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Abstract

This paper proposes a likelihood-ratio-type test for multiple structural changes in
regression models. The model allows for lagged-dependent variables and trending re-
gressors. The limiting distribution of the test is derived. We show that asymptotic critical
values can be obtained analytically. In addition, the number and the locations of change
points can be consistently determined via the test procedure. The method is straightfor-
ward to implement. ( 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Testing for structural change has always been an important issue in econo-
metrics because a myriad of political and economic factors can cause the
relationships among economic variables to change over time. Since the early
work of Chow (1960) and Quandt (1960), numerous studies have been under-
taken on the issue of structural changes.1 However, most of the existing
work focuses on testing for a single change. In this paper, we propose a
likelihood-ratio-type test for multiple changes. The proposed test is an exact

*Tel. (617) 253-6217; fax: (617) 253-1330; e-mail: jbai@mit.edu

1This is evidenced by the two special volumes of this Journal edited, respectively, by Broemeling
(1982), and Dufour and Ghysels (1996), as well as by a number of monographs on this subject, e.g.,
Poirier (1979), Kramer (1989), and Hackl and Westlund (1991).
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likelihood-ratio test under the assumption of normality. Since normality is not
assumed, the test may be considered a pseudo-Gaussian likelihood-ratio test.
The limiting distribution of the test is derived in this paper. Critical values can
be calculated analytically.

When testing for a single break, the limiting distribution of the test statistic is
derived in the absence of breaks (typically by direct application of the functional
central limit theorem under the null of no change). In this paper, both null and
alternative hypotheses allow for the existence of break points and thus involve
estimating these points. As a result, this analysis di!ers considerably from the
existing literature. In particular, functional central limit theorems cannot be
directly applied to derive the limiting distribution. The behavior of break-point
estimators under both the null and the alternative hypotheses must be taken
into account.

In addition to having the capability of detecting the presence of a break, the
proposed test can be used to determine the number and locations of breaks in
the data. This is of both theoretical and practical interest. Under the current
practice, when the null hypothesis is rejected, a single break point is estimated.
In many cases, there is no reason to assume that only one break point is present,
especially for data covering an extended period of time. The possibility of
multiple changes is consistent with the notion of multiple equilibria proposed by
economic theory, with each change (regime) representing a new equilibrium
condition. Rudebusch and Diebold (1994) explain the links between the struc-
tural-change model and multiple equilibria of economic theory. Hegwood and
Papell (1996) suggest the existence of multiple regimes in the real exchange-rate
data. In an interesting application of the structural change method, Willard et al.
(1996) study how people during the Civil War period responded to various
events that were happening around them and compare the relative importance
of those events (as implied by the data) to the accounts of traditional historians.

The null hypothesis of our test assumes l break points, whereas the alterna-
tive hypothesis assumes l#1 break points. (When l"0, the test reduces to the
usual test of no change against a single change.) Due to the format of these
hypotheses, when the test is performed repeatedly while augmenting the value of
l, the number of break-points can be consistently estimated.

A related test is set out in Bai and Perron (1994). They also propose to test
l versus l#1 breaks. Their test does not have a likelihood-ratio interpretation.
Whenever an additional break point is to be estimated, it is obtained conditional
on the previously obtained break points. For example, suppose that l break
points have been computed, the (l#1)th break point is estimated from one of
the subsamples separated by the given l break points. In contrast, in the
likelihood-ratio setting, the model is estimated optimally under both null and
alternative hypotheses. This entails estimating l breaks simultaneously under
the null and estimating l#1 breaks simultaneously under the alternative. The
limiting distribution of the LR test is shown to be of a similar } but not identical
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2Some exact tests may not require stationarity, but require more speci"c distributional assump-
tions such as normality, e.g., Dufour and Kiviet (1996).

3This paper, however, does not consider integrated regressors. For this, readers are referred to
Vogelsang (1994), Banerjee et al. (1992), Hansen (1992), and Zivot and Andrews (1992).

} form to that of the Bai}Perron test. Although its theoretical justi"cation
requires considerable e!ort, the LR procedure itself is straightforward to imple-
ment.

This paper makes two additional contributions to the existing literature.
First, the procedure can deal with dynamic regressors (lagged dependent vari-
ables). The existing literature contains many results admitting dynamic re-
gressors, for example, Kramer et al. (1988). In those studies, the model, and
particularly the regressors, are stationary under the null.2 In a dynamic setting,
once a shift occurs, the regressors cease to be stationary. Since our null hypothe-
sis allows for shifts, both the dependent and the explanatory variables are
non-stationary.3 Second, we consider testing multiple breaks in polynomial
trends. We not only characterize the limiting distribution, we also derive
analytical expressions for asymptotic critical values.

The remainder of this paper is organized as follows. In Section 2, we state the
model and assumptions. Section 3 de"nes the test statistic and gives the main
result. The assumption of regime-wise asymptotic stationarity is assumed in this
section. Section 4 extends the test to include polynomial trends. Limited Monte
Carlo results are reported in Section 5, and some remarks are given in Section 6.
Technical proofs are provided in the Appendix.

2. Model and assumption

Consider the following m-break model:
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where y
t
is the observed dependent variable at time t; z

t
(q]1) is a vector of

covariates; d
j

( j"1,2, m#1) is a vector of coe$cients with d
i
Od

i`1
(i"1,2, m); and u
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is the disturbance at time t. The break points k0
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,2, k0
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as

well as the number of breaks m are also unknown. When m is known, all
parameters including the break points can be easily estimated. Their statistical
properties are investigated by Bai and Perron (1994). In practice, the number of
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breaks, m, is unknown. It is of importance to make an inference about the value
of m. We propose a test statistic for testing the null hypothesis of l versus the
alternative of l#1 breaks. We show how this test can lead to a consistent
estimate for m. Before discussing the test statistics, we make additional assump-
tions as follows.

