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This paper develops methods for constructing asymptotically valid confidence intervals for 
the date of a single break in multivariate time series, including I(0), I(1), and deterministically 
trending regressors. Although the width of the asymptotic confidence interval does not decrease 
as the sample size increases, it is inversely related to the number of series which have a common 
break date, so there are substantial gains to multivariate inference about break dates. These 
methods are applied to two empirical examples: the mean growth rate of output in three European 
countries, and the mean growth rate of U.S. consumption, investment, and output. 

1. INTRODUCTION 

The past decade has seen considerable empirical and theoretical research on the detection 
of breaks in economic time series. Notably, Perron (1989) and Rappoport and Reichlin 
(1989) provided evidence that aggregate output can be usefully thought of as being subject 
to two types of shocks: highly persistent shocks, which affect mean growth rates over 
decades, and transitory shocks, which result in business cycles and other short-run dynam- 
ics. Because the permanent shocks occur so rarely, it is useful to model them as one-time 
events, in the case at hand as one-time changes in the trend growth of real output. Making 
the assumption that the break dates were known, Perron (1989) and Rappoport and 
Reichlin (1989) concluded that U.S. output was better modelled as being stationary around 
a broken trend, or a trend with a change in its slope, than as being integrated of order 
one. Although subsequent work (Banerjee, Lumsdaine, and Stock (1992), Christiano 
(1992), and Zivot and Andrews (1992)) which treated the break date as unknown ques- 
tioned some of these results, there remains evidence of breaks in the mean growth rates 
of many aggregate economic time series. 
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The empirical motivation for this study is to build on this evidence of the existence 
of breaks in mean macroeconomic growth rates by providing point estimates and, more 
importantly, confidence intervals for the dates of these breaks. Graphical evidence points 
to growth in the United States and Europe slowing down sometime in the 1970s, although 
for some countries, especially Germany, this graphical evidence is far from clear. Although 
Perron (1989), Banerjee, Lumsdaine, and Stock (1992), and others have used time series 
methods to provide estimates of break dates in mean growth rates, formal measures of 
the precision of these estimates were unavailable to these researchers. An interval estimate 
of the break date is considerably more useful to economists attempting to understand this 
growth slowdown than is a simple point estimate with no measure of sampling uncertainty. 
Further, many factors which are generally deemed important in this slowdown, such as 
external supply shocks and the growth of the modern European welfare state, are inter- 
national and could result in the breaks being contemporaneous. This suggests that gains 
in precision might be achieved by a multivariate treatment, in which the growth rates are 
modelled as breaking contemporaneously across series. However, techniques for inference 
about break dates in multivariate systems are currently unavailable. 

This paper therefore develops techniques for inference about breaks, including interval 
estimation of the break date, in multivariate systems. The econometric literature to date 
has focused on tests for structural breaks, with recent emphasis on the case that the break 
date is unknown (see Hansen (1992), Andrews (1993), and Andrews and Ploberger (1994) 
for recent treatments). However, the problem of inference about the break date itself has 
received significantly less attention. We therefore develop the econometric theory of inter- 
val estimation of the date of a break in a multivariate time series model with otherwise 
stationary or cointegrated variables. This entails developing asymptotic distribution theory 
for the maximum likelihood estimator of the break date. As this theory makes precise, 
the break-point problem is one in which there are substantial payoffs for using multivariate 
rather than univariate techniques: while the asymptotic confidence interval for the break 
date does not decrease with the sample size, it is inversely related to the dimension of the 
time series. 

The empirical motivation concerns breaks in the mean growth rate, for which the 
parameters describing the stationary dependence in the stochastic part of the process (the 
autoregressive parameters) are treated as nuisance parameters. However, our results are 
general enough to permit an extension to breaks in any of the coefficients of an I(0) or 
cointegrated model. Even though this general problem is not the focus of the empirical 
work in this study, it is arguably of interest in other applications, so we present tests and 
confidence intervals for the general case. 

We next turn to the empirical problem of dating the slowdown in postwar European 
and U.S. output growth. For France, Germany, and Italy, there is evidence of a break in 
the univariate growth rates of output (cf. Banerjee, Lumsdaine, and Stock (1992)), and 
the model of a single common break date is found to be consistent with the data. We 
therefore consider a multivariate system with a single common break date, and find that 
a 90% confidence interval for the break is the second quarter of 1972 to the second quarter 
of 1975. 

Dating the slowdown in the postwar U.S. is somewhat more difficult; the univariate 
estimate of the break date for U.S. output is imprecise. However, dynamic economic 
theories suggest that a discrete productivity slowdown will be reflected in lower growth 
rates not only of output, but of series that are cointegrated with output, in particular, 
consumption and investment (cf. King, Plosser, and Rebelo (1988)). We therefore examine 
a trivariate system of real per capita output, consumption, and investment in which, 
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following King, Plosser, Stock, and Watson (1991), there are two cointegrating vectors 
corresponding to the stationarity of the logarithms of the consumption/income and invest- 
ment/income ratios. When modelled as a system there appears to be a common slowdown 
in the growth rate that is statistically significant. The 90% confidence interval is centred 
around the first quarter of 1969 and is very tight when the theoretical cointegrating vectors 
are imposed, although it is somewhat wider (for example, 1966-197 1) when the cointegrat- 
ing vectors are estimated. 

The paper is organized as follows. Section 2 contains the theoretical econometric 
results concerning multivariate change-point tests and confidence intervals for I(0) 
dynamic models. Section 3 addresses the change-point problem in a cointegrating system. 
Section 4 presents a Monte Carlo study of the tests and interval estimates. The empirical 
results are presented in Sections 5 and 6 for the European and U.S. applications, respec- 
tively. Section 7 concludes. 

2. TESTS AND CONFIDENCE INTERVALS FOR A BREAK IN 
I(0) DYNAMIC MODELS 

2.1. Model and notation 

The system of equations considered is 

yt=/- +EPj Ajy,_j +FX,_l+d,(k)(,i+EPj Bjy,-j +tx-l )+E6,l (2.1) 

where y,, p, i, and E, are n x 1 and {Aj} and {Bj} are n x n; the roots of {I-A(L)L} and 
of {I-A(L)L-B(L)L} are outside the unit circle; d,(k) =0 for t?k and d,(k) = 1 for 
t > k; and X, is a matrix of stationary variables. It is convenient to write the system of 
equations (2.1) in its stacked form 

y,= (Vt01I)0 +d,(k)(Vt01I)S + Et, (2.2) 

where V'=(1,yt1, . . . ,y>,,,X,), O=Vec (,u,A, . . .,Ap, F), S=Vec (2, Bi, 
* . . , Bp, H), and I is the n x n identity matrix. Model (2.2) is that of a full structural 
change in that it allows all coefficients to change. If it is known that only a subset of 
coefficients such as the intercept has a possible break, a partial structural change model 
is more appropriate. The unchanged parameters should be estimated using all of the 
observations to gain efficiency. In addition, tests for partial structural changes will have 
better power than those for full structural changes. This leads to the consideration of a 
general partial structural change model 

y, = ( Vt'0I)0 + d, (k)( Vt'DI)S'SS + E,, (2.3) 

where S is a selection matrix, containing 0's and 1's and having full row rank. Note that 
S'S is idempotent with non zero elements only on the diagonal. The rank of S is equal 
to the number of coefficients that are allowed to change. For S= I, (2.2) is obtained. For 
S= (s0I) with s= (1, 0, . . . , 0), we have 

y,= (Vt'DI)0 + Ad,(k) + Et, (2.4) 

which has a break in the intercept only. The system (2.3) can be rewritten more compactly 
as 

y,=Z,(k)pf+ Et, (2.5) 



398 REVIEW OF ECONOMIC STUDIES 

where Zk(k) = ((V,'DI), d, (k)( V,01I)S') and ,B = (0', (SS )')'. Write Z, for Z, (k) for nota- 
tional simplicity. The errors e, are assumed to satisfy the following assumption: 

Assumption 2.1. Let E, be a martingale difference sequence with respect to Yt-'= 

a-field (Z,, Et-I,Zt-I, Et-2, .) satisfying, for some a>0, maxisup,E(E4,+a)< and 
E(e,ej1 I )F=t for j=0 and 0 otherwise. Also suppose that EX, = p, for all t, maxi 
spr X, E t < o, T ,=(Xt-plx)(Xt-,pj) Mxx(O), T- Z,t= IX,y,_EXty,_y= 

MXY(j), j=-p,. . . ,p and XT( ) -O BX( ), where XT(T)=-T-'1 ,ti (X,-Px), [X] 
represents the integer part of x, and BX () is a Brownian motion with covariance matrix 
Mxx (0). 

Throughout, lix ii represents the Euclidean norm, i.e. lix i = (zip _ x2)'/2 for xeRP. All 
limits are taken as the sample size, T, converges to infinity, unless stated otherwise. 

2.2. Tests for a break at an unknown date 

The tests for a break in the coefficients are based on the sequence of F-statistics testing 
S= =0, for k=k* + 1, ..., T- k*, where k* is some trimming value. The null hypothesis 
is that no break exists (SS = 0). For a given k, the estimator of ,8(k) (by the feasible 
seemingly unrelated regression method) and the F-statistic testing SS = 0, F(k), are 

f(k) ={ET=ql -i JkZ't)1 1 ET Zti- IYt (2.6) 

F(k) = T{R,l(k)}'{R(T-' Z,tiTZ,)4'R'}-' {RP(k)}, (2.7) 

where R = (0, I) so that R/3 = SS, Sk iS the estimator of I based on OLS residuals under 
the alternative hypothesis, given k. The stochastic processes of interest are the estimator 
process, T' 2(/3([Tr]) -,B), and the F-statistic process, FT(r) = F([Tr]). 

A variety of tests for a break, based on the Wald F-statistic process FT, have been 
proposed in the literature. For example, the Quandt (1960) likelihood ratio statistic is the 
maximum of the likelihood ratio statistics, testing for a break at a sequence of possible 
break dates; the analogous statistic here is to consider the maximum of the FT process. 
Hansen (1992) proposed using the mean score test for a break; the Wald test variant used 
here is the average of F(k) over some range. Andrews and Ploberger (1994) examine the 
question of devising most powerful tests for breaks. In the empirical application, we 
consider two of these test statistics: the maximum Wald statistic and the logarithm of the 
Andrews-Ploberger exponential Wald statistic 

Sup- W: sup FT(r), (2.8) 
re(r*'I -r*) 

Exp-W: ln {JCr* exp { 2FT(r)j}dr}. (2.9) 

Here r * refers to an initial fraction of the sample which is trimmed; this is often 
taken to be either 0- 15 or 0 01. The limiting distribution of the FT process has been well 
studied for a variety of models; see for example Deshayes and Picard (1986), Andrews 
(1993), and Andrews and Ploberger (1994). The limiting distributions of these statistics 
obtain by applying the continuous mapping theorem to the limiting representation of FT. 
Andrews and Ploberger (1994) provide general conditions under which these limiting 
distributions will hold, although these conditions are "high level" and must be verified in 
practice. For the model of interest here, (2.3), the limiting properties of the estimator and 
F-statistic process are summarized by the following theorem. Let " = " denote weak 
convergence of random elements in a product space of D[0, 1]. 
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Theorem 1. Under the assumption of 2.1 and SS = 0, 

(i) aT(fi([T ])-f)TH( -'G( ), where 

H (T Q(1 )?) ' {(1 -r)Q(1)?3E1}' 
H(r) =( -' 

(1 Dy-s 

\VS{(1 - r)Q(1)?ZE-} S{(1 - rQ1QE1S 

and G=(G', G')' with GI(r)= B(1), and G2(r)=S[B(1)-B(r)], where B(r) is 
a vector of Brownian motion with variance rQ(1)0E-', and Q(r) = plim 
T-1 [Tr] V,Vt= rQ(1). The weak convergence holds in the space D[r*, 1-r*]. 

(ii) FT F*, where F*(r)={r(1-r) } II W(I)- W(1)112 and W() is a vector of 
independent standard Brownian motion processes with dim (W) = rank (S). 

(iii) g(FT) > g(F*), for g( ) denoting the Sup- W and Exp- Wfunctionals, respec- 
tively, given in (2.8) and (2.9). 

The proofs of this theorem and Theorem 8 in Section 3 are omitted to conserve space. 
Proofs of all other theorems are given in the Appendix.' 

2.3. Inference for breaks in I(O) dynamic models 

If there is in fact a break, then a natural question to raise is how one could construct 
confidence intervals for the true break date. This problem has been considered by various 
authors, using a variety of approaches; see, for example, Hinkley (1970), Picard (1985), 
Yao (1987), Siegmund (1988), and Kim and Siegmund (1989). Most of this work has 
focused on the change-point problem with i.i.d. Gaussian errors. Picard (1985) provided 
an asymptotic distribution for the Gaussian MLE of the breakpoint in the case that a 
univariate process follows a finite order autoregression; also see Yao (1987). Picard's 
results permit the construction of asymptotic confidence intervals for the break point in 
the univariate case. These results are extended here in a number of directions: (1) the time 
series is multivariate rather than univariate; (2) the covariance matrix I is explicitly treated 
as unknown and estimated; (3) no normality assumption is made, nor is the underlying 
density function assumed to be known. We only assume the disturbances form a sequence 
of martingale differences with some moment conditions, and use pseudo-Gaussian maxi- 
mum likelihood estimation; (4) we consider partial structural change models, allowing 
some of regression parameters to be estimated with the full sample to gain efficiency; (5) 
we further study regression models with I(1) and trending regressors and with serially 
correlated errors, encompassing a broken-trend stationary model and that of broken 
cointegrating relationships. 

We consider estimating (2.3) or (2.5) by the pseudo-Gaussian MLE. We assume 
ISJII =0, so that there indeed exists a break. Denote by L(k, f/, ?) the pseudo-likelihood 
function admitting a break at k with parameters ,B and S. Let (ko, Pio, lo) denote the true 
parameter with ko= [Tro] for roe(0, 1). For each given k, denote by (,8(k), 1(k)) the 
estimator that maximizes the likelihood function. The break point estimator is defined as 

k argmax L(k, P/(k), t(k)). 
1 k?T 

The final estimator is defined as (k, ,8(k), t(k)), also written as (k, Pk, jk^). 
The asymptotic behaviour of k is obtained by considering a sequence which is designed 

to produce an asymptotic approximation to the finite sample distribution of k when the 

1. A complete proof of the two omitted theorems is available upon request. 
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magnitude of the break is small. Specifically, following Picard (1985) we assume that 
Po=(O, S'TS')', where 3T is a sequence such that ST=SOVT with VT -O and fJTVT/ 
(log T)--+oo, where VT> 0is a scalar. There are two reasons for considering small shifts. 
First, this framework permits an analytical solution to the density function of the estimated 
break point, so that confidence intervals can be easily constructed. Second, if we show 
that a break with a small magnitude of shift can be consistently estimated, it must be the 
case that we can consistently estimate a break with a larger magnitude of shift, for the 
larger the magnitude of shifts, the easier to identify a break. 

