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Critical values for multiple structural change tests
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Summary Bai and Perron (1998) considered theoretical issues related to the limiting
distribution of estimators and test statistics in the linear model with multiple structural
changes. The asymptotic distributions of the tests depend on a trimming parameterε and
critical values were tabulated forε = 0.05. As discussed in Bai and Perron (2000), larger
values ofε are needed to achieve tests with correct size in finite samples, when allowing for
heterogeneity across segments or serial correlation in the errors. The aim of this paper is to
supplement the set of critical values available with other values ofε to enable proper empirical
applications. We provide response surface regressions valid for a wide range of parameters.

Keywords: Hypothesis testing, Response surface, Simulations, Change-point, Segmented
regressions.

1. INTRODUCTION

Bai and Perron (1998), henceforth BP, considered estimating multiple structural changes in a
linear model. The results are obtained under a general framework of partial structural changes
which allows a subset of the parameters not to change.1 Methods to efficiently compute estimates
are discussed in Bai and Perron (2003). BP also addressed the problem of testing for multiple
structural changes under very general conditions on the data and the errors: they considered a
type test for the null hypothesis of no change vs. a pre-specified number of changes and also vs.
an alternative of an arbitrary number of changes (up to some maximum), as well as a procedure
that allows one to test the null hypothesis of, say,` changes, vs. the alternative hypothesis of
` + 1 changes. The latter is particularly useful in that it allows a specific to general modeling
strategy to consistently determine the appropriate number of changes in the data. The tests can
be constructed allowing different serial correlation in the errors, different distribution for the data
and the errors across segments or imposing a common structure.

The relevant asymptotic distributions depend on a trimming parameterε = h/T whereT
is the sample size andh is the minimal permissible length of a segment. Critical values were
provided forε = 0.05. As discussed in Bai and Perron (2000), a trimming as small as 5%
of the sample can lead to substantial size distortions when allowing different variances of the

1Other studies related to multiple structural changes include Andrewset al. (1996), Garcia and Perron (1996) and Liu
et al. (1997), among others.
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errors across segments or when serial correlation is permitted. This is because one is then
trying to estimate various quantities using very few observations; for example, ifT = 100
andε = 0.05, one ends up estimating, for some segments, quantities like the variance of the
residuals using only five observations. Similarly, with serial correlation a heteroscedasticity and
autocorrelation consistent covariance matrix estimator would need to be applied to very short
samples. The estimates are then highly imprecise and the tests accordingly show size distortions.
When allowing different variances across segments or serial correlation, a higher value ofε

should be used.
This paper is structured as follows. Section 2 discusses the relevant framework considered

and Section 3, the test statistics. Section 4 presents the summary regression used to obtain the
critical values of interest. Brief concluding remarks are presented in Section 4.

2. THE MODEL AND ESTIMATORS

We consider the following multiple linear regression withm breaks (m + 1 regimes):

yt = x′
tβ + z′

tδ j + ut , t = Tj −1 + 1, . . . , Tj , (2.1)

for j = 1, . . . , m + 1. In this model,yt is the observed dependent variable at timet ; xt (p × 1)
andzt (q × 1) are vectors of covariates andβ andδ j ( j = 1, . . . , m + 1) are the corresponding
vectors of coefficients;ut is the disturbance at timet . The indices(T1, . . . , Tm), or break points,
are explicitly treated as unknown (we use the convention thatT0 = 0 andTm+1 = T). This
is a partial structural change model since the parameter vectorβ is not subject to shifts and is
estimated using the entire sample. Whenp = 0, we obtain a pure structural change model where
all the coefficients are subject to change. The variance ofut need not be constant. Indeed, breaks
in variance are permitted provided they occur at the same dates as the breaks in the parameters
of the regression.

