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Abstract

This paper considers least absolute deviations estimation of a regression model with multiple
change points occurring at unknown times. Some asymptotic results, including rates of conver-
gence and asymptotic distributions, for the estimated change points and the estimated regression
coe�cient are derived. Results are obtained without assuming that each regime spans a posi-
tive fraction of the sample size. In addition, the number of change points is allowed to grow
as the sample size increases. Estimation of the number of change points is also considered. A
feasible computational algorithm is developed. An application is also given, along with some
Monte Carlo simulations. c© 1998 Elsevier Science B.V. All rights reserved.
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Keywords: Multiple change points; Multiple-regime regressions; Least absolute deviation;
Asymptotic distribution

1. Introduction

This paper considers the estimation of a multiple-regime regression in which the
regime switch points are unknown. A common method of estimation is Gaussian max-
imum likelihood or the least squares method (e.g., Quandt, 1958). In this paper we
consider the method of least absolute deviations (LAD). As is well known, for heavy
tailed distributions, LAD is more e�cient than least squares (LS). In the change point
context, e�ciency gains can be realized not only for the estimated regression parame-
ters, but also for the estimated change points. The purpose of this paper is to study the
consistency, rate of convergence, and asymptotic distributions for the estimated change
points. We also study estimating the number of change points based on a Bayesian
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information type criterion (BIC). Results are obtained allowing the number of change
points to increase with the sample size.
Estimating multiple change points typically require enormous computation. As a

result, computational feasibility becomes an important concern in selecting estimation
methods. Two additional factors reinforce this concern. First, multiple change points
typically occur in large samples. Second, even if there is only one change point, mul-
tiple ones are allowed when BIC criterion is used in estimating the true number.
While possessing robust properties, LAD is computationally feasible, since optimiza-
tion can be carried out via linear programming. In our Monte Carlo simulations, the
BIC criterion is calculated up to 10 potential change points, and optimal solution
is achieved quickly. In this regard, LAD has certain advantages over other robust
procedures.
The LAD method has not been analyzed in the literature for estimating multiple

change-points models. A related work is Bai (1995), who studies the method for a
single change point. A di�erent framework is needed for more than one change. In
the case of a single change point, each of the two regimes has one �xed and known
boundary; the �rst regime has its lower boundary known (i.e., �rst observation) and the
second regime has its upper boundary known (i.e., the last observation). For multiple
changes, each middle regime has boundaries completely unknown. The analysis must
take into account the possibility that a hypothesized regime may not have overlapping
observations with the true regime. In general, the objective function (sum of the ab-
solute deviations) is a stochastic process indexed by a vector of integers [see Eq. (2)
below]. This vector of integers must be allowed to take all possible combinations. Con-
sequently, the analysis of multiple change points requires a di�erent framework from
that of a single change point. The purpose of this paper is to establish the underly-
ing theory for the LAD method in the context of multiple change points. Furthermore,
unlike the existing literature, we abandon the assumption that each regime spans a pos-
itive fraction of the total sample. In addition, we allow the number of change points to
be unbounded. This setting needs a di�erent argument from that of a bounded number
of change points, a further departure from the existing framework.
There is a large body of literature on the change point problem, see the survey papers

of Shaban (1980), Zacks (1983), and Krishnaiah and Miao (1988). The inference on
a single change point has received the most attention, e.g. Picard (1985), Bhattacharya
(1987), Kim and Siegmund (1989), Dumbgen (1991), Brodsky and Darkhovsky (1993),
Gombay and Horv�ath (1994), Horv�ath (1995), Horv�ath et al. (1997), and Hu�skov�a
(1996a). A procedure based on M-esitmation is proposed by Hu�skov�a (1996b) for the
case of no covariates. For multiple changes, Yin (1988) proposes a moving-window
estimation of change points occurring in a nonparametric function of time. Yao (1988)
proposes the Schwarz criterion for estimating the number of change points in a sequence
of normal means. Yao and Au (1989), and Huang and Chang (1993) consider the
least squares estimation of change points in a sequence of random variables without
covariates. Bai and Perron (1998) study the problem of estimating and testing multiple
change points in regression models.
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All above studies impose the restriction that each regime occupies at least a positive
fraction of the total sample. That is, the length of each regime is O(n), where n is
the sample size. In this paper, we relax this assumption. We also allow the number of
change points to grow as the sample size increases. Meanwhile, we consider multiple
regression models, as well as a di�erent estimation technique, namely LAD.
The rest of this paper is organized as follows. Section 2 gives the assumptions

and main results. Rates of convergence and asymptotic distributions are derived. In
Section 3, the issue of determining the number of change points is considered.
Section 4 provides some numerical results, including computational issues, Monte Carlo
simulations and an application with real data. Section 5 derives some preliminary results
used for the main theorems and Section 6 provides the proofs.

2. Notation, assumptions and main results

Consider the following (m+ 1)-regime regression model:

yi= x′i�1 + �i; i=1; 2; : : : ; n1;

yi= x′i�2 + �i; i= n1 + 1; : : : ; n2;
...

...

yi= x′i�m+1 + �i; i= nm + 1; : : : ; n;

(1)

where yi is the dependent variable, xi (p × 1) is a vector of regressors, and �i is a
disturbance. The �j (p× 1) are unknown parameters. This (m+ 1)-regime regression
has m change points, n1; : : : ; nm, which are also unknown.
Let �0 = (�01; : : : ; �

0
m+1) denote the vector of true regression parameters and let (n

0
1; : : : ;

n0m) denote the vector of true change points. Let P=(n1; : : : ; nm) denote a partition of
the integers 1; : : : ; n− 1, such that n1¡· · ·¡nm. Let �̂(P)= (�̂1(P); : : : ; �̂m+1(P)) de-
note the LAD estimator of �0 for a given partition P. Namely,

�̂(n1; : : : ; nm)= argmin
�

m+1∑
j=1

nj∑
i=nj−1+1

|yi − x′i�j|;

where n0 = 0 and nm+1 = n. Or equivalently, �̂j(P) minimizes
∑nj

i=nj−1+1 |yi − x′i�j|
(j=1; : : : ; m + 1). Denote by Sn(n1; : : : ; nm), the resulting sum of absolute values of
residuals,

Sn(n1; : : : ; nm)=
m+1∑
j=1

nj∑
i=nj−1+1

|yi − x′i �̂j(P)|=
m+1∑
j=1

(
inf
�

nj∑
i=nj−1+1

|yi − x′i�|
)
: (2)

The estimated change points, (n̂1; : : : ; n̂m), are de�ned as a set of integers n1; : : : ; nm,
which minimizes Sn(n1; : : : ; nm). Finally, the estimators of regression parameters are
de�ned as

�̂=(�̂1; : : : ; �̂m+1)= �̂(n̂1; : : : ; n̂m):

We shall study the asymptotic behavior of (n̂1; : : : ; n̂m) and �̂.
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In what follows, we shall use |y| to denote the Euclidean norm of y, i.e., |y|=
(
∑p

i=1 y
2
i )
1=2 for y∈Rp. All limits are taken as n converges to in�nity unless stated

otherwise. We now state the assumptions:
A1. For each j, the length of regime j satis�es n0j − n0j−1¿c1n3=4 for some c1¿0.

The number of change points satis�es m=m(n)¡c2n(1=4)−b for some c2; b¿0.
A2. The parameter vector �0 is an interior point of a bounded set of Rp(m+1). In

addition, min16j6m(n)+1 |�0j+1 − �0j |¿c¿0, where c does not depend on n.
A3. The regressors xi are uniformly bounded, i.e., there exists K¡∞ such that

|xi|6K for all i.

A4. The matrices 1
k

∑n0s+k
n0s+1

xix′i and (1=k)
∑n0s

n0s−k xix
′
i (s=0; : : : ; m + 1) converge in

probability to some nonrandom positive-de�nite matrices (not necessarily the same) as
k increases.
A5. The disturbances �i are i.i.d. random variables with a zero median and a positive

continuous density, f, at the neighborhood of zero. Moreover, �i is independent of xk
for all i and all k.
The assumptions on the number of change points and the regime length are not the

weakest possible. They can be improved upon. For bounded m, the requirement of
n0j+1 − n0j¿c1n3=4 can be weakened to n0j+1 − n0j¿c1n(1=2)+� for some �∈ (0; 1=2). The
assumption of a bounded parameter set in A2 is restrictive, although it may not be
of any practical signi�cance. Under a slightly stronger condition on the disturbances,
namely the existence of a 1+� moment, A2 can be dispensed with so that the parameter
set can be Rp(m+1). The uniform boundedness of regressors in A3 can also be dispensed
with. A3 can be replaced by the following less restrictive assumption used by Pollard
(1990) (p. 58) adapted to our case: for each �¿0, there exists K¿0 such that

1
k

n0s+k∑
i=n0s+1

|xi|2I(|xi|¿K)¡� and
1
k

n0s∑
n0s−k

|xi|2I(|xi|¿K)¡�

for all large k (s=0; : : : ; m+ 1), where I(·) is the indicator function, see Bai (1995).
However, using these less stringent assumptions rather than A2 and A3 makes the
argument much more complex. We thus retain A2 and A3 in this paper. Assumption
A4 is used for bounded m. For unbounded m, we will require a stronger assumption
(A6 below), under which A4 is automatically satis�ed.