We shall study the joint behaviour of (k, Pk, S,k), particularly, their rates of conver- 
gence and their limiting distributions. The final result is given in Theorem 4 below. Antici- 
pating the rates of convergence for the estimated parameters, we reparameterize the 
likelihood function, such that L(k, Pb + T' /2f5, 10 + T' 1/21 ), where ,B = (0', (SS )')'. The 
break k is reparameterized such that k = k(v) = ko + [vT2], for v e R. When v varies, k can 
take on all possible integer values. We define the likelihood function to be zero for k non- 
positive and for k greater than T. It is clear that maximizing the original likelihood function 
is equivalent to maximizing the reparameterized likelihood. Define the pseudo-likelihood 
ratio as 

AT(V5 ,B ) L(k, Po+ T' 2p,0+ T/2i) 

L(ko, ,Po lo) 

1o+ T'/2 I-T/2 exp {- ST E ,(k)'(1o+ T' /2jEt (k)} 
~~~ ~~~~~ ,~~~ (2.10) '01 T/ exp {2ETI E,E Et } I 

where E, (k) =y, - Zt (k)'(flo + T' /2#). 
It is also clear that maximizing the original likelihood function is equivalent to maxim- 

izing the likelihood ratio. Suppose that v*, ,B*, * maximize the likelihood ratio, then 
,B* =fT( lo ), *= 0) and v* = v2(kko). Thus to show IjT('3- 3o), 

NIT(ik-so), and vT(k-ko) are all stochastically bounded [i.e., Op(l)], it is sufficient to 
show ,B*, V, and v* are all stochastically bounded. This, in turn, is equivalent to showing 
that the likelihood ratio cannot achieve its maximum when any of the parameters, v, ,B 
1, is too large. Because AT(0, 0, 0) = 1, it suffices to show the likelihood ratio is smaller 
than 1 for large values of v, P, and S. Formally, 

Theorem 2. Under Assumption 2.1, if VT is.fixed, or if VT -O and N/TvT/(log T)- oo, 
then for every E > 0, there exists a v, > 0, such that 

Pr sup supAT(V, 3,, )> E)< , (2.11) 
| VI > VI 0,1 

andfor every E >0, there exists an M> 0, such that 

Pr( sup sup AT(v5,PY)>E)< E (2.12) 
lvl <vl 11,811 >Mor JIF-11 >M 

This theorem gives rise to the desired rates of convergence. In particular, 
VT k -ko) = Op (1). 

Having studied the global property of the likelihood ratio (equivalently, the rates of 
convergence), we now examine the local property of the likelihood ratio in order to obtain 
the limiting distributions for the estimated parameters. We shall derive the limiting process 
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for the likelihood ratio when the parameter vector (v, ,B, 1) is restricted in an arbitrary 
compact set. We then use the continuous mapping theorem for the argmax functional to 
obtain the limiting distributions. Note that the argmax functional is generally only continu- 
ous for stochastic processes defined on compact sets (details can be found in Bai (1992)). 
It is thus necessary to obtain the rates of convergence of estimated parameters in order 
to invoke the continuous mapping theorem. The rates of convergence guarantee that 
(v*, B*, Z*) will lie in a compact set with a probability arbitrarily close to 1. 

Theorem 3. Under the conditions of Theorem 2, if VT --+O and /T-vT/(log T) -+oo, 
then log AT(V, fJ, 1) converges weakly on any compact set of (v, fJ, 1) to the process log A 
given by 

log A(v, fJ, E) = tr (So-l SS ('- )) +fl'Q1/24- ,/'Qfl + W(v)- 1IvIc, (2.13) 

where tr (A) denotes the trace of matrix A and TP is a n x n symmetric matrix of normal 
random variables. More specifically, P is the limiting random matrix of 
T'1/2 zT 1(6,6-10). Furthermore, Q=plim T' IT=I Zt(ko)l-2' Zt(ko)', 4 is N(O, I), 
c=JoS'S(Ql0)Y')S'SSo with QV=plimT' ET=1 V,V. The process W( ) is a single 
dimensional two-sided Brownian motion on (-oo, oo). A two-sided Brownian motion W( ) 
on the real line is defined as W(v) = W1 (-v) for v<O and W(v) = W2(v) for v>O, where 
W1 and W2 are two independent Brownian motion processes on [0, oo) with WI (0) = W2(0)= 
0. 

Theorem 4. Under the assumptions of Theorem 3, we have 

T' /2( -fo) 4 Q'124, (2.14) 

T 1/2(ik _ EO) T, v(2.15) 

[JTS'S(QlXE Ol_)S S4T1(k -ko) 4 ,(2.16) 

where V* is distributed as argmaxv (W(v) - I vl). 

Corollary 4.1. Assume the conditions of Theorem 3. 
(i) For the intercept shift model (2.4), we have 

uT1 oAT(k -ko) 4 V 4 

(ii) For the full structural change model (2.2), we have 

45T'(Q1 () 10 ') 5T (k - ko) -4 V*. (2 .1 7) 

In addition, (i) and (ii) hold when AT, 0, 3T, and Q, are replaced by their estimates. 

Because f?vT/(log T) -+ oo, in this formulation T = k/T is consistent for ro = ko / T, 
even though k itself is not consistent. Picard (1985) provides an explicit expression for the 
limiting density of V*, y(x), as 

x(X) = 3lxi e--3- x- (D - xi) (2.18) 

where D( ) is the cumulative normal distribution function. The density is symmetric and 
nondifferentiable at x = 0. The 90th and 95th percentiles are, respectively, 4 67 and 7 63. 
It can be shown that all the moments of the density exist and the density has heavy tails, 
with a variance of 26 and a kurtosis of 14 5. 
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Because the density of V* does not depend on any nuisance parameters, the results 
in Corollary 4.1 can be used to construct asymptotically similar tests of k =ko or equiva- 
lently to construct asymptotic confidence intervals for ko. In general, a confidence interval 
with asymptotic coverage of at least 100(1 - ir)% is given by 

I= [k-[Ak] - 1, k + [Ak]+ 1]. (2.19) 

For the case of an intercept shift only, 

Ak =C(1/2)ir(Ltk i), (2.20) 

where C(I/2)ir is the (1 - -ir)th quantile of V*. 
For the general case 

~~~ IT V 
Ak = C(/2),r[(SST) S(Q1 ?tk )S'(SST)f', (2.21) 

where Ql = 1/T t= I V,tV, 
The expression (2.20) provides an important motivation for using multiple equation 

systems to construct confidence intervals for k. Consider the case that the break date is 
the same for each of the series, I is diagonal, and 4 /li is the same in each equation. 
Then, in large samples, the width of the confidence interval declines as 1/n. This contrasts 
with the conventional case of constructing confidence intervals for regression coefficients 
that are the same across equations, in which confidence intervals shrink at rate 1 /\/i. In 
the break date case, even if 2j =0 for some equation, so that there is no break in that 
equation, the asymptotic results indicate that including the additional restriction does not 
impose any additional cost in terms of the width of the resulting confidence intervals. 

3. INFERENCE FOR BREAKS IN COINTEGRATING PARAMETERS 

Testing for cointegration allowing for a possible break is studied by Gregory and Hansen 
(1996), and Campos, Ericsson, and Hendry (1996), and we provide no further results on 
tests for a break. Instead, we study how to estimate the break date when there is indeed 
a break and investigate the statistical property of the estimated break point. We consider 
the cointegrated system in triangular form 

Y,=AX,+ yt+,u +Bw,+ 4,, (3. 1a) 

X , X ,_ I+ 'E, (3. 1b) 

where Y, is r x 1 and X, is (n - r) x 1, w, is an observable I(0) process, 4, and E, are I(0) 
error processes. More specifically, we make the following assumptions: 

Assumption 3.1. ,= Cjc, -j = C(L)c,, b, = o Dje,1 j = D(L)e,, C(1) and D(1) 
are full rank; icX 0fKC <oo and Eo 0jll Dj 11 < oo; (c,, e,) are i.i.d. with finite 4 + a (a > O) 
moment. The regressor w, is a mean-zero second order stationary process with uniformly 
bounded 4+ a moment. 

For technical reasons, 4, is assumed to be independent of the regressors. This is a 
plausible assumption because w, can be taken as the leads and lags of changes in X,. (cf. 
Stock and Watson (1993)). 

Assumption 3.2. The error process 4, is independent of the regressors for all leads 
and lags. 
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Assumption 3.3. The I(1) regressor X, satisfies: 

E(X<+ kXkM forallk_1andi=1,..., n-r. 
x.I~ +X2** x 

Note that the expectand is bounded by k, so every moment exists. The assumption 
requires a uniformly bounded first moment over all k. Any random walk with i.i.d. normal 
disturbances satisfies Assumption 3.3.2 

Assumption 3.4. The regressor w, satisfies: 

E( 2 2)<M, for all k_>1,i=l,...,.dim (w,). 
2i + Wi2 + ** + W2 

This assumption is satisfied by any i.i.d. sequence, and in this case, the expected value 
is identically 1. It is also satisfied by linear Gaussian processes with absolutely summable 
coefficients. 

Incorporating a linear time trend in (3. la) has two purposes. First, it allows us easily 
to extend the model to allow for drifts in X, (to be discussed later). Second, it includes a 
trend-stationary model as a special case (corresponding to A = 0). Equation (3.1) may be 
considered as a general regression model with I(1) regressors. 

We consider the extension of (3.1) to the case of a single break in one or more of 
the coefficients. If all regression coefficients are allowed to change, we can write 

Y,=AX,+ yt+ +Bw,+dt(ko)(AlXt+y1t+up1 +B1w,) + 4. (3.2) 

This can be rewritten as 

Yt= (UtI)Oo+dt(ko)(UtjDI)5T+ 4o 

where U,=(X,,t,l,w,)', 00=Vec(A,y,p,B), ST=Vec(AI,yI,PI,BI). This is a full 
structural change model. As in Section 2, if it is known that some of the coefficients do not 
change, a full structural change model does not give efficient estimation for the regression 
parameters. Thus we consider a more general setup, allowing the unchanged parameters 
to be estimated with the entire sample. Such a partial change model has the form 

Yt= (UtI)Oo+dt(ko)(Utj&I)S'S5T+4t5 (3.3) 

where S is a selection matrix, containing elements 0 or 1. Model (3.2) corresponds to S= 
L The system of equations (3.3) can be further rewritten as 

Y,=Z,(ko)flo+ 4t 

where Z, (k) = (U 1I ), d, (k) ( U, ?I) S'), ,Po = (O s, (SS5T)')'. 

We shall assume there is a break in at least one coefficient, so that II SST 11 #0. As in 
the previous section, we assume AT converges to zero. In addition to the two reasons given 
in Section 2.2, there is an additional reason for this framework. When AT does not depend 
on T and if there is a shift in the linear trend or in the cointegrating coefficients (i.e., y7 I 0 
or A 1 = 0), then the estimated break point k converges rapidly to ko, so that P(k # ko) --0 as 

2. We thank K. Tanaka and C. Z. Wei for providing us with proofs for this claim (private communication). 
It can be shown that the underlying random sequence has a uniformly bounded moment of an arbitrary order 
for normal errors. 
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T-4 oo. This implies k itself has a degenerate limiting distribution. In practice, because T 
is finite, k varies and has a nondegenerate distribution. 

Since the linear trend dominates, in magnitude, the other regressors, if the trend 
parameter yj shrinks at the same rate as other parameters, then in the limit, the trend 
parameter dominates the limiting behaviour of the break point estimator as if there were 
no shifts in other parameters (equivalent to A1 = 0, pu = 0, B1 = 0). When a linear trend is 
not included in the model, then the cointegrating coefficients will dominate the I(0) 
coefficients. In the following, we shall consider the case in which the linear trend and the 

cointegratin& coefficients shrink much faster than the coefficients of I(0) regressors so that 
in the limit k - ko is influenced by all shifted parameters. This also indicates that we can 
identify a much smaller shift in the cointegrating coefficients or in trend coefficients than 
in the case of a shift in the I(0) regressors. Let 

S T 

9 

(a'7-, 
7Pr, 

! bT) = a,y , bo)VT=3odiag (A/1 4 1))(3.4) 

where aT=vec (AI ), rYT= Y, I pT= 111, bT=vec (BI ),9 0 = (aO, yO, HO, bo )', and I, I2, I3 are 
identity matrices. We assume VT is a scalar such that 

VT--+0, and ,[vT-/log T-+oo. (3.5) 

Despite the magnitude of shift in the trend and cointegrating coefficients being much 
smaller than that of the I(0) regressors, we can consistently estimate the break fraction 
ko/T, and, in addition, v 2(k-kko) = Op (1). 

This rate of convergence for the estimated break point is sufficient to establish that 
the estimated A and A1 have the T rate of convergence, y and 71 have the T312 rate of 
convergence, and that the estimated ps and Bs have the -/T rate of convergence. In 
addition, the variance matrix of X,, o0, is estimated with root-T consistency. Anticipating 
these rates of convergence (but not imposing these rates of convergence), we reparameterize 
the parameters in the following way. Let 

DT= diag (DT, SDTS'), 

where DT= diag (TI1, T3/2I2, TI3 ) with I1, I2, I3 being identity matrices. The matrices 
DT and SDTS' correspond to the rates of convergence for 0 and SST, respectively. The 
regression parameter is then reparameterized as Po + Di-3'p, the variance of ,, o0, is 
reparameterized as .o + T and the break is reparameterized as k = ko + [VV-2 ]. The 
corresponding likelihood ratio is given by 

AT(V9 fig Y.)=L(kg Po+D--lpg lo+ T- 1/21 )IL(ko, 90 flol). 

Unlike the procedure in Section 2, where the break point is obtained via a global 
maximization of the likelihood for every kce[i, T], a restriction such that k e[TEo, 
T(1 - Eo)] is imposed in this section, where co >0 is a small number. Without this restric- 
tion, the proof of our result would be much more demanding. The restriction is not too 
stringent from the practical point of view, as Eo>0 is arbitrary. Under this setup, the 
estimated break point is defined as 

k= argmax sup L(k, PB + D-lp Eo +T- 
TEO?< kS T(1-Eo) [ T/)] 

The global behaviour of the likelihood ratio is characterized by: 
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Theorem 5. Under Assumptions 3.1-3.4, the result of Theorem 2 still holds for the 
newly defined AT(V, /3, Y ). 

As in the previous section, Theorem 5 implies the following rates of convergence 
DT(/3k-/o) = Op(1), T'/2(ik-So) (1 )(1), and vkT(k-ko) = Op(1). The theorem implies 
that the likelihood function achieves its maximum on compact sets of the reparameterized 
parameters (v, ,B, Y.) with large probability. Thus, to study the limiting distribution of the 
estimated parameters, we only need to focus on the behaviour of the likelihood ratio on 
compact sets of (v, /3, X). This we do in the following theorem. 