The multiple linear regression system (2.1) may be expressed in matrix form as

Y = Xβ + Zδ + U, (2.2)

whereY = (y1, . . . , yT )′, X = (x1, . . . , xT )′, U = (u1, . . . , uT )′, δ = (δ′

1, δ
′

2, . . . , δ
′

m+1)
′, and

Z is the matrix which diagonally partitionsZ at (T1, . . . , Tm), i.e. Z = diag(Z1, . . . , Zm+1)

with Zi = (zTi −1+1, . . . , zTi )
′. The purpose is to estimate the unknown regression coefficients

together with the break points whenT observations on(yt , xt , zt ) are available. The method of
estimation considered is based on the least-squares principle. For eachm-partition(T1, . . . , Tm),
the associated least-squares estimates ofβ andδ j are obtained by minimizing the sum of squared
residuals

(Y − Xβ − Zδ)′(Y − Xβ − Zδ) =

m+1∑
i =1

Ti∑
t=Ti −1+1

[yt − x′
tβ − z′

tδi ]
2. (2.3)

To carry out the asymptotic analysis, we need to impose some restrictions on the possible values
of the break dates. In particular, each break date must be asymptotically distinct and bounded
from the boundaries of the sample. To this effect, letλi = Ti /T (i = 1, . . . , m) and define
the following set for some arbitrary positive numberε, a trimming parameter which imposes a
minimal lengthh for a segment, i.e.ε = h/T ,

3ε = {(λ1, . . . , λm); |λi +1 − λi | ≥ ε, λ1 ≥ ε, λm ≤ 1 − ε}. (2.4)
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Let β̂({Tj }) and δ̂({Tj }), denote the estimates based on the givenm-partition (T1, . . . , Tm),
denoted{Tj }. Substituting these in the objective function and denoting the resulting sum of
squared residuals asST (T1, . . . , Tm), the estimated break points(T̂1, . . . , T̂m) are

(T̂1, . . . , T̂m) = argmin(λ1,...,λm)∈3ε
ST (T1, . . . , Tm), (2.5)

i.e. with the minimization taken over all partitions(T1, . . . , Tm) such thatTi − Ti −1 ≥ h = Tε.
The regression parameter estimates are the estimates associated with them-partition {T̂j }. A
method, based on a dynamic programming algorithm, to efficiently compute these estimates is
presented in Bai and Perron (2003).

3. TEST STATISTICS FOR MULTIPLE BREAKS

3.1. A test of no break vs. a fixed number of breaks

BP considered the supF type test of no structural break (m = 0) vs.m = k breaks. LetR be the
conventional matrix such that(Rδ)′ = (δ′

1 − δ′

2, . . . , δ
′

k − δ′

k+1). Define

FT (λ1, . . . , λk; q) =
1

T

(
T − (k + 1)q − p

kq

)
δ̂′R′(RV̂(δ̂)R′)−1Rδ̂, (3.6)

where, in the most unconstrained version,V̂(δ̂) is an estimate of the covariance matrix ofδ̂ robust
to serial correlation and heteroscedasticity; i.e. a consistent estimate of

V(δ̂) = p lim
T→∞

T(Z
′
MX Z)−1Z

′
MX�MX Z(Z

′
MX Z)−1 (3.7)

where MX = I − X(X′X)−1X′. Note that if some restrictions are imposed on the nature of
the heterogeneity across segments and/or serial correlation in the errors, a different form of
V(δ̂) results. For example, imposing the same variance and no autocorrelation in the errors
(though allowing the distribution of the regressors to differ across segments) leads toV(δ̂) =

p limT→∞ T(Z
′
MX Z)−1.

Following Andrews (1993) and others, the test is

supFT (k; q) = FT (λ̂1, . . . , λ̂k; q), (3.8)

where(λ̂1, . . . , λ̂k) minimizes the global sum of squared residuals under the specified trimming,
which is equivalent to maximizing theF-test assuming spherical errors. This is asymptotically
equivalent to, and yet much simpler to construct than, maximizing theF-test (3.6) since the
estimated break dates are consistent even in the presence of serial correlation.