Remark 1. Assumption A4 does not cover the case of trending regressors. For example,
let h(t)= (1; t; : : : ; tp)′ for t ∈ [0; 1] and xi= h(i=n). Then, unless k grows linearly in n,

the matrix (1=k)
∑n0s+k

n0s+1
xixi converges to h(�0s )h(�

0
s )

′, as n and k converge to in�nity

with k =o(n), where �0s = lim(n
0
s =n). The matrix h(�0s )h(�

0
s )

′ has a rank of 1. Therefore,
A4 rules out trending regressors. However, the regressor xi= h(i=n) has the following
property. For every �¿0 and for k = [n�],

1
[n�]

n0s+[n�]∑
n0s+1

xix′i →
1
�

∫ �0s+�

�0s

h(t)h(t)′ dt¿0
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and

1
[n�]

n0s∑
n0s−[n�]

xix′i →
1
�

∫ �0s

�0s−�
h(t)h(t)′ dt¿0; (3)

where, for a matrix, we write A¿0 if A is positive de�nite. If we further assume that
each regime occupies a positive fraction of observations such that

n0s = [n�
0
s ]; 0¡�01¡ · · ·¡�0m¡1 and �0s 6= �0s+1; (4)

then Eqs. (3) and (4) are su�cient to establish the following result. For every �¿0
and �¿0, for all large n, we have

P(|n̂s − n0s |¿�n)¡� (s=1; : : : ; m): (5)

Under an additional assumption,

h(�0s )
′(�0s+1 − �0s ) 6=0; s=1; : : : ; m (6)

we can improve the rate in Eq. (5) to obtain n̂s − n0s =Op(1). That is, Theorem 1
(below) still holds for trending regressors under assumptions (4) and (6). Because our
general framework does not require Eq. (6) (i.e., positive fraction of the sample size
for each regime), we will not give a separate proof for the case of trending regressors.
A proof for this case is available from the author. In the sequel, we shall focus on
regressors satisfying A1–A5.

Throughout, the notation on the number of change points m is used interchangeably
with m(n) and mn.

Theorem 1. If A1–A5 hold and m is bounded, then

n̂j − n0j =Op(1) (j=1; 2; : : : ; m):

Although the number of change points in this theorem is bounded, the length of
each regime is not assumed to be a positive fraction of n. That is, the assumption that
n0j = [n�

0
j ] with 0¡�0j¡1 is not needed. A1 assumes that each regime length is at least

c1n3=4(c1¿0). This assumption can be weakened to c1n(1=2)+� for some �∈ (0; 1=2), as
long as m is bounded.
We shall not deal with this case because it would require a separate proof from the

case of m(n)→∞, which will be considered below. To allow the number of changes
to grow with the sample size, we need an additional assumption, under which the proof
will be much easier:
A6. The regressors xi are i.i.d. such that E(xix′i) is positive de�nite.
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Theorem 2. If A1–A6 hold and m(n) → ∞ but m(n)¡cn(1=4)−b(c; b¿0), then
Theorem 1 still holds. That is, for each j6m(n); n̂j − n0j =Op(1).

Given this rate of convergence, it is not di�cult to prove the following result.

Theorem 3. For bounded m, assume A1–A5. For m=m(n)→∞, assume A1–A6.
Then, for each j

2f(0)(n̂j − n̂j−1)1=2(�̂j − �0j )
d→ N(0; Vj);

where f(0) is the density function of �1 at zero, and

Vj =plim
1

n0j − n0j−1

n0j∑
i=n0j−1+1

xix′i :

The limiting distribution of the estimated regression parameter is the same as if the
change points were known. This result is well known for a single change point.
The next result concerns the limiting distributions of the estimated change points. To

characterize the limiting distribution, we �rst de�ne a stochastic process W ( j)(k) on the
set of integers as follows: W ( j)(0)= 0; W ( j)(k)=W ( j)

1 (k) for k¡0, and W ( j)(k)=
W ( j)
2 (k) for k¿0 where, for j=1; : : : ; m(n):

W ( j)
1 (k)=

0∑
l=k+1

|�( j)l − �′
jx
( j)
l | − |�( j)l |; k =−1;−2; : : : ; (7)

W ( j)
2 (k)=

k∑
l=1

|�( j)l + �′
jx
( j)
l | − |�( j)l |; k =1; 2; : : : (8)

with �j =(�0j+1 − �0j ) and where {x( j)l ; �( j)l } is an independent copy of {xl; �l}.

Theorem 4. Under assumptions A1–A6, and assuming that |�i ± �′
jxi| − |�i| has a

continuous distribution, then for each j6m(n) (m(n) can be bounded or unbounded),

n̂j − n0j
d→ argmin

k
W ( j)(k):

Furthermore, the estimated change points are asymptotically independent of each
other and of the estimated regression parameters.

The assumption that |�i±�′
j xi|−|�i| has a continuous distribution ensures the unique-

ness (a.s.) of the minimum of W ( j).

Remark 2. When m=m(n) is �xed, Theorem 4 can be proved by showing that Sn(n01+
k1; : : : ; n0m+km)−Sn(n01; : : : ; n

0
m) converges in distribution to

∑m
j=1 W ( j)(kj), for |kj|6M ,
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where M¡∞. However, the limiting process is not de�ned when m=m(n)→∞. This
di�culty can be bypassed using the following small trick. We note that

n̂j = argmin
nj

Sn( n̂1; : : : ; n̂j−1; nj; n̂j+1; : : : ; n̂m)

= argmin
nj

{Sn( n̂1; : : : ; n̂j−1; nj; n̂j+1; : : : ; n̂m)− Sn( n̂1; : : : ; n̂j−1; n0j ; n̂j+1; : : : ; n̂m)}:

The limiting process above is indexed by nj − n0j , a scalar, rather than a process with
multiple indices. Further details are given in the proof of Theorem 4.

Remark 3. Here we discuss the e�ciency of LAD relative to LS. For simplicity,
consider a single mean shift: yi= �1; n+�i for i6n0, and yi= �2; n+�i for i¿n0, where
n= [n�], with �∈ (0; 1) and �i are i.i.d. Let �n= �1; n − �2; n 6=0. For �xed magnitude
of shift, it is di�cult to compare the e�ciency, so we assume shrinking shifts. Let
�n → 0 but

√
n�n= log n→∞. Let �̂LS and �̂LAD denote the LS and LAD estimators of

�, respectively. Then Bai (1994) shows that,

n�2n( �̂LS − �) d→ �2� argmax
v

{W (v)− |v|=2}

where �2� =Var(�i), and W (v) is a two-sided Brownian motion on R. For LAD esti-
mation, Bai (1995) shows that

n�2n( �̂LAD − �) d→ (2f(0))−2 argmax
v

{W (v)− |v|=2};

where f(x) is the density function of �i. Obviously, if �i does not have a �nite variance,
LS estimation is less e�cient than LAD. The same limiting distributions would result
even if �1; n and �2; n were known and not estimated. In this sense, there is a direct gain
in e�ciency by LAD when estimating the change point for heavy-tailed distributions.
On the other hand, e�ciency gain is realized through LAD’s consistent estimation of
the regression coe�cients when they are unknown.

3. Determining the number of change points

In this section, we consider estimating the number of change points. Yao (1988)
proposes the Schwarz criterion to estimate this number. If the underlying distribution
is double exponential, then LAD is the maximum likelihood procedure. By the Schwarz
criterion, the number of change points is determined by minimizing the objective
function

LADBIC(m)= n log ê(m) + (1=2)(m+ 1)(p+ 1) log n (9)

where ê(m)= Sn( n̂1; : : : ; n̂m)=n. Note that the total estimated number of parameters (m+
1)(p + 1), includes (m + 1)p regression parameters, m change points, and a scale
parameter. Criterion (9) di�ers from Yao’s criterion by an extra factor 1=2, which is
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absent for least squares estimation under the normality assumption. Of course, ê(m)
is the sample average of absolute deviations rather than squared values of residuals.
Whether this criterion leads to a consistent estimate of the number of change points
remains an open question. In this section, we study a modi�ed criterion under which
the estimated number of change points can be shown to be consistent for the true
number of changes.
Consider the criterion of the form

B(m)= n log ê(m) + mg(n): (10)

Although there is some exibility in choosing the penalty term g(n), we shall consider
g(n)=

√
n to be speci�c. This choice of g is also used in the reported simulations.

We allow the true number m0n →∞. Let m̂ be the integer at which the criterion
function is minimized over the integer set {0; 1; 2; : : : ; Lm0n}, where L¿1 is arbitrarily
given.

Theorem 5. If A1–A6 hold and E|�1|¡∞; then P(m̂=m0n)→ 1.

The theorem asserts that even if mn →∞, with probability tending to 1, the estimated
break point coincides with the true number.

4. Numerical result

In addition to the theoretical properties, we are also interested in LAD’s imple-
mentation in practice. We develop a computer program for estimating multiple-regime
regressions. The program allows one to choose the number of regimes based on the
information criteria discussed earlier. Our program exploits linear programming for
LAD estimation (Barrodale and Roberts, 1974) and dynamic programming for optimal
segmentation (Guthery, 1974). Our program only requires O(n2m) number of LAD
computations to achieve the global minimization, a considerable computational savings
relative to the brute-force enumeration for m¿2. The computation is fast even with 10
change points as in the simulations reported later.

4.1. Monte Carlo simulation

This simulation focuses on the relative performance of LAD and LS. We consider
the following simple model with 4 regimes (3 change points):

yi= �k + �kxi + �i; i=1; : : : ; n; (11)

where the xi are i.i.d. standard normal random variables, the vector (�k ; �k) (k =1;
: : : ; 4) is the parameter for regime k, and the �i are i.i.d. standard normal or double
exponential random variables. In the latter case, the density function is f(x)= 2−1e−|x|,
which has a variance of 2. We choose n=100 and m=3. The true change points are 25,
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Table 1
Means and standard deviations of the estimated change points (500 repetitions)

Normal LS 24.98 (1.49) 49.95 (1.75) 75.00 (1.31)
LAD 24.95 (2.08) 49.99 (1.86) 74.97 (1.70)

Double LS 24.99 (6.04) 49.32 (8.43) 74.41 (5.87)
exponential LAD 25.18 (2.53) 50.11 (3.54) 75.15 (2.96)

t-distribution LS 26.57 (10.15) 50.07 (10.98) 75.04 (7.26)
df= 3 LAD 25.11 (3.64) 50.00 (3.38) 75.18 (3.24)

Contaminated normal LS 28.65 (13.96) 49.61 (14.47) 74.59 (9.72)
(�=0:1; �=5) LAD 25.42 (4.82) 49.91 (4.54) 75.26 (3.38)

Model: yi = �k + �xi + �i , where �i are, respectively, normal N(0; 1), double exponential with density
f(x)= 2−1e−|x|, student t with df = 3, and contaminated normal with cdf F(x)= (1 − �)�(x) + ��( x� ),
here �=0:1 and �=5. Sample size 100, true change points 25, 50, and 75. Standard deviations are reported
in parentheses.