Assumption 1. The regressors are regime-wise asymptotically stationary. More
speci"cally, let *k0

i
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i`1
!k0

i
, for i"0,2, m,
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uniformly in v3[0, 1], where Q
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is a positive de"nite matrix. Throughout, we

adopt the convention that k0
0
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Assumption 3. The functional central limit theorem holds for z
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Assumption 1 is satis"ed by within-regime i.i.d. regressors having a positive-
de"nite variance}covariance matrix. Assumption 1 is also satis"ed by any
within-regime second-order stationary process such that the strong law of large
numbers holds for z

t
z
t
@. In these cases, Q

i
"Ez

t
z
t
@. Assumption 1 is clearly

weaker than the global asymptotic stationarity of the following:
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uniformly in v3[0, 1]. Autoregressive models with structural changes will not
satisfy the global asymptotic stationarity (global-stationary) (2) but do satisfy
Assumption 1. In this case, Q

i
is the second-moment matrix of a stationary

autoregressive process with autoregressive parameter d
i
. Assumptions 2 and 3
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are standard. But Assumption 2 rules out serially correlated disturbances. The
result of this paper can be extended to dependent disturbances such that u

t
forms

a sequence of mixingales with respect to an increasing sequence of sigma-"elds
but uncorrelated with the regressors. For simplicity, we shall focus on uncor-
related errors, making it possible to include lagged dependent variables. As-
sumption 4 is a standard technical device for asymptotic purposes.

We next introduce some terminology and notation. A subsample [i, j] means
a subsample consists of observations from i to j (inclusive). An m-partition is
a vector of m integers, (k

1
,2, k

m
), such that 1(k

1
(k

2
(2k

m
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partition divides the whole sample into m#1 subsamples (segments). For
a small positive number n'0, we de"ne a set of partition, Kn, by
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a partition in Kn consists of at least a positive fraction of the observations. We
assume n is small so that (k0
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where the minimization is taken over "n. In practice, n is set to 0.05, or 0.10.
Assuming there are m breaks, then (kK
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(1), see Bai and Perron (1994). For simplicity, we shall

say kK
i
is ¹ consistent for k0

i
, with the understanding that we are referring to the

break fractions.
In the next section, we discuss the test statistics based on the optimal SSRs.

3. The test statistic

This section considers testing the hypothesis H
0
: m"l against H

1
:

m"l#1. The test statistic is based on the di!erence between the optimal SSR
associated with l breaks and the optimal SSR associated with l#1 breaks. Let
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4The computer program in GAUSS is available upon request.

(kK
1
,2, kK l) be the estimator of the break point (k0

1
,2, k0l ) under the null. Let

(kK *
1
,2, kK *l`1

) be the point at which the sum of squared residuals is minimized,
when l#1 break points are allowed.

The test statistic is de"ned as
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where p2(l#1)"S
T
(kK *

1
,2, kK *l`1

/¹). When the errors are i.i.d. normal random
variables, the above test is a likelihood ratio (LR) test. Because normality is not
assumed, Eq. (4) may be considered a pseudo-likelihood ratio test. Using dy-
namic programming algorithm, the computation of Eq. (4) is straightforward
and fast even for large ¹ and large l. In the Monte Carlo section below, we use
Bai and Perron's (1994) program to compute (4)4.
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(k) are independent and standard Brownian

bridges on [0, 1].

Although the m
i
's are independent, they do not necessarily have the same

distribution because the g
i
's may not be the same. Regardless of identical

distribution, critical values are easy to obtain, as the limiting distribution has
a known analytical density function.

Corollary 1. ;nder the assumptions of ¹heorem 1,
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5The study of this conditioning procedure rather than LR was partly due to our more primitive
understanding of the LR procedure back then. Particularly, it was less well understood in terms of
the form of LR's limiting distribution, as well as the technical apparatus needed in justifying its
limiting distribution. The LR's deeper understanding came only recently as re#ected in this paper.
However, Bai and Perron's procedure does have an advantage that no simultaneous estimation of
the break points is necessary when we use it repeatedly as l increases.

where

G
i
(c)"

cq@2 exp(!c/2)

2q@2~1C(q/2) CA1!
q

cB log
(1!g

i
)

g
i

#

2

c
#o(c~2)D.

Given a size a, the corresponding critical value c can be easily computed from
the above formula. For large c and small g

i
the "rst term inside the brackets of
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(c) dominates, and thus the term 2/c may be ignored. In practice, the
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searcher. It can be replaced, however, by its estimated value such that
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"1. Under the null
hypothesis, qL

i
converges to q

i
0 at rate ¹, yielding good estimates for g

i
. The

analytical expression is convenient for automation (computer programming).
The expression G

i
(c) is derived in DeLong (1981).

Bai and Perron (1994) suggest an alternative (conditioning) procedure to test
l versus l#1 breaks. Their test is also based on the di!erence between the SSR
associated with l breaks and that associated with l#1 breaks. However, the
l#1 break points are obtained not simultaneously but sequentially. More
speci"cally, the (l#1)th break point is obtained conditional on the l break
points obtained previously, and the (l#1)th break point is picked from the
l#1 subsamples separated by the break points kK

1
,2, kK l. This additional break

point is chosen in the subsample where the sum of squared residuals achieves the
greatest reduction.5 The limiting distribution of their test is the maximum of
l#1 i.i.d. random variables of the form (5). The test proposed in this paper has
a di!erent limiting distribution from that of Bai and Perron's sequential test.
The present test is conceptually simpler, and has a likelihoodratio interpretaion.
Although the technical proof is more demanding than the sequential test of Bai
and Perron (1994), the test is easy to compute and implement.