Proposition 3.1.Let Wq(·) be a q-vector of independent Wiener processes on[0, 1]. Under A4
and A8 of BP and m= 0, supFT (k; q) ⇒ supFk,q = sup(λ1,...,λk)∈3ε

F(λ1, . . . , λk; q), with
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F(λ1, . . . , λk; q) =
1

kq

k∑
i =1

[λi Wq(λi +1) − λi +1Wq(λi )]
′
[λi Wq(λi +1) − λi +1Wq(λi )]

λi λi +1(λi +1 − λi )
. (3.9)

Various versions of the tests can be obtained depending on the assumptions made with
respect to the distribution of the data and the errors across segments. These relate to different
specifications in the construction of the estimate ofV(δ̂) given by (3.7). As discussed in the
introduction, the simulation results of Bai and Perron (2000) indicate that a large value ofε

is needed when heterogeneity across segments or correlation in the errors is involved. For that
purpose, we obtained critical values forε = 0.10, 0.15, 0.20 and 0.25 in addition to those
pertaining toε = 0.05 presented in BP. These were obtained via simulations. The Wiener
processesWq(λ) are approximated by the partial sumsn−1/2 ∑[nλ]

i =1 ei with ei ∼ i .i .d. N(0, Iq)

and n = 1000. The number of replications is 10,000. For each replication, the supremum
of F(λ1, . . . , λk; q) with respect to(λ1, . . . , λk) over the set3ε is obtained via a dynamic
programming algorithm (see Bai and Perron (2003)). The critical values obtained correspond
to the 0.90, 0.95, 0.975 and 0.99 quantiles which allow tests with significance levels 0.10, 0.05,
0.025 and 0.01, respectively. The number of regressorsq varies from one to 10. Note that when
ε = 0.10 the maximum number of breaks considered,k, is eight since allowing nine breaks
imposes the estimates to be exactlyλ̂1 = 0.1, λ̂2 = 0.2 up toλ̂9 = 0.9. For similar reasons, the
maximum number of breaks allowed is five whenε = 0.15, three whenε = 0.20 and two when
ε = 0.25. Whenε = 0.05, the maximal value ofk is set to 9.

3.2. Double maximum tests

Often, an investigator wishes not to pre-specify a particular number of breaks to make inference.
To allow this BP have introduced two tests of the null hypothesis of no structural break
against an unknown number of breaks given some upper boundM . These are called thedouble
maximum tests.The first is an equally weighted version defined byUD maxFT (M, q) =

max1≤m≤M FT (λ̂1, . . . , λ̂m; q), where λ̂ j = T̂j /T ( j = 1, . . . , m) are the estimates of the
break points obtained using the global minimization of the sum of squared residuals assuming
segments of minimal lengthh = εT . The limiting distribution of this test is given by
max1≤m≤M sup(λ1,...,λm)∈3ε

F(λ1, . . . , λm; q).
The second test applies weights to the individuals tests such that the marginalp-values are

equal across values ofm and is denotedWDmaxFT (M, q). This implies weights that depend
on q and the significance level of the test, sayα. To be more precise, letc(q, α, m) be the
asymptotic critical value of the testFT (λ̂1, . . . , λ̂m; q) for a significance levelα. The weights
are then defined asa1 = 1 and form > 1 asam = c(q, α, 1)/c(q, α, m). This version is denoted

WDmaxFT (M, q) = max
1≤m≤M

c(q, α, 1)

c(q, α, m)
FT (λ̂1, . . . , λ̂m; q) (3.10)

⇒ max
1≤m≤M

c(q, α, 1)

c(q, α, m)
sup

(λ1,...,λm)∈3ε

F(λ1, . . . , λm; q). (3.11)

Critical values were provided forM = 5 andε = 0.05 in BP. Additional critical values for
ε = 0.10 (M = 5), 0.15 (M = 5), 0.20 (M = 3) and 0.25 (M = 2) were simulated (again with
q ranging from 1 to 10).
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3.3. A test of̀ vs.` + 1 breaks

BP proposed a test for̀ vs. ` + 1 breaks, labelled supFT (` + 1 | `). The test amounts to the
application of(` + 1) tests of the null hypothesis of no structural change vs. the alternative
hypothesis of a single change. It is applied to each segment containing the observationsT̂i −1 + 1
to T̂i (i = 1, . . . , `+1) using the convention that̂T0 = 0 andT̂̀ +1 = T . We conclude for a rejec-
tion in favor of a model with(` + 1) breaks if the overall maximal value of the supFT (1; q)

(over all segments where an additional break is included) is sufficiently large. The break date
thus selected is the one associated with this overall maximum. The limiting distribution is stated
in the following proposition.

