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Abstract

This paper proposes a nonparametric test for parametric conditional distributions of dynamic

models. The test is of the Kolmogorov type coupled with Khmaladze’s martingale transforma-

tion. The proposed test is asymptotically distribution free and has non-trivial power against

root-n local alternatives. The method is applicable for various dynamic models, including

autoregressive and moving average models (ARMA), generalized autoregressive conditional

heteroskedasticity (GARCH), integrated GARCH (IGARCH), and general nonlinear time se-

ries regressions. The method is also applicable for cross sectional models. Finally, we apply

the procedure to testing conditional normality and conditional t-distribution in a GARCH

model for the NYSE equal-weighted returns.

Key Words and Phrases: Empirical process, martingale transformation, continuous-time re-

cursive least squares, continuous-time detrending, Brownian motion.



1 Introduction

The study of probability distributions of economic variables is an important subject and has a

long history, for example, the study of income distribution by Pareto (1897) and that of wealth

distribution by Sargan (1957). In financial economics, the distributions of assets’ returns

have been extensively examined, e.g., Fama (1967). In risk management, the distribution of

a portfolio’s value is closely monitored by asset managers. Often undertaken in econometrics

is testing distributional assumptions, with a usual focus on normality, as in Bera and Jarque

(1982). This paper studies the problem of testing conditional distributions of dynamic models,

where distributions evolve over time. Though not a focus of this paper, dynamic conditional

distributions is related to density forecasting, which is a major concern in risk management.

For further elaboration on this topic, see Diebold, Gunther and Tay (1998).

A conventional procedure for testing distributional assumptions is that of the Kolmogorov

test. However the test is designed for independent and identically distributed (iid) obser-

vations with a completely specified null distribution. In the present context, the data are

dependent and the null hypothesis does not completely specify the distribution of the data

because of the presence of unknown parameters and unspecified distributions for the condi-

tioning variables. As a result, the joint distribution of observations is not uniquely determined

under the null. Furthermore, it is well known that when parameters are estimated, the Kol-

mogorov test is not asymptotically distribution free, see Durbin (1973a). This means that

different critical values are needed for different distributions and for different parameter val-

ues. These problems are further compounded by the fact that the critical values are difficult

to compute because the limiting distribution of the Kolmogorov test is a complicated function

of the underlying true distribution and the true parameter. The objective of this paper is to

develop test statistics that can overcome all these difficulties.

Suppose that a sequence of observations (Y1, X1), (Y2, X2), ..., (Yn, Xn) is given. Let Ωt =

{Xt, Xt−1, ..., ; Yt−1, Yt−2, ...} represent the information set at time t (not including Yt). We

are interested in the conditional distribution of Yt conditional on the information set Ωt. More

specifically, of central interest is the following null hypothesis:

H0 : The conditional distribution of Yt conditional on Ωt is in the parametric family

Ft(y|Ωt, θ) for some θ ∈ Θ, where Θ is the parameter space.

Note that the conditional distribution under the null hypothesis allows for an infinite past

history of information. For example, consider an MA(1) process: Yt = εt + θεt−1 with |θ| < 1,
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where the εt are iid with cumulative distribution function (cdf) Fε. Then the conditional

cdf of Yt|Ωt is given by Fε(y −
∑∞

k=1(−1)kθkYt−k), with Ωt = {Yt−1, Yt−2, ...}. Moreover, the

conditional distribution not only varies with the information set but also evolves over time.

This possible evolution is highlighted by the subscript t in Ft(y|Ωt, θ). The objective is to

formulate test statistics for H0 under this general setup.

The proposed test is of the Kolmogorov type, coupled with a martingale transformation

of Khmaladze (1981). It will be shown that the proposed test has non-trivial local power

against root-n local alternatives. In addition, the test is asymptotically distribution free and

critical values are easy to obtain. Therefore, no simulation or bootstrap will be required to

perform the test procedure. We apply the method to the NYSE equal-weighted real returns

modelled as a GARCH process. While conditional normality is strongly rejected, conditional

t-distribution cannot be rejected. One implication of this result is that the observed “heavy-

tailedness” is not entirely induced by the conditional heteroskedasticity, but the conditional

distribution itself has heavy tails relative to the normal distribution.

The rest of this paper is organized as follows. Section 2 provides a literature review

and states our contributions. Test statistics are described in Section 3 along with martin-

gale transformation for several concrete examples. An empirical application is also given in

this section. Section 4 establishes the weak convergence results that are prerequisite for the

martingale transformations. Also considered in this section are the estimation of unknown

transforming functions, analysis of local power, and consistency of the test. Some limited

Monte Carlo simulations are also presented in Section 4. The conclusion is provided in the

last section. An introduction to martingale transformation, its computational issue, and the

theoretical proofs are given in the appendix.

2 Related literature and contributions of this paper

The Kolmogorov test is formulated for iid observations and for a simple hypothesis (i.e., a

completely specified distribution). In an influential paper, Durbin (1973a) considers testing

for a composite hypothesis, where the distribution function depends on an unknown vector

of parameters. One unpleasant feature of the K-test is that when parameters are estimated,

it is no longer asymptotically distribution free. As a result, critical values change from one

null hypothesis to another. Different parameter values also need different critical values, even

within the same parametric family of distributions. Several approaches have been suggested in
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the literature to circumvent this problem. One is the half-sample method, where parameters

are estimated with a randomly chosen half sample, see Durbin (1973b). Another approach

is to randomize the estimated parameters, see Loynes (1980). These approaches do not work

satisfactorily. In addition, these methods do not apply to time series data.

Recently, Andrews (1997) proposes a conditional Kolmogorov test. Andrews proves the

consistency of his test and justifies the use of the bootstrap method to obtain critical values.

The conditional Kolmogorov test overcomes a number of difficulties associated with the Kol-

mogorov test. However, Andrews’ test is not designed for dynamic models. In addition, the

dimension of the conditioning variables is fixed and finite.

Zheng (2000) provides a test based on Kullback-Leibler information criterion together

with kernel estimation of the underlying distributions. Zheng’s tests are consistent against

all departures from the null. The test has local power against alternatives that converge to

zero slower than root-n. Fan (1994) provides a test for parametric density function using

the kernel method. Stinchcombe and White (1998) also provide nonparametric tests for

conditional distributions and established consistency of their test. All these papers deal with

iid observations.

Inoue (1997) proposes a test statistic for testing a number of econometric problems related

to conditional distributions in time series. He suggests to use an upper bound derived from

the law of the iterated logarithms to obtain critical values. Diebold, Gunther, and Tay

(1998) propose a framework for evaluating density forecasts, and discuss the Kolmogorov test

for conditional distributions in time series, among other issues. They do not consider the

effect of parameter estimation. Linton and Gozalo (1996) use the Kolmogorov type test for

conditional independence of iid observations.

In this paper, we use Khmaladze’s transformation approach to derive an asymptoticlly

distribution-free test. In doing so, this transformation itself is also extended in some important

ways.

Khmaladze’s transformation has proven useful for various problems. Koul and Stute (1999)

apply the transformation to marked empirical processes for AR(1) models, either linear or non-

linear. Their focus is the specification of the conditional mean, rather than the conditional

distribution. Incidentally, extension of the transformation to AR(2) or multiple-regressor

marked-empirical processes is non-trivial because, among other technical difficulties, Khmal-

adze’s transformation is not unique for multivariate empirical processes, see Khmaladze (1988,

1993). A marked empirical process for high dimensional models is a multivariate process (in-

3



dexed by a vector). Khmaladze’s approach is also used for hazard function specification test,

e.g., Andersen et al. (1993). Bai and Ng (1998) construct a consistent test for conditional

symmetry with the transformation method.

We make several contributions in this paper. First, we consider conditional distributions

of dynamic models which, of course, include iid observations as special cases. For dynamic

models, the conditioning event may depend on the entire history of the data (generally unob-

servable). Information truncation is required for these situations. Second, we obtain various

weak convergence results for empirical processes of dynamic models under parameter esti-

mation and information truncation. The weak convergence result for GARCH and IGARCH

is particularly interesting. We also obtain weak convergence for the transformed process

under the supremum norm, which forms the basis for asymptotically distribution-free tests.

Third, Khmaladze’s transformation requires the knowledge of a set of transforming functions

(denoted by g, see Section 3). We extend this transformation to the estimated g, and un-

der very general conditions we prove weak convergence. In particular, we do not need any

rate of convergence for the estimated g. Fourth, we find that the dimension of transforming

functions is not necessarily equal to the number of freely varying parameters. For example,

dimension reduction can be achieved in location-scaled models (e.g., GARCH), resulting in a

very simple transformation. Fifth, we explore the consistency of the test resulting from the

transformation in general, and we further establish the consistency of the test for GARCH or

any location-scale model in particular. Finally, an empirical application further demonstrates

the usefulness of the proposed method.

For some problems, the conditional distribution Ft(·|Ωt, θ), is not specified and instead

a data generating process (DGP) is given, e.g., continuous-time finance models. Often, the

implied conditional distribution is difficult to derive from the DGP. Given a set of data,

one can test whether the data come from the hypothesized data generating process using the

procedure of this paper. This is because one can simulate a large number of observations from

the given DGP so that the underlying distribution implied by the DGP can be estimated up to

any precision. The estimated distribution can be used to construct test statistics. Thompson

(2000) applies a similar method to continuous-time finance models.

3 Test statistics

3.1 Description of the method. Assuming that the null hypothesis is true and that the
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true parameter value θ0 is known, then, using integral transformation, we can transform the

dependent data into an iid sequence of uniformly-distributed random variables. That is,

Ut = Ft(Yt|Ωt, θ0) are iid and uniform random variables.

The random variables Ut are unobservable since θ0 is unknown. When an estimator θ̂ of

θ0 is available, we may use Ût = Ft(Yt|Ωt, θ̂) as an estimate for Ut. The random variables

Ût are neither independent nor identically distributed. Furthermore, the unavailability of

an infinite history of observations necessitates a truncation of the information sets. Let

Ω̃t = {Xt, Xt−1, ..., X1, 0, 0, ..., Yt−1, ..., Y1, 0, 0, ...} represent a truncated (observable) version

of Ωt. Define

Ût = Ft(Yt|Ω̃t, θ̂).