3.1. Consistency of the test

The test procedure proposed in this paper is consistent. That is, under
the alternative hypothesis that m*l#1, then sup LR

T
(l#1Dl)PR with

probability tending to 1. Therefore, when more than l breaks exist, the null
hypothesis of l breaks will be rejected with probability tending to 1. We can
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6One may start with H
0
: l"l

0
'0 if at least l

0
breaks are known to exist.

7Alternatively, this procedure may be used in a reverse order. That is, instead of increasing the
value of l, we decrease its value (starting with a reasonable initial value) until the null of no-change is
rejected. The number of break points is equal to the number speci"ed by the alternative hypothesis
of the "rst rejection. The theoretical property of this reversed procedure, however, remains to be
studied.

actually show that sup LR
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(¹) under the alternative hypothesis.

To see this, suppose there are l#1 breaks. When only l breaks are allowed in
estimation, at least one break point cannot be consistently estimated. Lemma 2
of Bai and Perron (1994) then implies
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Thus the numerator of the test statistic is O
1
(¹) and the denominator is O

1
(1).

So the test statistic is O
1
(¹) under the alternative hypothesis. This conclusion

remains true when more than l#1 breaks exist under the alternative. The
details are omitted.

3.2. Estimating the number of breaks

One advantage of our test is its capability of identifying the number of breaks
in the data. The procedure is described in Bai and Perron (1994), although they
use a di!erent test. Here we give a brief summary. One begins with a test of
no-break versus a single break.6 If the hypothesis is rejected, one proceeds to test
the null of a single break versus two breaks, and so forth. This process is
repeated until the test sup LR

T
(l#1Dl) fails to reject the null hypothesis of no

additional breaks. The estimated number of breaks is equal to the number of
rejections.7

Let mL denote this number, and let m
0

denote the true number of breaks. We
have the following result.

¹heorem 2. ¸et Assumptions 1}4 hold. If the size a
T

converges to zero slowly
enough ( for the test based on sup LR

T
(l#1Dl) to remain consistent), then

P(mL "m
0
)P1.
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8This paper does not address the issue of optimality. For a general treatment of this issue, see
Sowell (1996).

The proof of this theorem is identical to that of Proposition 8 in Bai and Perron
(1998) and is thus omitted.

Let a be the size of the test and c be the corresponding critical value calculated
from the limiting distribution in Theorem 1. Because 1!<l`1
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(c)])

+l`1
i/1

G
i
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a)exp(!c/3). This implies c)!3log (a) (for all small a or equivalently large
c). Suppose a
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is chosen such that a

T
"1/¹, then c
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)3log ¹. Under the

alternative hypothesis, we know sup LR
T
(l#1Dl) is of order O

1
(¹). Conse-

quently, we will reject the null hypothesis with probability tending to 1. This
implies that one will not underestimate the true number of break points for large
samples. The probability of overestimating the number of breaks is no more
than a

T
(see Bai and Perron, 1998). So if a

T
P0 slowly (say no more quickly than

1/¹), we can consistently estimate the number of breaks. In practice, ¹ is "xed,
and so is a

T
. Simulation shows that a"0.05 works satisfactorily.

Recently, Andrews et al. (1996) consider an optimal test for regression models
under the assumption of normality. The null hypothesis is no-change, and the
alternative hypothesis allows for multiple changes. In contrast, the present test
allows for structural changes under the null.8 It is this feature that enables us to
determine the number of breaks via hypothesis testing. In addition, critical
values of the Andrews}Lee}Ploberger test are not available except for a single
change, and do not appear to be straightforward to obtain even for large
samples. In comparison, the critical values of the LR test of this paper can be
obtained analytically. Finally, we point out that a likelihood-ratio-type test for
the null of no-change (m"0) against alternative multiple changes (m"l) is
derived in Bai and Perron (1998) in the absence of trending regressors. However,
rejection of the null of no-change does not provide information as to the number
of breaks in the data.

4. Trending regressors

In the previous sections, regime-wise asymptotic stationarity is assumed, ruling
out trending regressors. We now derive the corresponding results in the presence
of such regressors. Consider the following model with polynomial trends:
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Test statistic for testing H
0
: m"l versus H

1
: m"l#1 has the same format as

before: it is constructed using the di!erence between the optimal SSR associated
with l breaks and that associated with l#1 breaks. For s3[0, 1], de"ne the matrix
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(s) denote the eigenvalues of A(1)~1@2A(s)A(1)~1@2. (They are

also the eigenvalues of A(s) A(1)~1.) These eigenvalues are continuous and
increasing functions of s with j

i
(0)"0, and j

i
(1)"1. The limiting distribution of

the test statistic is characterized in the next theorem.
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with r"p#q#1 and det B as the determinant of B.
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Theorem 3 and its corollary hold for general trending regressors beyond
polynomial ones. All that is needed is that the limiting matrix A(s) be positive
de"nite and increasing. That is, A(u)'A(v) for u'v. However, under the speci"c
structure of polynomial trends, H

i
(c) can be simpli"ed. It can be shown that
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This implies that

1

2
log

det A(1!g
i
)det(A(1)!A(g

i
))

det A(g
i
)det(A(1)!A(1!g

i
))
"(p#1)2log

1!g
i

g
i

.

Therefore,

H
i
(c)+

cr/2 exp(!c/2)

2r@2~1C(r/2) A
1

r
!

1

cB C[(p#1)2#q]log
(1!g

i
)

g
i
D. (8)

Because (1/r!1/c) [(p#1)2#q]"(1!r/c) [(p#1)2#q]/r, the value of H
i
(c)

is proportional to G
i
(c) of Corollary 1 corresponding to r"p#1#q station-

ary regressors. The proportionality factor is [(p#1)2#q]/r. This implies the
following interesting fact. When testing for no-change versus a single change
(l"0), the asymptotic critical value of a size a test for model (6) is equal to that
of a size a(p#1#q)/((p#1)2#q) test with p#1#q stationary regressors.
The latter is tabulated in many papers, see Andrews (1993).