Theorem 6. Under Assumptions 3.1-3.4 and (3.5), the log-likelihood ratio converges 
weakly on any compact set of (v, /3, Y) to 

log A(v, P, ,)= tr(S E (T )+, K-2,B #Qp + I IW(V) 2V C2, 

where 

(1) P is a n x n random matrix of normal random variables; 
(2) Q is the random matrix plim (DT t = Zt (ko )Y'Z0 (k T )DT 1); 
(3) K is the limiting distribution of DT1 Zt(ko)YO',t; 
(4) cl is a random variable given by c1 = SOS'SH1S'S3o, 

H1 = ( 0) 

with Fr=Y, [E(wtw'-h)0DE(4'4t-h)], and 

7 ioD(l)Qn/2ZZ' /2D()' r3/2D(1)Q/2Z A/ D(I)Q21/Z 

'D = 3o/2z iQ 1/2 D(1)l ' To To l 

= AK 4 'Q:e D(1)' To 

where Z is a standard normal vector, Q = Ee, E, ne = Ee,e' and To = ko /T; 
(5) C2 is random variable given by 36S'SH2S'SSo, where ,W = Ew,w' and 

H2 - V 

0 

3S 

(6) W(v) is a two-sided standard Brownian motion on the real line and is independent 
of the random variables cl and c2; 

(7) cl, c2 and W(v) are independent of Q, KS, '. 

The next theorem derives the limiting distributions for the estimated parameters, 
including the change point: 

Theorem 7. Under the assumptions of Theorem 6, 

DT(13k-/3o) CQK, 

-./T(ik- -o) -4 TS 

(S5,S'SH2S'SS5o)2 2 (boS'sH2s S)V2T(k-ko' V* 

SoS'SHIS'S v k 

where V* is distributed as argmax { W(v) - I vl /2}. 
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The following corollaries address several leading special cases: 

Corollary 7.1. For an intercept shift only, 

(p'ITY42pI T)2 dv*.(36 

PI'T [S-o CQ I ) n,Q I f ) YO' I0 Pi T] 
- 
ko ) -V ( 3 .6) 

Corollary 7.2. If there is a shift in the trend only (Al =0, p =0, B1 =0, but 71 #0), 
and rT= 7l, we have 

[o(l)QI C(l)2Eo l~ ko(k - ko) V*. (3.7) 

Corollary 7.3. Suppose a shift occurs in the cointegrating coefficients only (A1 #0, but 
rl =Pl =0, 13 =0). Let aT=vec (AI), we have, 

[a'T(Xk0Xk,,00Y )aT]2 (k- ko)Vd , (3.8) 

a'T [Xk0Xk002oC( 1)QEC( 1) 2O ]aT 

where Xko is equal to X, for t = ko. 

Remarks. 

(1) When X, are serially uncorrelated, so that C(1)=I and 10 K2, then (3.6), (3.7) 
and (3.8) are simplified to 

(p'T 'pT )(k-ko) 4TVk, (3.9) 

(Y'TY- T)ko (k-ko) V, (3.10) 

a'T(Xk0XkO0?Y.-)aT(k-ko)4 V , (3.11) 

respectively. 
(2) We note that a' (XkOXko0Y)-')aT=XCkoA Y-'AlXko. Thus the scaling factors in 

(3.8) and (3.11) may be written in this form. 
(3) Corollary 7.3 can be modified to apply to various other special cases. 

(i) For a shift in the intercept and cointegrating coefficients, replace aT by 
(a'T, pi')' and replace Xko by (Xko, 1)'. 

(ii) For a shift in cointegrating coefficients and the linear trend, replace aT by 
(a'T, 7'+)' and replace Xko by (Xko, ko)'. 

(iii) For a shift in the intercept, cointegrating coefficients, and linear trend, replace 
aT by (a'T, 7T, pi')' and replace Xko by (Xko, ko, 1)'. 

(iv) Results corresponding to a shift in the I(0) regressor w, can be derived easily 
from Theorem 7. Because H1 and H2 are block diagonal, modifications take 
a simple form. For example, in Corollary 7.1, if B1 #0 in addition to pi1 :0, 
then (3.6) still holds with the following modification: adding b' [E(wtw')0D 
Y.-']bT to the numerator before taking the squared value, and adding 
b'TFbT to the denominator, where bT= vec (B1). 
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Confidence Intervals 

The preceding results can be used to construct confidence intervals for the true break 
point. Let C(I/2), denote the 1 - 2.ir-th quantile of V*. In general, a confidence interval for 
ko with asymptotic coverage of at least 100(1 - ir)% is given by 

I= [k-[Ak]-1, k+ [Ak] + 1]. (3.12) 

For a shift in the intercept only 

Ak = c( X /z);r 
0 f, 0 PT ̂ (3.13) 

with f4(0) being the estimate of C(l)QC(Q )', the spectral density of t at zero. 
For a shift in the trend only, Ak becomes 

Ak=C(1/2)r 1 2 YL()^'2 (3.14) 

For a shift in the cointegrating coefficients only [see Remarks (2)] 

Ak =C(I/2) (Xr '- I ^ 2 (3.15) 

In the general case of Theorem 7, 

(ST)'ISHlS'(S8T) 
Ak = C(1/2)r t(SST)'SH2S'(SST)]2' (3.16) 

where SST is an estimate of (SST) and HI and H2 are estimates of H1 and H2, respectively. 
In particular, the upper-left block of H1 contains 4?D7-'f (0)i-', with .i = 

(Xk, k, 1 )(Xk , k, 1)'; the lower-right block of H1 contains f, an estimate of F. The matrix 
H2 is defined similarly. 

Simpler expressions are available for serially uncorrelated 4,. In this case, confidence 
intervals should be based on (3.9)-(3.1 1). 

Extension to drifted X,. 

Thus far, we assume the process X, is driftless. However, the same results hold even 
if some or all of the components of X, have drifts. Consider 

Y,=AX,+u + Bw,+(A X,+I + Bwt)dt(ko)+ 4t, (3.17a) 

X t=Y+Xt -.t. (3.17b) 

We assume Y #0, so at least one component has a nonzero drift. In model (3.17), the 
linear trend is not included.3 If more than one component of X, has a drift, then asymptotic 
multicollinearity exists. Write Y = (YI1, ... , Yq)', where q = n - r. Without loss of gen- 
erality, assume Yq ?0. The final result does not depend on which component has a nonzero 
drift, and there is no need to estimate the drift coefficients. Assume that wt = 

(AXt+, ... , AXt-,). Let A1 = (IF, ... , Fq) so Fj is the i-th column of A1. We can rewrite 
(3.17a) as follows (see, e.g., Hamilton (1994), p. 627) 

Yt=A*X* + yXqt+p* +Bw* +dt(ko)(A*X*+ ,yXqt+p* +Blwt) + tt, (3.18) 

3. A linear trend can be added without affecting the analysis. 
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where A" is equal to A1 with the last column deleted, Xi* =Xi,- Yi/YqXqt (i= 1, . . , q- 1), 

y I=Fq+F + +FqI y- 

yq yq 

Pi P +B1 (10Y), 

w*= (AX+,- Y', ... , 
AX'-,- 

Y')'. 

Note that X* is driftless, and w* has mean zero.4 Thus the transformed model satisfies all 
the conditions imposed to (3.2), except the linear trend is replaced by Xqt. But Xq, has the 
same behaviour as a linear trend, as far as asymptotic behaviour is concerned. Since the 
transformation is rank preserving, the pseudo likelihood function based on (3.17) is ident- 
ical to that based on (3.18). This implies that the estimated break point is identical irrespec- 
tive of which equation is used. Thus we can apply the earlier result for the driftless model 
to the transformed model. The difference is that we must assume A1 shrinks faster than 
the driftless model, because X, behaves like a time trend t. Assume 

AI = T-'AovT, and AoY# 0. (3.19) 

Under this assumption, Corollary 7.3 still holds. It is not necessary to assume all coefficients 
decrease at the rate T-'VT. Let X, = (X(l), X(2 )', where X/(')(h x 1) is driftless, and X/(2) 
((q-h) x 1) has a drift for each of its components. Let y =(0, y,(2)' and 
A1 = (A(), A(2)), partitioned conformably. Assume for some fixed matrices A(') and A(2), 

A) = T' /2AA()VT, A(2) = T-A (2)VT, either A(') #0, or A(2)Y(2) #0, or both. (3.20) 

Then Corollary 7.3 still holds. These results are stated in the following theorem. 

Theorem 8. For a shift in the intercept only (equation (3.17a) with A1 = 0 and B1= 
0), Corollary 7.1 still holds. For a shift in the cointegrating coefficients only (equation (3.17a) 
with p I=O and Bi=0) together with (3.19) or (3.20), Corollary 7.3 still holds. 

It should be emphasized that Theorem 8 is stated in terms of the original model 
(3.17), rather than the transformed model. This is useful because the transformed model 
is of theoretical interest only, and is not directly estimable. 

In summary, if one is only interested in a shift in the intercept, or in the cointegrating 
coefficients or both, the break point estimator has the same distribution (more specifically, 
the scaling factor of k - ko has the same expression) regardless of the existence or absence 
of drifts. The confidence intervals for the true break point have the same form. The 
estimated regression parameters, however, will have limiting distributions different from 
those in the absence of drifts. 

4. MONTE CARLO ANALYSIS 

This section presents the results of a Monte Carlo study of break date statistics in two 
models. The first, which is motivated by our empirical applications and based on the 
theory developed in Section 2, is an I(0) model with a break in the intercept only. The 
second is a cointegrated specification with a break in the intercept and the cointegrating 
coefficient. This latter model is less relevant for the subsequent empirical work, but is of 

4. If w, does not contain lags or leads of AX,, then w* = w, and ju = u 
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methodological interest because it studies the finite sample performance of statistics pro- 
posed in Section 3. Because Monte Carlo evidence on the test statistics (2.8)-(2.9) has 
been documented elsewhere, attention is restricted here to coverage rates of the asymptotic 
confidence intervals for ko.5 

4.1. Breaks in intercepts, I(O) models 

For considering a change in the intercept, the data were generated according to the follow- 
ing Gaussian autoregression 

yt= (2In)dA([TDo])+ (fIn)Yt-i + Et, Et i.i.d N(0, X8) (4.1) 

where In is an n-vector of l's and E, is n x 1. Both univariate and trivariate models were 
studied. In the univariate case, X, = 1. In the trivariate case, Y. was set to have 1 on the 
diagonal and p off the diagonal. 

Monte Carlo coverage probabilities for central 80% and 90% asymptotic confidence 
intervals for ko, constructed using (2.20), are reported in Table 1 for univariate models 
and Table 2 for trivariate models,6 with T= 100 and T= 400. These tables also report 
summary statistics (the median and the range between the 5% and 95% points) for the 
Gaussian MLE of ko. 

The results for the Monte Carlo distributions of k suggest five conclusions. First, the 
precision of the MLE of ko depends strongly on the true value of A,. This is consistent 
with the theoretical rate discussed in Section 2, that is, k - ko = Op(()' 'A ). For 
example, for n = 1 and A= 0 75, the 90% range is 33 for T= 100; the median of the Monte 
Carlo draws is k =50 (the true value) and 90% of the estimates approximately fall in 
50 + 16. Second, there does not appear to be substantial median bias in the Monte Carlo 
results, either for 60=0 5 or in the one case in which 6o=0-25. Third, the result in 
Corollary 4.1 suggests that, for fixed parameters, increasing the sample will not affect the 
precision of the estimator, measured in terms of k; this prediction is confirmed by noting 
that the 90% ranges change little, or not at all, when the sample size is quadrupled. Fourth, 
the precision of k does not appear to be strongly affected by /3. Fifth, as discussed in 
Section 2, moving from a univariate to a trivariate system should reduce the range of k 
by one-third, at least if Y. is diagonal and )L,j/(Y )i are the same for each equation. This 
prediction is borne out; for example, for X= 075, ,B=0, and T= 100, the 90% range is 33 
for n = 1 and is 11 for n = 3 (p = 0 case). These observations, along with the theoretical 
results in Section 2, support a conclusion with important practical implications. For a 
fixed i, more precise estimates of ko cannot be obtained by acquiring longer data sets; 
one must instead use additional series that break at the same date. We explore these 
conclusions in the empirical examples of Sections 5 and 6. 

The results suggest that, in general, the asymptotic confidence intervals tend to have 
coverage rates less than their confidence coefficient; that is, the confidence intervals are 
too tight. This effect is more pronounced for small than large values of i, and for large 
than small values of ,B (for large values of /3, the least squares estimate of /B tends to be 
downward biased, resulting in the break point being inaccurately estimated). For example, 
the coverage rate of the 90% interval in the univariate system with )A = 1[5, /3 = 0, and p = 

5. An earlier version of this paper contained results assessing the size and power of the various test statistics 
for a change in the mean in univariate and trivariate models. Also see Andrews (1993) and Andrews, Lee, and 
Ploberger (1996). 

6. Our reporting of three decimal places does not reflect this level of accuracy for the exact distributions 
but rather estimates from the limited number of Monte Carlo simulations. 
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TABLE 1 

Monte Carlo results: finite sample coverage rates of asymptotic confidence intervals for the break date ko, 
univariate case (n = 1). 

T= 100 T= 400 

Conf. Intervals Estimator Conf. Intervals Estimator 
A So ,B p 80% 90% Med 90% range 80% 90% Med 90% range 

0 75 0 50 0 0 0 0 744 0 845 50 33 0-811 0 895 200 30 
0-75 0-50 0 0 1 0-728 0 829 50 33 0 806 0-891 200 30 
0 75 0 50 0 0 4 0-682 0-788 50 33 0 798 0-882 200 30 
0 75 0 50 0-0 BIC 0 739 0 839 50 33 0-811 0-895 200 30 

0 75 0 50 0 4 0 0 585 0 680 50 33 0 614 0-726 201 28 
0 75 0 50 0 4 1 0 706 0 791 50 33 0 790 0 876 201 28 
0 75 0 50 04 4 0 669 0 763 50 33 0777 0 866 201 28 
0 75 0 50 0 4 BIC 0 698 0 780 50 33 0 790 0 876 201 28 

0-75 0 50 0 8 0 0 254 0-314 53 30 0 267 0 357 203 27 
0 75 0 50 0-8 1 0-626 0-719 53 30 0 784 0-869 203 27 
0-75 0 50 0 8 4 0 588 0688 53 30 0 770 0 855 203 27 
0 75 0 50 0 8 BIC 0 623 0-717 53 30 0 783 0-869 203 27 

0 25 0.50 0 0 0 0-668 0-810 50 67 0-668 0-791 201 225 
0-50 0 50 0 0 0 0-698 0-806 50 57 0-764 0 858 200 75 
1.00 0 50 0 0 0 0 796 0 876 50 19 0-821 0-896 200 18 
1-50 0 50 0-0 0 0 872 0 927 50 7 0 880 0 939 200 6 
2 00 0 50 0 0 0 0-913 0 947 50 4 0-927 0-950 200 4 
0 75 0 25 0 0 0 0 775 0 873 25 41 0 801 0-890 100 30 

Notes: Coverage rates for asymptotic confidence intervals are respectively reported under the "80%" and "90%" 
columns, for the applicable sample size of either T= 100 or T= 400, where T denotes the number of observations 
in each regression. The median and 90% range (the range between the 5% and 95% points) of the distribution 
of the estimator of k, k, are reported under the "Med" and "90% range" columns. Point estimates k for the 
break date were computed by maximum likelihood estimation for k = k* + 1, . . ., T- k*, where k* = [T6* ], 6* = 
0-15. The confidence intervals are computed as described in the text. "p" denotes the autoregressive order; 
"BIC" means that the lag length was selected by minimizing the BIC over p = 0, 1, . . ., 6 (univariate models) 
or p = 0, 1, 2, 3 (trivariate models). 4000 replications were performed for each experiment. 

