).

Consider term (I). Note first that 8* is close to 8° given that, on the set V,(C), the distance
between T; and T can be controlled and made small by choosing a small e. Noting that SA is
estimated using observations from the second true regime only, SA is close to 8 for a large enough
C, on V(C). Hence, for large C, large T and small e, (I) is no less than (1,/2)(87 — 8;Y[Z4,Z, /(T
— T,))(87 — 87) with large probability. Next consider term (ID). It is easy to show that on V,(C), 5%
and &, are O,(1) uniformly. Also on V.(C), (WW/T) ' = 0,(1) and ZWNTY—T,) = 0,(1)
(because Z,W involves no more than T3 — T, observations). Furthermore,

W' Zy/ TN =W Zy /(T = THITS — T,) /T < €0,(1).

Thus (ID) is no larger than €O,(1). Consider finally (III). Because both 6 and §, are close to &Y,
15, — 8,1l < p with large probablllty for every p > 0 (this is true for large T, large C, and small €).
Also, because 1Z4Z,/(T; — T,)ll = 0,(1) uniformly on V,(C), term (III) is no larger than pO,(1).
Hence, the inequality
SSR, — SSR,

32 —— 2278 -
32) o (89 - 89—

(53 87) — €0,(1) — pO,(1)
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holds with large probability. By A2,

Y

Z\Z,/(T) - Ty) = o7 Y zz
2 2¢=Ty+1

has its minimum eigenvalue bounded away from zero on V,(C). Thus the first term on the right-hand
side of (32) is positive and dominates the other two terms. It follows that with large probability,
(SSR, — SSR,)/(T{ — T,) > 0. This proves (28) and the proposition. Q.E.D.

PROOF OF PROPOSITION 4(i): The structure of the proof is similar to that of Proposition 1 but
modifications are necessary in view of the fact that T-!'L7_,d? - 0 even supposing a break is not
consistently estimated when the shifts are shrinking. Using (4) and (5) (without dividing 7 on both
sides), we can arrive at the desired contradiction if we can show that Y7_,d?>2Y7_,u,d, in the
limit as 7' — . To do this we show that ¥7_,d? diverges at a faster rate than L7_ u,d,.

We will make use of v, being small to strengthen the result of (22) and (23). We shall drop the
subscript 7 in 8 ;. From 8 — 87 | = O(v;) under A6, by adding and subtracting terms, we have
8" — 8" =0(vy) for all i and j. Now consider (24). The first term on the right-hand side can be
rewritten as (X'MzX)™'X'MAZ° —Z)6° because M>Z =0. A key to the proof lies in the fact
that (Z° — Z)8° depends on changes in the parameters (i.e. 87 — 7). In the case of a single change
point, for example, assume T, < T?; then

(Z°-2)8°=(0,...,0, 27,4 15- -, 270,0,...,0) (8] — 8.
This implies that X'Mz(Z° — Z)8° is at most O,(T)vy. By Lemma A.2,
(X'MzX) "' X'MZz(Z° - Z)6° = 0,(v7).
This implies that, from (24),
BUTYH = B =0,(vy) +0,(T<" /).
Thus
(33) U'X(BUTYH = B°) = 0,(TV?v1) + O,(T*)
over all partitions. Next, we combine the first and the third terms of (25) and rewrite them as
(34) UZ(ZMyZ)  ZMy(Z° - Z2)8° + U(Z - Z)5°.

Each term above involves (Z — Z°)8°. Using the argument in proving (26) and (33), the first term of
(34 is O(T** 72p;) and the second term is OP(TI/ 2p,), which is dominated by the first. Since the
middle term of (25) is Op(Tz"), we have

(35) U'ZSUTH —U'Z%° = 0,(T1/20;) + O,(T?%).

Noting that (35) dominates (33), we have L]_ u,d, = O (T ** /20 + T2¢),
Next, consider ©7_,d?2. The proof of Lemma 2 is not changed under shrinking shifts. If there
exists a change point that cannot be consistently estimated, then

T
Y. d?>TClIs? - 8% P > TC' v}
=1
for some C'>0. Thus X7_,d?>2%7_ \u,d, if To?/(T*"'/?v;+T?*) >, This is the case if
TU/2=ap, -0 Under Elu,|*? < © of A6, we can choose a such that « < ¢ in Lemma A.4. Thus,
TWD= ey > TA/D= 9. - 0 by AG. Q.E.D.



72 J. BAI AND P. PERRON

To prove Proposition 4(ii), we first prove a lemma, which generalizes the Hajek and Renyi
inequality to mixingales.