5. Some numerical results

To illustate the procedure and to indicate the "nite sample performance of the
LR test, we report results of a limited set of sampling experiments.

The sampling experiment considers three di!erent sets of regressors, simple
linear regression, autoregression, and linear trend. For each set of regressors,
a sample of ¹"150 observations is generated from a model with 2 breaks (3
regimes). The "rst break is set at k0

1
"50 and the second at k0

2
"100. We may

write the data generating process as

y
t
"a

i
#b

i
z
t
#u

t
, k0

i~1
#1)t)k0

i
, i"1, 2, 3,

where (a
i
, b

i
) is regime i's regression parameter, and k0

0
"0, and k0

3
"¹. The

three sets of regressors are (I): z
5
i.i.d. normal N(1,1); (II) z

5
"y

t~1
, and (III):

z
t
"t. The disturbances are i.i.d. standard normal for all cases. Let d"[(a

1
,b

1
),

(a
2
,b

2
), (a

3
,b

3
)].
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Table 1
Percentage rejections of sup LR(l#1Dl) (5000 repetitions)

H
0

m"0 m"1 m"2
H

1
m"1 m"2 m"3

Size 0.05 0.10 0.05 0.10 0.05 0.10

Model

(I) 100.0 100.0 95.7 97.5 4.8 10.1
(II) 100.0 100.0 99.9 99.9 5.4 10.7
(III) 100.0 100.0 100.0 100.0 3.3 6.7

The design coe$cients are

(I) (regression): d"[(1.0, 1.0), (1.5, 1.5), (2.0, 2.0)]
(II) (autoregression): d"[(10.0, 0.5), (10.0, 0.4), (10.0, 0.5)],
(III) (linear trend): d"[(1.0, 1.0), (1.1, 1.1), (1.2, 1.2)].

For design (II), the intercept is not subject to shifts. In addition, the autoregres-
sive slope coe$cient has a small shift in magnitude. But because of the large value
of the intercept, the expected value of z

t
2"y2

t~1
is large. This implies that the

break points can be accurately estimated because the variance of the break-point
estimator is inversely related to (b

i
!b

i`1
)2Ez

t
2 (assume no intercept shift). For all

designs, the model is estimated by imposing the restriction that each regime has at
least 5 observations. This de"nes n or "n in Eq. (3) implicitly.

Table 1 reports the percentage rejections from 5000 repetitions for testing H
0
:

m"l against H
1
: m"l#1 for l"0, 1, 2. Two nominal sizes are considered:

a"0.05 and a"0.10. The percentages in the last two columns can be viewed as
actual sizes (after dividing by 100) because the null hypothesis is true. The
percentages in the "rst four columns can be viewed as powers (again after
dividing by 100). For the linear regression and autoregressive models, the actual
sizes correspond well with the nominal sizes. But for the linear trend model, the
actual sizes are somewhat below the nominal ones.

Table 2 gives the selected number of breaks via hypothesis testing with size
a"0.05. The test sup LR(l#1Dl) is repeatedly performed by increasing the
value of l, until the null hypothesis is accepted. For each sample, the estimated
number of breaks, mL , is equal to the number of rejections. Table 2 shows the
distribution of mL out of 5000 simulated samples. For all three models, over 90%
of the time, the method leads to correct identi"cation of the number of breaks.

We now consider the relative performance of the LR test with Bai and
Perron's Conditional Test sup F

T
(l#1Dl). In the latter test, the (l#1)th break

point is estimated assuming the "rst l break points are given (estimated in
previous steps). The limiting distribution of the conditional test is given in
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Table 2
Distribution of the estimated number of breaks based on sup LR(l#1Dl) (5000 repetitions)

mL 0 1 2 3 *4

Model
(I) 0 233 4524 240 3
(II) 0 3 4726 267 4
(III) 0 0 4835 163 2

Proposition 7 of Bai and Perron (1998). To assess the relative performance of the
conditional and LR procedures, Monte Carlo experiments are conducted using
the same data generating process described earlier. Tables 3 and 4 report the
results associated with the conditional test. These tables show that the condi-
tional procedure also does a satisfactory job. In comparion with Tables 1 and 2,
the sup LR test shows an improved preformance.

Taken together, the sup LR test has reasonable size and power properties. Its
performance in determining the number of breaks is quite satisfactory. An added
attraction lies in its feasiblity and ease of use.

6. Discussion

6.1. Partial structural change

Thus far, we allow all regression coe$cients to vary. That is, all coe$cients
are re-estimated whenever a break occurs. Such a setup is called full structural
change. If it is known that some of the coe$cients do not change, the constraint
of no change should be imposed. This will increase the e$ciency of the estimated
regression parameters as well as the power of hypothesis testing. This setup is
called partial structural change.

A general partial-change model is described by

y
t
"x@

t
b#z@

t
d
i
#u

t
, k0

i~1
#1)t)k0

i
,

for i"1,2, m#1. The coe$cient b is constant for the whole sample. Bai and
Perron (1998) develop a fast-computing algorithm for partial change models.
Under some general conditions for Mx

t
, z

t
N, as described in Bai and Perron

(1998), all preceding results hold. In particular, even though x
t
contains trending

regressors, Theorem 1 holds as long as z
t
is regime-wise asymptotically station-

ary. That is, the presence of regressor x
t
does not alter the theoretical results in

Theorems 1}3. These claims can be proved rigorously at a greater technical
expense.
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Table 3
Percentage rejections of the conditional test (5000 repetitions)

H
0

m"0 m"1 m"2
H

1
m"1 m"2 m"3

Size 0.05 0.10 0.05 0.10 0.05 0.10

Model
(I) 100.0 100.0 89.9 94.7 4.3 8.1
(II) 100.0 100.0 97.5 98.7 5.4 10.1
(III) 100.0 100.0 100.0 100.0 6.4 10.9

Table 4
Distribution of the estimated number of breaks based on the conditional test (5000 repetitions)

mL 0 1 2 3 *4

Model
(I) 0 504 4211 270 15
(II) 0 124 4133 678 65
(III) 0 0 4679 310 11

It is noted that the tests of this paper are constructed using the full sample,
which can take advantage of partial changes. This is important particularly for
multiple changes because the savings in the number of degrees of freedom can be
substantial. Sample-splitting methods frequently used in applied work are
unable to make use of partial changes.