For example, in the case of an MA(1) process, Yt = εt + θεt−1 with εt being iid Fε, Ût =

Fε(Yt −
∑t−1

k=1(−θ̂)kYt−k), whereas Ut = Fε(Yt −
∑∞

k=1(−θ)kYt−k).

Let V̂n(r) be the empirical process based on Û1, ..., Ûn. That is,

V̂n(r) =
1√
n

n∑
t=1

[I(Ût ≤ r)− r]. (1)

Under some regularity conditions to be introduced later, it can be shown that V̂n(r) has the

following asymptotic representation

V̂n(r) = Vn(r)− ḡ(r)′
√

n(θ̂ − θ0) + op(1), (2)

where

Vn(r) =
1√
n

n∑
t=1

[I(Ut ≤ r)− r] (3)

ḡ(r) = plim
1

n

n∑
t=1

∂Ft

∂θ
(x|Ωt, θ0)

∣∣∣
x=F−1

t (r|Ωt,θ0)
(4)

Due to the presence of the second term in the right-hand-side of (2), the limiting process of

V̂n(r) generally depends on Ft as well as on θ0.
1 As a result, the Kolmogorov test based on

V̂n(r) will not be asymptotically distribution free and critical values are difficult to obtain.

However, applying the martingale transformation discussed in Appendix A, we can remove

the term ḡ(r)′
√

n(θ− θ0). The transformed process will have a Brownian motion as its limit.

1The exact limiting process will also depend on how the parameter θ0 is estimated. If θ̂n is asymptotically

normal then V̂n will generally have a limiting Gaussian process. In this paper, we only need root-n consistency

of θ̂n.
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Specifically, let g(r) = (r, ḡ(r)′)′ and ġ(r) = (1, ˙̄g(r)′)′ so that ġ is the derivative of g. Let

C(r) =
∫ 1
r ġ(τ)ġ(τ)′dτ . Consider the transformation

Ŵn(r) = V̂n(r)−
∫ r

0

[
ġ(s)′C−1(s)

∫ 1

s
ġ(τ)dV̂n(τ)

]
ds. (5)

It can be shown that Ŵn(r) converges weakly to a standard Brownian motion. Define the

test statistic as

Tn = sup
0≤r≤1

|Ŵn(r)|

then by the continuous mapping theorem,

Tn
d→ max

0≤t≤1
|W (r)|

where W is a standard Brownian motion process. It is easy to simulate the distributions of

the right hand side variable. This only needs to be done once. The critical values at 10%, 5%,

and 1% are found to be 1.94, 2.22, and 2.80, respectively, and are obtained via simulation.

Each sample path of W (r) is approximated by normalized partial sums of 1,000 iid N(0,1)

variables. Then 100,000 sample paths are simulated and the maximum values are obtained

for each path. These extreme values are ordered to obtain the quantiles.

The test statistic Tn can be easily computed, see Appendix B for details.

Martingale transformation is in effect a continuous-time detrending operation, where the

trend function is g(r) = (r, ḡ(r)′)′. To see this, write (2) in the differentiation form

dV̂n(r) = dVn(r)− ˙̄g(r)′dr
√

n(θ̂ − θ0) + op(1)

Consider regressing dV̂n(r) on ġ(r) over the interval (s, 1]. Then the least square estimator

is given by (
∫ 1
s ġġ′dr)−1

∫ 1
s ġdV̂n = C(s)−1

∫ 1
s ġ(τ)dV̂n(τ). Multiplying this estimator by ġ(s)ds

gives the predicted value of dV̂n(s). Thus the residual (detrended value) is given by

dV̂n(s)− [ġ(s)′C−1(s)
∫ 1

s
ġ(τ)dV̂n(τ)]ds. (6)

Then integrating from 0 to r gives rise to Ŵn(r). The above is a recursive residual. This is

so because at each point s, a least squares is performed. The procedure is analogous to the

discrete time recursive residuals of Brown, Durbin, and Evans (1975). As in the discrete time

framework, recursive residuals are non-correlated (martingale differences) and a cumulative

sum of recursive residuals leads to a Brownian motion. Here a cumulative sum of (6) (i.e.,

integration from [0, r]) yields a Brownian motion process.
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3.2 Examples. In the following we give several concrete examples on testing distributional

assumptions and on the construction of martingale transformation.

Example 1: GARCH(1, 1). A GARCH(1,1) takes the form, see Bollerslev (1986),

Yt = X ′
tδ + εtσt,

σ2
t = α + βσ2

t−1 + γ(Yt−1 −X ′
t−1δ)

2,

where εt is iid with zero mean and unit variance. The parameters are assumed to satisfy

α > 0, β ≥ 0, γ ≥ 0, and β + γ ≤ 1.

For IGARCH models, i.e., β +γ = 1, we assume 0 < β < 1, as in Lee and Hansen (1994). The

objective is to test the null hypothesis that the distribution function of εt is F . Commonly

considered cases are the normal and t-distributions. Under the null hypothesis, the conditional

distribution of Yt conditional on Ωt is

Yt|Ωt ∼ F
(
(y −X ′

tδ)/σt

)
.

Compute the conditional variance via the recursion (starting with a given initial value σ̂2
0):

σ̂2
t = α̂ + β̂σ̂2

t−1 + γ̂(Yt−1 −X ′
t−1δ̂)

2

and define

ε̂t = (Yt −X ′
tδ̂)/σ̂t, and Ût = F (ε̂t).

Let V̂n(r) be the empirical process based on Ût. It is shown in Section 4 that

V̂n(r) = Vn(r) + f(F−1(r)) pn + f(F−1(r))F−1(r) qn + op(1), (7)

where f is the density and F−1 is the inverse of F , pn and qn are complicated functions of

data and parameters. Therefore, the limiting process of V̂n is rather complicated and a direct

Kolmogorov test is difficult to implement. However, martingale transformation is easy to

construct. Let

g(r) = (g1, g2, g3)
′ = (r, f(F−1(r)), f(F−1(r))F−1(r))′ (8)

Therefore, ġ1 = 1, ġ2 = ḟ(F−1(r))/f(F−1(r)) and ġ3 = 1+ ġ2(r)F
−1(r). For testing normality,

then

ġ(r) = (1, − Φ−1(r), 1− Φ−1(r)2)′

7



where Φ(r) is the cdf a standard normal random variable. Given ġ, the transformation of V̂n

is performed using formula (5).

Remark 1: For general GARCH(p,q) processes, the transformation is identical to that of

GARCH(1,1) because the g function is identical. This is because the corresponding empiri-

cal process V̂n has the same asymptotic representation except that pn and qn have different

expressions. But pn and qn are not functions of r and thus will not affect the transformation.

Example 2: ARMA(p,q) process. Consider a stationary and invertible ARMA(p,q)

process such that

Yt = µ + ρ1Yt−1 + · · · ρpYt−p + εt + θ1εt−1 + · · · θqεt−q

Consider testing the hypothesis that εt are iid F (·/σ). Let θ = (µ, ρ1, ..., ρp, θ1, ..., θq, σ) and

θ̂ be root-n consistent estimator of θ. Given n + p observations Y−p+1, Y−p+2, ..., Y0, Y1, ..., Yn,

the residuals can be computed via the recursion

ε̂t = Yt − µ̂− ρ̂1Yt−1 − · · · − ρ̂pYt−p − θ̂1ε̂t−1 − · · · − θ̂qε̂t−q (t = 1, 2, ..., n)

the initial value of (ε̂0, ..., ε̂1−q) is set to zero. Define Ût = F (ε̂t/σ̂) and V̂n as in (1). Then

it can be shown that representation (7) is still valid but with different expressions for pn and

qn. Thus the transformation takes exactly the same form as in GARCH(1,1).

Example 3: nonlinear time series regression. Consider the general nonlinear time

series regressions:

Yt = h(Ωt, β) + εt (9)

where Ωt = (Xt, Xt−1, ...; Yt−1, Yt−2, ...). For linear regressions, Bera and Jarque (1982) con-

sider testing normality of εt based on skewness and kurtosis coefficients. It is assumed that

εt are iid with zero mean and is independent of Ωt. Consider testing the hypothesis that εt

has a cdf F (x, λ) with density function f(x, λ), and λ ∈ Rd is vector of unknown parameters.

Then the conditional cdf of Yt is F (y − h(Ωt, β), λ). Define

Ût = F (Yt − h(Ω̃t, β̂), λ̂).

The estimated residuals are computed from the truncated information set. Again, let V̂n be

as defined in (1) with the new Ût. Write f(x) for f(x, λ0) and F (x) for F (x, λ0), where λ0 is

the true parameter. Theorem 2 of Section 4 shows that

V̂n(r) = Vn(r)− f(F−1(r))an +
∂F (F−1(r))

∂λ

′

bn + op(1) (10)
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where an and bn are random variables not depending on r. Thus the g function in this case is

g(r) = (r, f(F−1(r)),
∂F (F−1(r))

∂λ

′

)′

and ġ = (1, ḟ(F−1(r))/f(F−1(r)), ∂f(F−1(r))′

∂λ
/f(F−1(r)))′. When λ is a scale parameter such

that F (x, λ) = F (x/λ) (here λ > 0), simplification can be achieved. Comments concerning

this are given following Theorem 2 in Section4.

Remark 2: It can be shown that the method is applicable for threshold autoregressive

models (TAR) or self-exciting TAR. Consider, for example, Yt = β1Yt−1 + εt if Yt−1 ≤ c

and Yt = β2Yt−1 + εt if Yt−1 > c. The model can be rewritten as Yt = β1Yt−1I(Yt−1 ≤
c) + β2Yt−1I(Yt−1 > c) + εt. If c is known, the TAR model is linear in β = (β1, β2), thus

covered by our theory. For unknown c, the conditional mean is not a smooth function of c.