LEMMA A.G: Let {£&,5) be a q X 1 L* mixingale satisfying (a)—(e) of A4G) with u; replaced by &
and |-| replaced by ||-|l. Then there exists an L < such that, for every ¢ >0 and m > 0,
k L
>c|l < ——.
ctm

N3

t=1

1
P( sup —

k>=m

PROOF: Let &, = E(§|%_)) — E(§|%,_;_ ). Then & =X7_ _.&,andso Lf_ & =X7_ _.T_1&,.
Thus, for each N> 0,

For each j, {£,,9,_,} forms a sequence of martingale differences. Let a;> 0 for all j such that
Y _.a;=1 The r1ght hand side above is bounded by

1 > m
=5 L (nr’ZEng,,u LY —En»:,,n)
j=—'n

i=1 i=m+1

k

Z gy!

t=1

Zg,

=1

P| sup
N>k>=m k

= 1
>c) <P( Z sup %

j=—w Nzkzm

Z &,

t=1

i P( sup

j=-= N>k>mk

the latter bound is due to Hajek and Renyis inequality for martingale differences. From the
definition of a m1x1ngale and A4(i)(c), EIIEI,II < 4c? zpm <4K? lpm Thus the above is bounded by

cTPAKA(YTL _La ) m T+ i, L0077, Since T, .0t <2m7, if we let L=
12K2(Zj: —a; zpm) then the desired upper bound is obtained for a fixed N. Since the bound does
not depend on N, the lemma is obtained by letting N — . It remains to choose appropriate a;s
such that ¥;a; %1 is bounded. Let vy =1 and v;=j —1- "(] > 1), where k> 0 as given in A4(i)(d).

Let a;= }/(1 +2%7_,v)and a_;=a; for j= 0. Then Ya;=1. By Assumption A4(i)(d),

doa = (l/;g +2 Zj“?ﬁp,z) (1 +2 2,‘*3*“) <. Q.E.D.
i

j=1 j=1
PROOF OF PROPOSITION 4(ii): We shall maintain all the notations in the proof of Proposition 2.
Define a new set
VE(C)={(T,,T,,T3); IT,— T | < eT,1<i<3,T, - T{ < —C/v3},

which is a subset of V.. We only need to show that (28) holds when the minimum is taken over
V.#(C). We can prove that, uniformly on the set V*(C),

(36) 5 — 80 = €0,(vy) + O,(T71/2) (i=1,...,4),
(37) 8y — 80 = (242, Z,U + €0, (vy) + O(T71/?).

The above is easily seen to be true in the case of pure structural changes. In this case, for example,
5, — 89 is given exactly by (Z,Z,)~'Z,U. In the case of partial structural changes, the proof of (36)
and (37) is more complicated. We shall omit the details and give a brief explanation instead. A
detailed proof is available upon request. The term €O,(vy) on the right-hand side of (36) is due to
misspecification in the sense that 7; may not be the same as T,°. However, this misspecification is
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controlled by choosing a small e. The dependence on v4 is explained in part (i). The term
O,(T™ 172) is related to disturbances and this specific rate is due to the fact that each & is
estimated with a positive fraction of the sample for partitions in V*(C). The last two terms of (37)
are due to spillover from the misspecification via partial structural changes.

Using (36) and (37), expression (I) in (31) is no smaller than

(89— 824 Z, /(T = THIU8Y — 89) — €0,(v3) — O (T /?0;) — O,(T™H).

Because the minimum eigenvalue of Z\,Z, /(T — T,) is bounded away from zero on V*(C) for all
large C and 8§ — 85 = O(vy), () is no smaller than Avj — €0,(v7), where A is a positive constant.
Note that €0,(¢7) dominates O,(T~'/*1,) and O,(T~'). The latter two terms also appear in (II)

and (I1I) of (31) and will be absorbed into eOp(v%). Expression (IT) in (31) is bounded by eOp(u%),
Expression (IIT) is bounded by

“loy 1 - 1 2
(I =T, U'Z{(Z4Z,) "' ZAU + €0,(1}).
From [Z4Z, /(T3 — T,)1™" = O,(1) on ¥(C) for large C, (1) is further bounded by
0,(DITY — T) ' Z,UIP + €0, (0}).
In summary,

SSR, — SSR, R
(38) — A} +

2
T, 0,(1) — €0,(v3).

A
-1,

For every > 0, we can choose a small €> 0 such that P(EOP(U%) > Avk/2) <n and we can also
choose B < « such that P(IO[)(I)I > B) < v. Thus

P(min{(SSR, — SSR,) /(TY — T,)} <0)

<2+ Pmax{BICTS — 1) Z,UIP) > 403 2)

Ty
“2q+P|  max (T -T)'| ¥ zu|>14/2BN " 0;
T,<TY-Cry? t=T,+1

By Lemma A.6 with & =z,u,, ¢ =[A/Q2B)]"/?v4, and m = Cv7? (applied with data order reversed,
i.e. treating T3 as the first observation), the above probability is bounded by

20+ QB/AL(wiCo; ) =2+ QB/ALC™! <3
for large C. Q.E.D.