6.2. Multiple-threshold time series models

The procedure proposed here may be extended to threshold time series
models (Tong, 1990). One interesting topic is to identify the number of thre-
sholds. To date, the determination of the number of thresholds in a model is
based on a less formal approach. This is usually accomplished by plotting and
identifying the turning points in the cusum of recursive residuals. Hansen (1996)
recently suggests a sample-splitting method to study multiple-threshold models.
By arranging the data in an appropriate way, the threshold time series model
can be turned into a structural-change problem, at least computationally. Thus
an LR-type test statistic for testing l thresholds versus l#1 thresholds can be
easily constructed. The underlying theoretical distribution, however, is di!erent
from the one given here. Chan (1991) considers the null of linearity against
a single threshold. In view of the result of this paper and that of Chan,
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conjectures can be made about the limiting distribution of the LR type test for
multiple thresholds. However, the underlying theoretical pinning needs a more
closer examination.
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Appendix: Proofs

Under the null hypothesis of l changes, (kK
1
,2, kK l) is ¹ consistent for

(k0
1
,2, k0l ) (see Bai and Perron, 1998). When there are actually l breaks but

l#1 are allowed in the estimation, we shall show that l of them will be
¹ consistent. More speci"cally, let (kK *

1
,2, kK *l`1

) denote the estimated l#1
break points. There exists a subset Mi

1
, i

2
,2, ilN of M1, 2,2, l#1N such that

DkK *
iv
!k0

v
D"Op (1) (v"1,2, l).

¸emma A.1. ¸et Assumptions A1}A4 hold. ;nder the null hypothesis of l breaks,
there are l and exactly l of MkK *

1
,2, kK *l`1

N that will be ¹ consistent for
(k0

1
,2, k0l ). ¹hat is, DkK *

iv
!k0

v
D"Op (1) for some Mi

1
,2, ilNLM1,2,2, l#1N.

Proof. We "rst prove consistency. That is, there exists a subset Mi
1
,2, ilN of

M1, 2,2, l#1N such that for every e'0, we have P(DkK *
iv
!k0

v
D'e¹)(

e (v"1,2, l) for all large ¹. Suppose such a subset does not exist, it then
implies that there exists a break point which cannot be consistently estimated.
Then, from the result of Bai and Perron (1998, Lemma 2)

T
+
t/1

u2
t
!S

T
(kK *

1
,2, kK *l`1

)"!O
1
(¹)P!R.

This contradicts with the least squares principle that

T
+
t/1

u2
t
!S

T
(kK *

1
,2, kK *l`1

)*
T
+
t/1

u2
t
!S

T
(kK

1
,2, kK l)*0.

Next suppose, without loss of generality, that kK *
1
,2, kK *

i~1
, kK *

i`1
,2, kK *l`1

are
consistent. This implies that kK *

i~1
is close to k0

i~1
, and kK *

i`1
is close to k0

i
. By the
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9Notice the fact that,

min
k1,2, ki~1, ki`1,2, kl`1

S
T
(k

1
,2, k

i~1
, kK *

i
, k

i`1
,2, kl`1

),S
T
(kK *

1
,2, kK *l`1

).

de"nition of "n, kK *
i

cannot be close to either k0
i~1

or k0
i
. That is, there exists

e
0
'0 such that with large probability kK *

i
!k0

i~1
*e

0
¹, and k0

i
!kK *

i
*e

0
¹.

This implies that the subsample [1, kK *
i
] contains i!1 true break points. If we

use this subsample to estimate the true break points, the solution coincides
with9 (kK *

1
,2, kK *

i~1
). Since there are i!1 true break points, and we allow i!1

breaks in the estimation, by the result of Bai and Perron (1998), the resulting
estimator (kK *

1
,2,kK *

i~1
) is ¹-consistent for (k0

1
,2, k0

i~1
). A similar argument

applies to the subsample [kK *
i
,¹]. And so kK *

i`1
,2, kK *l`1

are ¹-consistent for
k0
i
,2, k0l .

¸emma A.2. ¸et Assumptions 1}4 and H
0

hold. ¸et j
1
,2, jl be integers (may be

negative). For every M(R, uniformly over D j
i
D)M (i"1,2, l) we have

S
T
(k0

1
#j

1
,2, k0l#jl)!S

T
(k0

1
,2, k0l )!

l

+
i/1

=
i
( j

i
)"o

1
(1),

where for i"1,2, l, =
i
(0)"0 and

=
i
( j)"

G
(d

i`1
!d

i
)@+k0i

k0i~j
z
t
z@
t
(d

i`1
!d

i
)!2(d

i`1
!d

i
)@+k0i

k0i~j
z
t
u
t
, j"!1,!2,2

(d
i`1

!d
i
)@+k0i`j

k0i`1
z
t
z@
t
(d

i`1
!d

i
)#2(d

i`1
!d

i
)@+k0i`j

k0i`1
z
t
u
t
, j"1, 2,2

Proof. To be concrete, we shall analyze the case of j
i
'0 for i"1,2, l. Other

cases can be analyzed similarly. Let (dK
1
,2, dK l`1

) be the estimated regression
parameters corresponding to the partition (k0

1
#j

1
,2, k0l#jl). The resulting

SSR for the total sample can be written as the summation of the SSRs of 2l#1
segments, with each segment involving observations from a single true regime
only. More speci"cally,