However, c can be estimated with a convergence rate n, see Chan (1993). The implication is

that c can be treated as known. This is because n-consistency implies that only a bounded

number (with large probability) of observations are misclassified from one regime to another

and the rest are correctly classified (i.e., c known). A fixed number of misclassifications does

not affect the limiting results. Finally, εt can also be regime-dependent.

3.3 An empirical application. In this section, we apply the test procedure of the

previous section to the monthly NYSE equal-weighted returns fitted to a GARCH(1,1) process.

The range of the data spans from January, 1926 to December, 1999, as shown in Figure 1.

Testing conditional normality. We estimate the following GARCH (1,1) process to the

data

Yt = µ + σtεt,

with σ2
t = α + βσ2

t−1 + γ(Yt−1 − µ)2. The Gaussian maximum likelihood method is used to

estimate the parameters. After obtaining the parameters, we compute the residuals according

to ε̂t = (Yt − µ̂)/σ̂t with σ̂2
t = α̂ + β̂σ̂2

t−1 + γ̂(Yt−1 − µ̂)2. We then compute Ût = Φ(ε̂t)

(t = 1, ..., n) and V̂n(r). The function ġ is given by

ġ(r) = (1,−Φ−1(r), 1− Φ−1(r)2)′.

The transformation Ŵn(r) and the test statistic Tn are computed according to Appendix B.

Both the transformed process Ŵn(r) and untransformed process V̂n(r) are plotted in Fig-

ure 2. The two horizontal lines give the 95% confidence band for a standard Brownian motion

process on [0,1]. Since the process Ŵn(r) stays out of the confidence band, conditional normal-

ity is rejected. In fact, the critical values of the test procedure at significance levels 10%, 5%,
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and 1% are 1.94, 2.22, and 2.80, respectively, and the value of the test statistic is Tn = 4.08.

Thus conditional normality is rejected even at the 1% significance level.

Testing conditional t-distribution. With the same data set, we test the hypothesis that εt

has a student-t distribution with df = 5, normalized to have a variance of 1. This number

of degrees of freedom is close to the values usually found for asset returns fitted to GARCH

models. Note that there is no need to re-estimate the model. Assuming that εt has a student-t

distribution, quasi-Gaussian likelihood estimation still provides root-n consistent estimation

for the parameters. See, for example, Lee and Hansen (1994), Lumsdaine (1996) and Newey

and Steigerwald (1997).

Let tν be a student-t random variable with df=ν and let qv(x) and Qv(x) be the density

and cdf of tν , respectively. Because εt is normalized to have a variance of 1, we have εt ∼ c−1tν

with c = [ν/(ν − 2)]1/2. Thus, the cdf of εt under the null hypothesis is F (x) = Qv(cx) with

f(x) = qv(cx)c. Thus we should define Ût as Ût = Qv(cε̂t) (t = 1, ..., n) and V̂n be the

empirical process based on Û1, ..., Ûn. Using (8) for the given f and F , we obtain g(r) =

(r, qv(Q
−1
v (r))c, qv(Q

−1
v (r))Q−1

v (r))′ with a constant c in the second component. Since a

constant factor will not affect the transformation (or alternatively, pn is replaced by cpn in

Theorem 3 of Section 4), we can use the following g:

g(r) = (r, qν(Q
−1
ν (r)), qν(Q

−1
ν (r))Q−1

ν (r))′ (11)

This function again has the format of (8). It is easy to derive ġ. In fact, denote ġ = (1, ġ2, ġ3).

Then ġ3 = 1 + ġ2Q
−1
ν (r). From dqν(x)/dx = −xqν+2((

ν+2
ν

)1/2x) we have

ġ2 =
−Q−1

ν (r)qν+2([ν + 2)/ν]1/2Q−1
ν (r))

qν(Q−1
ν (r))

.

Given ġ, the process Ŵn(r) and the test Tn can be easily obtained.

Figure 3 shows both V̂n(r) and Ŵn(r). The process Ŵn(r) stays well within the 95%

confidence band. In fact, the maximum value of |Ŵn(r)| is equal to 1.605, whereas the critical

value is 2.22 at the 95% significance level. Therefore, we do not reject the hypothesis that

innovations to the GARCH process have a conditional t-distribution.

4 Theoretical results

This section provides the theoretical basis for the validity of the results in Section 3. In

particular, we focus on the asymptotic representations of the empirical processes of conditional
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distributions. Throughout, we use “ ⇒ ” to denote the weak convergence in D[0, b] (b > 0),

the space of cadlag functions endowed with the Skorohod metric, see Pollard (1984).

We start with a lemma given in Diebold, Gunther, and Tay (1998), who noted a similar

idea can be traced back to Rosenblatt (1952). We provide a much simpler proof. Let Ft be a

sequence of increasing σ-fields such that Yt is Ft measurable. (Alternatively, think about Ft

as the information set at time t, and Yt is included in this information set.)

Lemma 1 If the conditional distribution of Yt conditional on Ft−1 has a continuous cdf

Ft(y|Ft−1). Then the random variables Ut = Ft(Yt|Ft−1) are i.i.d. U(0, 1).

Proof: Since the conditional cdf of Yt is Ft(y|Ft−1), the conditional distribution of Ut =

Ft(Yt|Ft−1) (conditional on Ft−1) is U(0, 1). Because the conditional distribution of Ut does

not depend on Ft−1, Ut is independent of Ft−1. It follows that Ut is independent of Ut−1

because Ut−1 is Ft−1 measurable (i.e., Ut−1 is a part of Ft−1). The latter is true because

Ut−1 = F (Yt−1|Ft−2), Yt−1 is Ft−1 measurable and Ft−2 ⊂ Ft−1. This implies that Ut is

independent of (Ut−1, Ut−2, ...) for all t. This further implies joint independence because the

joint density can be written as product of marginal and conditional densities. 2.

4.1 General conditional distributions. Let Ωt = {Xt, Xt−1, ..., ; Yt−1, Yt−2, ...} repre-

sent the information set at time t (not including Yt). The hypothesis of interest is that the

conditional distribution of Yt conditional on Ωt is in the parametric family Ft(y|Ωt, θ0) for

some θ0 in the parameter space. By Lemma 1, Ut = Ft(Yt|Ωt, θ0) is a sequence of iid random

variables. Let Ω̃t = {Xt, Xt−1, ..., X1, 0, 0, ..., Yt−1, ..., Y1, 0, 0, ...} represent a truncated version

of Ωt and θ̂ be a root-n consistent estimator of θ0. Define Ût = F (Yt|Ω̃t, θ̂) and

V̂n = n−1/2
n∑

t=1

[I(Ût ≤ r)− r]

To obtain the limiting process of V̂n(r), we need to state the underlying assumptions. As a

matter of notation, Ft(y|Ωt, θ) and Ft(y|θ) will be used interchangeably when no information

truncation is present. Throughout, let N(θ0, M) = {θ; |θ − θ0| ≤ Mn−1/2}. We assume:

A1: The cdf Ft(y|Ωt, θ) and its density function ft(y|Ωt, θ) are continuously differentiable

with respect to θ; Ft(y|Ωt, θ) is continuous and strictly increasing in y, so that the inverse

function F−1
t is well defined; E supx supu ft(x|Ωt, u) ≤ M1 and E supx supu ‖∂Ft

∂θ
(x, |Ωt, u)‖2 ≤

M1 for all t and for some M1 < ∞, where the supremum with respect to u is taken in N(θ0, M).

A2: There exists a continuously differentiable function ḡ(r) such that for every M > 0

sup
u,v∈N(θ0,M)

∥∥∥ 1

n

n∑
t=1

∂Ft

∂θ
(F−1

t (r|u) | v)− ḡ(r)
∥∥∥ = op(1),

11



where op(1) is uniform in r ∈ [0, 1]. In addition,
∫ 1
0 ‖ġ‖2dr < ∞ and C(s) =

∫ 1
s ġġ′dr is

invertible for every s ∈ [0, 1), where g = (r, ḡ′)′.

A3: The estimator θ̂ satisfies
√

n(θ̂ − θ0) = Op(1).

A4: The effect of information truncation satisfies:

sup
u∈N(θ0,M)

n−1/2
n∑

t=1

∣∣∣Ft(F
−1
t (r|Ω̃t, u) | Ωt, θ0)− Ft(F

−1
t (r|Ωt, u) | Ωt, θ0)

∣∣∣ = op(1)

Assumption A1 is concerned with the behavior of the conditional density function and the

cumulative distribution function. In the iid setting, ḡ(r) in A2 is equal to ∂F (x, θ0)/∂θ, eval-

uated at x = F−1(r, θ0). The term ḡ(r)′
√

n(θ̂− θ0) reflects the effect of parameter estimation.

It is equal to (up to an op(1)) the difference F (x, θ̂)− F (x, θ0) via the Taylor expansion. A2

also assumes that C(s) is a full rank matrix, which may not always be satisfied. However,

all needed is that ḡ(r)′
√

n(θ̂ − θ0) can be written as g∗(r)an, where an does not depend on

r and C∗(r) =
∫ 1
s g∗g′∗dr is invertible. This situation rises in location-scale models, such as

GARCH models. In fact, this makes the transformation simpler because the dimension of ḡ

can be much smaller than the number of parameters. A3 is a standard assumption. A4 is

unique to dynamic models and is associated with incomplete information sets. It says that

past information becomes less relevant as time progresses. A4 is satisfied for GARCH and

stationary and invertible ARMA processes. It is noted that even though the aggregation of

truncation errors (the sum) is small, each summand in A4 may not be small. For example, in

MA(1) process with |θ0| < 1, it can be shown that∣∣∣Ft(F
−1
t (r|Ω̃t, u) | Ωt, θ0)− Ft(F

−1
t (r|Ωt, u) | Ωt, θ0)

∣∣∣ ≤ B|
∞∑
j=t

(−u)jYt−j|

for some constant B < ∞ and |u| < 1. For each fixed t, the above is Op(1). But the sum of

these terms is still Op(1) and becomes Op(n
−1/2) upon dividing by n−1/2.