50, and 75, respectively. Only the case of intercept changes with �1 = 1; �2 = 3; �3 = 1;
�4 =−1 and �k =1 (∀k) is reported. The estimated means and standard deviations
from 500 repetitions are reported in Table 1. The number of regimes is assumed to be
known. Under normal errors, the LAD yields estimates with a larger spread than LS.
The converse is true under double exponential errors. The LS gives estimates with a
much larger spread than LAD. Additional simulations are done for �i being t distribution
with df = 3 and contaminated normal distribution with cdfF(x)= (1−�)�(x)+��(x=�),
here �=0:1 and �=5. For these latter distributions, e�ciency gain by LAD is striking.
Though not reported in Table 1, this observation is true for jumps of di�erent sizes
and changes in slope parameters as well.
Monte Carlo simulations for estimating the number of change points are also per-

formed. We only report the summary here. The model considered is still Eq. (11).
Both criteria (9) and (10) are used. Each criterion function is minimized over the
range {0; 1; 2; : : : ; 10}. Criterion (9) correctly identi�es the number of regimes 71% of
the time for normal errors and 73% of the time for double exponential errors. This cri-
terion has a tendency to overestimate the true number, suggesting that the penalty term
is not heavy enough. In contrast, criterion (10) with g(n)=

√
n correctly identi�es the

number of regimes 93% of the time for normal errors and 76% for double exponential
errors. Here there is a tendency to underestimate the number. These results suggest the
possibility of further improvement by adjusting the penalty term.

4.2. An application

This application concerns the response of market interest rates to changes in the
Federal Reserve (Fed) discount rate, which is the rate at which the Fed lends money
and is set by the Fed. The yield of three-month treasury bills is used as the market
interest rate. The data range spans 1973–1989. Over this period the Fed made 56
changes in the discount rate. The details are described by Dueker (1992).
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Changes in the market interest rate are often a complicated function of many factors
in addition to the Fed discount rate. The most important of these is perhaps the state
of the economy. As in Dueker (1992), we use the unemployment rate as an indicator
of the performance of the economy. Dueker uses a mixture model by mixing ‘high’
and ‘lower’ response with mixing probability depending on other exogenous variables.
His results suggest that the response is di�erent over time. Here we use the simple
change point model and estimate the response pattern over time. The following model
is used:

�TBi= �0k + �1k�DRi + �2kUi + �i;

where �TB is the change in the T-bill rate, �DR is the change in the discount
rate, U is the unemployment rate, and (�0k ; �1k ; �2k) are the regression parameters
of regime k. Both criteria (9) and (10) suggest the existence of three regimes. The
estimated numbers of observations for the three regimes are 27, 15, and 14, respectively.
The estimated regression parameters are (0:331; 0:051;−0:058), (3:256; 0:163;−0:383),
and (0:268; 0:064;−0:040), respectively. The second regime is markedly di�erent from
the rest, with responses being most sensitive to changes in the discount rate and in
unemployment. Finally, it is interesting to note that the �rst change point occurs in
October 1979, and the second occurs in November 1982. These estimated change points
coincide with changes in the operating procedure of the Federal Reserve (Roley and
Wheatley, 1990). Thus, policy changes that may not be directly linked to the variables
under consideration can have an e�ect on those variables. This example highlights the
potential use of the change-point model in social sciences.

5. Auxiliary results

In this section, we derive a number of results in the absence of change points. In the
next section, we show how these results can be used to establish Theorems 1–5. This
framework of proof is useful for other estimation methods such as M-estimation. All
needed is to prove the corresponding lemmas for a given estimation method. Consider
the standard regression model:

yi=w′
i�
0 + �i (i=1; : : : ; n);

where wi is a p× 1 vector of regressors, �0 is the true vector of parameters, and �i is
a disturbance. We assume:
B1: The errors �i satisfy A5 with xi interpreted as wi.
B2: The regressors wi are uniformly bounded as in A3. That is, there exists K¿0

such that |wi|¡K for all i.
B3: The matrix (1=k)

∑k
i=1 wiw′

i converges in probability to a nonrandom positive-
de�nite matrix.
Throughout this section, we assume B1–B3 are satis�ed. We do not assume a

bounded parameter set. The parameter space is Rp. All the lemmas are true even
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if the regressors are not uniformly bounded, but satisfy the condition: for each �¿0,
there exists a K¿0 such that (1=k)

∑k
i=1 |wi|2I(|wi|¿K)¡� for all large k with large

probability. We shall treat wi as deterministic. Otherwise, conditional argument can be
used because of the independence of disturbances and regressors. However, in Lemma 7
below, we do analyze the case of i.i.d. regressors, which allow us to strengthen some
of the results. The case of i.i.d. regressors corresponds to Assumption A6.
We are interested in the behavior of the optimal objective function

inf
�

n∑
i=1

|yi − w′
i�|= inf

�

n∑
i=1

|�i − w′
i(�− �0)|= inf

�

n∑
i=1

|�i − w′
i�|;

(rede�ning � as � − �0, or simply assuming �0 = 0). De�ne the centered objective
function as

n∑
i=1
(|�i − w′

i�| − |�i|):

To begin, we state a lemma due to Babu (1989), which is closely related to the
Bernstein inequality.

Lemma 1 (Babu, 1989, Lemma 1). Let Zi be a sequence of independent random
variables with mean zero and |Zi|6d for some d¿0. Let V¿

∑k
i=1 EZ

2
i . Then for

all 0¡s¡1 and 06a6V=(sd),

P
(∣∣∣∣ k∑

i=1
Zi

∣∣∣∣¿a
)
62 exp{−a2s(1− s)=V}: (12)

The following simple inequality will be used frequently:

||x − y| − |x − z||6|y − z|: (13)

We de�ne throughout

�i(�)= |�i − w′
i�| − |�i| and �i(�)= �i(�)− E�i(�): (14)

Lemma 2. (i) For each �∈ (0; 1),

sup
n¿k¿n�

∣∣∣∣inf�
k∑

i=1
(|�i − w′

i�| − |�i|)
∣∣∣∣=Op(1):

(ii)

sup
16k6n

∣∣∣∣inf�
k∑

i=1
(|�i − w′

i�| − |�i|)
∣∣∣∣=Op(log n):

Proof. See Lemma 1 of Bai (1995).
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Lemma 3. For every �¿1=2 and every M¡∞; we have

sup
16l6k6n

∣∣∣∣ inf|�|6M

k∑
i=l
(|�i − w′

i�| − |�i|)
∣∣∣∣=Op(n�):

Proof. Let �i(�)= |�i − w′
i�| − |�i|. Because E�i(�)¿0 and �i(0)= 0, we have

0¿ inf
|�|6M

k∑
i=l

�i(�)¿ inf
|�|6M

k∑
i=l
[�i(�)− E�i(�)]:

Thus ∣∣∣∣ inf|�|6M

k∑
i=l

�i(�)
∣∣∣∣6 sup

|�|6M

∣∣∣∣ k∑
i=l
[�i(�)− E�i(�)]

∣∣∣∣ :
It follows that

sup
16l¡k6n

∣∣∣∣ inf|�|6M

k∑
i=l

�i(�)
∣∣∣∣62 sup

16k6n
sup

|�|6M

∣∣∣∣ k∑
i=1
[�i(�)− E�i(�)]

∣∣∣∣ :
Thus it su�ces to prove the right-hand side above is bounded by Op(n�).
Let �k =sup|�|6M |∑k

i=1[�i(�)−E�i(�)]|. Then {�k ;Fk} (k =1; : : : ; n) forms a sub-
martingale, where Fk = � − �eld{�1; : : : ; �k}. By Doob’s inequality,

P
(
sup
k6n

�k¿n�
)
6n−�mCmE(�mn ); (15)

for some Cm¿0 (where m¿1 will be determined later). Next, divide the parameter
set |�|6M into cpnp=2 (cp¿0) cells such that the diameter of each cell is no larger
than Mn−1=2. For arbitrary s; t in a common cell,∣∣∣∣ n∑

i=1
�i(s)− E�i(s)− �i(t) + E�(t)

∣∣∣∣6 2
n∑

i=1
|wi||s− t|

6 2Mn−1=2
n∑

i=1
|wi|62KMn1=2:

Let �r be a point in the rth cell (r=1; 2; : : : ; cpnp=2). From |h(�)|6|h(�r)|+ |h(�)−
h(�r)| for an arbitrary function h(�), and |a+b|m6Lm|a|m+Lm|b|m for some constant
Lm only depending on m, we have

�mn6Lm sup
r

∣∣∣∣ n∑
i=1

�i(�r)− E�i(�r)
∣∣∣∣
m

+ Lm(2KM)mnm=2: (16)

Because �i(�r)−E�i(�r) forms a sequence of bounded martingale di�erences for each
�xed r, we have, for some A¿0,

E
∣∣∣∣ n∑
i=1

�i(�r)− E�i(�r)
∣∣∣∣
m

6Anm=2; ∀r:
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Taking expectations on both sides of Eq. (16) and using E(supr | · |m)6
∑

r E| · |m, we
obtain

E�mn6ALmcpnp=2nm=2 + O(nm=2)=O(n(p+m)=2):

Thus the right-hand side of Eq. (15) is bounded by, for some C¿0, Cn−�mn(p+m)=2,
which converges to zero as n→∞ for m¿p=(2�−1) and for �¿1=2. This proves the
lemma.

Lemma 4. Let cn be a positive sequence such that either cn ≡ c¿0 or cn → 0 and
nc2n= log n→∞. Then there exists a C¿0 such that for each �¿0 and all large n,

P

(
sup

|�|6cn

∣∣∣∣ 1nc2n
n∑

i=1
�i(�)

∣∣∣∣¿�

)
6 exp(−�2nc2nC);

where �i(�) is de�ned in Eq. (14).