0 is 93% ; for ,=0 75, , ==0 8, and p= 1, the coverage rate is only 72%. The choice of 
lag length p has at most a moderate effect on the coverage rates, except in the case in 
which the regression is misspecified (that is, p = 0 when ,B #0), in which case the coverage 
rates are very low. In particular, the use of the BIC choice of p rather than the true lag 
length has little effect on the coverage rates. The performance of all the univariate intervals 
(except for the intervals constructed using a misspecified regression) improves substantially 
when T is quadrupled. The confidence intervals perform less well in the trivariate model 
than in the univariate model, particularly when ,B is large. Still, for all values of ,B consid- 
ered, the coverage rates of the 90% intervals for the trivariate models exceed 78% (except 
in the misspecified models) when the sample size is increased to 400. 

4.2. Breaks in I(1) models 

The data are generated according to (3.17), with w, omitted, p = 0, A = a vector of ones, 
cr=0 1 and X1 = Ir, where Ir is an r-dimensional identity matrix, and , and E. are 
independent Gaussian errors, with 4000 replications. We consider values of pIe (0, IO0, 
1 5, 2 0), A1e(0, 0 5, 1 0, 1 5), roe(0 25, 0 5, 0 75) and Ye(0, 0. 1, 0 2, 0 4). Monte Carlo 
coverage probabilities for central 80% and 90% asymptotic confidence intervals for ko, 
constructed using (3.16), are reported in Table 3 for univariate models (n = 1) and trivariate 
(n =3) models, with T= 100 and T= 400. We focus on the confidence intervals in (3.16) 
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TABLE 2 

Monte Carlo results. finite sample coverage rates of asymptotic confidence intervals for the break date ko, 
trivariate case (n =3) 

T= 100 T= 400 

Conf. Intervals Estimator Conf. Intervals Estimator 
A So ,B p p 80% 90% Med 90% range 80% 90% Med 90% range 

0 50 0 50 0 0 0 0 0 0-692 0-793 50 31 0 797 0-886 200 23 
0 50 0 50 0.0 0 0 1 0 658 0 757 50 31 0-788 0-881 200 23 
0 50 0 50 0 0 0 0 BIC 0 685 0 785 50 31 0 797 0 887 200 23 

0 50 0 50 04 00 0 0 555 0 637 50 30 0 625 0 722 200 25 
0 50 0 50 0 4 0 0 1 0 625 0-719 50 30 0-776 0 865 200 25 
0 50 0 50 0 4 0 0 BIC 0-613 0-707 50 30 0-776 0 865 200 25 

0 50 0 50 0-8 0 0 0 0-237 0-262 53 28 0-247 0-314 203 21 
0 50 0 50 0-8 0-0 1 0-446 0 525 53 28 0-722 0 821 203 21 
0 50 0 50 0 8 0 0 BIC 0 436 0 515 53 28 0 722 0 820 203 21 

0 50 0 50 0 4 0 5 0 0-421 0 527 51 52 0 563 0 673 200 51 
0 50 0 50 0 4 0 5 1 0-512 0-619 51 52 0-726 0 827 200 51 
0-50 0 50 0 4 0 5 BIC 0.501 0 609 51 52 0 725 0 825 200 51 

0 25 0.50 0.0 0 0 0 0 483 0 611 50 64 0-671 0 779 200 127 
0 50 0 50 0 0 0 0 0 0 705 0 791 50 30 0-802 0-891 200 23 
075 050 00 00 0 0815 0890 50 11 0856 0917 200 10 
1-00 0-50 0-0 0-0 0 0-883 0 930 50 6 0 898 0 944 200 6 
1.50 0-50 00 0 0 0 0 948 0 976 50 2 0 949 0-983 200 2 

Notes: 4000 replications were performed for each experiment. See the notes to Table 1. 

because they are the most general in that they allow for a change in any or all of the 
coefficients in the regression. 

The main conclusions from Tables 1 and 2 hold in Table 3. In addition, in this DGP, 
when the data generating process contains only a shift in the mean, the precision of the 
confidence interval deteriorates when the break occurs near the ends of the sample; this 
sensitivity is less apparent for the trivariate case (as seen by comparing lines 1, 4 and 5 
of Table 3). Also, when the break occurs in the regression coefficients, Al, the theoretical 
predictions of (3.11) suggest that the break date should be estimated more precisely the 
later the break occurs in sample. This is because the magnitude of the regressors is larger 
when ko is larger. This prediction is confirmed in the simulations; this is seen by comparing 
lines 12 and 13 or lines 18 and 19 of Table 3. 

The results suggest that, for breaks of small magnitude, the asymptotic confidence 
intervals tend to have coverage rates less than their confidence coefficient; that is, the 
confidence intervals are too tight. For example, the coverage rate of the 90% interval in 
the univariate system with p, = 1 5, Al = 0, and Y = 0 is 89%; for , I = 1 0, the coverage 
rate is only 78%. However the performance of all the univariate intervals improves substan- 
tially when T is quadrupled. 

In summary, these results indicate that the asymptotic theory provides a good basis 
for the construction of break date confidence intervals in these designs, when the break 
is of moderate size. 

5. EUROPEAN OUTPUT GROWTH 

Although a slowdown in the growth of output in European economies is widely acknow- 
ledged, formal dating of this slowdown has been hampered by the lack of appropriate 
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TABLE 3 

Monte Carlo results. finite sample coverage rates of asymptotic confidence intervals for the break date ko, 
univariate case (n = 1) and trivariate case (n = 3) with 1(1) Regressors. 

n=1 n=3 

Conf. Intervals Estimator Conf. Intervals Estimator 
I A] ro Y 80% 90% Med 90% range 80% 90% Med 90% range 

T=100 
1 5 00 0 50 000 0 831 0 887 50 9 0929 0939 50 2 
1 0 00 0 50 000 0 710 0 780 50 37 0770 0 804 50 8 
20 00 050 000 0901 0938 50 4 0-983 0985 50 1 
1 5 00 025 000 0803 0854 25 17 0909 0919 25 3 
1-5 0 0 0 75 0.00 0 810 0 860 75 17 0-912 0-921 75 3 
1 5 00 0 50 001 0-833 0 883 50 10 0 932 0 944 50 2 
1 5 00 050 0-02 0-819 0874 50 11 0-928 0-936 50 2 
1 5 00 0 50 004 0 830 0 879 50 11 0930 0-936 50 2 

00 1 0 0 50 000 0 824 0 854 50 20 0 847 0-867 50 9 
0 0 0 5 0 50 0 00 0 730 0 787 50 50 0-723 0 754 50 33 
0.0 1 5 0 50 000 0-877 0-898 50 10 0-890 0901 50 4 
0.0 1 0 0 25 0-00 0-813 0-850 25 32 0-813 0 842 25 13 
0.0 1 0 0 75 0 00 0 833 0 861 75 21 0 857 0-873 75 8 
00 10 050 0.01 0-841 0-868 50 19 0-862 0877 50 8 
0 0 1 0 0 50 0 02 0 862 0-885 50 17 0-872 0-885 50 7 
0 0 1 0 0 50 0 04 0 915 0 929 50 8 0 925 0 937 50 3 

1-0 1 0 050 0-00 0-838 0-863 50 18 0-865 0-883 50 8 
1-0 1 0 0 25 0 00 0 820 0 852 25 30 0-833 0-855 25 11 
1 0 1 0 0 75 0 00 0 842 0 868 75 18 0 866 0-878 75 8 
1 0 1 0 0 50 001 0 859 0 885 50 16 0-886 0-898 50 7 
10 10 050 002 0883 0903 50 12 0903 0-914 50 6 
1 0 1 0 0 50 004 0939 0951 50 4 0957 0-962 50 0 

T= 400 
1 5 0 0 0 5 0 00 0 867 0 932 200 7 0949 0-956 200 2 
1 5 0 0 0 5 0 04 0 863 0 922 200 8 0 952 0 955 200 2 
00 10 05 000 0906 0919 200 8 0916 0-929 200 3 
00 1 0 0 5 0-04 0-984 0-987 200 0 0990 0990 200 0 
1 0 10 0 5 000 0906 0923 200 8 0926 0935 200 4 
10 1 0 0 5 004 0987 0988 200 0 0.990 0991 200 0 

Notes: 4000 replications were performed for each experiment. See the notes to Table 1. 

statistical techniques. We therefore turn to the task of dating this slowdown. The starting 
point for this investigation is the observation by Banerjee, Lumsdaine and Stock (1992) 
that output in France, Germany, and Italy each appeared to be difference stationary, but 
that there appeared to be a break in the mean growth rate for each country during the 
sample. Their analysis was strictly univariate, and the results of the previous sections show 
that there can be substantial gains from using multivariate inference about the break dates. 
Specifically, we are now in a position to address three empirical questions. First, what are 
confidence intervals for the break date when the series are treated individually? Second, 
is there evidence that these breaks occurred at the same time? Third, if so, what are the 
interval estimates of the break date, when the date is modelled as common across these 
three countries? 

We use Banerjee, Lumsdaine and Stock's (1992) data for comparability to their study. 
The three European series are the logarithms of quarterly GDP for France and Italy and 
GNP for Germany. We also examine the logarithm of quarterly GDP for the U.S. Because 
the data are available over different periods, the system results examine the joint behaviour 
of output over only a short common period, 1962: 1 to 1982: 4. The data and data sources 
are described in more detail in Banerjee, Lumsdaine, and Stock (1992). 
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Banerjee, Lumsdaine, and Stock (1992) tested the null hypothesis that each of these 
series had a unit root, against the alternative that the series was stationary around a linear 
time trend, possibly with a break in the time trend at an unknown date. The univariate 
analysis of these European output data provided no evidence against the unit root null 
hypothesis; based on these earlier findings, we proceed under the assumption that each 
series is I(1), possibly with a change in drift, so that each differenced series is modelled 
as having the univariate stationary autoregressive representation (2.1), where y, is the 
growth rate of output, X, is omitted (there are no exogenous variables), and f3=0, jO = 
1, . . . , p; the break term corresponds to a shift in the mean growth rate of output. The 
series are modelled as jointly having the stationary autoregressive representation (2.1), 
where yt is interpreted as the vector of growth rates of output of the various countries 
and Xt is omitted. 

TABLE 4 

Empirical results: European output 

Country Sample Sup- W-1 5% Exp- W-1 5% k 90% Conf. Int. 

A. Univariate 

France 64:4-89:2 23-68 9 15 74:2 (72:4,75:4) 
(0.00) (0?00) 

Germany 51:4-89:2 2168 828 61:2 (59:1,63:3) 
(0 00) (0?00) 

Italy 53:4-82:4 10-30 2 83 74:3 (70:2,78:4) 
(0 03) (0.03) 

U.S. 48:4-89:2 1 42 0-25 68:4 (<47:1,>89:2) 
(0-91) (0.71) 

B. Bivariate and Trivariate VAR Systems 

F,G 64:2-89:2 26-00 10 14 75:1 (73:3,76:3) 
(0 00) (0?00) 

F, I 64:2-82:4 17-97 6-24 73:4 (72:1,75:3) 
(0 00) (0.00) 

G,I 53:2-82:4 1498 5 32 74:1 (71:1,77:1) 
(0.02) (0-01) 

F, G, I 64:1-82:4 19 43 6 98 73:4 (72:2,75:2) 
(0-01) (0-00) 

Notes: p-values, computed using the asymptotic distributions of the relevant test statistic, are 
given in parentheses; 0 00 denotes a p-value less than 0 005. The sample period denotes the 
period over which the regressions were run; earlier observations were used for initial conditions. 
All lag lengths were selected using the BIC, with a minimum of one lag and a maximum of 6, 
4, and 3 lags, respectively for the 1-, 2-, and 3-variable systems. In each model the BIC criterion 
picked p= 1. 

Change-point statistics for European and U.S. output are presented in Table 4. For 
France and Germany, treated as univariate series, both of the test statistics rejects at the 
1% level; for Italy, both reject at the 5% level. The point estimates of the break date are 
in 1974 for France and Italy, although for Italy the estimate is imprecise. For Germany, 
the 90% confidence interval for the break is (59:1, 63:3). In contrast, for U.S. output the 
hypothesis of a constant mean growth rate cannot be rejected at the 10% level using any 
of the tests. The 90% confidence interval for the U.S. is so wide that it contains the entire 
sample period. Because of the insignificance of the break statistics for the U.S., we postpone 
further analysis of the U.S. data until the next section. 

The univariate evidence is consistent with France and Italy having a contemporaneous 
break and with there being no identifiable break in the U.S. It is less clear whether Germany 
has a break at the same time as France and Italy; although the confidence intervals for 
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the break date do not overlap, the F-stastic for Germany is large throughout the mid- 
1970s. Indeed, this F-statistic takes on a local maximum of 17 52 in 1970: 2, which exceeds 
the 5% critical value for the sup W statistic. Although the results are therefore somewhat 
ambiguous, we interpret this as broadly supporting an exploration of multivariate models 
including these three countries with a common break date. 

Results of the multivariate analysis are reported in panel B of Table 4. Consider first 
the France-Italy system, for which the univariate evidence is most consistent with a single 
common break date. The test statistics reject the hypothesis of no break in the mean 
growth rate against the alternative of a break in the mean at a common break date; the 
90% confidence interval of 1972: 1 to 1975: 3 is similar to that for France alone and tighter 
than the interval for Italy. The other bivariate systems also reject the null of no break against 
the common-date alternative, providing support for proceeding to construct interval esti- 
mates for a common break date including Germany in the system. The tests reject the null 
of no break against the common-date alternative in the trivariate system and, consistent with 
econometric theory and Monte Carlo results, inference is most precise in this case: the break 
is estimated at 1973:4 with a 90% confidence interval of 1972:2 to 1975:2. 