Theorem 1 Under assumptions A1-A4, the asymptotic representations (2), (3) and (4) hold.

This result provides the basis for the martingale transformation. Let g(r) = (r, ḡ(r)′)′ and ġ

be the derivative of g. The martingale transformation is given by

Ŵn(r) = V̂n(r)−
∫ r

0

[
ġ(s)′C−1(s)

∫ 1

s
ġ(τ)dV̂n(τ)

]
ds, (12)

and the test statistic

Tn = sup
0≤r≤1

|Ŵn(r)|.

The test statistic Tn can be easily computed, see Appendix B for details. We have

12



Corollary 1 Under the assumptions of Theorem 1,

Ŵn(r) ⇒ W (r)

Tn
d→ sup

0≤r≤1
|W (r)|,

where W (r) is a standard Brownian motion.

4.2 Nonlinear time series regressions. This section considers an application of the

general framework to nonlinear time series regressions of the form:

Yt = h(Ωt, β) + εt (13)

where Ωt = (Xt, Xt−1, ...; Yt−1, Yt−2, ...). For linear regressions, Bera and Jarque (1982) con-

sider testing normality of εt based on skewness and kurtosis. In what follows, let β0 and

λ0 denote the true parameters. We write ht(β) for ht(Ωt, β), f(x) for f(x, λ0) and F (x) for

F (x, λ0). We assume:

B1: εt are iid with mean zero, density function f(x, λ), and cdf F (x, λ), where λ ∈ Rd are

unknown parameters. The cdf F is strictly increasing and is continuously differentiable with

respect to λ. Also, f(x, λ) and ∂F/∂(λ)(x, λ) are bounded for λ in a neighborhood of λ0 and

for all x. Furthermore, εt is independent of Ωt.

B2: ht(β) is continuously differential in β and E‖∂ht(β0)
∂β

‖2 ≤ M for some M < ∞.

B3: The estimators satisfy
√

n(β̂ − β0) = Op(1), and
√

n(λ̂− λ0) = Op(1).

B4: The effect of information truncation satisfies:

n−1/2
n∑

t=1

|h(Ω̃t, β0)− h(Ωt, β0)| = op(1).

For linear regressions: Yt = X ′
tβ + εt, assumptions B2 is satisfied if E‖Xt‖2 ≤ M for all

t. B3 can be satisfied by least squares method or by some robust estimation methods. B4 is

also trivially satisfied because of no information truncation.

Under assumption B1, the conditional cdf of Yt is F (y − h(Ωt, β), λ). Define

Ût = F (Yt − h(Ω̃t, β̂), λ̂)

and let V̂n(r) be defined as in (1).

Theorem 2 Under assumptions B1-B4, (10) hold. That is,

V̂n(r) = Vn(r)− f(F−1(r))an +
∂F (F−1(r))

∂λ

′

bn + op(1) (14)

13



where an = 1
n

∑n
t=1

∂ht(β0)
∂β

′√
n(β̂ − β0), bn =

√
n(λ̂ − λ0), and ∂F (F−1(r))

∂λ
is equal to ∂F (x,λ0)

∂λ

evaluated at x = F−1(r, λ0).

When λ is a scale parameter such that F (x, λ) = F 0(x/λ) for some cdf F 0, then2 f(F−1(r)) =

f 0(F 0−1(r))λ−1 and ∂F (F−1(r))
∂λ

= −f 0(F 0−1(r))F 0−1(r)λ−1. Absorbing λ−1 into an and −λ−1

into bn, we obtain the following representation:

V̂n(r) = Vn(r) + f 0(F 0−1(r))an + f 0(F 0−1(r))F 0−1(r)bn + op(1).

This is true for all location-scale models. For this class of models the dimension of g is at

most three. When no conditional mean parameter is estimated, then an = 0 so that g has

two components g = (r, f0(F 0−1(r))F 0−1(r))′. When no scale parameter is estimated, that is,

the distribution of εt is completely specified (bn = 0), then g = (r, f0(F 0−1(r))′. The GARCH

to be considered below is a location-scale model but has a time-varying scale parameter. The

corresponding V̂n(r) process has a similar representation as above.

4.3 GARCH models. We consider GARCH(1,1) introduced in Section 3.2. The as-

sumptions needed for representation (7) are the following:

C1: The εt are iid random variables with zero mean and unit variance. The density of

εt is f(x) and the cdf is F (x). The latter is continuous and strictly increasing. In addition,

E|εt|2+τ < ∞ for some τ > 0, and εt is independent of Xs for s ≤ t.

C2: 1
n

∑n
t=1 XtX

′
t converges to a non-random and positive definite matrix.

C3:
√

n(θ̂ − θ) = Op(1), where θ = (δ′, α, β, γ)′.

We also assume the parameters satisfy the assumptions in Example 1. In particular, it is

assumed that 0 ≤ β < 1. For β = 0, it reduces to autoregressive conditional heteroskedasticity

(ARCH). For IGARCH, i.e., β + γ = 1, it is assumed that β, γ ∈ (0, 1). Under C1, the

conditional distribution of Yt conditional on Ωt is Yt|Ωt ∼ F
(
(y −X ′

tδ)/σt

)
. Compute σ̂t and

Ût as in Example 1 and defined V̂n as in (1).

Theorem 3 Under assumptions C1-C3,

V̂n(r) = Vn(r) + f(F−1(r)) pn + f(F−1(r))F−1(r) qn + op(1),

where pn and qn are stochastically bounded and are given by

pn =
1

n

n∑
t=1

Xt

√
n(δ̂ − δ)/σ̂t,

2This follows from f(x) = f0(x/λ)/λ and F−1(r, λ) = F 0−1(r)λ.
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qn =
1

2n

n∑
t=1

1

σ2
t

[√
n(α̂− α)

t∑
j=0

β̂j +
√

n(σ̂2
0 − σ2

0)β̂
t

+
√

n(β̂ − β)
t−1∑
j=0

β̂jσ2
t−1−j +

√
n(γ̂ − γ)

t−1∑
j=0

β̂j(Yt−1−j −X ′
t−1−j δ̂)

2
]
.

For ARCH models (β = 0), there is no need to estimate β, and qn becomes (deduced from

the above with β̂ = β = 0 and 00 = 1),

qn =
1

2n

n∑
t=1

1

σ2
t

[√
n(α̂− α) +

√
n(γ̂ − γ)(Yt−1−j −X ′

t−1−j δ̂)
2
]
.

It is noted that the dimension of g is at most three, regardless of the number of parameters in

the conditional mean and conditional variance. As a consequence, martingale transformations

for these models are straightforward.

4.4 Estimating the function ġ. The martingale transformation requires the function ġ,

the derivative of g. For certain problems, ġ(r) is completely known. An example is testing con-

ditional distributions in GARCH models (see Section 8 below). In this case, the construction

of Ŵn is straightforward. In general, the function ġ(r) depends on the unknown parameter

θ0 so that ġ(r) = ġ(r, θ0). A natural solution is to replace θ0 by a root-n consistent estimator

θ̂n. Assume ġ is continuously differentiable with respect to θ, we will have a pointwise root-n

consistent estimate of ġ because

√
n(ġ(r, θ̂)− ġ(r, θ0)) =

∂ġ(r, θ∗)

∂θ

√
n(θ̂ − θ0), (15)

where θ∗ is between θ̂ and θ0 We can proceed to construct Ŵn(r) using ġ(r, θ̂) in place of ġ(r).

In veiw of (4), we can also estimate ġ by ġn(r) such that ġn(r) = (1, ˙̄gn(r)′)′, where

˙̄gn(r) =
1

n

n∑
t=1

∂ft

∂θ
(x|Ω̃t, θ̂)

ft(x|Ω̃t, θ̂)
,

evaluated at x = F−1
t (r|Ω̃t, θ̂). The above is equal to the derivative (with respect to r) of

the right-hand side of (4) with Ωt replaced by Ω̃t and θ0 replaced by θ̂. The estimator is, in

general, root-n consistent for ġ.

Here we shall consider a more general framework, which allows for nonparametric esti-

mation of ġ. In this case, the estimated ġ may not be root-n consistent. For example, in

testing symmetry, the functions g, Ft, and ft are all unknown and the above estimators will

not be feasible. As alluded to in the introduction, when a data generating process rather than

15



a conditional distribution is specified, nonparametric estimation is required. We show that

root-n consistency is not necessary for the procedure to work.

D1: Let ġn(r) be an estimator of ġ(r), either parametric or nonparametric, such that∫ 1

0
‖ġn(r)− ġ(r)‖2dr = op(1) and (16)

∫ 1

s
[ġn(r)− ġ(r)]dVn(r) = op(1) (17)

uniformly in s ∈ [0, 1].

Under D1, we show that ġ can be replaced by ġn without affecting the asymptotic results.

Note that condition (16) is much weaker than sup0≤r≤1 ‖ġn(r) − ġ(r)‖ = op(1) because the

left side of (16) is bounded by the squared value of sup0≤r≤1 ‖ġn(r) − ġ(r)‖. Consider the

transformed process based on ġn,

W̃n(r) = V̂n(r)−
∫ r

0

[
ġn(s)′C−1

n (s)
∫ 1

s
ġn(τ)dV̂n(τ)

]
ds, (18)

where Cn(s) =
∫ 1
s ġnġ

′
ndr. The test statistic is defined as

Tn,ε = sup
0≤r≤1−ε

|W̃n(r)|,

where ε > 0 is a small number.

Theorem 4 Under assumptions A1-A4 and D1, we have for every ε ∈ (0, 1), in the space

D[0, 1− ε],

W̃n(r) ⇒ W (r)

Tnε
d→ sup

0≤r≤1−ε
|W (r)|.

It is conjectured that the theorem also holds for ε = 0. However, the proof of Theorem 4 for

ε = 0 is extremely subtle and technically demanding. This extension will not be considered.