S
T
(k0

1
#j

1
,2, k0l#jl)"

l`1
+
i/1

k0i
+

k0i~1`ji~1`1

[(y
t
!z@

t
dK
i
)2#

l

+
i/1

k0i`ji
+

k0i`1

(y
t
!z@

t
dK
i
)2,

(A.1)

with k0
0
"0 and j

0
"0. Similar to the above, we can express S

T
(k0

1
,2, k0l ) as the

summation of SSR's of the same (2l#1) segments. Let (dK 0
1
,2,dK 0l`1

) be the
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estimated regression parameters based on the partition (k0
1
,2, k0l ). Then

S
T
(kK 0

1
,2, kK 0l ) is given by Eq. (A.1) with the "rst dK

i
replaced by dK 0

i
and the second

replaced by dK 0
i`1

(not dK 0
i

because of no misspeci"cation in regime spells). Thus,

S
T
(k0

1
#j

1
,2, k0l#jl)!S

T
(k0

1
,2, k0l )"

l`1
+
i/1

k0i
+

k0i~1`ji~1`1

[(y
t
!z@

t
dK
i
)2!(y

t
!z@

t
dK 0
i
)2]#

l

+
i/1

k0i`ji
+

k0i`1

[(y
t
!z@

t
dK
i
)2!(y

t
!z@

t
dK 0
i`1

)2]. (A.2)

Because j
i
is bounded for each i, all estimated regression parameters are root

¹ consistent for the true regression parameters. This, together with the boun-
dedness of j

i
, allows us to write the second term of the right hand side of

Eq. (A.2) as

l

+
i/1

k0i`ji
+

k0i`1

M[u
t
#z@

t
(d

i`1
!d

i
)]2!u2

t
N#o

1
(1)"

l

+
i/1

=
i
( j

i
)#o

1
(1).

This follows from y
t
!z@

t
dK
i
"u

t
!z@

t
(dK

i
!d

i`1
)"u

t
!z@

t
(d

i
!d

i`1
)!z@

t
(dK

i
!d

i
)"

u
t
!z@

t
(d

i
!d

i`1
)#z@

t
O

1
(¹~1@2). Similarly, y

t
!z@

t
dK 0
i`1

"u
t
!z@

t
O

1
(¹~1@2).

Next, we shall argue that the "rst term on the right-hand side of Eq. (A.2)
converges to zero in probability. The said term is equal to

!2
l

+
i/1
C(dK i!dK 0

i
)@

k0i
+

k0i~1`ji~1`1

z
t
u
tD#

l

+
i/1
C[(dK i!d

i
)#(dK 0

i
!d

i
)]@

k0i
+

ki~1`ji~1`1

(z
t
z@
t
)(dK

i
!dK 0

i
)D.

It is not di$cult to prove that dK
i
!dK 0

i
"O

1
(1/¹) for all i (follows from the

boundedness of j
i
). Using this fact we see that each of the two expressions above

is O
1
(¹~1@2). h

The next lemma states that when an additional break is allowed in estimation,
Lemma 2 should be modi"ed by adding an extra term, which will determine the
limiting distribution of the test statistic. Since exactly l estimated breaks will be
consistent by Lemma 1, one of them will not be consistent. The location of this
inconsistent break point can be in any of the (l#1)-segments separated by the
l-consistent ones. The following lemma gives the asymptotic behavior of the
SSR when an extra break point (denoted by h) is in the ith segment
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(i"1, 2,2, l#1). In the remainder of this paper, we use D(k
1
, k

2
) to denote

the sum of squared residuals for the subsample [k
1
#1, k

2
]. That is,

D(k
1
, k

2
)"mind +k2

t/k1`1
(y

t
!z @

t
d )2.

¸emma A.3. ¸et Assumptions 1}4 hold.;nder the assumption of l breaks, we have
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+
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=
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=
s
( j

s
)#Cl`1,T

(h)"o
1
(1),

where

C
i,T

(h)"D(k0
i~1

, k0
i
)!D(k0

i~1
, h)!D(h, k0

i
) (A.3)

and the o
1
(1) is uniform in Dj

i
D)M and in h3<

i
for equation i, with

<
i
"Mh: h3[k0

i~1
#j

i~1
#n¹, k0

i
#j

i
!n¹]N. (A.4)

So for h3<
i
, we have (k0

1
#j

1
,2, k0

i~1
#j

i~1
, h, k0

i
#j

i
,2, k0l#jl)3Kn.

We note that C
i,T

(h) is the di!erence between the restricted and unrestricted
sums of squared residuals (allowing a break at h) for the subsample
[k0

i~1
#1, k0

i
]. From the standard result, if j

i~1
"0 and j

i
"0 in <

i
, then

sup
h|Vi

C
i,T

(h)/p2 $
P m

i
, (A.5)

where m
i
is de"ned in Eq. (5). When j

i~1
and j

i
are non-zero but bounded, the

limiting distribution is the same.
Lemma A.3 can be put in a more compact form, for i"1,2, l#1

S
T
(k0

1
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1
,2, k0

i~1
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(1), (A.6)
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where for i"1, the "rst term on the left-hand side should be understood as
S
T
(h, k0

1
#j

1
,2, k0l#jl), and for i"l#1, as S

T
(k0

1
#j

1
,2, kl`1

#jl`1
, h).