Proposition 3.2.Under A4 and A8 of BP and m= ` : limT→∞ P(FT (` + 1 | `) ≤ x) =

Gq,ε(x)`+1, with Gq,ε(x) the distribution function ofsupε≤µ≤1−ε ‖Wq(µ) − µWq(1)‖2/(µ(1−

µ)).

Note that the estimateŝTi need not be the global minimizers of the sum of squared residuals;
one can also use sequential one at a time estimates (see Bai (1997)). Asymptotic critical values
were provided by BP for a trimmingε = 0.05 for q ranging from 1 to 10 and̀ ranging from 0
to 9. Simulated critical values were obtained forε = 0.10 , 0.15, 0.20 and 0.25 in addition to
the valueε = 0.05 presented in BP. Note that, unlike for the supFT (k; q) test, we do not need to
impose similar restrictions on the number of breaks for different values of the trimmingε.2

4. RESPONSE SURFACE REGRESSIONS

In order to present the results more succinctly, we use response surface regressions.3 We
experimented with a variety of specifications and we opted for a class of nonlinear regressions
of the form

yi = (β ′

1x1i ) exp(β ′

2x2i ) + ei (4.12)

where yi is the simulated critical value. The choice of regressors to include was dictated by
overall significance subject to the requirement that theR2 of the regression be no smaller than
0.999. The list of regressors we retained are

• for the supFT (k; q) test:x1 = {1, q, q2, k, ε, q/ε}, x2 = {1/k, 1/(ε ∗ k)};
• for theUD maxFT (M; q) andWDmaxFT (M; q) tests:x1 = {1, q, ε}, x2 = {q, ε};
• for the supFT (` | ` + 1) test:x1 = {1, q, q2, ` + 1, 1/(` + 1), ε}, x2 = {q, q2

}.

The same specifications apply to all significance levels. The results are presented in Table 1.
These permit a quick computation of the approximate critical values as the fitted values of the
regression for particular choices ofq, k or `, andε. We computed the difference between the
fitted values and the actual simulated values and these were found to be very small. Hence, little
distortion in size will occur using this set of results to compute critical values.

2However, considering more than int[1/ε] − 2 breaks implies changingε as one progresses through the sequential
procedure. For example, one could use a trimmingε = 0.05 and find six breaks in the first half of the sample, then switch
to a trimming ofε = 0.20 to test for a seventh break.
3The full sets of critical values are available in tabulated format athttp:/econ.bu.edu/perron.
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5. CONCLUSIONS

Bai and Perron (2000) presents an extensive simulation analysis pertaining to the size and power
of the tests, among other things. A useful strategy is to first look at theUD max orWDmax tests
to see if at least one break is present. If these indicate the presence of at least one break, then the
number of breaks can be decided based upon a sequential examination of the supF(` + 1 | `)

statistics constructed using global minimizers for the break dates (i.e. ignore the testF(1 | 0)

and selectm such that the tests supF(` + 1 | `) are insignificant for̀ ≥ m). This method leads
to the best results and is recommended for empirical applications.

The methods are shown to be adequate, in general, but care must be taken when using
particular specifications. With respect to testing, the following recommendations are made. First,
ensure that the specifications are such that the size of the test is adequate under the hypothesis of
no break. If serial correlation and/or heterogeneity in the data or errors across segments are not
allowed in the estimated regression model (and not present in the data generating process), using
any value of the trimmingε will lead to tests with adequate sizes. However, if such features are
allowed, a higher trimming is needed. With a sample ofT = 120,ε = 0.15 should be enough for
heterogeneity in the errors or the data. If serial correlation is allowed,ε = 0.20 may be needed.
These could be reduced if larger sample sizes are available. Hence, the critical values provided
here should be useful in practice.
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