This multivariate analysis points to a slowdown in European output which occurred 
approximately simultaneously in France and Italy and, arguably, in Germany as well. 
When data on output growth in all three countries are used at once, the break date is 
sharply estimated to be in the early 1970s. Of course, this dating coincides with conven- 
tional wisdom; the contribution here is that this date can now be associated with the 
formal measure of uncertainty provided by a tight 90% confidence interval spanning 
slightly more than three years. 

6. U.S. OUTPUT, CONSUMPTION, AND INVESTMENT 

Because the univariate results for U.S. output do not provide sharp evidence either in 
favour of or opposing the one-break model, in this section we extend the investigation to 
include multiple time series, in particular, consumption, income and investment. One 
rationale for using this trivariate system is that a range of models of long-run stochastic 
growth suggest that a permanent shift in the average growth rate of productivity will result 
in permanent shifts in the mean growth rates in each of the series. This arises from the 
three series sharing a common stochastic trend (productivity) and thus being cointegrated. 
Even though the shift in the mean growth rate might be statistically insignificant using 
just output, the break might be more readily detected and estimated if consumption and 
investment are used as well. 

6.1. Theoretical preliminaries 

Theoretical arguments for the cointegration of these series are made in King, Plosser, and 
Rebelo (1988). In brief, in their model, a representative firm produces according to a 
Cobb-Douglas production function with constant returns to scale and total factor produc- 
tivity follows a random walk with drift. Then the logarithm of output, consumption, and 
investment each inherits the stochastic trend in productivity; each series is I(1), and the 
logarithm of the consumption/output and investment/output ratios are stationary. As 
discussed in King, Plosser, Stock, and Watson (1991), this system has the common trends 
representation 

Yt= + Drt +ut, (6.1) 
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where Y, is the vector of the logarithms of output, investment, and consumption, and q 
and D are 3 x 1 vectors, r, is the common stochastic trend, and u, is an additional I(0) 
disturbance. The common trend r, is a scalar, which in the King-Plosser-Rebelo (1988) 
model is the logarithm of total factor productivity. The vector D is defined (up to scale) 
by a'D =0, where a is the matrix of cointegrating vectors (a= (a1, a2)); in the King- 
Plosser-Rebelo (1988) model, al = (1, -1, 0), a2 = (1, 0, -1), and D = (1, 1, 1)'. In general, 
for Y, an n-vector with r cointegrating vectors, D is n x (n - r) and is defined by a'D = 0 
up to postmultiplication by a nonsingular (n - r) x (n - r) matrix. The I(0) disturbance u, 
represents measurement error and/or additional unmodelled short-run dynamics of the 
system.7 

We extend the King-Plosser-Rebelo (1988) model to incorporate the possibility of a 
one-time shift in the average growth rate of productivity from a for t < ko to f + A for 
t > ko. Specifically, r, is assumed to evolve according to 

d+ dt (ko) +,rt- I + i7t1 (6.2) 

where mt is a martingale difference sequence. This results in a change in the growth rates 
in each of the series at date ko. 

To apply the tools developed in Section 2, (6.1) and (6.2) must be re-expressed in 
the form (2.1). The univariate representation for the i-th series is obtained by combining 
(6.1) and (6.2) in first differences, which yields A Yt = Di + DiA4dt (ko) + vit, where vit= 

Di7t + Augt. We further suppose that the I(0) disturbance vit follows an autoregressive 
representation, vit = (1 - ai (L)L) -jt, where Sit is serially uncorrelated. Then A Yit has the 
univariate representation 

AYit=pi+ idt (ko ) +aj(L)AYjt- + d,* (ko)DjA+ jt,' (6.3) 

where uj=(1-a1(l))Djfi, Xj=(1-aj(l))Dji, and di* (k)=a*(L)Adj(k), where aiY = 

- aim. It is assumed that Zy2=1 , m aim I < 0 for each i. Under this assumption, the 
term d*t (ko )Di2 has asymptotically negligible effects on the regression estimates; we omit 
it and thus have 

AYit=pi + idt(ko) + a (L)A Yjt 1 + jt . (6.3') 

In the empirical application, ai(L) is assumed to have finite order (p). 
Just as there are multiple representations of cointegrated systems (cf. Engle and 

Granger (1987)), there are various ways to rewrite (6.1) and (6.2) in the form (2.1). One 
such representation is the vector error correction model (VECM). Following a standard 
derivation of the VECM model (cf Watson (1994)), modified for the break model (6.2), 
we obtain 

AYt=p +4dt(ko)+A(L)AYt_1 + ya'Yt_1 + Et, (6.4) 

which is of the form (2.1) with X, = a' Yt_. (To obtain (6.4) we have dropped the transient 
term which is the multivariate counterpart of the univariate term dropped to obtain (6.3') 
from (6.3).) Thus (6.4) is a VECM modified to admit the possibility of a break in the 

7. The King-Plosser-Rebelo model is not the only model that produces a representation such as (2.3) for 
the major aggregates. For example, Sargent (1989) derives (2.3) as the reduced form of a linear-quadratic 
optimization model with an investment accelerator. In Sargent's (1989) model, Y, is income, consumption, and 
investment, u, is modelled explicitly as measurement error, and r, is a smooth average of past productivity 
innovations. In Sargent's model r, is stationary with an autoregressive root close to but less than one. In general 
u, and Ar, can be correlated. In Sargent's model, this correlation arises from the data construction operations 
of the economic statistics agencies. 
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growth rate of the common stochastic trends. Note that, in this representation, the break 
enters only through a shift in the intercept term. 

An alternative representation is obtained by noting that because a'D=O, (6.1) and 
(6.2) can be rewritten in terms of a' Y, and AD' Y,: 

a'Yt= a'++ vt (6.5a) 

AD' Yt = D'D,d + D'DAdt (ko) + vt, (6.5b) 

where vz = a'ut and v2 = D'Diit + AD'ut. The form used here adopts a triangular decomposi- 
tion of vt as in Phillips (1991) and Stock and Watson (1993). Let V2 = P(V2 IV, 
VI41,.. .) + z32, where P( I ) denotes the linear projection, so that V2 is uncorrelated with 
all leads and lags of v . In general, v2 has a Wold representation, which is written here in 
the autoregressive form z2 = {I-F(L)L}'-cwt. In addition, the linear projection can be 
written, P(v lv,v?1,.. .) = B(L)v' = B_(L)(a'Yt-a'Yt ), where B(L) is in general two- 
sided. Upon substituting these expressions into (6.5b) and letting Yt =D'Yt, one obtains 
the modified triangular representation 

Ayt=p +4dt(ko)+Dt(ko)X+F(L)AYt-l+B(L)(a'Yt,l)+ot,, (6.6) 

where p = {I-F(1)}(D'D,d-B(1)a'4), B(L) = {I-F(L)L}B(L), X = {I-F(1)}D'Di, and 
Dt(k) = F*(L)D'DAdt (k), where Fj* = -Zi1 j Fi. As in the univariate and VECM represen- 
tations, the transient Dt(ko) is omitted. Thus, the modified triangular form considered is 
the system composed of (6.5a) and 

AYt =p + Adt (ko ) + F(L)A Yt_ I + B(L)(a'Yt - I ) + c . (6.7) 

In the King-Plosser-Rebelo (1988) model, D = (1, 1, 1)' so Yt is the sum of the 
logarithms of output, consumption, and investment. The system (6.5a) and (6.7) will be 
referred to as the modified triangular representation. 

In the modified triangular form, the break appears in only the second block of equa- 
tions, (6.7). By construction, ct is serially uncorrelated, is uncorrelated with v' at all leads 
and lags, and is uncorrelated with the regressors. The Gaussian MLE for A and ko is 
obtained, asymptotically, simply by estimating (6.7) by ordinary least squares. Because 
(6.7) is of the form (2.1) with Xt-1 being a'Yt_- and its lags, the tools of Section 2 can 
be applied to (6.7). A practical advantage of this representation over the VECM is that 
the number of equations in (6.7) is the dimension of rt (in our case, one), less than the 
number of equations in the VECM representation (6.4).8 

The discussion so far has assumed that the matrix of cointegrating vectors a is known. 
If the cointegrating vectors are unknown, a can be replaced by any T-consistent estimator 
a and the asymptotic results of Theorem 1 will be unchanged. The argument here is 
standard and relies on the fast rate of convergence of estimators of the cointegrating vector 
(e.g. Stock (1987)). Similarly, because a is consistent for a, the estimator D formed by 

D= 0 will be consistent and Yt = AD'Yt in (6.7) can be replaced by Y-= AD' Yt and the 
same asymptotic results obtain. 

6.2. Empirical results 

The data used here are total real per capita GDP, total real per capita personal consumption 
expenditures, and total real per capita gross private domestic fixed investment for the 

8. The representation (6.7) could alternatively have been derived starting with any linear combinations of 
Y, that are integrated and not cointegrated, rather than Yt. Because leads and lags of a'Y, are included as 
regressors in (6.7), however, any such representation can be rearranged to yield the representation (6.7). 
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United States, quarterly, 1959:1-1995: IV. All real series are chain-weighted quantity inde- 
xes. The quantity indexes are put on a per capita basis by dividing by the total civilian 
noninstitutional population aged sixteen and over. Historical revisions of the quantity 
indexes before 1959 are not available at the date of this writing, so the full sample is 
1959:1-1995: IV. Logarithms of all series are used throughout. Regressions are all run 
over shorter periods to allow for initial conditions. 

The empirical analysis proceeds in two steps. First, we investigate the unit root and 
cointegration properties of the series, taking into account the possibility that there might 
be shifts in mean growth rates and further investigating whether the cointegrating 
coefficients (if any) were stable over this period. We conclude that the evidence is consistent 
with these series being individually integrated and jointly cointegrated, and that the cointe- 
grating coefficients appear to have been constant. Second, we turn to an investigation of 
whether there were breaks in the mean growth rates and, if so, when they occurred. This 
is done both for the individual series and as a system, both using estimated cointegrating 
coefficients and using the unit coefficients suggested by the King-Plosser-Rebelo (1988) 
model. The analysis of this section is based on the I(0) framework of Section 2 rather 
than Section 3 because no shift in the cointegrating relationship is allowed. 

Unit root and cointegration analysis. 

The preliminary unit root and cointegration analysis here mainly uses standard techniques, 
so we provide only a brief summary of the results. Because we are investigating the 
possibility of a change in the mean growth rate in the series, as Perron (1989) pointed 
out, standard unit root tests such as the Dickey-Fuller (1979) test are inappropriate and 
can lead to spurious acceptance. Therefore univariate unit root tests were performed using 
the Banerjee-Lumsdaine-Stock (1992)/Zivot-Andrews (1992) minimal sequential ADF 
test, maintaining the hypothesis of a possible break in the mean growth rate. Using either 
a lag length chosen by the BIC or a fixed lag length of 4, for GDP and consumption, the 
tests failed to reject the unit root null at the 10% level; for investment they rejected at the 
10% but not 5% level.9 

Conventional multivariate and system-based tests for cointegration have well docu- 
mented and pervasive problems with low power and large size distortions (Haug (1996)), 
making them unreliable. On the other hand, the standard univariate augmented Dickey- 
Fuller (1979) t-test with lags chosen by BIC has good size properties; cf. Stock (1994). 
Because suitable candidate cointegrating vectors are available in our application, this 
provides a desirable alternative to conventional system-based tests for cointegration (as 
do the tests developed by Horvath and Watson (1995), although those are not pursued 
here). We therefore tested for cointegration by using the Dickey-Fuller (1979) t-statistic 
(including a constant and time trend) to test the null of a unit root for c - y, i - y, and 
c - i, which are the cointegrating relations implied by the King-Plosser-Rebelo theory. 
Using either lags selected by BIC or a fixed lag length of four, the unit root null is rejected 
at the 10% level for each of the three error correction terms, with the exception of i-y 
with BIC lags. Using the demeaned Dickey-Fuller (1979) t-test, the unit root null is 
rejected at the 10% level using either lag choice for i - y and c - i, but not for c - y. 
Although these tests do not incorporate modifications for possibly broken time trends in 

9. This test statistic is the t-ratio testing the hypothesis of a unit root when the deterministic terms include 
a constant, a time trend t, and (t-k)1(t-k), minimized over all k with 15% trimming at the beginning and end 
of the sample. For lags selected by the BIC, the test statistics were -3 62 (GDP), -3 91 (consumption), and 
-4 38 (investment); the 10% (5%) critical value is -4 20 (-4 48). 
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the series, Perron's (1989) problem of spurious acceptance would work against finding 
cointegration using these tests. Because, for these data, the tests typically reject in favour 
of cointegration, this concern is not relevant. 

The cointegrating coefficients were estimated by the Stock-Watson (1993) Dynamic 
OLS (DOLS) estimator, both in single equation and system forms.'0 The results used here 
are for the system normalized so that the coefficients are of the form c - Oly and i - 02y. 
For the DOLS estimator with 2 leads and lags with an autoregressive estimator of the 
syectral density (with 4 lags), we obtain the estimated coefficients and standard errors, 
01 = 1 187 (0 032) and 02 =1 242 (0 164). Although the hypothesis that 02= 1 cannot be 
rejected at the 10% level, it is easily rejected that 01 = 1. This gives rise to some ambiguity 
in these results; the DOLS procedure rejects 01 = 1, but the series y - c appears integrated 
of order zero using the Dickey-Fuller t-test. This ambiguity might be explained by the 
results of Horvath and Watson (1995), which suggest that tests for non-cointegration with 
a prespecified cointegrating vector can have good power even when the cointegrating 
vector is slightly misspecified. 

Finally, the Gregory-Hansen (1996) statistic was used to test the null of a cointegrat- 
ing relation with constant coefficients against the alternative that either the intercept or 
the slope coefficient changed; for both the (y, c) and (y, i) systems, these tests fail to 
reject the null at the 10% level, using either four lags or lags selected by BIC. We conclude 
that these three variables can be modelled as cointegrated with two stable cointegrating 
vectors. 

Evidence of breaks in mean growth rates. 

Break test statistics are summarized in Table 5. All lag lengths were determined using the 
BIC, searching between 1 and 6 lags for the univariate models, 1 and 4 lags for the 
bivariate models, and 1 and 3 lags for the trivariate models. 

When considered individually, the hypothesis of a constant mean growth rate cannot 
be rejected at the 5% level for any of the three series. Accordingly, the associated estimates 
of the break date are very imprecise, with confidence intervals spanning at least twelve 
years. 