We note that

T ∗
n =

1√
1− ε

Tnε
d→ sup

0≤s≤1
|W (s)|

because (1− ε)−1/2 sup0≤s≤1−ε |W (s)| and sup0≤s≤1 |W (s)| have the same distribution. Hence

the same set of critical values for Tn are applicable for Tnε after a simple rescaling.

Discussion. We now consider how to verify D1 in practice. First of all, assumption

D1 does not require root-n consistency of ġn as in (15). Suppose ġn(r) has the following

representation,

ġn(r)− ġ(r) = κn(r)an
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where κn(r) is a matrix of (random) functions and an = op(1). For example, in (15), κn(r) =

∂ġ(r, θ∗n)/∂θ and an = (θ̂ − θ0). In this case, an = Op(n
−1/2), which is more than necessary.

If we assume
∫ 1
0 ‖kn(r)‖2dr = Op(1), then (16) holds because an = op(1). Furthermore, if∫ 1

s κn(r)dVn(r) is stochastically bounded, i.e.∫ 1

s
κn(r)dVn(r) = n−1/2

n∑
t=1

[
I(Ut > s)κn(Ut)−

∫ 1

s
κn(r)dr

]
= Op(1) (19)

then (17) holds. Equation (19) is generally a consequence of the uniform central limit theorem.

For example, with κn(r) = κ(r, θ∗n) = ∂ġ(r, θ∗n)/∂θ, the left side of (19) is bounded by

n−1/2 sup
λ∈N(θ0)

∥∥∥ n∑
i=1

[
I(Ui > s)κ(Ui, λ)− E{I(Ui > s)κ(Ui, λ)}

]∥∥∥ (20)

where N(θ0) is a (shrinking) neighborhood of θ0. The above is Op(1) by the uniform central

limit theorem. When an = Op(1)n−1/2, assumption (17) can also be verified using some

uniform strong law of large numbers (USLLN). In this case, we can replace n−1/2 by n−1 in (19)

and conclude it is op(1) by the USLLN. Then an

∫ 1
s κn(r)dVn(r) = Op(1)n−1/2

∫ 1
s κn(r)dVn(r) =

Op(1)op(1) = op(1).

4.5 Local Power Analysis. We shall show that the test based on martingale transfor-

mation has non-trivial power against root-n local alternatives. Consider the following local

alternatives: for δ > 0 and 1 > δ/
√

n,

Gnt(y|Ωt, θ0) = (1− δ/
√

n)Ft(y|Ωt, θ0) + (δ/
√

n)Ht(y|Ωt, θ0) (21)

where both Ft and Ht are conditional distribution functions. The null hypothesis states

that the conditional distribution of Yt is given by Ft(y|Ωt, θ), whereas, under the alternative

hypothesis the conditional distribution is Gnt(y|Ωt, θ). We assume Ft and Ht are different

such that

k(r) = plim
1

n

n∑
t=1

Ht(F
−1
t (r|Ωt, θ0)|Ωt, θ0)− r 6≡ 0 (22)

If Ht = Ft, then Gnt is identical to Ft, and moreover, Ht(F
−1
t (r)) = r and k(r) = 0. Under the

alternative hypothesis, the random variables Ut = Ft(Yt|Ωt, θ0) are no longer uniform random

variables and not necessarily independent. Rather,

U∗
t = Gnt(Yt|Ωt, θ0) (t = 1, 2, ..., n)

are i.i.d. uniformly distributed random variables.

Again let Ût = Ft(Yt|Ω̃t, θ̂) and let V̂n(r) denote the empirical process constructed from

Û1, ..., Ûn. Under the local alternative, we can still assume
√

n(θ̂ − θ0) = Op(1).
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Theorem 5 Under the local alternative hypothesis, we have

V̂n(r) = V ∗
n (r)− ḡ(r)′

√
n(θ̂ − θ0) + δk(r) + op(1)

Where k(r) is defined in (22), ḡ is given in (4), and

V ∗
n (r) =

1√
n

n∑
t=1

[I(U∗
t ≤ r)− r].

In addition,

Ŵn(r) ⇒ W (r) + δk(r)− δφg(k)(r),

where φg(k)(r) =
∫ r
0 [ġ(s)′C(s)−1

∫ 1
s ġdk]ds.

An interesting question is what kind of function k satisfies k(r)−φg(k)(r) ≡ 0. For such a

function, the test will have no local power against the corresponding departure from the null.

The following lemma provides a solution to the integral equation:

k(r)− φg(k)(r) ≡ 0. (23)

Lemma 2 A function k(r) satisfies the integral equation (23) if and only if k(r) = a′g(r) for

some constant vector a.

It is easy to verify that a′g(r) satisfies (23). The “only if” part is proved in Appendix C.

The lemma implies that there may exist one but only one direction (along the function g(r))

over which the test possibly lacks power. However, the equation k(r) = a′g(r) imposes strong

restrictions on possible departures from the null hypothesis. Whether there exists a genuine

alternative hypothesis such that k(r) = a′g(r) (for some a 6= 0) is an open question. For

concrete problems, e.g., the distributional problem in GARCH models, it is shown below that

k = a′g if and only if the null hypothesis is true (a = 0), which implies the test has local power

against all departures from the null. It should be pointed out, however, root-n consistent tests

are not necessarily more powerful than those that are not root-n consistent but can adapt to

unknown smoothness of the alternatives, as showed by Horowitz and Spokoiny (2001).

As an application of Lemma 2, consider the local power of the test for GARCH models.

Let εt be iid with cdf

Gn(y) = (1− δn−1/2)F (x) + δn−1/2H(x),

where F and H are distribution functions. Because k(r) = H(F−1(r)) − r, the integral

equation (23) is equivalent to, by Lemma 2,

H(F−1(r))− r = a1r + a2f(F−1(r)) + a3f(F−1(r))F−1(r)
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for some a = (a1, a2, a3)
′ 6= 0. With a change in variable such that x = F−1(r), we can rewrite

the above equation as

H(x)− F (x) = a1F (x) + a2f(x) + a3f(x)x. (24)

Under the assumption that x3f(x) → 0 for |x| → ∞, we shall show that the only distribution

function H(x) satisfying (24) is F (x) itself, and in this case, ai = 0. To see this, let x → +∞,

we have a1 = 0 because H(x)− F (x) → 0. GARCH models require the distribution function

Gn(y) to have zero mean and unit variance for all n. Because F is assumed to have zero

mean and unit variance under the null hypothesis, this implies H has zero mean and unit

variance. That is,
∫

xdH(x) =
∫

xdF = 0 and
∫

x2dH(x) =
∫

x2dF = 1. Using zero mean

restriction, we have 0 =
∫

xdH −
∫

xdF = a2

∫
df(x) + a3

∫
d(f(x)x) = −a2 because the

second integration is equal to zero. Thus a2 = 0. Using unit variance restriction, we have

0 =
∫

x2dH −
∫

x2dF = a3

∫
x2d(f(x)x) = −2a3

∫
x2f(x)dx = −2a3. Thus a3 = 0. We have

used the assumption that x3f(x) → 0 as |x| → ∞. In summary, we have H(x) = F (x). That

is, Gn ≡ F . This shows the test has local power for any H(x) 6= F (x). This consistency result

holds for any location-scale model.

4.6 Simulations. To assess the size and power of the test statistics, we report some

limited simulation results. For assessing size, random variables xt are generated from normal

and t distributions. Let εt = (xt − µ)/σ, where µ and σ2 are, respectively, the mean and

variance of the underlying distribution. Since the distribution of εt is invariant with µ and

σ under normality, N(0, 1) will be used when xt is normal. We first estimate the mean and

variance parameters and then compute the residuals as ε̂t = (xt− µ̂)/σ̂, where xt is either iid

standard normal or tν , with ν = 5, and µ̂ and σ̂ are the sample mean and sample variance,

respectively. For xt being normal, we test εt as having a standard normal distribution based

on residuals ε̂t. For xt being tν , we test εt(ν/(ν − 2))1/2 as having a tν distribution. Because

the transforming functions are known, the statistic Tn not T ∗
n is used. The results are obtained

from 1000 repetitions and are reported in Table 1.

Table 1. Size of the Test

Normal distribution t-distribution

n 10% 5% 1% 10% 5% 1%

100 0.103 0.056 0.025 0.075 0.044 0.018

200 0.104 0.058 0.027 0.065 0.041 0.012

500 0.103 0.056 0.016 0.081 0.042 0.009
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For normal distribution, the test tends to be oversized, and for t distribution, the test tends

to be undersized except at the 1% level. Overall, the size appears to be acceptable.

For power, we generate data xt from tν and χ2
ν distributions (with ν = 5). The residuals ε̂t

are calculated as before. We then test εt = (xt−µ)/σ to have a standard normal distribution

based on the residuals ε̂t. Note that, when the number of degrees of freedom ν is large, the

standardized t or χ2 random variable (εt) is approximately normal N(0, 1). Thus the power

of the test should decrease as ν increases. Here we only report the results for ν = 5. All

results are obtained from 1000 simulations.

Table 2. Power of the Test

t-distribution χ2-distribution

n 10% 5% 1% 10% 5% 1%

100 0.53 0.47 0.41 0.91 0.85 0.81

200 0.79 0.73 0.62 1.00 0.97 0.93

500 0.96 0.93 0.91 1.00 1.00 1.00

The test has better power under chi-square distribution than under t-distribution. This is

expected because the former has a skewed distribution. Overall, the power is satisfactory.

5 Conclusion

This paper proposes a nonparametric test for conditional distributions of dynamic models.