Proof of ¸emma. A.3. Again, consider the case of j
s
*0 for all s. We shall prove

the second equation of Lemma A.3. The rest are similar (the "rst and last are
actually simpler). Note that S
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The last term does not depend on h. By Lemma A.2, all we need is
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where o
1
(1) is uniform in h3<

2
. This result will imply that the test statistic

based on the sample [k0
1
#j

1
, k0

2
#j

2
] will be asymptotically equivalent to the

test based on the sample [k0
1
,k0

2
]. This should be obvious given the boundedness

of j
1

and j
2
. Below is the formal proof. Note that Eq. (A.7) is implied by the

following two equations:
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because adding Eqs. (A.8) and (A.9) yields Eq. (A.7).
Consider Eq. (A.8). Let dK s

2
and dK e

2
be estimators of d

2
using samples

[k0
1
#1, h] and [k0
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2
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], respectively. Then

D(k0
1
, h)"

k01`j1
+

t/k01`1

(y
t
!z@

t
dK s
2
)2#

h
+

k01`j1`1

(y
t
!z@

t
dK s
2
)2 (A.10)
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and
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Since both dK s
2

and dK e
2

are consistent for d
2
, and because j

1
is bounded, the

di!erence between the two "rst terms of Eqs. (A.10) and (A.11) is o
1
(1), and

therefore,
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Let dK t
2

be the estimator of d
2

based on the sample [k0
1
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1
#1, h]. Then
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is bounded, and because
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(¹~1). This implies that the second

term of Eq. (A.10) is D(k0
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. [See the proof of the "rst expression of

Eq. (4).] Similarly, the second term of Eq. (A.11) is D(k0
1
#j

1
, k0

2
#j

2
)#o

1
. In

view of Eq. (A.12), we obtain Eq. (A.8). The proof of Eq. (A.9) is similar. h

Proof of ¹heorem 1. If DkK
i
!k0

i
D)M for all i, then S

T
(kK

1
,2, kK l)"min

ji,2, jl
S
T
(k0

1
#j

1
,2, k0l#jl), here and in what follows, the minimization with respect

to j
1
,2, jl is taken over D j

i
D)M, ∀i. By Lemma A.2,

min
j1,2, jl

S
T
(k0

1
#j

1
,2, k0l#jl)!S

T
(k0

1
,2, k0l )"

l

+
i/1

min
@j@xM

=
i
(j)#o

1
(1).

(A.13)

If DkK *
iv
!k0

v
D)M (v"1,2, l), then

S
T
(kK *

1
,2, kK *l`1

)" min
1xixl`1

min
j1,2, jl_h|Vi

S
T
(k0

1
#j

1
,2, k0

i~1

#j
i~1

, h, k0
i
#j

i
,2, k0l#jl),

where <
i

is de"ned in Eq. (A.4). Note that for h3<
i
, we have

(k0
1
#j

1
,2, k0

i~1
#j

i~1
, h, k0

i
#j

i
,2, k0l#jl)3Kn. The above says that the
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location of the inconsistent break point will be in the segment where the sum of
squared residuals is reduced the most.

Lemma A.3 is equivalent to

min
1xixl`1

min
j1,2, jl_h|Vi

S
T
(k0

1
#j

1
,2, k0

i
#j

i
, h, k0

i`1
#j

i`1
,2, k0l#jl)

!S
T
(k0

1
,2, k0l )" min

1xixl`1

min
j1,2, jl_h|Vi

G
l

+
s/1

=
s
( j

s
)!C

i,T
(h)H#o

1
(1).

(A.14)

Let <M
i
"Mk: k3[k0

i~1
#n¹!M, k0

i
!n¹#M]N and <

1 i
"Mk: k3[k0

i~1
#

n¹#M, k0
i
!n¹!M]N. Then <

1 i
L<

i
L<M

i
. Neither <

1 i
nor <M

i
depends on

the j@
s
s. We have

min
1xixl`1

min
j1,2, jl_h|Vi

G
l

+
s/1

=
s
( j

s
)!C

i,T
(h)H

*

l

+
s/1

min
@j@xM

=
s
( j)#min

i

min
h|VM i

!C
i,T

(h) (A.15)

and, replacing <M
i
by <

1 i
,

min
1xixl`1

min
j1,2, jl_h|Vi

G
l

+
s/1

=
s
( j

s
)!C

i,T
(h)H

)

l

+
s/1

min
@j@xM

=
s
( j)#min

i

min
h|V1 i

!C
i,T

(h) (A.16)

Adding and subtracting S
T
(k0

1
,2, k0l ) and using Eqs. (A.13), (A.14) and (A.15),

we obtain

S
T
(kK

1
,2, kK l)!S

T
(kK *

1
,2, kK *l`1

))! min
1xixl`1

min
h|VM i

!C
i,T

(h)#o
1
(1),

(A.17)

provided that DkK
i
!k0

i
D)M and DkK *

iv
!k0

v
D)M. Similarly, replacing<M

i
by<

1 i
, we

obtain

S
T
(kK

1
,2, kK l)!S

T
(kK *

1
,2, kK *l`1

)* max
1xixl`1

max
h|V1 i

C
i,T

(h)#o
1
(1) (A.18)
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provided that DkK
i
!k0

i
D)M and DkK *

iv
!k0

v
D)M. By the result of Bai and Perron

(1998), P(&i s.t. DkK
i
!k0

i
D'M)(e and by Lemma A.1, P(&l s.t. DkK *

iv
!k0

v
D'M)

(e for large M. These results and Eq. (A.17) imply that

P(MS
T
(kK

1
,2, kK l)!S

T
(kK *

1
,2, kK *l`1

)N/p2*x)

)2e#PAmax
i

max
h|VM i

C
i,T

(h)/p2#o
1
(1)*xB (A.19)

From Eq. (A.5), max
i

max
h|VM i

C
i,T

(h)/p2#o
1

$
P max

i
m
i
. It follows from

Eq. (A.19) that (because e is arbitrary and pL 2(l#1) 1
P p2)

lim
T?=

P(sup LR
T
(l#1Dl)*x))PAmax

i

m
i
*xB. (A.20)

Similarly, using Eq. (A.18) and noting that Eq. (A.5) holds when <
i
is replaced

by <
1 i
, we obtain

lim
T?=

P(sup LR
T
(l#1Dl))x))PAmax

i

m
i
)xB. (A.21)

Inequalities Eqs. (A.20) and (A.21) imply

lim
T?=

P(sup LR
T
(l#1Dl)*x)"PAmax

i

m
i
*xB.