Results for multivariate systems, with cointegrating coefficients estimated using the 
DOLS estimator, appear in panel B of Table 5. Both the mean shift tests reject at the 10% 
level for the (c, i) system and the Sup- W test rejects at the 10% level for the (y, i) system. 
Both tests reject at the 10% level in the trivariate VECM, and at the 5% level using the 
(y, c, i) triangular form. Although the estimated intervals are imprecise in the bivariate 
systems, the trivariate estimators yield shorter confidence intervals, consistent with the 
theoretical predictions. Moreover, the point estimates of the break dates are the same, 
and the confidence intervals are comparable, using either the triangular form or the VECM. 
The confidence intervals suggest that the break date occurred in the late 1960's or early 
1970's. Consistent with the results of the Gregory-Hansen tests, no mean shift is apparent 
in the estimated error correction terms, a finding that fiurther supports the interpretation 
of the breaks being in the mean growth rates of the series rather than in the intercepts or 
slopes of the cointegrating equations. 

As a check on these results, break statistics were also computed when unit cointegrat- 
ing coefficients were imposed; the results for the trivariate models are summarized in panel 
C of Table 5. The break dates estimated in the trivariate systems are the same as when 

10. Although this estimator is efficient only if there is no intercept shift, it is consistent whether or not 
there is an intercept shift. 
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TABLE5 

Empirical results. U.S. output, consumption and investment 

Series p Sup- W-15% Exp- W-15% k 90% Conf. Int. 

A. Univariate 

y 1 5-51 0 97 66:3 (60:2,72:4) 
(0 19) (0 20) 

c 1 6-79 1-61 69:1 (62:3,75:3) 
(0-11) (0-09) 

i 1 2-43 0-27 66:3 (<59:1,80:4) 
(0-67) (0-68) 

B. Multivariate, with estimated cointegrating coefficients 
c-1 187y 1 3 25 0-38 69:3 (<59:1,84:2) 

(0-49) (0 55) 

i-1.242y 3 3-14 0 47 88:1 (75:4,>95:4) 
(0-52) (0 46) 

c-0 881i 3 6-07 1-46 88:1 (82:3,93:3) 
(0.16) (0 11) 

y,c,VECM 1 9-48 2-49 69:3 (64:4,74:2) 
(0-12) (0-12) 

y,i,VECM 1 10-69 2 56 67:3 (64:1,71:1) 
(0 08) (0 11) 

c,i,VECM 2 11 10 3-24 89:2 (86:4,91:4) 
(0 07) (0-06) 

y, c, i, VECM 1 14-12 3 97 69:1 (66:2,71:4) 
(0 05) (0-07) 

y, c, i, Triangular form 1 10-22 2-47 69:1 (65:1,73:1) 
(0-03) (0-04) 

C. Multivariate, with unit cointegrating coefficients imposed 

y,c,i,VECM 3 22-61 7 79 69:1 (68:3,69:3) 
(0-01) (0-01) 

y, c, i, Triangular form 1 14-48 3-61 69:1 (68:1,70:4) 
(0-01) (0-01) 

Notes: y, c, and i refer to the logarithms of real per capita GDP, personal consumption expenditures and gross 
domestic private fixed investment. Lag lengths p for the regression, chosen by BIC, are given in the "p" column. 
In the triangular form, the BIC chose p = 1 with one lead, one lag, and a contemporaneous term of the co- 
integrated series a'Y,-I, for both the estimated and the imposed unit cointegrating vectors. See the notes to 
Table 4. 

the cointegrating coefficients were themselves estimated, but the confidence intervals are 
notably tighter. A caveat on interpreting the results in panel C as strong evidence of a 
precisely estimated break in the late 1960s is that the consumption/income ratio drifted 
up during 1959-1995 from 63% to 67%. This increase is reflected in a cointegrating 
coefficient in the consumption/income relation that is statistically significantly greater than 
one, a value inconsistent with economic theory in the long run. This upward drift in the 
consumption/income ratio might result in the break becoming spuriously more significant 
in the system VECM. This upward drift is not evident, however, in the cointegrating 
residual c - 1- 187y. We therefore interpret the results in panel C as consistent with the 
results in panel B, although in our judgment the wider confidence intervals in panel B are 
more reliable. 

Taken together these results provide evidence of a break in the mean growth rates of 
U.S. income, consumption and investment. From 1959:1 to 1969:1, U.S. income per capita 
grew at 3.0% annually; from 1969:11-1995: IV, it grew at 1.1% annually. When the series 
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are considered individually, this break is not statistically significant once one allows for 
an estimated break date, but it is when the series are treated as a cointegrated system. 
The system estimators date this break with some precision as occurring in the late 1960s 
or the early 1970s. In contrast to the results for European output, all the 90% confidence 
intervals for the trivariate systems fall before the oil shocks of the mid-1970s. 

7. CONCLUSIONS 

In both the European and U.S. cases, the use of multiple series sharpened the inference 
about the existence and dates of shifts in the mean levels. In the European data, there is 
strong evidence of a slowdown in the average growth rates of real output in the early 
1970s, with a confidence interval that includes the first OPEC oil shock. This slowdown 
appears to have occurred approximately simultaneously in France, Germany, and Italy. 
The interpretation of the results for the U.S. is, however, less clear. While most of the test 
statistics reject the no-break hypothesis in the four trivariate specifications considered, 
the estimated confidence interval is centred around 1969." This evidence argues against 
conventional associations of the slowdown in growth in the U.S. with the oil shock. 

APPENDIX 

Proof of Theorem 2. 

To prove Theorem 2, we first establish a series of properties for sequential pseudo-likelihood ratios and sequential 
estimators to be defined below in the absence of structural change. We then show that Theorem 2 can be derived 
as a consequence of these properties. To begin with, let 

y, = ( V?I)Oo + X,, 

where V,=(1',y, 1, ... . yi,_p X,_ I ), 00 = Vec (p, A I, . . ., AP, r ), and the E, are martingale differences with 
variance -0. This model is the same as (2.2) but without a break. 

Let (00, -0) denote the true parameter. Consider the pseudo-Gaussian likelihood ratio based on the first 
k observations 

2?(1, ~~~ 1 
=lt(,lY-Is** O+Tl20, 

112 
+ -l HM, f (y,lyt, f , - * T; o So) 

lihood ratio. Denote by 0(k) and (k) the values of 0 and = that ?(1, k; 0, ) achieves its maximum. Then we 
have: 

Property 1. For each Se(O, 1], 

SUp (I11I0(k)I11I+ IIZ(k)I11I) ==Or (1), 

sup '(1, k; 0(k),Z(k))=eOP(1)k 
TS _?k _ T 

This property says that the sequential likelihood ratios and the sequential estimators are bounded in probability 
if a positive fraction of observations are used. This result is a direct consequence of the functional central limit 
theorem for martingale differences. We thus omit the proof. The next property is concerned with the supremum 
of the likelihood ratios over all k and over the whole parameter space. 

11. Also, there is some evidence that the source of the detected break is not a decline in the mean growth 
rate but instead highly persistent shifts in the share of output allocated to consumption and, possibly, investment. 
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Property 2. For each E > 0, there exists a B > 0 such that for large T 

Pr ( sup T B (1, k; 0(k) Y-(k)) > I < E 
I <k<T 

This property says that the log-valued pseudo-sequential likelihood ratio has its maximum value bounded by 
Op(log T). 

Proof. The likelihood ratio evaluated at 0(k) and (k) can be rewritten as 

log Y(1, k; 0(k, (k)) -k/2(log I1 *) I -log IlYoI)+ (Z, l k, 0 ,-kn) (A.2) 

where 

k) =k =X''(k E , VI )k I ,V I (k =l'') 

Thus by adding and subtracting an identity matrix, we obtain 

--(log I Yk)lo-lg I Eo I) - log |I+ = -I) - ( V k =1 V, Ik V, -, ) 
2 2 kkkk 

where I, =- I/2E, with Ei1, =0 and Var (t,) = L The above is equal to, upon Taylor expansion 

- tr ('> (i- I)) + tr (Dk) (A.3) 

+ 4 itr {(kE,k= (7"'l - I) - (Dk) 
+ 

OX(), (A.4) 

where 

(Dk = (k- 1= E X ,V,') (( 1/k) Ek=1 jV'1)-X(k-1/ 'I I 

and Op(l) is uniform in k. The first term of (A.3) is cancelled out with the last term of (A.2). Thus 

log ?(1, k; 0(k), (k)) = tr (Dk) + 4 tr {(ki Z (11 1 ))2} 

r{(k Dk)) k}+4 tr (k D,)+op(1). 

To prove Property 2, it suffices to show the above is Op (log T) uniformly in k. By the strong law of large 
numbers, 1/k k=> VV,' converges to a positive definite matrix as k-+oo; this implies supklk, 

II(I/k Zk I V,V,)-l =Op (1), for some fixed k, > O. Because maxl <k<k, ?(l, k; 0(k),i(k))=O,p(l), without loss 

of generality, we may assume k > kl. By the law of iterated logarithms for martingale differences, 

Ilk-'1/2 
k Ii= O ((log T)1/2) and Ilk-1/2ykI (,I i'-I)I=Op((log T)1/2) uniformly in ke[l, T]. Thus 

II (k 11 = Op(log T) uniformly in ke [kl, T]. In addition, from k-I E'k I ilVI= Op(1) uniformly in k, we have 

k-'4 2 = Op (log (T)) uniformly in [k1, T]. This proves Property 2. 11 

The next property states that the value of the pseudo-likelihood ratio, when the parameters are evaluated 
away from zero, is arbitrarily small for large T, assuming a positive fraction of observations are used. We assume 
that - + Tm /2y is positive definite so that the likelihood ratio is well defined. 

Property 3. Let ST= {(O, 1); 11011 >log T or IIYll >?log T}. For any SE (0, 1), D>0, 8>0, the following 
holds when T is large 

Pr suP sup T Dy(l,k;O,2)>l )<E. ( k_TS (0X,)G ST 

Proof. The sequential log-likelihood ratio can be written as 

log ?(l, k; 0, )= YI,T+ Y2,T, 
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where 

YI,T=~-log II+TPTI- 
[ 

=, I;(I+ PTrT'm-Z 
1 

' (A.5) 

and 

f2,T= T' 2O'(I? (I+1TT)') = 1 (V,?7,) -2T (k ' ' V,V, (I+'P)-) 0, (A.6) 

with =1 -1I/2 E and TT= T- 12 (s 12 -12) Let ST=SI uS2 with 

SI = {(O, 1); 11E11 >log T, 0 arbitrary}, 

and 

S2= {(O, Y); 11 011 > log T and II E11 < log T}. 

Then on SI, Y2,T iS maximized with respect to 0 at (Y'2,T is quadratic in 0) 

6(k)=1 1/kjT(&k 
1 

sI) Ek = (V0t@5,), 

where Hk= Il/k Zk= I V,V,. Thus 

SUp ?f2,T=(k/2) Sk(Io (I+'TT)');k, 
0 

where 

;k= T- 2(Hk/2?I )O(k) (Hj1/ ?I )(l/k) = (Vo I',). (A.7) 

Consequently, concentrating 0 out, we obtain 

log Y ( l, k ; 0, 1) 2 (yII Y r k( = 5'{1+ r) I UtIkKs( + 9 ) k ] 

We next show that the term inside the bracket is positive on SI when T is large and the term is of the order of 
magnitude (log T)2/T. Because (I+ TT)Y' is a symmetric matrix, there exists an orthogonal matrix U such that 
U(I+TT) IU'=diag (1/(I + i), i= 1, . . ., n) where Ai are the eigenvalues of PT. Since tr (A)=tr (UAU') for 
any orthogonal matrix U, we have 

-k 'j= I '( Tr) I l,}q = tr (diag I + Ai-l}- k ''') A8 

for some U which diagonalizes (I+ TT)-I- We shall derive a lower bound for (A.8). Notice 

1 k |= k|-kU 
(i -I)U' ? 

-1 
k ~~~~~kk 

because 11 UIl = 1. Furthermore, let bT= T- 1/2 log T, then for any a >0, 

Pr 2 

I 
IIZk, (ii, ii- I) 11 > ab < Pr sup 6S'T' 1/2 II yk I 

(tj,ij-I) II > a log T < E (A.9) Pr ( 
T1k >b)P(kS >a 

for large T. This is because T- 1/2IIt1 (y1k -I) 11 is uniformly (in k) bounded in probability by the functional 
central limit theorem. Thus the diagonal elements of U(I/k) ,k t,14U' are bounded above by 1 + abT and 
below by 1 - abT with probability at least 1 - E. Also note the sign of 1/(1 +Ai) - 1 is opposite to the sign of 
Ai. Thus we have, from (A.8) 

kt ,=, 5,1 _Ir 1},, >En1( I- )(I1+ sign (Xj )abT),(A10 

with probability at least I - E. Similar to (A.9), we have for any y > 0, 

Pr k su T k II > ybT E, (A.11) 
k 2 T8 
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when T is large. This is because Sk involves sums of martingale differences and H&-/2= Op (l) for all large k, 
see (A.7). Now ((I+ TT)' ?(I) has q repeated eigenvalues of 1/(1 + i) (i= 1,2,...,n) with q=dim (Hk) (same 
as the dimension of the second identity matrix). We have from (A.1 1) 

Sk(I ( (I + -l1+ A Y bT 

with probability not less than I - E when T is large. Therefore 

log ??'(I, k; [, l 
- (o (1 (1 1)(I+sign (Aj)abT)- lqr bT (A.12) 

with probability not less than 1 -2E. On SI, 11Y11 ?log T. This implies IIPTTII 1cT-1/2 log T= cbT for some c>0 
(taking c= - I /211-2 is enough). This further implies that there exists an i such that Ai I > CbT for some C> 0, 
because there exist cl > 0 and c2 >0 such that for any symmetric matrix B 

cl JIBIJ <max IAj(B)I _ C2 JIBIJ, (A. 13) 

where Ai(B) are eigenvalues of matrix B. Without loss of generality, assume IA, I > CbT. Define 

f(x)=log (1 +x)+ (1 1)(1 +sign (x)abT)- l q1 T- 

The function f(x) has two local minima and f(x)-++oo when either x-++oo or x-+-1 (we need 
1 + sign (x)abT-qY2b2 >0. This is true for large T since bT-+O. This is also true for bT= 0(1), as in Property 
5 below, by choosing small a and y). Furthermore 

inf f (x) = - i'a2b 2- qy2b2 + o(b2 ) = (a2 + y2 ) 0(b) (A. 14) 
- I <x< 00 

and f(x) satisfies 

f(x) ?i C2bT-- CabT-- qy2bT-+ o(bT-), when Ixli > CbT. 