With Khmaladze’s transformation, the test overcomes many difficulties associated with the

classical Kolmogorov test. On the technical aspects, we establish some weak convergence

results for empirical distribution functions under parameter estimation and information trun-

cation. We extend Khmaladze’s transformation to allow estimated transforming functions

under very weak and general conditions. We also show that dimension reduction in the

transformation can be achieved in conditional mean and conditional variance models. The

consistency property of the test is also explored. An empirical study demonstrates the use-

fulness of the test procedure. It is also seen that the method is easy to implement. The

result has many potential applications. For example, it is possible to test the specification of

continuous-time finance models based on the framework of this paper.
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Appendix A: Martingale transformation

A technique used in this paper is the martingale approach of Khmaladze (1981), which ef-

fectively transforms a non-martingale process to a martingale one. Let V (r) be a standard

Brownian bridge on [0,1]. Then

W (r) = V (r) +
∫ r

0

V (s)

1− s
ds (A.1)

is a standard Brownian motion on [0,1]. Here W (r) is a martingale transformation of the

Brownian bridge. Let g(r) = (r, g1(r), ..., gp(r))
′ be a vector of real-valued functions on [0, 1]

such that C(s) =
∫ 1
s ġ(v)ġ(v)′dv is invertible for each s ∈ [0, 1), where ġ(r) is the derivative

of g. Define

W (r) = V (r)−
∫ r

0

[
ġ(s)′C−1(s)

∫ 1

s
ġ(τ)dV (τ)

]
ds. (A.2)

It can be shown that W (r) is also a standard Brownian motion. Equation (A.1) is a special

case of (A.2) with g(r) = r.

Now suppose that Vn(r) is a sequence of stochastic processes on [0,1] such that Vn(r) ⇒
V (r), a Brownian bridge. Define

Wn(r) = Vn(r)−
∫ r

0

[
ġ(s)′C−1(s)

∫ 1

s
ġ(τ)dVn(τ)

]
ds, (A.3)

where
∫

ġdVn is defined via the integration parts assuming ġ has a bounded variation. Then

Wn(r) ⇒ W (r), a standard Brownian motion. The advantages of this transformation will be

seen below.

Which g to choose?

Let V̂n(r) be an empirical process of observations with estimated parameters. As in The-

orem 1, the following asymptotic representation holds:

V̂n(r) = Vn(r)− ḡ(r)′
√

n(θ̂ − θ0) + op(1) (A.4)

where op(1) is uniform over [0,1] and Vn(r) ⇒ V (r), a Brownian bridge. Let g(r) = (r, ḡ′)′, and

C(s) is defined earlier. We assume C(s) is invertible for s ∈ [0, 1). Consider the transformation

based on V̂n(r) :

Ŵn(r) = V̂n(r)−
∫ r

0

[
ġ(s)′C−1(s)

∫ 1

s
ġ(τ)dV̂n(τ)

]
ds. (A.5)

Furthermore, define the mapping φg : D[0, 1] → D[0, 1] such that

φg(h)(r) =
∫ r

0

[
ġ(s)′C−1(s)

∫ 1

s
ġ(τ)dh(τ)

]
ds. (A.6)

21



Then Ŵn = V̂n − φg(V̂n). We note that φg is a linear mapping and φg(cg) = cg for a

constant or random variable c. For g(r) = (r, ḡ′)′, then φg(cḡ) = cḡ, which also holds for

c =
√

n(θ̂ − θ0). Using (A.4), φg(V̂n) = φg(Vn) − ḡ′
√

n(θ̂ − θ0) + op(1). Using (A.4) again,

we have Ŵn = V̂n − φg(V̂n) = Vn − φg(Vn) + op(1), cancelling out
√

n(θ̂ − θ0). Thus the

transformation based on V̂n is asymptotically equivalent to the transformation based on Vn.

That is,

Ŵn(r) = Vn(r)− φg(Vn)(r) + op(1) = Wn(r) + op(1).

This implies that Ŵn(r) ⇒ W (r) because Wn ⇒ W . Thus the transformation removes the

effect of parameter estimation on the limiting process.

To further appreciate this transformation, we apply it to discrete-time processes (r takes

on discrete values). In this case, we use summation in place of integration. When applied to

regression residuals of linear models, the transformation will transform the ordinary residuals

into recursive residuals, which are white noise. Consider yi = x′iβ + ei (i = 1, 2, ..., n), with ei

being iid and xi being non-random. The residuals êi = ei−xi(β̂−β) are dependent through β̂.

However, the process ê1, ê2, ..., ên can be transformed into a martingale-difference sequence.

First note that the transformation (A.5) in its differential form is

dŴn(r) = dV̂n(r)− ġ(r)′C−1(r)
∫ 1

r
ġ(τ)dV̂n(τ)dr. (A.7)

If we identify dV̂n(r) with êi, ġ(r)dr with xi, C(r) with X ′
n−iXn−i =

∑n
k=i+1 xkx

′
k, and

∫ 1
r ġdVn

with
∑n

k=i+1 xkêk = X ′
n−iÊn−i, where Ên−i is a vector of the last n− i residuals, then the right

hand side of (A.7) is

êi − x′i(X
′
n−iXn−i)

−1X ′
n−iÊn−i.

The above can be rewritten as yi−x′iβ̂n−i, where β̂n−i is the least squares estimator based on the

last n− i observations (follows from Ên−i = Yn−i−X ′
n−iβ̂). Thus we obtain the ith backward

recursive residual (up to the normalizing constant 1 + x′i(X
′
n−iXn−i)

−1xi). Similarly, if we

use an alternative transformation formula (given in Khmaladze), we will obtain the forward

recursive residuals of Brown, Durbin, and Evans (1975). It is well known that partial sum of

recursive residuals leads to a Brownian motion process.

We can interpret the martingale transformation as employing a continuous-time recursive

least squares method to obtain continuous-time recursive residuals. The integration of recur-

sive residuals leads to a Brownian motion process. In the context of GMM estimation and

hypothesis testing, Wooldridge (1990) proposed a transformation that can purge the effect of
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parameter estimation. In the sense of projecting relevant variables on to their score functions

to obtain projection residuals, Wooldridge’s correction is similar in spirit to the martingale

transformation. But the former is a finite dimensional correction and the latter can be viewed

as an infinite dimensional correction.

Appendix B: Computing the Test Statistics

The martingale transformation involves integration. We discuss a numerical method for com-

puting the integral.

An alternative expression for Ŵn. Introduce Ĵn(r) = 1
n

∑n
t=1 I(Ût ≤ r). Then V̂n(r) =

√
n(Ĵn(r)− g1(r)), where g1(r) = r, the first component of g. Recall that Ŵn = V̂n − φg(V̂n),

and φg is a linear mapping. So φg(V̂n) =
√

nφg(Ĵn) −
√

nφg(g1). Moreover, from φg(g) = g,

we have φg(g1) = g1. Thus Ŵn =
√

n[Ĵn − φg(Ĵn)]. That is,

Ŵn(r) =
√

n
(
Ĵn(r)−

∫ r

0
ġ′C(s)−1

∫ 1

s
[ġ(τ)dĴn(τ)]ds

)
.

This leads to a simpler computation.

Deriving a computable formula. Denote by û1, û2, ..., ûn the realized values of Û1, Û2, ..., Ûn.

Let û(1) < û(2) < · · · < û(n) denote the ordered version of û1, ..., ûn. In addition, û(0) = 0,

and û(n+1) = 1. For notational succinctness, let vi = û(i) (i = 0, 1, ..., n + 1). The numbers

v0, v1, ..., vn+1 form a natural partition of [0, 1]. Suppose g is also given. Using∫ 1

s
ġ(τ)dĴn(τ) =

1

n

∑
i:ûi≥s

ġ(ûi)

and evaluating the above integral at s = û(k), we have
∫ 1
û(k)

ġdĴn = 1
n

∑n
i=k ġ(û(i)). That is,

∫ 1

vk

ġdĴn =
1

n

n∑
i=k

ġ(vi) (B.1)

We next approximate the following integral by∫ 1

s
ġġ′dτ =̇

∑
i:vi≥s

ġ(vi)ġ(vi)
′(vi+1 − vi)

where “=̇” represents an approximate equality. Evaluating the above integration at s = vk

gives ∫ 1

vk

ġġ′dτ =̇
n∑

i=k

ġ(vi)ġ(vi)
′(vi+1 − vi). (B.2)
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We denote the right-hand-side of (B.1) by 1
n
Dk, and the right-hand-side of (B.2) by Ck. Then

∫ vj

0
[ġ(s)′C(s)−1

∫ 1

s
ġ(τ)dĴn(τ)]ds =̇

1

n

j∑
k=1

ġ(vk)C
−1
k Dk(vk − vk−1).

Computing the test statistic. Summarizing the above derivation and noting that

Ĵn(vj) = j/n (for all j), we compute Tn with

sup
1≤j≤n

|Ŵn(vj)|=̇ max
1≤j≤n

√
n

∣∣∣ j
n
− 1

n

j∑
k=1

ġ(vk)
′C−1

k Dk(vk − vk−1)
∣∣∣

where Dk =
∑n

i=k ġ(vi) and Ck =
∑n

i=k ġ(vi)ġ(vi)
′(vi+1 − vi), and where v1, ..., vn are ordered

values of Û1, ..., Ûn.

When ġ is estimated by ġn, simply replace ġ by ġn and calculate Tnε with the same formula

except that the supremum with respect to j is taken in the range 1 ≤ j ≤ nε.

Appendix C: Proofs

In the absence of information truncation, Ft(y|Ωt, θ) and Ft(y|θ) will be used interchangeably.

Lemma C.1 Under the assumptions of Theorem 1,

max
1≤t≤n

sup
u∈N(θ0,M)

sup
0≤r≤1

∣∣∣Ft(F
−1
t (r|u) | θ0)− r

∣∣∣ = op(1)

Proof: Let x = F−1
t (r|u) or r = Ft(x|u). Then

sup
r
|Ft(F

−1
t (r|u) | θ0)− r| = sup

x
|Ft(x|θ0)− Ft(x|u)|.