Proof. Divide the region |�|6cn into cpnp=2 (for some cp¡∞) cells such that the
diameter of each cell is no larger than n−1=2cn. For �1; �2 belonging to a common
cell, the incremental value

1
nc2n

∣∣∣∣ n∑
i=1
[�i(�1)− �i(�2)]

∣∣∣∣62K |�1 − �2|=c2n62K=(
√
ncn)→ 0:

Let �r be a point in the rth cell (r=1; : : : ; cpnp=2), we have

P
(
sup
r

∣∣∣∣ 1nc2n
n∑

i=1
�i(�r)

∣∣∣∣¿�
)
6
∑
r
P
( ∣∣∣∣ n∑

i=1
�i(�r)

∣∣∣∣¿nc2n�
)

: (17)

From |�i(�)|62|w′
i�|62Kcn, it follows that Var(�i(�))64K2c2n uniformly in |�|6cn.

Apply Lemma 1 with d=2Kcn, V =4K2nc2n, s=1=2, and a= nc2n�, we have for large n

P
( ∣∣∣∣ n∑

i=1
�i(�r)

∣∣∣∣¿nc2n�
)
62 exp(−�2nc2nC);

with C =1=(16K2). Thus the r.h.s. of Eq. (17) is bounded by 2cpnp=2 exp(−�2nc2nC),
which is further bounded by exp(−�2nc2nC=2) for all large n, because nc2n= log n
→∞.

Lemma 4 implies that, by the Borel–Cantelli lemma, for every �¿0,

lim sup
n→∞

sup
|�|6cn

∣∣∣∣ 1nc2n
n∑

i=1
�i(�)

∣∣∣∣6�; a:s: (18)

Remark 4. The following result will be used in subsequent proofs. Let h(x) (x∈Rp)
be a convex function with h(0)= 0. If inf |x|=c h(x)= a¿h(0)= 0, then inf |x|¿c h(x)=
inf |x|=c h(x). That is, the extreme value of a convex function is attained on the bound-
ary. To see this, suppose |x′|¿c. Choose �∈ (0; 1) such that x′′= �x′ and |x′′|= �|x′|
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= c. Then a6h(x′′)= h(�x′ + (1− �)0)6�h(x′) + (1− �)h(0)= �h(x′). Thus h(x′)¿
a=�¿a.

Lemma 5. If cn → 0 and nc2n= log n→∞, then there exists an �¿0, such that with
probability 1,

lim inf
n

inf
|�|¿cn

1
nc2n

n∑
i=1
(|�i − w′

i�| − |�i|)¿�¿0:

Proof. We prove the sum has a large expected value, and its deviation from its expected
value is small. Because |�i−w′

i�|−|�i| is convex in �, and the sum of convex functions
is still convex, it su�ces to prove the lemma for |�|= cn (see Remark 4). Because
cn → 0, we have (e.g., Pollard, 1991)

E
(

n∑
i=1
(|�i − w′

i�| − |�i|)
)

= �′
(

n∑
i=1

wiw′
i

)
�f(0)(1 + o(1))¿n|�|2�f(0)=2= nc2n�f(0)=2; (19)

where � is a positive number which is no larger than the smallest eigenvalue
of (1=n)

∑n
i=1 wiw′

i . The existence of such a � is guaranteed by assumption B3 for all
large n. The lemma is proved with �= �f(0)=4 if we take �= �f(0)=4 in
Eq. (18).

Lemma 6. Let �̂n be the LAD estimator of �, i.e., �̂n= argmin�
∑n

i=1(|�i − w′
i�| −

|�i|). Then for cn in Lemma 5, there exists a C¿0 such that for all large n,

P(|�̂n|¿cn)6 exp(−nc2nC):

Proof. The lemma is implied by the following:

P
(
inf

|�|¿cn

n∑
i=1
(|�i − w′

i�| − |�i|)¡0
)
6 exp(−nc2nC): (20)

We shall prove this inequality. By convexity, it is su�cient to consider |�|= cn. Let
�i(�)= |�i − w′

i�| − |�i| and �i(�)= �i(�)− E�i(�). Now

inf
|�|=cn

n∑
i=1

�i(�)¿ inf
|�|=cn

n∑
i=1
[�i(�)− E�i(�)] + inf

|�|=cn

n∑
i=1

E�i(�)

¿− sup
|�|=cn

∣∣∣∣ n∑
i=1

�i(�)
∣∣∣∣+ inf

|�|=cn

n∑
i=1

E�i(�):

Thus

P
(
inf

|�|=cn

n∑
i=1

�i(�)¡0
)
6 P

(
sup

|�|=cn

∣∣∣∣ n∑
i=1

�i(�)
∣∣∣∣¿ inf

|�|=cn

n∑
i=1

E�i(�)

)
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6 P

(
sup

|�|=cn

∣∣∣∣ n∑
i=1

�i(�)
∣∣∣∣¿nc2n�f(0)=2

)

6 exp(−nc2nC�2f(0)2=4);

where the second inequality follows from inf |�|=cn

∑n
i=1 E�i(�)¿nc2n�f(0)=2 by Eq.

(19); the last inequality follows from Lemma 4 with �= �f(0)=2. The lemma is proved
by rede�ning C.

The following lemma is an improved version of Lemma 3 under the i.i.d. assumption.
The latter assumption is made in A6.

Lemma 7. Assuming that {wi; �i}n
i=1 are i.i.d., then for every a¿0, t¿0, and M¡∞,

P
(

sup
16l¡k6n

∣∣∣∣ inf|�|6M

k∑
i=l
(|�i − w′

i�| − |�i|)
∣∣∣∣¿na

)
=O(n−t):

Proof. Let �i(�) be de�ned as before. Then

P
(

sup
16l¡k6n

∣∣∣∣ inf|�|6M

k∑
i=l

�i(�)
∣∣∣∣¿na

)
6
∑
l¡k

P
( ∣∣∣∣ inf|�|6M

k∑
i=l

�i(�)
∣∣∣∣¿na

)

=
∑
l¡k

P
(∣∣∣∣ inf|�|6M

k−l∑
i=1

�i(�)
∣∣∣∣¿na

)
by i:i:d:

6 n2 max
16k6n

P
( ∣∣∣∣ inf|�|6M

k∑
i=1

�i(�)
∣∣∣∣¿na

)
:

From |�i(�)|6|w′
i�|6KM , we have |∑k

i=1 �i(�)|6kKM¡na for k¡nb and n large,
where 0¡b¡a. Thus, it is enough to consider k¿nb for some b∈ (0; a). Let �̂k =
argmin�

∑k
i=1 �i(�), and let ck be a sequence of positive numbers. Then,

n2 max
nb6k6n

P
( ∣∣∣∣ inf|�|6M

k∑
i=1

�i(�)
∣∣∣∣¿na

)

6n2 max
nb6k6n

P(|�̂k |¿ck) + n2 max
nb6k6n

P
( ∣∣∣∣ inf|�|6ck

k∑
i=1

�i(�)
∣∣∣∣¿na

)
: (21)

Choose ck = k−1=2 log k. By Lemma 6,

P(|�̂k |¿ck)6 exp(−kc2kC)6 exp(−(b log n)2C) for k¿nb:

It follows that, for every t¿0

n2 max
nb6k6n

P(|�̂k |¿ck)=O(n−t) (22)
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for all large n. Next,∣∣∣∣ inf|�|6ck

k∑
i=1

�i(�)
∣∣∣∣6 sup

|�|6ck

∣∣∣∣ k∑
i=1

�i(�)
∣∣∣∣+ sup

|�|6ck

k∑
i=1

E�i(�):

Because ck → 0,

k∑
i=1

E�i(�)=�′ k∑
i=1

wiw′
i�f(0)(1 + o(1))62kK2c2k62K

2(log k)26na=2

for all large n. Moreover, by Lemma 4 (applied with n= k and �=2−1na=(kc2k)=
2−1na=(log k)2),

P

(
sup

|�|6ck

∣∣∣∣ k∑
i=1

�i(�)
∣∣∣∣¿1

2
na

)
6 exp(−4−1Cn2a=(log k)4)

6 exp(−4−1Cn2a=(b log n)4);

for k¿nb. Since n2 exp(−4−1Cn2a=(b log n)4)=O(n−t) for every t, the last term of
Eq. (21) is bounded by O(n−t). Combining with Eq. (22), we obtain the lemma.

Lemma 8. If |�|=M¿0, then there exists a �¿0 such that a positive fraction of ob-
servation satisfy |w′

i�|¿�. More speci�cally, let Nn(�)= card{i; |w′
i�|¿�, 16i6n},

then for some �0¿0, uniformly in |�|=M , Nn(�)¿n�0 for all large n.

Proof. Note that
n∑

i=1
(w′

i�)
2 =�′ n∑

i=1
wiw′

i�¿�n|�|2 = �nM 2;

where � is de�ned in the proof of Lemma 5. On the other hand,

n∑
i=1
(w′

i�)
2 =

n∑
i=1
(w′

i�)
2I(|w′

i�|6�) +
n∑

i=1
(w′

i�)
2I(|w′

i�|¿�)

6 n�2 + (KM)2
n∑

i=1
I(|w′

i�|¿�):

Thus

Nn(�)=
n∑

i=1
I(|w′

i�|¿�)¿(KM)−2n(�M 2 − �2)¿n�0

for �0 = (KM)−2(�M 2 − �2), which is positive for a small �.