Thus the right-hand side of (A. 12) is not larger than 

k yn k[I22 2 Y +Y kpinf f (Al )+inf 'n= f(Ai" I<--[2 b2T- Cab2T-q 2bT+ (n- 1)(a 0r)(bT) (A .5 
2 JI I I CbT 2, 

If we take a and y sufficiently small, then (A. 15) is less than 

-kb 2C2/8 < -(log T)26C2/8, for all k > T6, 

which is further less than -D log T for any given D> 0 for large T. Thus we have shown that for large T 

Pr (sup sup log ?(1, k; 0, Y) > -D log T)< 2E. (A. 16) 
k2,T8 (0, F) cSI 

That is, Property 3 holds on SI. We next obtain the corresponding result on S2. 
We will first derive upper bounds for ??l,T and yl2,T separately on S2 and then combine the bounds to 

derive another upper bound with respect to k. Using previous arguments, we can show that for any a > 0, with 
probability at least 1 - 8, the following holds 

k (nIlg( i 1 
Y71,T=< 2 -I(o 1 i) I+ 1(I+ +sign (Ai)abT)) 

_n k a2 2 (I + o(l )) 

?na28 b2T for all (0, Y ) eS2. (A. 17) 
8T 

The first inequality makes use of (A. 10) and the second makes use of (A. 14). Next consider y'2,T. By Property 
1, for any E>0, 

Pr sup 110(k) 11 > logT < , 
k2 T/ 
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when T is large. Thus we can assume 11011 =log Ton S2. Also on S2, IIjTIIT Clog T/fT-+O for some C>0; 
this implies (I+T1T)> RI or (I+T1T)- <2I for large T. This further implies that II(I+TY 11 is bounded on 
S2 . Thus similar to the inequality (A.9), we have for any E > 0 and any a > 0 

Pr (sup sup! | (I(I? (I+ TT)') (V,? t,) 1 > abT 
k2Ts 2 k 

This is because V,?i1, is a sequence of martingale differences. Next, by the law of large numbers, there exists a 
positive definite matrix Q, such that 1/k yk= I V,V -+ . Therefore with probability not less than 1 - 3E, 

2, TT- 2kIlOllabT-- - 0'(n?I)0 _kabT -b7 (A.18) 
4 T 4 

for some C> 0 (note on S2, we assume 11011 = log T as noted earlier). 
Combining (A. 17) and (A. 18) and choosing a sufficiently small, we obtain with probability at least 1 -4E, 

log Y(1, k; 0, ) = YI,T+ Y72,T 

<-kb 2C/16 

? -(log T)26C/16, for all k? TS and all (0, Y)eS2. (A.19) 

The above is less than -D log T for any D > 0 when T is large. This together with (A. 16) implies Property 3. 

For a given M>O, define SM= {(0, 1); 11011 ? M or 11Y11 > M}. Then similar arguments lead to 

Property 4. For any E> 0, there exists a M> 0 such that 

Pr(sup supY(I, k; 0, ) > E< E. 
k 2 T8 SI, 

This property says that the value of pseudo-likelihood ratios evaluated outside a bounded set is small, assuming 
a positive fraction of observations are involved. The next property is similar to Property 4, but with no positive 
fraction of observations being required. This is compensated by moving 0 and Y further away from zero (M-+ oo 
in the notation of Property 4). 

Property 5. Let hT and dT be positive sequences such that hT is nondecreasing, dT -+ + o, and 
(hTd 2)/T--h>0, where h< <oo. Let ST= {(0,); 11011 dTor IIYll ?dT}. Then for any E>0, there exists an A >0, 
such that when T is large 

Pr sup sup Y(I, k; 0 ) > E < E 
(k_AhT (0,E)C eST 

Proof. Define b= T- 1/2 dT. Then by assumption, bT= 0(1) if hT stays bounded and bT-+ if hT-+ ??- 

Furthermore, hTb2T -- h. As in proving Property 3, we decompose ST into two subsets SI and S2, where SI and 
S2 are defined as in the earlier proof with log T replaced by dT. On SI, all arguments in Property 3 go through 
if inequalities (A.9) and (A. I1) still hold true when k ? TS is replaced with k> AhT and for the newly defined 
bT. However, these are the immediate consequences of the Hajek and Renyi (1955) type of inequalities because 
by their inequality 

Pr (sup Ili (il,i 1)11 > abT) h2b2T Aa2h (A.20) 

for some C> 0; the above is small if A is large. Similarly, applying the Hajek and Renyi inequality to 
l/k yk=I (V,? I) together with H = Op (1) uniformly in large k, we obtain, for any E>0 and y >0, there 

exists an A > 0 such that 

Pr( sup I| k || > yb)< E. (A.21) 
\k2AhT 

Where ;k is given by (A.7). Using the inequalities (A.20) and (A.21) and the same arguments as in Property 3, 
we obtain, with probability at least 1-2E, ?(1, k; 0, 1)<-kb02C2/8 for all k>AhTand all (0, Y)eSI, which 
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is further bounded by -Ah 7h2C2/8<-A C2h/16 <log E if A is large. The proof on S2 is almost the same as in 
Property 3 with only minor changes. Thus we omit it. 11 

Property 6. Under the same hypotheses as in Property 5, we have for any A > 0, 

sup sup Y(1, k; 0, )= Op(1), 
k?AhT (O,)eST 

where Sc is the complement of ST with ST given in Property 5. 

This property asserts that when evaluated not too far away from zero and with the number of observations 
increasing not too fast, the likelihood ratio is simply bounded. 

Proof It suffices to prove the log-valued likelihood ratio is bounded in probability. The log-likelihood 
ratio consists of two expressions Y1,T and Y2,T given in (A.5) and (A.6), respectively. First consider Y2,T. It 
is enough to prove the first term of ?2,T is bounded because the second term of ?2,T is negative (the exponential 
of a negative value is less than 1). The norm of the first term is bounded by 

T 1/2 (dT,A_h_T) SuP II (I+ TTY1II Sup IIZ1(Vk ~ )I (A.22) 
ST k:AhT T (A.22) 

Note that II(I+TT) is uniformly bounded on Sc because IP IT -O(T1 2dT)<1 (always possible because 
we can redefine dT by multiplying by a small constant). The second supremum is bounded by the functional 
central limit theorem for martingale differences. Combined with the boundedness of T- /2(dTA-hT) (because 
its squared value is bounded by assumption), we see that (A.22) is Op(1). Next consider ??1,T. Because 

(I+ PTT)I = I- TPT+ T2P#(I+ ''T)T , 

??1,T can be written as 

Y'I,T= -k/2(log II+ TTI -tr ('PT)) + tr ['PTT I (ii5i-I)] I ?t'P(I+PTT) . 

The last term is nonpositive, so it is enough to consider the first two terms on the right. The first term is equal 
to 

_kEi= (log (I + Ai)- Ai), 2 

where again the A's are the eigenvalues of PTT. By Taylor expansion, it becomes 

2 l (42. +o(2)) <kn max <_knCITIIT CAhTd /T for all k? AhT, 2 1=I_1A 
( 

2 
) 

which is bounded by assumption. We have utilized the relationship between a symmetric matrix and its eigen- 
values, see (A.13). Next, consider the second term 

k 1 Ek12 IITPTZ (tjjj- I)II <1T ? II' AhT\? Sup (4-)= C(T'-2dTV4hT)Op(1 
k5AhT A hT 

which is bounded in probability. 11 

We are now in the position to prove Theorem 2. We only consider the case in which v <0, i.e., k < ko. 
The case for v>0 is similar. The likelihood ratio AT(V, /, Y) in (2.10) is based on the whole sample [1, T]. We 
can write it as the product of likelihood ratios for the three subsamples, [1, k], [k+ 1, ko], and [ko+ 1, T]. In 
this way, the likelihood ratio will have (V,?I) rather than Z, (k) as regressors. Recall 3 = (0', (S6 )')'. Let V/= 
0 + S'S6, which is the combined coefficients of (V,'OI) for the second regime. 

The likelihood ratio (2.10) can be rewritten as 

L(k, Po0 + T- 1/2p, yo + T- 1/2y ) 

L(ko, Pfo, Yoo) 

Y2(l, k; 0, ) - Y(k + , Tro ; IT-SS( T+ Y,y- Y2(Tro + , T; y'' Y' (A.23) 

where Tro=ko with roe(0, 1), and ?(l,j; , ) is defined as in (A.1) but using observations from 1 to j. For 
simplicity of notation, we assume Tro is an integer, that is Tro = [Tro]. Only the middle term of (A.23) needs 
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some explanation. For te[k+ I, Tro], E,(k)=y,-Zt(k)'(/o+ T-' 2f) = V,-( J'7?I)S'SST-Th'/2(V:?I) 
(0+S'S6)= E,- T- 2(V,'7?I)(fTS'S6T+ V). By the definition of Y in (A.l), the segment [k+ 1, Tro] involves 
the parameter value \/TiS'S6T+ V- 

Proof of (2.1 1). Let kT(vI) =[ko + VIV 2]. For some Eo > 0 and E0 < T0, define 

BIT= {(k, /, Z); II V/11 - 2ITIIS'S5TII, TEo?k?kT(vl)}, 

B2,T= {(k, /, 1); |1 II 'l<l ThIIS'S6TII, 0<k?TEo} 

B3,T= {(k, /3, Y); || VII > , 'YTIIS'S6TII, O_ k_kT(v )}. 

On BI,T, both ?(1, k; 0, Y-) and ?(Tro + 1, T; ii, Y-) are O, (l) from Property 1, since both use a positive 
fraction of observations. Next consider ??(k+ 1, Tro; /ThS'S6T+ yr, Y) which involves Tro-k= -vv+2 observa- 
tions. Since II.jiTS'S6T+ V 11 > IIJTS'S6T 11-11 V 11 i IT- fiII S'S6T 11, we apply Property 5 with 0 = .S'SST+ i, 

dT= k.JYIIS'S6 T I, h =v2, and A = -v, (applied with the reversed data order, i.e. treating Tro as the first 
observation) to conclude that ??(k+ 1, Tro; .-lT-S'S6T+ ii, Y) can be arbitrarily small in probability if -vl is 
large. 

We now assume that /ThIS'S6TII >log T. Then on B2, T, ?(l, k; 0, Y) is less than TB for some B>O with 
probability at least 1 - e from Property 2 and ?(Tro + 1, T; ir, Y) is Op (1) from Property 1. However, by 
Property 3 with 0 = JITS'S6T+ ii, ?(k + 1, Tro; .JTS'S6T+ f, Y-) (which involves a positive fraction of the 
data set, and 11011 > 12 J- II S'S6T 11 ) is less than T-D for any D > O with probability at least 1 - E when T is large. 
Thus the product of these three terms can be no larger than E with probability at least 1 -2E when T is large. 

Next on B3,T, Property 2 is applicable to both ?(1, k; 0, Y) and ??(k+ 1, Tro; .TJS'S6T+ ii, Y) and 
Property 3 is applicable to ?(Tro + 1, T; ir, Y). Thus their product can be arbitrarily small. 

Proof of (2.12). Let 

DI T= {(k, /3, Y); II1/ v II_ M, IILJTS'SST+ rII2..TIIS'SSTII, II?1112.TIIS'SSTII, kT(VI )?k Tro}, 

D2,T= { (k, /S, YE); 11 GTS'S8T+ Y0 V Y 11 =>2 T1 S'S8T 11 kA(VI )k_ Tro} 

where 11x vyy > ?M means either 1lxii > ?M or IlYII > M. 
On DI.T, apply Property 6 to 1(k + 1, Tro; .-fTS'S6T+ yi, Y) with reversed data order and with 

dT=2./TIIS'S6TII, hT= VT2, and A =-vl to conclude that it is bounded. From Property 1, both ?(1, k; 0, Y) 
and ?(Tro + 1, T; ir, Y) are bounded in probability (again, both of them use a positive fraction of the observa- 
tions). However one of them must be small if M is large. This is because if 11/fi > M we then have either 
I0I > M/4 or III > M/4, so that we can apply Property 4 to one of them; if IEI > M, then we can apply 
Property 4 to both of them. 

The situation on D2,T is similar to that on B3,T. The behaviour of ?(1, k; 0, 1) and ??(k+ 1, Tro; 
f/TS'S6T+Y/,E) is controlled by Property 2. If IIfTS'S6T+ 'II?>2fTSIISS6TII then IIy1'I>IIIl+.ThS'S6TII 
- IIfTS'S3TII> ?TIIIS'S6TII. Thus on D2,T, II1vI vyII >fTIIS'S6TII. Consequently, the behaviour of 
?(TTmo+ 1, T; yi, E) is controlled by Property 3. The product of the three components again is arbitrarily small 

if T is large. The proof of Theorem 2 is now complete. 11 

Proof of Theorem 3. 

We consider the case of v ?O (i.e. k _ ko). The case of v >O can be analyzed similarly. Note that for 
te[l, k] u [ko+ 1, T], Z,(k)=-Z,(ko). Thus E,(k)=y,-Z,(k)'(f3o+ T-12f3) = E,-Z,(ko)'T-l 12f. But for 
te[k+ 1, ko1], Z,(k) =Z,(ko) + (O', [V?I]S')'. This implies that e,(k) = E,-Z,(ko)'Tf /3 - (V?I)S'S(ST+ 
T-128). Thus the log-valued pseudo-likelihood ratio can be written as: 

log L(k, Po + T-' 12/, So+ T-1/2 ) 
L(ko, Po, So) 

-T/2{1log lIo + T I - (c[(o T'2z)- ]E) (A.24) 

+Zk'T-? t =I ZT (ko)+(Yo + /2 ) IEt (A.25) 

_ 1 
P'T-/ Et=1 Z,(ko)(Yo+ T- ,2) Z(k)T/ (A.26) 

+tk-k+I (8T+ T /6 VS S(&I) (Yo+ T /- )E (A.27) 

-i) -t k+ (6T+ T/)S (tI(OT/ V I)S SS(16T + T-/6 (A.28) 

-tk=k + I (16T+ T- V/2 (SS &VI) (lo+ T- I/,)-lt(o) -I2 (A.29) 
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Expression (A.24) can be rewritten as, upon Taylor expansion, 

='tr (1_-11-l(TT- ,1)) + OP(1). 

where T1T=7112ZET I (8,c>-Yo) and op(1) is uniform over I such that 1I11 <M, with M an arbitrary fixed 
positive number. The above converges in distribution to the first term of (2.13). Expression (A.26) converging 
in probability to - 'f3'Qf3 follows from the law of large numbers, and (A.25) converging in distribution to 
j,Q I/24 follows from the central limit theorem for martingale differences. For bounded 8 and X, the limit of 
(A.28) is determined by 

-'SlS'S(~tk+I VI V?0Y)S' S5T=-20 ST = t V,V?4o' )S S50. (A.30) 

Note that AT= S0 VT. Since k= ko + [VV-2 ], V2 tk+l V,Vt-I vI Q, where Q, = plim (1/ko) ,ko V V,V. This implies 
that (A.30) converges to -2IvIv6S'S(Q ? 39 -' )S'S0= -IIvlc. For bounded S and X, the limit of (A.27) is 
determined by 

Et-k+1 8TS'S(VtI)o E=80S SY01o Et k+1 (Vt?E,). (A.31) 

By the functional central limit theorem for martingale difference, VTEZ=k +[VV2J (VE2 ) (Q/2 o/2 

where q(v) is a vector of independent Brownian motion processes on (-oo, 0], originated at the origin with 
reverse time. Thus (A.31) converges weakly to &oS'S(I?32D ' )(Q,o2?3S2 )iq(v). This limit has the same distribu- 
tion as [8oS'S(Q11-y' )S'S80]'/2WI (v)= /I WI (v), where WI (v) is a standard Brownian motion process on 
(-oo, 0]. This is because b'Y has the same distribution as bEAb * N(O, 1) for an arbitrary Y- N(O, A) and an 
arbitrary constant vector b. Thus 

Et=k+ I a T (V @ ) ,[o (,@0 )SS0 j ,()=a,() (A.32) 

If v > 0, we will obtain another Brownian motion process, say W2 (v). The two Brownian motion processes will 
be independent because they are the limits of non-overlapping martingale differences. Thus we may define a 
two-sided Brownian motion process on (-oo, oo) and for ve [-M, M], the underlying partial sums converge to 
4VW(v). 