= sup
x
|∂Ft/∂θ(x|θ∗)′(θ0 − u)|

≤ n−1/2 sup
x
‖∂Ft/∂θ(x|θ∗)‖M

where θ∗ is between θ0 and u. By assumption A1, E(supx supθ∗∈N(θ0,M) ‖∂Ft/∂θ(x|θ∗)‖2) ≤
M1, this implies that n−1/2 supx ‖∂Ft/∂θ(x|θ∗)‖ = op(1) uniformly in t ∈ [1, n] and θ∗ ∈
N(θ0, M). 2.

Lemma C.2 For every ε > 0, there exists δ > 0 such that for u, v ∈ N(θ0, M) and for all

large n,

P

 sup
‖u−v‖≤δn−1/2

sup
0≤r≤1

n−1/2
∣∣∣ n∑

t=1

Ft(F
−1
t (r|u)|θ0)− Ft(F

−1
t (r|v)|θ0)

∣∣∣ > ε

 < ε.
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Proof: Let x = F−1
t (r|u) and y = F−1

t (r|v). Then r = Ft(x|u) = Ft(y|v). Thus,

Ft(F
−1
t (r|u)|θ0)− Ft(F

−1
t (r|v)|θ0) = Ft(x|θ0)− Ft(y|θ0)

= Ft(x|θ0)− Ft(x|u)− [Ft(y|θ0)− Ft(y|v)]

= ∂Ft/∂θ(x|θ∗)′(θ0 − u)− ∂Ft/∂θ(y|θ†)′(θ0 − v)

= ∂Ft/∂θ(x|θ∗)′(v − u) +
[
∂Ft/∂θ(x|θ∗)− ∂Ft/∂θ(y|θ†)

]′
(θ0 − v)

where θ∗ is between θ0 and u, and θ† is between θ0 and v. From ‖u − v‖ ≤ δn−1/2 and

‖θ0 − v‖ ≤ Mn−1/2,

sup
r

n−1/2
∣∣∣ n∑

t=1

Ft(F
−1
t (r|u)|θ0)− Ft(F

−1
t (r|v)|θ0)

∣∣∣ (C.1)

≤ sup
r

1

n
‖

n∑
t=1

∂Ft

∂θ
(F−1

t (r|u)|θ∗)‖δ + sup
r

1

n
‖

n∑
t=1

[∂Ft

∂θ
(F−1

t (r|u)|θ∗)− ∂Ft

∂θ
(F−1

t (r|v)|θ†)
]
‖M

The first expression is Op(1)δ by A1 (or A2). The second expression is op(1) because the limit

is ‖ḡ(r)− ḡ(r)‖M = 0 by A2. Thus (C.1) is bounded by Op(1)δ+op(1), which implies Lemma

C.2. 2

Lemma C.3 For every ε > 0, there exists δ > 0 such that for all large n,

P

 sup
|r1−r2|≤δn−1/2

sup
u∈N(θ0,M)

n−1/2
∣∣∣ n∑

t=1

Ft(F
−1
t (r1|u)|θ0)− Ft(F

−1
t (r2|u)|θ0)

∣∣∣ > ε

 < ε.

Proof. By Talyor expansion, there exists θ∗ in between θ0 and u such that

Ft(x|θ0) = Ft(x|u) +
∂Ft

∂θ
(x|θ∗)′(θ0 − u).

Evaluate the above at x = F−1(r1|u) and note Ft(F
−1
t (r1|u)|u) = r1 for all r1,

Ft(F
−1
t (r1|u)|θ0) = r1 +

∂Ft

∂θ
(F−1

t (r1|u)|θ∗)′(θ0 − u).

A similar identity holds for r2. Thus,

n−1/2
∣∣∣ n∑

t=1

Ft(F
−1
t (r1|u)|θ0)− Ft(F

−1
t (r2|u)|θ0)

∣∣∣
≤
√

n|r1 − r2|+
1

n
‖

n∑
t=1

[∂Ft

∂θ
(F−1

t (r1|u)|θ∗)− ∂Ft

∂θ
(F−1

t (r2|u)|θ†)
]
‖M
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The above is bounded by δ + op(1), which implies Lemma C.3. To see this,
√

n|r1 − r2| ≤ δ

by assumption and the second expression converges to ‖ḡ(r1) − ḡ(r2)‖M = o(1) by A2 and

r1 − r2 → 0. 2

Clearly from the above proof, if r1 and r2 are such that |r1 − r2| ≤ n−1/2−d (d > 0), then

n−1/2
∣∣∣ n∑

t=1

Ft(F
−1
t (r1|u)|θ0)− Ft(F

−1
t (r2|u)|θ0)

∣∣∣ ≤ n−d + op(1) = op(1) (C.2)

Equation (C.2) is analogous to Lemma A.3 of Bai (1996).

Proof of Theorem 1. We first consider the case of no information truncation. This

occurs if the dynamic model depends only on a finite number of lagged Yt. From Ut = Ft(Yt|θ0)

and Ût = Ft(Yt|Ωt, θ̂) = Ft(Yt|θ̂), we have Yt = F−1
t (Ut|θ0) and Yt = F−1

t (Ût|θ̂). Thus

F−1
t (Ut|θ0) = F−1

t (Ût|θ̂)

and

Ut = Ft(F
−1
t (Ût|θ̂) | θ0). (C.3)

This implies that Ût ≤ r if and only if Ut ≤ Ft(F
−1
t (r|θ̂) | θ0). Therefore,

V̂n(r) =
1√
n

n∑
t=1

[I(Ut ≤ Ft(F
−1
t (r|θ̂) | θ0))− r].

Now define

ξt(r, a, b) = Ft(F
−1
t (r|a) | b).

In particular,

ξt(r, θ̂, θ0) = Ft(F
−1
t (r|θ̂) | θ0).

We have

V̂n(r) =
1√
n

n∑
t=1

[I(Ut ≤ ξt(r, θ̂, θ0))− r].

Adding and subtracting terms, we have

V̂n(r) = n−1/2
n∑

t=1

[I(Ut ≤ r)− r] + dn(r) + Rn(r, θ̂),

where

dn(r) = n−1/2
n∑

t=1

[ξt(r, θ̂, θ0)− r]

and

Rn(r, θ̂) = n−1/2
n∑

t=1

[
I(Ut ≤ ξt(r, θ̂, θ0))− ξt(r, θ̂, θ0)− I(Ut ≤ r) + r

]
. (C.4)
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Because ξt(r, θ̂, θ̂) = r, by A2 and Taylor expansion, for some θ∗ between θ̂ and θ0,

dn(r) =
1

n

n∑
t=1

∂Ft

∂θ
(F−1

t (r|θ̂) | θ∗)
√

n(θ0 − θ̂) = −ḡ(r)
√

n(θ̂ − θ0) + op(1). (C.5)

It remains to show that Rn(r, θ̂) = op(1) uniformly in r; the proofs involves three steps. Let

K = [0, 1] × [θ0 −Mn−1/2, θ0 + Mn−1/2]. The three steps are: (i) show Rn(r, u) = op(1) for

each (r, u) ∈ K; (ii) show supr |Rn(r, u1) − R(r, u2)| is small when ‖u1 − u2‖ is small; (iii)

show supu |Rn(r1, u)− Rn(r2, u)| is small when |r1 − r2| is small. These can be proved using

the argument of Bai (1994, 1996). In particular, Lemma C.1 is needed in each step; Lemma

C.2 is needed in proving (ii) and Lemma C.3 is needed in proving (iii). The readers are also

referred to Loynes (1980) and Koul (1996). The details are omitted to save space.

Next we consider the case of information truncation. Equation (C.3) is now changed to

Ut = Ft(F
−1
t (Ût|Ω̃t, θ̂) | Ωt, θ0) (C.6)

Again, the above expression is understood as the function Ft(y|Ωt, θ0) evaluated at y =

F−1
t (Yt|Ωt, θ̂). From (C.6), we have Ût ≤ r if and only if

Ut ≤ Ft(F
−1
t (r|Ω̃t, θ̂) | Ωt, θ0)

= Ft(F
−1
t (r|Ωt, θ̂) | Ωt, θ0)+

Ft(F
−1
t (r|Ω̃t, θ̂) | Ωt, θ0)− Ft(F

−1
t (r|Ωt, θ̂) | Ωt, θ0)

= ξt(r, θ̂, θ0) + ηt(r)

where

ηt(r) = Ft(F
−1
t (r|Ω̃t, θ̂) | Ωt, θ0)− Ft(F

−1
t (r|Ωt, θ̂) | Ωt, θ0).

Thus V̂n(r) = n−1/2 ∑n
t=1[I(Ut ≤ ξt(r, θ̂, θ0) + ηt(r))− r]

Adding and subtracting terms, we have

V̂n(r) = n−1/2
n∑

t=1

[I(Ut ≤ r)− r] + d∗n(r) + R∗
n(r)

where

d∗n(r) = n−1/2
n∑

t=1

[ξt(r, θ̂, θ0)− r] + n−1/2
n∑

t=1

ηt(r) (C.7)

R∗
n(r) = n−1/2

n∑
t=1

[
I(Ut ≤ ξt(r, θ̂, θ0) + ηt(r))− ξt(r, θ̂, θ0)− ηt(r)− I(Ut ≤ r) + r

]
. (C.8)

The second term of the right hand side (r.h.s.) of (C.7) is op(1) by A4. Similar to (C.5),

d∗n(r) = −ḡ(r)
√

n(θ̂ − θ0) + op(1). It remains to show R∗
n(r) = op(1). Note that the term ηt
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does not satisfy max1≤t≤T |ηt| = op(1). But it does satisfy, by A4, n−1/2 ∑n
t=1 |ηt(r)| = op(1)

uniformly in r. Thus this term must be given special treatment when analyzing R∗
n(r). But

this can be proved using the argument of Bai (1994). The details are omitted. 2

Proof of Corollary 1. Because Ut are iid U(0, 1), Vn(r) ⇒ V (r), where V (r) is a

standard Brownian bridge. Furthermore, because φg(g) = g, we have Ŵn(r) = Wn(r)+ op(1),

here Wn(r) has the form of (A.3) and Wn(r) ⇒ W (r). Thus by the continuous mapping

theorem, Tn = sup |Ŵn(r)| d→ sup |W (r)|. 2

Proof of Theorem 2. Since Assumptions B1-B4 imply A1-A4, Theorem 2 is a conse-

quence of Theorem 1. Note that neither Theorem 1 nor Theorem 2 requires the invertibility

of C(s), although the martingale transformation itself does. 2

Proof of Theorem 3. Given the model’s concrete structure, it is easier to derive a direct

proof. We use the identity

ε̂t = εt(σ̂
2
t /σ

2
t )
−1/2 −X ′

t(δ̂ − δ)σ̂−1
t = εt(1 + ηnt(θ̂))

−1/2 −X ′
t(δ̂ − δ)σ̂−1

t

where

ηnt(θ̂) =
1

σ2
t

(σ̂2
t − σ2

t ).