Lemma 9. For each M¿0, there exists an �¿0 and C¿0 such that

P
(
inf

|�|¿M

n∑
i=1
(|�i − w′

i�| − |�i|)¿�n
)
¿1− exp(−nC):

Proof. Again by convexity, we assume without loss of generality, |�|=M . Let H (�)
=E(|�i − �| − |�i|). Then H (�) is nonnegative and H (�) is an increasing function in
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|�| with a unique minimum at zero. By Lemma 8, there exist no less than n�0 (for
some �0¿0) observations such that |w′

i �|¿� for some �¿0. Thus

E
n∑

i=1
(|�i −w′

i �| − |�i|)¿n�0H (�) (23)

uniformly over {�; |�|=M}. Furthermore, by Lemma 4 (applied with cn ≡M), for
each �¿0,

P

(
sup

|�|=M

∣∣∣∣ n∑
i=1
(|�i −w′

i �| − |�i| −E[|�i −w′
i �| − |�i|])

∣∣∣∣¿�n

)
6exp(−n�2C):

(24)

That is, the deviation from the mean is small. Take �= �0H (�)=2, the lemma follows
from Eqs. (23) and (24) with �= �0H (�)=2.

Lemma 10. Let n1 and n2 be two integers such that n1¿n� with 1¿�¿3=4 and
n26n� with �¡1=4. Consider

yi =w′
i �1 + �i; i=1; : : : ; n1;

yi =w′
i �2 + �i; i= n1 + 1; : : : ; n1 + n2:

Let N = n1 + n2 and let �̂N =argmin|�|6M
∑N

i=1 |yi −w′
i �|, where M is large enough

such that |�1|¡M and |�2|¡M . Then
(i) For every �∈ (0; �− �), with probability tending to 1,

|�̂N −�1|6n−1=21 n(�+�)=(2�)
1 6n−(�−�−�)=2:

(ii)
∑n1

i=1 (|�i −w′
i (�̂N −�1)| − |�i|)=Op(1).

This lemma says that when the data are from two di�erent models (two regimes
in our application), the estimated regression parameter using the pooled data is close
to the parameter of the model from where most of the data came. This is, of course,
obvious, but (i) quanti�es this intuition. Furthermore, similar to Lemma 2(i), the cen-
tered objective function of the ‘dominating’ model evaluated at the pooled estimator
�̂N is stochastically bounded, as asserted by (ii).

Proof. (i) Note that �̂N minimizes

gn(�)=
n1∑
i=1
(|�i −w′

i (�−�1)| − |�i|)+
n1+n2∑
i=n1+1

(|�i −w′
i (�−�2)| − |�i|): (25)

The second term on the right-hand side of Eq. (25) is bounded by
∑n1+n2

i=n1+1 |wi||�−�2|
62KMn2 =O(n�) by the assumption of bounded regressors and |�−�2|62M .
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If |�̂N −�1|¿n−1=21 n(�+�)=(2�)
1 for some �¿0 with some positive probability �0, then by

Lemma 5, with c(n1)= n−1=21 n(�+�)=(2�)
1 ,

n1∑
i=1
(|�i −w′

i (�̂N −�1)| − |�i|)¿�n1c(n1)2¿�n(�+�)=�
1 ¿�n�+�

with probability at least �0=2 for large n. This implies that gn(�̂N )¿�n(�+�)−O(n�)¿
2−1�n�+� with probability at least �0=2 for large n. However, inf� gn(�)6gn(�1)=
O(n�) with probability 1. Thus we arrive at a contradiction.
(ii) Rewrite gn(�) as

gn(�)=fn(�)+ hn(�)+
n1+n2∑
i=n1+1

(|�i −w′
i (�1−�2)| − |�i|); (26)

where

fn(�)=
n1∑
i=1
(|�i −w′

i (�−�1)| − |�i|) (27)

and

hn(�)=
n1+n2∑
i=n1+1

(|�i −w′
i (�−�2)| − |�i −w′

i (�1−�2)|):

From (i), |hn(�̂N )|6
∑n1+n2

i=n1+1 |wi||�̂N −�1|6Kn2n−(�−�−�)=26Kn−(�−3�−�)=2 = o(1), for

0¡�¡(�− 3�). Because fn(�)+ hn(�) evaluated at �=�1 is zero and �̂N minimizes
fn(�)+ hn(�), it follows that

0¿fn(�̂N )+ hn(�̂N )¿fn(�̂N )− |op(1)|¿inf
�

fn(�)− |op(1)|: (28)

Thus,

|fn(�̂N )|6
∣∣∣∣ inf� fn(�)

∣∣∣∣ +op(1):
By Lemma 2(i), inf� fn(�)=Op(1). This implies that fn(�̂N )=Op(1).

The following result is an extension of Lemma 10.

Lemma 11. Let n1 and n2 be the same as in the previous lemma. Consider

yi =w′
i �1 + �i; i=1; : : : ; k;

yi =w′
i �2 + �i; i= k +1; : : : ; k + n2;

where k is no smaller than a positive fraction of n1 such that k ∈ [n1a; n1] with
a∈ (0; 1]. Let �̂k =argmin|�|6M

∑k+n2
i=1 |yi −w′

i �|. We have
(i) For every a∈ (0; 1] and every �∈ (0; �− �), with probability tending to 1,

sup
n1a6k6n1

|�̂k −�1|6n−1=21 n(�+�)=(2�)
1 6n−(�−�−�)=2:
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(ii)

sup
n1a6k6n1

∣∣∣∣ k∑
i=1

|�i −w′
i (�̂k −�1)| − |�i|

∣∣∣∣ =Op(1):

Proof. (i) Let c(k)= k−1=2k(�+�)=(2�). Then there exists a constant A¿0 such that,
c(n1)6c(k)6Ac(n1) for all k ∈ [n1a; n1]. We prove (i) by reduction to absurdity. Now
suppose |�̂k −�1|¿c(n1), then |�̂k −�1|¿c(k)=A. By Lemma 5,

k∑
i=1
(|�i −w′

i (�̂k −�1)| − |�i|)¿�kc(k)2A−2¿�kc(n1)2A−2

¿�an(�+�)=�
1 A−2¿�an(�+�)A−2:

The above inequality implies that gk(�̂k)¿�an(�+�)=A2−O(n�)¿Cn(�+�). On the other
hand, because �̂k minimizes gk(�), we have gk(�̂k)6gk(�1). But gk(�1)6O(n�). This
gives rise to a contradiction.
(ii) Using part (i), it is easy to argue that hk(�̂k)= op(1) uniformly in k ∈ [n1a; n1] as

long as � is small. Furthermore, Lemma 2(i) is equivalent to supn1a6k6n1 |inf� fk(�)|=
Op(1). The remaining argument is similar to the proof of the previous lemma.

6. Proofs of Theorems 1–5

The proofs will use Lemmas 2, 3, 5, 7, 9, and 11. For the rest of the proofs, we
assume that the in�mum with respect to � is taken over a bounded parameter set as
stated in assumption A2. We need some preliminary results.

Proposition 1. If m is bounded and assumptions A1–A5 hold, then for every �¿1=2,

P(|n̂j − n0j |¿n�)→ 0 (j=1; : : : ; m):

Proof. Let Aj = {(n1; : : : ; nm): n1¡n2¡· · ·¡nm; |nl − n0j |¿n�; 16l6m}. It su�ces to
assume �63=4. Since

Sn(n̂1; : : : ; n̂m)6Sn(n01; : : : ; n
0
m)6Sn(n01; : : : ; n

0
m; �

0)=
n∑

i=1
|�i|

with probability 1, it su�ces to show that

min
(n1 ;:::; nm)∈Aj

Sn(n1; : : : ; nm)¿
n∑

i=1
|�i| (29)

with probability tending to one as n→∞. Now, we extend the de�nition of Sn to every
subset {n1; : : : ; nl} of {1; : : : ; n− 1}:

Sn(n1; : : : ; nl)=
l+1∑
r=1
inf
�

n(r)∑
i=n(r−1)+1

|yi − x′i�|;
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where n(0) = 0; n(l+1) = n and 0¡n(1)¡· · ·¡n(l)¡n is the ordered version of n1; : : : ; nl.
For (n1; : : : ; nm)∈Aj

Sn(n1; : : : ; nm)¿Sn(n1; : : : ; nm; n01; : : : ; n
0
j−1; n

0
j − [n�]; n0j + [n

�]; n0j+1; : : : ; n
0
m):

The right-hand side of the above can be expressed as Sn1 + Sn2, where Sn1 is the sum
of at most 2(m+1) expressions of the form inf�

∑k
i=l |yi − x′i�|, where l and k fall

in a common true regime (i.e., n0r6l¡k6n0r+1 for some r); and Sn2 is given by

Sn2 = inf
�

n0j+[n
�]∑

n0j −[n�]+1
|yi − x′i�|; (30)

which can be rewritten as

Sn2 = inf
�




n0j∑
n0j −[n�]+1

|�i − x′i(�− �0j )|+
n0j+[n

�]∑
n0j+1

|�i − x′i(�− �0j+1)|

 : (31)

When l and k fall in a common true regime,

inf
�

k∑
i=l

|yi − x′i�|= inf
�

k∑
i=l

|�i − x′i�|:

Thus

Sn(n1; : : : ; nm)−
n∑

i=1
|�i|¿Sn1 + Sn2−

n∑
i=1

|�i|

¿−|2(m+1) sup
16l¡k6n

∣∣∣∣ inf�
k∑

i=l
(|�i − x′i�| − |�i|)

∣∣∣∣ (32)

+inf
�




n0j∑
n0j −[n�]+1

(|�i−x′i(�−�0j )| − |�i|)+
n0j+[n

�]∑
n0j+1

(|�i − x′i(�− �0j+1)| − |�i|)

 :

(33)

From Lemma 3 and the boundedness of m, expression (32) is bounded by Op(n�) for
every �¿1=2. Note that max{|�− �0j |; |�− �0j+1|}¿(|�− �0j |+ |�− �0j+1|)=2¿|�0j −
�0j+1|=2. Thus if |�− �0j | is bounded away from zero, then we can apply Lemma 9
to the �rst sum in Eq. (33), applied with the data order reversed (treating n0j as the
�rst observation, n� as n, and xi as wi). All conditions of the lemma are satis�ed. If
|�− �0j+1| is bounded away from zero, then we can apply Lemma 9 to the second
sum in Eq. (33), treating n0j +1 as the �rst observation. In each case, Lemma 9 im-
plies that, for some �¿0, Eq. (33) is larger than [n�]� with probability tending to
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one. Therefore Sn1 + Sn2¿
∑n

i=1 |�i|+ [n�]�−O(n�)¿
∑n

i=1 |�i| with probability tending
to one for �∈ (1=2; �). This proves Eq. (29) and hence the proposition.