This proves Theorem 1. h

Proof of ¹heorem 3. The more demanding part of the proof is the same as that of
Theorem 1. In particular, the proof of Eqs. (A.17) and (A.18) needs no change. It
remains to show that sup

h
C
i,T

(h)/p2 $
P t

i
, where t

i
is speci"ed in the theorem,

and C
i,T

(h)"D(k0
i~1

, k0
i
)!D(k0

i~1
, h)!D(h, k0

i
), and the supremum with re-

spect to h is taken over the set <M
i
or <

1 i
. We note that C

i,T
(h) is simply the

di!erence between the restricted sum of squared residuals and the unrestricted
sum of squared residuals (allowing for one break at h), computed for the segment
[k0

i~1
#1, k

i
0]. We consider the case of i"1. Other cases are the same. Write

N for k0
1
. Let x

t
"(w@

t
, z

t
@)@, and X

h
"(x

1
, x

2
,2, x

h
)@ (h"1,2, N). Let

;
h
"(u

1
,2, u

h
)@ (h"1,2,N). Then

D(0, N)!D(0, h)!D(h, N)"<@
h
(X@

h
X

h
!(X@

h
X

h
)(X@

N
X

N
)~1(X@

h
X

h
))~1<

h
,
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where <
h
"X@

h
;

h
!(X@

h
X

h
)(X@

N
X

N
)~1X@

N
;

N
. Let B

N
"diag(N1@2, N3@2,2,

N(2p`1)@2, N1@2I
q
), where I

q
is the q]q identity matrix. Because a constant is

included in the regressor, we may assume Ez
t
"0. Then B~1

N
(X@

*Ns+
X

*Ns+
)B~1

N
P

diag(A
s
, sR

zz
),Q

s
, where R

zz
"plim N~1+N

1
z
t
z@
t
and A

s
"A(s) is de"ned in the

text. Furthermore, B~1
N

X
*N > +
;

*N > +
Np=( ) ), where =(s) is a Gaussian process

with E=(s)=(r)@"Q
s\r

. Let <(s)"=(s)!Q
s
Q~1

1
=(1). We have

D(0, N)!D(0, [Ns])!D([Ns], N)Np2<(s)@(Q
s
!Q

s
Q~1

1
Q

s
)~1<(s)

"p2<*(s)@(Q~1@2
1

Q
s
Q~1@2

1

!(Q~1@2
1

Q
s
Q~1@2

1
)2)~1<*(s), (A.22)

where <*(s)"Q~1@2
1
<(s). The variance}covariance matrix of <*(s) is

Q~1@2
1

Q
s
Q~1@2

1
!(Q~1@2

1
Q

s
Q~1@2

1
)2. Let j

1
(s),2, j

p`1
(s) be the eigenvalues of

A~1@2
1

A
4
A~1@2

1
(they are chosen to be continuous and increasing in s), and let

j
p`1`i

(s)"s for i"1,2, q. Then there exists an orthogonal matrix C
s
, such that

C
s
Q~1@2

1
Q

s
Q~1@2

1
C@

s
"diag(j

i
(s), i"1,2, p#1#q). Thus C

s
<*(s) is a vector of

Gaussian processes with E[C
s
<*(s)<*(r)@C@

r
]"diag[j

i
(s'r)!j

i
(s)j

i
(r); i"1,2,

p#1#q]. The last q components of C
s
<*(s) are standard Brownian bridges,

and the "rst p#1 components are time-scaled Brownian bridges. Thus the
limiting distribution in Eq. (A.22) has the following representation:

p`1
+
j/1

B
j
(j

j
(s))2

j
j
(s)(1!j

j
(s))

#

p`1`q
+

j/p`2

B
j
(s)2

s(1!s)
, (A.23)

where the B
j
( ) ) are standard Brownian bridges on [0, 1]. Finally note that, the

smallest h in <
1 1

(or in <M
1
) satis"es h/NPg

1
, and the largest h satis"es

h/NP1!g
1
. This, together with Eq. (A.23), yields the representation of

t
1

given in the theorem. The independence of t
1
,2, tl`1

follows from the fact
that they are derived from non-overlapping segments. h

Proof of Corollary 2. We only need to "nd the expression for H
1
(c)"P(t

1
'c).

Let t
i
"1

2
log(j

i
(s)/(1!j

i
(s)). Using the argument of Chan (1991), we have

P(t
1
'c)+1!expA!2s

p`1`q
(c)A

c

p#1#q
!1B

p`1`q
+
i/1

1~g1

P
g1

dt
i

ds
dsB,

where s
p`1`q

(c) is the density function of a Chi-square random variable
with p#1#q degrees of freedom. From exp(!x)+1!x for small x,
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and

1~g1

P
g1

dt
i
"

1

2
log

j
i
(1!g

1
)(1!j

i
(g

1
))

j
i
(g

1
)(1!j

i
(1!g

1
))
,

we have

P(t
1
'c)+2s

p`1`q
(c)A

c

p#1#q
!1B

C
1

2

p`1
+
i/1

log
j
i
(1!g

1
)(1!j

i
(g

1
))

j
i
(g

1
)(1!j

i
(1!g

1
))
#qlog

1!g
1

g
1
D,

since the last q eigenvalues are identity functions. Using the fact that
j
1
(s)2j

p`1
(s)"det(A~1@2

1
A

s
A~1@2

1
)"det(A~1

1
)detA(s) and (1!j

1
(s))2

(1!j
p`1

(s))"det(I!A~1
1

A
s
A~1

1
)"det(A~1

1
)det[A

1
!A(s)], and substituting

the density function for s
p`1`q

(c), we obtain the expression of H
1
(c) given in the

corollary. h
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