Finally, we show that (A.29) converges to zero in probability uniformly over bounded 5, ,B, I and v. For 
bounded parameters, the limit of (A.29) is determined by 

IIEl k1 + S'S(VtI)l 'Z,t(ko)'flT_ 02II T- 2(ko-k) 11STIl 11 11 1 ko-k_ +1 11 Vt II 11 Zt (ko) II. 

The right-hand side above is bounded by T-'2(ko-k)IISTIIOP(1) <MT-7/2VT211 T IIOp(1) =(ITVT) 

which is op (1). The proof of Theorem 3 is complete. 1 

Proof of Theorem 4. 

The limiting process is quadratic in /B and in X, and thus is maximized at 3* = Q-1/2 and V =T. With 
respect to v, it is maximized at v*=argminp,{fcW(y)-clul/2}. By the continuous mapping 
theorem, Yt(fik - po Q-) 1 /2V, lT(ik-Yo)-+T, and V2 (k-ko)-+argminp {\W(p)-clll/2}. By a change 
in variable, it can be shown that argmin;,{f/cW(u)-clul/2}=c-'argmin {W(s)- sl/2}. Thus 
cv (k-ko)-+argmin{jW(s)- sI/2}. But CVT= OS'S(Q1 ?)' )S'SS0VT= TS'S(QI (?Fl )S'SST, because 

80VT=ST by definition. We thus proved (2.14)-(2.16). 11 

Proof of Corollary 4.1. 

(i) An intercept shift corresponds to S=(s(?I) with s=(1,0,...,0) and 8oS'S(Q10o' )S'SSo=o01o- LO. 
Thus, by Theorem 4, 

(Aoy-o I o)V2T(o Cl V* 

Now from AOVT= AT, we obtain (i). Part (ii) follows from S=Iand SOVT= ST. Finally, T'T2( AT)- = )O,(l) 
by equation (2.14). Together with (2.15), it is easy to verify that [(I'TEk^LT)-(2T,-'2T)](k-kO)40. This 
implies (A/T-'LAT)(k-kko)-+V*. Similarly, part (ii) also holds when estimated AT, Ql, and 1-' are used. 

Proof of Theorem 5. 

To prove Theorem 5, it is sufficient to establish the six properties (as in the proof of Theorem 2) for the sequential 
pseudo-likelihood ratios with I(1) regressors. In the absence of a structural change, the data generating 
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process is 

Y,=AX,+ yt+ p +Bw,+ +,. 

We may write it as Y, = (DU?I)00 + 4,. With I(1) and trending regressors, the new parameterization for 00 takes 
the form Oo+DD'0 (i.e. replacing T- 12 by DT', cf. (A.1)). The pseudo-likelihood ratio is given by 

Ye(I k; 0, 1) = 11+ T f exp { 21 t =I 4(0)'(So + T_ ')-It(0)1 (A.33) 

where 4,(0)= Y,-(U,(?I)(0o+D +D')=,-D-'(U,?(I)0. If we define V,=((1/fT')X,, (l/T)(t), 1, w')', then 
(0) ,- h'/2( V;?(I)0. In this way, the new likelihood ratio (A.33) has the same form as (A.1), except that 

E, is replaced by 4,. All notations in the proof of Theorem 2 can be maintained, as long as the I(1) regressors 
are considered as divided by +/T and the linear trend is divided by T. We shall adopt this convention here. Note 
that V, is now a triangular array, and the usual strong law does not apply to (1 /k) k VV,, as V, contains 
I(1) components. We only outline the major differences. Note that the search of a break is limited in the region 
ke [TEo, T(1 - co)] for some cO>O. 

Property 1 is a standard result, which still holds regardless of the presence of I(1) regressors or not. With 
the restriction ke [Teo, T(1 - co)], Property 2 becomes 

sup log (I1, k; 0(k), ?(k)) = Op (log T). 
T>k2Teo 

However, this is implied by Property 1 because k ? TEO. 
Next consider property 3. The previous proof needs (A. 1 1), whose proof requires that 

Hk= (l/k) Zk I V,Vt and its inverse be Op(1) for all large k. It is easy to prove that Hk and Hk-' are Op(1) 
uniformly in k such that k ? TcO. The rest of the proof is the same as before. Similarly, Property 4 still holds. 

Next consider Property 5. The previous proofs require inequalities (A.20) and (A.21). Inequality (A.20) 
still holds for the linear process ,=10-' ,, see Bai (1994) for a proof. Because k is only required to be larger 
than AhT (not a positive fraction of observations), the inverse matrix H,-' is no longer uniformly bounded over 
k (in fact, the first r rows and the first r columns of Hk converge to zero for k = AhT as T increases), so the 
proof of (A.21) must be modified. First note that VE(i= ViV)-' V,IU(i>1 UiU)-'U,. Now 

kZ112= k Ik (i? V; )(I?[Z H ) Ek IVT) V( V 

I1 ,k k 2 t= t@))@)[ Vv]),= /@)) 

k (I( [Ek VU), I; yI ) (,=lktot 

<m=? I 5?, U-,? U, 
j U1)/,k U 

k " 

where qj is the j-th component of q,, U,1 is the l-th component of U, m = dim (U,). The last inequality follows 
from the fact that the projection length (squared) of a vector projected onto a m-dimensional space is no larger 
than the sum of the projection length of that vector projected onto each of the m one-dimensional spaces 
multiplied by m. Because r and m are fixed, to prove (A.21), it is sufficient to prove, that for each j and 1, 

P ( sup !(EZk i ,U,I) /(EZ=1IUQk ) > ybT 
k ~_AhTk ~ 

We shall use the following result: P(g(Y, X) > c) = EP(g(Y, X) > clX). For each j, qj is a linear process. To 
conserve space, we only give proofs here for q, being an i.i.d sequence. The general case can be proved using 
the argument in Bai (1994). By the inequality of Hajek and Renyi (1955), the conditional probability, conditional 
on the Us, is bounded by 

T -2j Uk> 
2 

k 

r'b+2VAhk~~~~~ 
~~~~~~U2U+2 j 7+Uj,t 

where 2, = Eqi2. Thus the unconditional probability satisfies 

P I lk UkI)/(k2 k U21) > 2b) btAh hE ( 
2 (A.34) 
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The expected value involved is uniformly bounded in k by Assumptions 3.3 and 3.4. It is also bounded for 
U,,= t, the trending regressor. Thus the left-hand side of (A.34) is bounded by, for some M, M' < oo, 

-2 1 11 1 
MylbT Ah -M l b <Ah <'E for large A, 

kAT k 2- Th 

because b2ThT has a positive limit by assumption. This proves (A.21). The rest of proof is the same. 
Next, consider Property 6. The only place that involves V, is equation (A.22). Using the fact that 

V,=(T-' 2Xt , T-'t, 1, w,)', we see that (A.22) is Op(l). 

Proof of Theorem 6. 

We consider v<O (i.e. k?ko). Analogous to (A.24)-(A.29), the log likelihood ratio can be written as 

-T/2 {log IYo+ T '_2I -log I 2oI -2 XTI ( '[(SO+ T'I2 )- -1 ]4 ) (A.35) 

+'TI =,TIZ, (ko)(Yo+ T-I/z-X (A.36) 

+Z-k+ (IT+ -) S S(U,?I)( o + TIzk 0), (A.38) 

- 2 Et-k+ (T + DT'S )'S'S(U,0 @ I) (2o + T 2 )' (U?I )SS(ST+ DT'S) (A.39) 

Et-,k+ I (ST+ DT' )'S'S(U,?I)(o + T 2 ) 'Z,(ko)D'fl. (A.40) 

The convergence of (A.35) is already studied. The weak convergence of (A.36) and (A.37) is standard because 
they do not depend on k but ko (cointegration regression with fixed interactive dummy variables). Their limit 
is a quadratic form in /B as specified in the Theorem. The matrix Q is random (it is easy to derive its concrete 
expression, but we omit the details). For bounded 8 and X, the limit of (A.38) is determined by 

Zt=k+ I 0S S(U,?I)Y?X,=S-'S(I? ) Zt=k+1 (U,?4,) 

= 56oS'S(I?@o' 
)VTEkok+1 

((T 12X,, T1t, 1, w,)?@,). (A.41) 

The last equality follows from the assumption on 8T and U, = (X,, t, 1, w,)'. Now consider the limiting process 
of VTE,=k+X (T'k X,@ l) 

VTEZ=k+l (T = X, T_ )T / VTEt=k+I ,-T VTEZ=k+1 (Xko-X,)04,. (A.42) 

Now, T T2Xk0=T Zko /, -'doD(1)Q 2Z, where Z is N(O, I), ro=ko/T, Qe=Ee,e'; VTZ,k2+[VV-2J f, 

= C(1)Ql /2q(v), where q() is a vector of independent standard Brownian motion processes on (-oo, 0], starting 
at the origin with reverse time. The process q(v) is independent of Z. The second term on the r.h.s. of (A.42) 
is op(l). Thus (A.42) converges weakly to /oD(1)QV/2Z(? C(I)Q/2iq(v). Next 

VT k+I (-) VT-T?=k+I -VTZ k+I T => oC 

We have used the fact that, for bounded v, VTE k+o T-'(ko- t),op (l). Finally, 

VTk+[ E(w,w -h) 0 (Ef, -h)] /2W*(V), 

where W*(v) is a vector of independent standard Brownian motion processes defined on (-oo, 0], which is also 
independent of iq(v). Combining these results together with (A.41), we have 

Z,=k+1 STS'S(U,0I)Zo , 

/ aD(I f)e/ Z\ 

=> os S'(IS? 
) )l To 25(v) (A.43) 0 ~~~~I 1 

[h00 - E(w,wh) 0 (Ef:,th)]/2 W*(V) 

Using the fact that b' Y has the same distribution as ,Ii;A N(O, 1) for Y, N(O, A) and b an arbitrary random 
vector independent of Y, we see that the right-hand side of (A.43) has the same distribution as 
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56OS'SHIS'S0 }1/2W(v) where HI is given in Theorem 7 and W(v) is a scalar standard Brownian motion on 
(-oo, 0]. Thus 

Z,k+o TS SS(U0I)YI'S, , {16RS'SHI,S'SS } 1/2 W(V)= 

Next, consider (A.39). For bounded 8 and X, the limiting process of (A.39) is determined by 

- Z==k+ I S'S('USM I)lO (U,I)SST= k+ I UtUtY4' )S'SST. 

Using similar arguments as above, the limiting process is shown to be - 2 1 VI vO50S'SH2S'S50 = - 21 VI C2, where H2 
is defined in Theorem 6. 

Expression (A.40) can be shown to be op(1). Combining these results, we obtain the limiting process of 
the log-likelihood ratio. Finally note that c,, c2 and W(v) are determined by O(v-2) number of observations 
whereas ic, Q and T are determined by the entire set of observations. The latter will not be changed if we delete 
O(vT2) observations that determine Cl, C2, and W(v). This gives rise to the asymptotic independence of 
(c,, c2, W(v)) and (K, Q, T). The independence of (c,, c2) and W(v) follows from the independence of 4, and 
the regressors. 11 

Proof of Theorem 7. 

The limiting process is maximized for ,B at Q-'ic, for I at T, and for v at argmax, {-CIW(s) - IsIc2/2}. From 
the reparameterization and the continuous mapping theorem we have i5T(3- IO)3)Q-QIc, T/2( -lo)4 T, 
and vT-(k-ko) - argmaxs {\I W(s) - IsIc2/2}. By a change in variable, we have argmaxs {\/IW(s) - IsIc2/2} = 

argmaxs { W(s) - (c2 />C) I sI /2} = (c, /c~2) argmaxr { W(r) - I rl /2} . This implies that 

(c2/cX )v-T(k - ko ) argmaxs { W(s) - Isl /2} . 

The last part of Theorem 7 follows from the definition of cl and c2. 11 

Proof of Corollary 7.1. 

This corresponds to a special S such that S= (SI (DI), with SI U, = 1, which is the constant regressor. For this 
S, we have SSo=yio, and SH2S'= 1?(D- '= 1-'. Thus 86S'SH2S'S80=iiYI-'Po. Similarly, 
56S'SHIS'SSo=u=Y4-'C(1 )QEC(l)'CY-'io. By Theorem 7 

0[Ff 
1 
)gC( 1)n y F,-1 VT(k -ko) +V 

By definition, /, T= /0 VT. Replacing ,uOVTby /JT yields (3.6). 11 

Proof of Corollary 7.2. 

The proof is similar to that of Corollary 7.1. The S has the form S= (SI (0I) with SI U, = t. In this case SH2S' = 

ld(j-l = ,r2j l. Similar to Corollary 7.1, 

0~~~~~~~~~ y 0z C0 I Q0fI) o]Y 
(r, 1- ro)n2(y1-I]r 

By definition, YOVT= TYT. Replacing YOVT by TYT, and replacing ro by ko/T yields (3.7). 11 

Proof of Corollary 7.3. 

This corresponds to another special S such that S=(SIO0) with S,U,=X,. This implies that S80=ao. In 
addition, SH2S'== G?1-', where G =rD(l)Q'12ZZ'QY/2D(l)', which is the upper left block of the matrix 1' 
defined in Theorem 7. Similarly, SH S' = G?2 ' C(1)Q6Ct1)'ol. Thus Theorem 7 implies that 

a'o[G01_,oC(l)f2 C(l)'1,-]ao VT(k -ko ClV* 

By definition, ao VT= \/T7aT. In addition, G is the limit of T-'Xk0XkZ. Thus, replacing ao VT by /TfaT and replacing 
G by T-'XkOXko gives (3.8). - 11 
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