The rate of convergence given in the previous proposition can be improved upon
under the additional assumption A6, even if the number of change points mn →∞.

Proposition 2. Under assumptions A1–A6, there exists a �¿0 such that

P

(
sup

16j6mn

|n̂j − n0j |¿n1=(4+�)

)
→ 0:

This proposition gives a uniform rate of convergence for bounded or unbounded mn.

Proof. The argument is similar to that of Proposition 1, with Lemma 7 in place of
Lemma 3 in the proof. For a �¿0 (to be determined later), de�ne Aj = {(n1; : : : ; nmn):
n1¡n2¡· · ·¡nmn ; |nl − n0j |¿n1=(4+�); 16l6mn}. Then

P

(
sup

16j6mn

|n̂j − n0j |¿n1=(4+�)

)
6

mn∑
j=1

P(|n̂j − n0j |¿n1=(4+�))

6
mn∑
j=1

P
(
inf
Aj

Sn(n1; : : : ; nmn)−
n∑

i=1
|�i|60

)
: (34)

Using the previous arguments, we have [cf. Eqs. (32) and (33)]

Sn(n1; : : : ; nmn)−
n∑

i=1
|�i|

¿− |2(mn+1) sup
16l¡k6n

∣∣∣∣ inf�
k∑

i=l
(|�i − x′i�| − |�i|)

∣∣∣∣
+ inf

�




n0j∑
n0j −[n1=(4+�)]+1

(|�i − x′i(�− �0j )| − |�i|)

+
n0j+[n

1=(4+�)]∑
n0j+1

(|�i − x′i(�− �0j+1)| − |�i|)



def= −2(mn + 1)Un + Vnj:

Thus

P
(
inf
Aj

Sn(n1; : : : ; nmn)−
n∑

i=1
|�i|¿0

)
¿P(Vnj¿2(mn + 1)Un)

¿P(Vnj¿2(mn + 1)Un; Un6n�)
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¿P(Vnj¿2(mn + 1)n�; Un6n�)

¿P(Vnj¿2(mn + 1)n�) + P(Un6n�)− 1
¿P(Vnj¿3nd+�) + P(Un6n�)− 1

where d¡1=4 by the assumption on mn. The fourth inequality follows from P(A∩B)¿
P(A)+P(B)− 1. Lemma 7 implies that for every �¿0 and t¿0, P(Un¿n�)=O(n−t)
for large n. Lemma 9 implies that [see the argument for Eq. (33)] there exists an
�¿0 such that P(Vnj¿�n1=(4+�))¿1− exp(−n1=(4+�)C), for some C¿0. Now, because
d¡1=4, we can choose �¿0 such that d+ �¡1=4. Furthermore, choose �¿0 such that
d+ �¡1=(4 + �). Then, for every �¿0, nd+�6�n1=(4+�) for all large n. Thus

P(Vnj¿3nd+�)¿P(Vnj¿�n1=(4+�))¿1− exp(−n1=(4+�)C):

Note that the constant C can be chosen independent of j because of the i.i.d. assumption
and max{|�− �0j ; |�− �j+1|}¿|�0j − �0j+1|=2¿c¿0 for all j, by A2. This implies that,
uniformly in j,

P
(
inf
Aj

Sn(n1; : : : ; nmn)−
n∑

i=1
|�i|¿0

)
¿(1−exp(−n1=(4+�)C)) + (1− O(n−t))− 1;

which is 1− O(n−t). Equivalently, uniformly in j6mn,

P
(
inf
Aj

Sn(n1; : : : ; nmn)−
n∑

i=1
|�i|60

)
6O(n−t)

for every t¿0 for large n. It follows from Eq. (34) that

P
(
sup
j

|n̂j − n0j |¿n1=(4+�)
)
6mnO(n−t)→ 0:

The proof of Proposition 2 is complete.

The result of Proposition 1 can be further improved upon.

Proposition 3. If m is bounded and assumptions A1–A5 hold, then for every �¿0
and for all large n

P(|n̂j − n0j |¿log2 n)¡� (j=1; : : : ; m):

Proof. Let B= {(n1; : : : ; nm): |ns − n0s |¡n�; 16s6m} for some �∈ (1=2; 3=4). Let Bj

be a subset of B such that

Bj = {(n1; : : : ; nm): |nj − n0j |¿log2n; |ns − n0s |¡n�; 16s6m}:
By Proposition 1, P({n̂1; : : : ; n̂m}∈B)→ 1. To prove Proposition 3, we show P((n̂1; : : : ;
n̂m)∈Bj)→ 0, which is implied by the following:

min
(n1 ;:::; nm)∈Bj

Sn(n1; : : : ; nm)¿
n∑

i=1
|�i| (35)
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with probability tending to 1. For (n1; : : : ; nm)∈Bj,

Sn(n1; : : : ; nm)¿ Sn(n1; : : : ; nm; n01 ; : : : ; n
0
j−1; n

0
j −[log2 n]; n0j + [log2 n]; n0j+1; : : : ; n0m)

def= Tn(n1; : : : ; nm)=Tn(P):

Thus to prove Proposition 3, it is su�cient to show, with probability tending to 1,

min
(n1 ;:::; nm)∈Bj

Tn(n1; : : : ; nm)¿
n∑

i=1
|�i|: (36)

Let us introduce some terminology for ease of exposition. The diameter of (l; k],
denoted by D(l; k), is de�ned as the sum of least absolute deviations for observations
i∈ [l + 1; k]. That is, D(l; k)= inf�

∑ k
i=l+1 |yi − x′i�|. The diameter of (l; k] relative

to a partition P=(n1; : : : ; nm), denoted by D(l; k;P), is de�ned as the sum of all the
diameters of the form (l; k]∩ (ns; ns+1] (s=0; 1; : : : ; m). The diameter of an empty set
is de�ned to be zero.
Because the length of each true regime is no smaller than n3=4 and because �¡3=4,

it is clear that for each partition P=(n1; : : : ; nm)∈B; (n0s ; n
0
s+1] contains at most the

two integers ns and ns+1 of P. Thus, D(n0s ; n
0
s+1;P) can be written as the sum of

at most three diameters of subsets of (n0s ; n
0
s+1]. Namely, if n0s¡ns¡ns+1¡n0s+1, then

D(n0s ; n
0
s+1;P)=D(n0s ; ns)+D(ns; ns+1)+D(ns+1; n0s+1). Generally, let rs=max{n0s ; ns};

rs+1 =min{n0s+1; ns+1}, we have D(n0s ; n
0
s+1;P)=D(n0s ; rs) + D(rs; rs+1) + D(rs+1; n0s+1)

with the convention that D(l; k)= 0 for k6l.
Given these preparations, we see that Tn(P) can be written as:∑

s 6=j−1; j
D(n0s ; n

0
s+1;P) + D(n0j−1; n

0
j − [log2 n];P) + D(n0j + [log

2 n]; n0j+1;P) (37)

+ D(n0j − [log2 n]; n0j + [log2 n];P): (38)

Because the diameter of (n0s ; n
0
s+1] relative to P∈Bj involves observations from a

common true regime, it can be written as

D(n0s ; n
0
s+1;P)= inf

�

rs∑
n0s+1

|�i − x′i�|+ inf
�

rs+1∑
rs+1

|�i − x′i�|+ inf
�

n0s+1∑
rs+1+1

|�i − x′i�|: (39)

That is, we can replace yi by �i. All of the diameters in Eq. (37) have expressions
similar to Eq. (39). The diameter in Eq. (38), however, involves observations from
two di�erent true regimes and hence it has an expression given by Sn2 in Eq. (31)
with [n�] replaced by [log2 n]. Now the di�erence between Tn(P) and

∑n
i=1 |�i| can be

written as

Tn(P)−
n∑

i=1
|�i|=

∑
s 6=j−1; j

(
D(n0s ; n

0
s+1;P)−

∑′′|�i|
)

(40)

+ D(n0j−1; n
0
j − [log2 n];P)−∑′′|�i| (41)



126 J. Bai / Journal of Statistical Planning and Inference 74 (1998) 103–134

+ D(n0j + [log
2 n]; n0j+1;P)−

∑′′|�i| (42)

+ D(n0j − [log2 n]; n0j + [log2 n];P)−
∑′′|�i|; (43)

where
∑′′ extends over the range over which the preceding diameter is de�ned. For

example, the �rst sum
∑′′ means

∑n0s+1
n0s+1

. Next we shall show that Eqs. (40)–(42) are

all bounded by Op(log n) uniformly in P∈Bj, whereas Eq. (43) is larger than � log2 n,
for some �¿0, with probability tending to 1. To this end, for s 6= j−1; j, by Eq. (39)

D(n0s ; n
0
s+1;P)−

n0s+1∑
n0s+1

|�i|=
(
inf
�

rs∑
n0s+1

|�i − x′i�| − |�i|
)

(44)

+

(
inf
�

rs+1∑
rs+1

|�i − x′i�| − |�i|
)
+

(
inf
�

n0s+1∑
rs+1+1

|�i − x′i�| − |�i|
)

: (45)

By Lemma 2(ii) (treating n0s + 1 as the �rst observation), the term on the right of
Eq. (44) is uniformly bounded in absolute value by Op(log n) as rs varies. Similarly,
the second term of Eq. (45) is also uniformly bounded by Op(log n) by Lemma 2(ii)
(applied with the data order reversed and treating n0s+1 as the �rst observation). What
is less obvious is that the �rst term of Eq. (45) is also bounded by Op(log n). This
is because rs and rs+1 are not arbitrary, the interval (rs; rs+1] must include r0s = [(n

0
s +

n0s+1)=2] by the de�nition of Bj; rs and rs+1. Thus we can break up the sum into two
pieces with one piece summing over (rs; r0s ] and the other summing over (r

0
s ; rs+1].