PROOF OF PROPOSITION 6: Note that we can write
Fr(An,..., Aiq) = (SSRy — SSR,) /Lkq(T — (k + 1)g — p)~ ' SSR, 1,

where SSR, and SSR, are the sum of squared residuals under the null and alternative hypotheses,
respectively. We have

(T—(k+1g—p) ' SSR, >, o2
Hence, we concentrate on the limit of F¥ =SSR, — SSR,.. Now, let DY(i, j) (D®(i, j), resp.) be the
sum of squared residuals from the unrestricted (restricted, resp.) model using data from segments i
to j (inclusively), i.e. from observation 7;_, + 1 to T;. We can write Fj' = D*(1,k + 1) — {4 'DV(i, D),
or

k

(39) Fi= Y [DR(1,i+ 1) —DR(1,i) —DY(i+ 1,i + D]+ DR(1,1) - DY(1,1).

i=1
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Let 8 LA’ and SR be the estimate of B in the unrestricted and restricted models, respectively. We
have BY=(X'MzX)"'X'MzY and BR=(X'M,Y) 'X'M,Y where Z=(Z,...,2;). Now let
Yy, U,;, Xy, and Z,;; denote the corresponding vectors or matrices containing elements

belonging to the partition from segment 1 to segment j (inclusively) and let Y}, U;, X;, and Z; be the

vectors or matrices containing elements from segment j only. Also, let 5{? ; be the estimate of &

using data on the z’s from segment 1 to j only in the restricted model and 5}’ be the estimate of g
using data on the z’s from segment j only in the unrestricted model. We have

§R,= (21,2, )7 2, (Y, ;= X, ; B®), and
8V = (22" Z;(v; - X; BY).

Using the fact that, under the null hypothesis,
Y=XB+Z5+U=XB+Zs+U and
Y,=X,+Z;6+U

(with §=(5,...,8) a q(k + 1) vector with 8 defined by 8, = §, = --- = §,,; = 8), straightforward
algebra yields

DR(1, ) =T = Py, YUy ;= X, ;AP)I?  and
DY(j, j) = (I = P, )(U; = X; A,

where A;=(X'M,X)™'X'M,U, and Ay =(X'MzX)"'X'MzU. Consider the ith element in the
summation defining F7 in (39); we have

(40) Fr,=DR(1,i+1)-D*1,))-DY(i+1,i+1)
=|I(1 _PZ,JH,)(UI,H—I _Xl,i+1AT)”2 -7 _le',-)(Ul,i _Xl,iAT)||2
=T = Py, YWy = Xy A

To simplify the exposition, let S; =23 ;U, ;, H;=Z1 ;Z, ;, K;=Z} ; X, ;, L;=X{ ;X; ;, and M;=
Xi, Ui, ;- Noting that

Ul ivtUniv1 = U0+ Ui Uiy s
X{,i+1X£,i+l =X X i+ X1 Xy s
and
Ul i Xy e = ULiX i+ UL Xy
we deduce that
(41) Fri==Si(HZ\S o+ SiHT'S + (S = S [Hyy —H1 'Sy, = S)
+287  Hi Ko Ap = 2851 H7 'K Ag
=281 = SY [ Hyy = H1 (K — KD Ay
+2(M;y = MY (Ap = Ag) + (Ap = A7) (Lyyy — L)(Ap = A).
Using the stated assumptions, we have the following basic convergence results:

@) T-1X, ;,Z, YU, ;= o (B{(A), By(A)) = 0 B(A)
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where B(r) is a (¢ + p) dimensional vector Brownian motion with covariance matrix
0- Oun Qn
0y QOn|
(ii) T X, ;,Z, )X, . Zy)) =, o A,0.

From these two limits, we deduce easily the following results:

(a) 771728, = aB,y(\);

(®) T7'H; -, 0°A,Q5,;

(© T'K; =, 00,055

(d) T7'L; =, 0,00

(e) T7'2M; = o B,());

® T4, = 0710 = 0107 Qa) (Bi(D) = 01,05'B,(1) = 4*.

It remains to consider the limit of 7'/24;. Let A =diag{A;, A, — Ap,...,1 — A, a(k+ Dby (k+1)
diagonal matrix. We deduce that

(i) T-'Z'Z -, a2 (A®Qy);

(ii) T-'X'Z -, 0 (A®Qy,) where ¢ =(1,1,...,1),

a (k + 1) vector;

(iii) T-'2Z'U= o (B,(1,), By(A;) = B,(A),..., By(1) = Bo(A,)) = B¥.