In this way Lemma 2(ii) can be applied to each piece (r0s does not vary when rs and
rs+1 vary). Because m is bounded, the number of diameters in Eq. (40) is bounded.
Thus Eq. (40) is bounded by Op(log n).
Similarly, both Eqs. (41) and (42) are bounded uniformly on Bj by Op(log n).
Next consider Eq. (43), which can be written as (see Eq. (31), replacing [n�] by

[log2 n]):

inf
�




n0j∑
n0j−[log2 n]+1

(|�i − x′i(�− �0j )| − |�i|) +
n0j+[log

2 n]∑
n0j+1

(|�i − x′i(�− �0j+1)| − |�i|)

:

(46)

Because max{|� − �0j |; |� − �0j+1|}¿|�0j − �0j+1|=2 for all �, Lemma 9 implies that

Eq. (46) is larger than � log2 n for some �¿0, with probability tending to one [see the
detailed argument concerning Eq. (33)]. Thus

min
(n1 ;:::; nm)∈Bj

Tn(n1; : : : ; nm)−
n∑

i=1
|�i|¿−|Op(log n)|+ � log2 n¿0

with probability tending to 1. Therefore Eq. (36) is proved and so is the proposition.

Proof of Theorems 1 and 2. Write m=m(n). De�ne G= {(n1; : : : ; nm): |nk − n0k |6n�;
16k6m}, where �¡1=4. For each �xed j and C¡∞ de�ne Gj(C) to be a subset
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Fig. 1. A particular con�guration of (n1; n2; : : : ; nm) in the set Gj(C) de�ned in the proof of Theorems 1
and 2.

of G such that Gj(C)= {(n1; : : : ; nm)∈G; nj¡n0j −C}. In Gj(C); nj¡n0j ; the case of
nj¿n0j is similar and is omitted. By Propositions 2 and 3, P((n̂1; : : : ; n̂m)∈G)→ 1. To
prove the theorems, it su�ces to show that for each �¿0; P((n̂1; : : : ; n̂m)∈Gj(C))¡�
for all large C and large n (j=1; : : : ; m). Because (n̂1; : : : ; n̂m) must satisfy

Sn(n̂1; : : : ; n̂j ; : : : ; n̂m)6Sn(n̂1; : : : ; n̂j−1; n0j ; n̂j+1; : : : ; n̂m);

to show that (n̂1; : : : ; n̂m) is not in Gj(C), it su�ces to show

min
(n1 ;:::; nm)∈Gj(C)

[Sn(n1; : : : ; nj; : : : ; nm)− Sn(n1; : : : ; nj−1; n0j ; nj+1; : : : ; nm)]¿0 (47)

with large probability for large C.
For a �xed j, let �̂j be the LAD estimator based on observations (nj−1; nj], viz., �̂j =

argmin�
∑nj

nj−1+1 |yi−x′i�|. Similarly, let �̂j+1 be the LAD estimator based on observa-
tions (nj; nj+1]. For notational simplicity, we omit the dependence of �̂j on the partition.

Let �̂∗
j and �̂∗

j+1 be the LAD estimators based on observations (nj−1; n0j ] and (n
0
j ; nj+1],

respectively (see Fig. 1). By the de�nition of G; �̂k and �̂∗
k (k = j; j+1) are estimated

with at least a positive fraction of n0k − n0k−1 observations belonging to a common
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true regime (because nk is close to n0k ) and with at most O(n
�) observations from

another true regime. Note that n0k − n0k−1¿n� with �¿3=4 by assumption. Thus by
Lemma 11(i), we have, for each �∈ (0; �− �), with probability tending to 1,

|�̂k − �0k |6n−(�−�−�)=2; k = j; j + 1; (48)

and similarly,

|�̂∗
k − �0k |6n−(�−�−�)=2; k = j; j + 1: (49)

These inequalities hold uniformly on G. We further assume, for the sake of concrete-
ness, that nj−16n0j−1 and nj+1¿n0j+1 (other cases can be analyzed similarly and are
actually simpler). For nj−16n0j−1 and nj+1¿n0j+1 (see Fig. 1),

Sn(n1; : : : ; nj; : : : ; nm)

=
j−1∑
k=1

D(nk−1; nk) +
n0j−1∑

nj−1+1
|�i − x′i(�̂j − �0j−1)|+

nj∑
n0j−1+1

|�i − x′i(�̂j − �0j )|

+
n0j∑

nj+1
|�i − x′i(�̂j+1 − �0j )|+

n0j+1∑
n0j+1

|�i − x′i(�̂j+1 − �0j+1)|

+
nj+1∑

n0j+1+1
|�i − x′i(�̂j+1 − �0j+2)|+

m∑
k=j+2

D(nk−1; nk)

def=
j−1∑
k=1

D(nk−1; nk) + a+ b+ c + d+ e +
m∑

k=j+2
D(nk−1; nk); (50)

where D(l; k)= inf�
∑ k

i=l+1 |yi − x′i�|, as de�ned earlier. Similarly,

Sn(n1; : : : ; nj−1; n0j ; nj+1; : : : ; nm)

=
j−1∑
k=1

D(nk−1; nk) +
n0j−1∑

nj−1+1
|�i − x′i(�̂j

∗ − �0j−1)|+
nj∑

n0j−1+1
|�i − x′i(�̂j

∗ − �0j )|

+
n0j∑

nj+1
|�i − x′i(�̂j

∗ − �0j )|+
n0j+1∑
n0j+1

|�i − x′i(�̂
∗
j+1 − �0j+1)|

+
nj+1∑

n0j+1+1
|�i − x′i(�̂

∗
j+1 − �0j+2)|+

m∑
k=j+2

D(nk−1; nk)

def=
j−1∑
k=1

D(nk−1; nk) + a∗ + b∗ + c∗ + d∗ + e∗ +
m∑

k=j+2
D(nk−1; nk): (51)

A major distinction between Sn(n1; : : : ; nm) and Sn(n1; : : : ; n0j ; : : : ; nm) lies in the fourth

expression on the right hand of each, c and c∗. Expression c involves �̂j+1 and c∗

involves �̂j
∗; with �̂j+1 and �̂j

∗ being estimators of �0j+1 and �0j , respectively. We now
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consider the di�erence between Eqs. (50) and (51). First, by the simple inequality
(13), Assumption A3, and Eqs. (48) and (49),

|a− a∗|6(n0j−1 − nj−1)K |�̂j − �̂j
∗|62Kn�n−(�−�−�)=2 = 2Kn−(�−3�−�)=2 = op(1)

for �∈ (0; �− 3�), where op(1) is uniform on G. Similarly, |e− e∗|=op(1) uniformly
on G. Next, b− b∗ can be written as (by adding and subtracting |�i|),

b− b∗=
nj∑

n0j−1+1
(|�i − x′i(�̂j − �0j )| − |�i|)−

nj∑
n0j−1+1

(|�i − x′i(�̂j
∗ − �0j )| − |�i|): (52)

By Lemma 11(ii), each term on the right-hand side is Op(1) uniformly on G. To see
this, consider the �rst term on the right. Note that �̂j is estimated with observations
(nj−1; nj]. But |nj−1 − n0j−1|6n� and |n0j−1 − nj|¿a|n0j−1 − n0j | for some a∈ (0; 1)
because nj is close to n0j . Thus, the conditions of Lemma 11 are satis�ed (treating
n0j − n0j−1 as the n1, and treating nj − n0j−1 as the k of the lemma). By the same
reasoning, d − d∗=Op(1) uniformly on G. It remains to deal with c and c∗. Adding
and subtracting terms,

c − c∗ =
n0j∑

nj+1
(|�i − x′i(�

0
j+1 − �0j )| − |�i|) (53)

+
n0j∑

nj+1
(|�i − x′i(�̂j+1 − �0j )|)−

n0j∑
nj+1

(|�i − x′i(�
0
j+1 − �0j )|) (54)

−
n0j∑

nj+1
(|�i − x′i(�̂j

∗ − �0j )| − |�i|): (55)

Expression (54) is bounded by (n0j − nj)K |�̂j+1− �0j+1|6n�Kn−(�−�−�)=2 = op(1).

Similarly, Eq. (55) is bounded by (n0j − nj)K |�̂j∗ − �0j |=op(1) [see Eq. (49)].
Expression (53) will be treated later. Summarizing these results, we obtain, uniformly
on G;

Sn(n1; : : : ; nm)− Sn(n1; : : : ; n0j ; : : : ; nm)=
n0j∑

nj+1
(|�i − x′i(�

0
j+1 − �0j )| − |�i|) + Op(1):

(56)

Next, for (n1; : : : ; nm)∈Gj(C)⊂G, we shall show that the r.h.s. term above is large.
Because |�0j+1 − �0j |¿0 is �xed and n0j − nj¿C; Lemma 9 implies that the �rst term
on the r.h.s. of Eq. (56) is greater than �(n0j −nj)¿�C for some �¿0 with probability
tending to 1 as C tends to in�nity. Thus on Gj(C),

min
(n1 ; :::; nm)∈Gj(C)

[Sn(n1; : : : ; nm)− Sn(n1; : : : ; n0j ; : : : ; nm)]¿�C +Op(1):
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The r.h.s. above is positive with large probability if C is large. This proves Eq. (47)
and thus the theorems.

Proof of Theorem 3. We note that �̂j(n̂1; : : : ; n̂m) only depends on n̂j−1 and n̂j so we can

write it as �̂j(n̂j−1; n̂j). Further note that �̂j(n
0
j−1; n

0
j ) has the stated limiting distribution

[see, e.g., Bassett and Koenker (1978)]. But n̂i= n0i +Op(1), thus with large probability,
�̂j(n̂j−1; n̂j) is estimated using the same set of observations as �̂j(n

0
j−1; n

0
j ) with at most

a �nite number of di�erent observations. A �nite number of di�erent observations will
not alter the limiting distribution. The proof of Theorem 3 is now complete.

Proof of Theorem 4. The key to the proof lies in the following fact. Let (n̂1; : : : ; n̂m)
be the jointly estimated change points, where m=m(n), not necessarily bounded. Then
for each j; it must be true that

n̂j = argmin
16nj6n

Sn(n̂1; : : : ; n̂j−1; nj; n̂j+1; : : : ; n̂m):

This fact e�ectively transforms the problem into that of a single change point. The
above is equivalent to n̂j − n0j = argmink Sn(n̂1; : : : ; n̂j−1; n0j + k; n̂j+1; : : : ; n̂m). In view
of the rate of convergence of n̂j given by Theorems 1 and 2, to prove Theorem 4 it
su�ces to show that, for |k|6M (M¡∞ arbitrarily given)

Sn(n̂1; : : : ; n̂j−1; n0j + k; n̂j+1; : : : ; n̂m)− Sn(n̂1; : : : ; n̂j−1; n0j ; n̂j+1; : : : ; n̂m)
d→W ( j)(k):

(57)

Let nj = n0j + k. Then (n̂1; : : : ; n̂j−1; nj; n̂j+1; : : : ; n̂m)∈G with probability approaching
to 1. Thus Eq. (56) implies that, for k¡0 (the case of k¿0 is similar and is omitted),

Sn(n̂1; : : : ; n̂j−1; nj; n̂j+1; : : : ; n̂m)− Sn(n̂1; : : : ; n̂j−1; n0j ; n̂j+1; : : : ; n̂m)

=
n0j∑

nj+1
(|�i − x′i(�

0
j+1 − �0j )| − |�i|) + Op(1): (58)

The �rst term on the r.h.s. above has the same distribution as W ( j)(n0j−nj)=W ( j)(k)
under the i.i.d. assumption. Thus Eq. (57) and hence Theorem 4 will be proved if
the Op(1) term in Eq. (58) can be strengthened to be Eq. op(1), under |nj − n0j |
6M . Note that the Op(1) term represents b − b∗ and d − d∗ de�ned in the previ-
ous proof. We next show that b − b∗=op(1). The proof for d − d∗ being op(1) is
similar.
Let �̂j and �̂j

∗ be the LAD estimators of �0j based on observations [n̂j−1; nj] and
[n̂j−1; n0j ], respectively. Because |nj; n0j |6M by assumption and n̂j−1−n0j−1 =Op(1) by
Theorem 2, it follows from the classical result that

�̂j − �0j = n−1=2a Op(1) and �̂j
∗ − �0j = n−1=2a Op(1); (59)
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where na= n0j −n0j−1. Using the Bahadur type of representation (Babu, 1989), we have,
by cancelling the common term of representations,

|�̂j∗ − �̂j|6n−3=4a (log na)Op(1): (60)

We now prove b− b∗=op(1) (cf. Eq. (52)). Replacing nj by n0j in Eq. (52), which

is equivalent to adding an op(1) term
∑n0j

nj (·). [The term being op(1) follows because

|∑n0j
nj |6

∑n0j
nj |xi||�̂j − �̂j

∗|6MK |�̂j − �̂j
∗|=op(1) by Eq. (60)], we can rewrite b− b∗ as

b− b∗ =
n0j∑

n0j−1+1
|�i − x′i(�̂j − �0j )| −

n0j∑
n0j−1+1

|�i − x′i(�̂j
∗ − �0j )|+ op(1)

=
n0j∑

n0j−1+1
|�i − x′i(�̂j

∗ − �0j )− x′i(�̂j − �̂j
∗)| −

n0j∑
n0j−1+1

|�i − x′i(�̂j
∗ − �0j )|+ op(1):

The following lemma together with Eqs. (59) and (60) implies that b− b∗ is
op(1).

Lemma 12. Under A3 and A5, for every L¡∞;

sup
|�1|¡L; |�2|¡L

∣∣∣∣ n∑
i=1
(|�i − x′i�1n

−1=2 − x′i�2n
−3=4 log n| − |�i − x′i�1n

−1=2|)
∣∣∣∣=op(1):

Proof. Denote the ith summand by  in(�), where �=(�1; �2). From E(|�i − t| −
|�i|)= t2f(0)+o(t2), it is easy to verify that

∑n
i=1 E in(�)= o(1) uniformly in |�|6M

=2L. Thus the lemma will be true if we can prove it with  in(�) replaced by  in(�)−
E in(�). From | in(�)|6|x′i�2|n−3=4 log n6KLn−3=4 log n, we obtain E[ in(�)]26(KL)2

n−3=2(log n)2. Apply Lemma 1 with a= �; s=1=2; V =(KL)2n−1=2(log n)2, we obtain,
for each �xed �,

P
(∣∣∣∣ n∑

i=1
[ in(�)− E in(�)]

∣∣∣∣¿�
)
62 exp(−�2Cn1=2=(log n)2)

for some C¿0. Next divide the region |�|6M into O(np) cells such that for
�′; �′′ belonging to a common cell, |�′ − �′′|6Mn−1=2. In this way, the incremental
value,

∣∣∣∣ n∑
i=1
( in(�′)− E in(�′)−  in(�′′) + E in(�′′))

∣∣∣∣6 n∑
i=1

|x′i(�′
2 − �′′

2 )|n−3=4 log n

6 2KMn−1=4 log n=o(1):
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Thus

P

(
sup

|�|6M

∣∣∣∣ n∑
i=1

 in(�)− E in(�)
∣∣∣∣¿�

)
6O(np) exp(−�2Cn1=2=(log n)2)→ 0;

proving the lemma.

Proof of Theorem 5. We �rst prove P(m̂¡m0n)→ 0 by arguing that P(infm¡m0n B(m)−
B(m0n)60)→ 0. Write m0 =m0n. First note that when m¡m0, there must exist at least
one change point that cannot be estimated. Because each of the regime lengths is at
least n3=4, there exists a segment [l; k] which contains no estimated change point and
satis�es n0j − l¿n3=4=2 and k − n0j¿n3=4=2 for some n0j . Using a similar argument as
in proving Eq. (33) and Lemma 9, we can show that, for some C¿0,

Sn(n̂1; : : : ; n̂m)−
n∑

i=1
|�i|¿Cn3=4 (61)

with probability tending to 1. Next,

B(m)− B(m0)= n log
(
1 +

ê(m)− ê(m0)
ê(m0)

)
+ (m− m0)g(n):

Without loss of generality, we may assume that |ê(m)− ê(m0)|=ê(m0) is small (if it
is large, it is even less unlikely for B(m)6B(m0)). Using log(1 + x)∼ x,

B(m)− B(m0)∼ n[ê(m)− ê(m0)]=ê(m0) + (m− m0)g(n)

=
[
Sn(n̂1; : : : ; n̂m)−

n∑
i=1

|�i| −
{
Sn(n̂1; : : : ; n̂m0 )−

n∑
i=1

|�i|
}]/

ê(m0) (62)

+ (m− m0)g(n):

We need the following lemma:

Lemma 13. Under A1–A6,

0¿Sn(n̂1; : : : ; n̂m0 )−
n∑

i=1
|�i|=Op(n1=4):

Proof. From Sn(n̂1; : : : ; n̂m)¿Sn(n̂1; : : : ; n̂m; n01; : : : ; n
0
m0 ) for all m; we have

n∑
i=1

|�i| − Sn(n̂1; : : : ; n̂m)6(m+ m0 + 1)Un; ∀m (63)

where Un= sup16l¡k6n | inf�
∑k

i=l |�i − x′i�| − |�i||. Thus, for m=m0,

P
(

n∑
i=1

|�i| − Sn(n̂1; : : : ; n̂m0 )¿n1=4
)
6P(3m0Un¿n1=4)=P(3Un¿n1=4=m0):
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The above probability converges to zero by Lemma 7 because n1=4=m0¿na for some
a¿0.

The lemma implies that ê(m0)= n−1
∑n

i=1 |�i|+Op(n−3=4)→E(|�1|). From Eqs. (61),
(62) and Lemma 13, we have, for all large n

B(m)− B(m0)¿Cn3=4 − Op(n1=4) + (m− m0)g(n)¿2−1Cn3=4 − m0g(n)¿0

because m0g(n)6c2n(1=4)−bn1=2 = o(n3=4) by A1 and g(n)= n1=2. This implies that
P(m̂¡m0)→ 0.
Next consider m¿m0. We assume m¡Lm0 for a large given L. For m¿m0,

Sn(n̂1; : : : ; n̂m0 )¿Sn(n̂1; : : : ; nm)

=Sn(n̂1; : : : ; n̂m0 ) +
{
Sn(n̂1; : : : ; n̂m)−

n∑
i=1

|�i|
}
−
{
Sn(n̂1; : : : ; n̂m0 )−

n∑
i=1

|�i|
}

¿Sn(n̂1; : : : ; n̂m0 )− (Lm0 + m0 + 1)Un − (2m0 + 1)Un

where the last inequality follows from Eq. (63). By Lemma 7, Un=Op(n�) for every
�¿0. Choose a small �¿0 such that m0Un=Op(n1=4), we have

Sn(n̂1; : : : ; n̂m0 )¿Sn(n̂1; : : : ; n̂m)¿Sn(n̂1; : : : ; n̂m0 )− Op(n1=4):
Divide by n on both sides above to obtain

06ê(m0)− ê(m)=Op(n−3=4):

Thus

n log ê(m0)− n log ê(m)=−n log
(
1 +

ê(m)− ê(m0)
ê(m0)

)
=Op(n1=4):

Because g(n)=n1=4→∞,
n log ê(m0)− n log ê(m)=Op(n1=4)¡g(n)6(m− m0)g(n)

for all m¿m0. That is, for m¿m0,

n log ê(m) + mg(n)¿n log ê(m0) + m0g(n)

for all large n. This implies that P(m̂¿m0)→ 0.
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