We then obtain
(42) VAL = [T 'X'X— T-'X'Z(T'Z'Z) T ‘Z’X]_l
X(T=1V2X'U - T X Z(TZZ) T-17'U]
=0 [0 — (€A® 0, (A®0,) (Ae® Q)]
X[B,(1) = (€A® Q) (A® Q) ' B¥]
=07 '[Q), — (€A ® 0,05,'0,)1 ' [B,(1) — (¢' ® 0,,0%,")B*]

=o '[Qy — QLZQZ_ZIQZI]_I[BI(I) - 01,05'B, (D] = 4%,

The second equality follows since ¢'Ae =1 and (¢’ ® Q},05%")B* = 0,05,! B,(1). Using the results
stated above we easily deduce that (M, | — M,Y(Ay — A;) =0, (A; —A7Y(L;, | — LY Ay — Ay)
= 0, and

St Hi K Ay = ST 'K A = (S = ST H, = H1 (K — KD Ay
= 0By (A1 1)05' 0y 4% — 0B, (A) 0% 0y A*
—a(By(A4 ) ‘Bz()\,’))Qz_leuA* =0.
Hence, we are left with

Fp ;= = Si e Ho S+ SHT S+ (S = S H, _Hi]—l(SH—l =S +0p(1)’

i
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and we deduce, using the fact that B,(A;) = o Q34 W,()),
(43) Fri= =By(My Y O0'By(A )/ N+ By(A) 05" By(A) /A,
+(By(A ) = By(A)) 055" (By( A 1) = By(AD) /(N — &)

= =2 W, (A DIP /Ay + 2 I, (DI /A,

i

+0'2”Wq()\'+1) - u/q()‘i)||2/()‘i+l —A)

i

= AW, (N ) = A WD/ A A (A = A)).
Finally, it is easy to verify that D®(1,1) —DY(1,1) = 0. Note that this convergence result holds
jointly for i =1,..., k; hence

KA, Ay ) = A W, OO

F;:}UIZ 1 q 1
i=1 /\i+l)‘i()‘i+l_)‘i)

5

and the result of Proposition 6 follows. Q.E.D.

PROOF OF PropoSITION 7: For simplicity, we present the arguments in the case of a pure
structural change. Let SSR(/,j) be the minimized sum of squared residuals for the segment
containing observations from (i + 1) to j; then we can write

(44) Fr(U+1)= sup  sup {SSR(T,_,,T)) —SSR(T,_,,7) = SSR(+,T))} /6.

Il<i<l+1l red;,

Under Assumptions A8-A9, arguments as in the proof of Proposition 6 show that

(45) o7 sup {SSR(T ,,T°) — SSR(T" |,7) — SSR(=,T")}

TE ._\}J‘ N

W, (1) — b, (DI

= sup ,
n<p<l-n p(1 = p)
where ARTI is as defined in (11) with f", replaced by 7. Under the null hypothesis, Proposition 2

asserts that f, = 7}0 + O[,(l). Using this result, we can show that (45) also holds with T,O_l and T,O
replaced by T,_, and T}, respectively. In addition, because over different regimes SSR(:,) are
computed using nonoverlapping observations, the weak limits in (45) for different /’s are indepen-
dent. Thus the limit of (44) is the maximum of /+ 1 independent random variables in the form of
(45).

PROOF OF LEMMA 3: We show that S(7) for & [0,1] has a unique minimum at A;. The function
S(7) has different expressions over [0, 1]. Some algebra reveals that

A — B
S() =S = = ! [ = A)Cpy = o) + (1= Ay — )T, 74,

r
7)1 —A)

which is nonnegative. Under the assumption that S(A,) <S(A,), the expression in brackets is
nonzero, so S(7) — S(A,) is strictly positive for < A;. By symmetry (regarded as reversing the data
order), S(7) — S(A,) is nonnegative for 7> A,. Thus for 7€ [A,,1],

S(r) = S(A) = S(r) = S(Ay) + S(A;) = S(A) = S(A,) — S(A) > 0.
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It remains to consider the case where 7€ (A, A,). Again, simple algebra shows

Sy~ SO = (r— a2 A o TR )
T)— )=\ = [T;\::u“l_:u“] _m M3 — Mo

(a2 A po Uz )
2= AT I Mo = oy ENTEW) M3 = M

> (7= AD[S(A) = S(AD]

where the first inequality follows from [7(1 — A,)]/[A,(1 — 7)] < 1 and the second inequality follows
from A,/7> 1. Thus S(r) —S(A,) is strictly positive for 7€ (A, A,) and we have shown that S(7)
has a unique global minimum at A; when S(A,) < S(A,). Because S;(T,) < S ([T, ], it follows that
YA"U/T is consistent for A;. Q.E.D.
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