Define

Kn(x) = n−1/2
n∑

t=1

[I(εt ≤ x)− F (x)], and K̂n(x) = n−1/2
n∑

t=1

[I(ε̂t ≤ x)− F (x)].

Then from the relationship between ε̂t and εt,

K̂n(x) = n−1/2
n∑

t=1

[I(εt ≤ x(1 + ηnt(θ̂))
1/2 + X ′

t(δ̂ − δ)σ̂−1
t )− F (x)].

It is easy to argue that P (inft σ̂t > α/2) → 1 (α is a parameter in the conditional variance).

So we have supt |X ′
t(δ̂ − δ)/σ̂t| ≤

√
n|δ̂ − δ)|n−1/2 max1≤t≤n ‖Xt‖/(inft σ̂t) = op(1) because

Assumption C2 implies that n−1/2 max1≤t≤n ‖Xt‖ = op(1). We next argue that ηnt(θ̂) is also

uniformly small over t. Notice that

σ̂2
t − σ2

t = (α̂− α) + β̂(σ̂2
t−1 − σ2

t−1) + (β̂ − β)σ2
t−1 + (γ̂ − γ)(Yt−1 −X ′

t−1δ̂)
2. (C.9)

The above has a recursive relationship in terms of σ̂2
t−1−σ2

t−1 [analogous to an AR(1) process

for σ̂2
t−1 − σ2

t−1]. By repeated substitution, we can write

σ̂2
t −σ2

t = β̂t(σ̂2
0−σ2

0)+(α̂−α)
t−1∑
j=0

β̂j +(β̂−β)
t−1∑
j=0

β̂jσ2
t−1−j +(γ̂−γ)

t−1∑
j=0

β̂j(Yt−1−j−X ′
t−1−j δ̂)

2.
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Dividing the above by σ2
t , we have

ηnt(θ̂) = β̂t (σ̂
2
0 − σ2

0)

σ2
t

+
(α̂− α)

σ2
t

t−1∑
j=0

β̂j+(β̂−β)
t−1∑
j=0

β̂j σ
2
t−1−j

σ2
t

+
(γ̂ − γ)

σ2
t

t−1∑
j=0

β̂j(Yt−1−j−X ′
t−1−j δ̂)

2.

(C.10)

Each of the last three terms on the r.h.s. of (C.10) is op(1) uniformly in t. For example,

consider the last term. From (Yt −X ′
tδ̂)

2 = (σtεt −X ′
t(δ̂ − δ))2 and (a− b)2 ≤ 2(a2 + b2), the

last term of (C.10) is bounded by

2|(γ̂ − γ)| max
1≤t≤n

t−1∑
j=0

|β̂|j
[
σ2

t−1−jε
2
t−1−j/σ

2
t + ‖δ̂ − δ‖2‖Xt−1−j‖2/σ2

t

]

≤ Cn

(
n−1/2 max

0≤t≤n
|ε2

t |
)(

max
1≤t≤n

t−1∑
j=0

|β̂|jσ2
t−1−j/σ

2
t

)
+ Dnn

−1/2‖
√

n(δ̂ − δ)‖2 max
0≤t≤n

(‖Xt‖2/n),

where Cn = 2|
√

n(γ̂ − γ)| = Op(1) and Dn = Cn(
∑n

i=1 |β̂|j) = Op(1) because P (|β̂| < 1) → 1.

Assumption C2 implies that max0≤t≤n(‖Xt‖2/n) = op(1) and thus the second term above is

op(n
−1/2). From E|εt|2+τ < ∞, we have n−1/2 max0≤t≤n ε2

t = op(1). To show the first term

above is op(1), it suffices to argue max1≤t≤n
∑t−1

j=0 |β̂|jσ2
t−1−j/σ

2
t = Op(1). Now, choose β̄ < 1

such that P (|β̂| < β̄) → 1, then

max
1≤t≤n

t−1∑
j=0

|β̂|jσ2
t−1−j/σ

2
t ≤

n∑
t=1

t−1∑
j=0

|β̂|jσ2
t−1−j/σ

2
t ≤

n∑
t=1

t−1∑
j=0

β̄jσ2
t−1−j/σ

2
t + op(1). (C.11)

For β = 0 (implying an ARCH model), it is assumed that γ < 1. Noting that σ2
t ≥ α > 0,

E(σ2
t−k/σ

2
t ) is bounded uniformly in t and k, see Engle (1982). It follows that (C.11) is Op(1).

Now consider 1 > β > 0 (including IGARCH). From Lee and Hansen (1994), E(σ2
t−1−j/σ

2
t ) ≤

M(R/β)j for each j, where M is bounded and 0 < R < 1. Because R < 1, we can choose

β̄ > β such that β̄R/β < 1. Thus E
∑n

t=1

∑t−1
j=0 β̄jσ2

t−1−j/σ
2
t ≤ M

∑∞
t=1

∑t−1
j=0(β̄R/β)j ≤

M1 for some finite M1. Thus (C.11) is Op(1). Summarizing these results, the last term of

(C.10) is op(1). Similarly, the second and third terms of (C.10) are also op(1). This implies

that ηnt(θ̂) = op(1) + β̂t(σ̂2
0 − σ2

0)/σ
2
t , where op(1) is uniform in t. Although for each t,

β̂t(σ̂2
0 − σ2

0)/σ
2
t is not op(1), the sum of these terms divided by root-n is op(1). That is,

n−1/2 ∑n
t=1 β̂t(σ̂2

0 − σ2
0)/σ

2
t = op(1). Thus these terms will not affect the limiting process of

K̂n(x) and can be ignored (see the proof of Theorem 1). The conditions of Theorems A.2

and A.3 of Bai (1996) are satisfied. Apply Theorems A.2 and A.3 of Bai (1996), applied with

s = 1, ct = 1, at = 1
2

√
nηnt(θ̂), bt = X ′

t(δ̂−δ)/σ̂t in the notation of Bai (note that (1+ηn(θ̂))1/2

29



is equal to 1 + 1
2
ηnt(θ̂) plus a higher order term of ηnt(θ̂), which is negligible), we have

K̂n(x) = Kn(x) + f(x)
1

n

n∑
t=1

X ′
t(δ̂ − δ)/σ̂t + f(x)x

1

2
n−1/2

n∑
t=1

ηnt(θ̂) + op(1).

But 1
2
n−1/2 ∑n

t=1 ηnt(θ̂) is equal to qn defined in Theorem 3. Note that qn = Op(1). This is true

even if the initial estimator σ̂2
0 is not consistent for σ2

0. In fact, σ̂2
0 can be an arbitrary random

variable so that
√

n(σ̂2
0 − σ2

0) = Op(
√

n). The contribution of this term to qn is negligible.

This follows from the fact that P (|β̂| < 1− ε) > 1− ε for large n and

1

n

n∑
t=1

1

σ2
t

|
√

n(σ̂2
0 − σ2

0)β̂
t| ≤ n−1/2|(σ̂2

0 − σ2
0)|

1

α

n∑
t=1

|β̂|t = Op(n
−1/2) = op(1).

All other terms in qn are Op(1). Thus qn = Op(1).

Finally, notice that K̂n(x) = V̂n(F (x)). If we let F (x) = r, then the representation of

V̂n(r) follows readily. 2.

Remark 3. For GARCH models (or location-scale models) martingale transformations can

be performed directly on K̂n(x). It is well known that Kn(x) converges weakly to a Brownian

bridge K(x) on the real line with covariance function EK(x)K(y) = F (x)(1−F (y)) for x < y.

Because the limit of Kn(x) is a time-stretched Brownian bridge, the martingale transformation

of K̂n(x) takes a new form. Let ḣ(x) = (1, ḟ/f, 1+x(ḟ/f))′ (a vector with three components)

and Ch(x) =
∫∞
x ḣ(y)ḣ′(y)f(y)dy. Define

B̂n(x) = K̂n(x)−
∫ x

−∞

[
ḣ(v)′Ch(v)−1

∫ ∞

v
ḣ(τ)dK̂n(τ)

]
f(v)dv

and the test statistic Tn = sup−∞<x<∞ |B̂n(x)|. It can be shown that B̂n(x) = Ŵn(F (x)).

Thus the two transformations are equivalent. It follows that

B̂n(x) ⇒ W (F (x)), and Tn
d→ sup

0≤s≤1
|W (s)|.

The transformation based on K̂n(x) does not involve the quantile function F−1(r).

Proof of Theorem 4. It suffices to show that W̃n ⇒ W in the space D[0, 1−ε] under the

sup norm. By assumption D1, ‖gn(r)− g(r)‖ ≤
∫ r
0 ‖ġn(s)− ġ(s)‖ds ≤

∫ 1
0 ‖ġn(r)− ġ(r)‖2ds =

op(1). From V̂n(r) = Vn(r)− ḡ(r)
√

n(θ̂ − θ0) + op(1) and ḡn = ḡ + op(1), we can write

V̂n(r) = Vn(r)− ḡn(r)′
√

n(θ̂ − θ0) + op(1).

Because φgn(gn) = gn, the transformation W̃n(r) in (18) can be written as

W̃n(r) = Vn(r)−
∫ r

0

[
ġn(s)′C−1

n (s)
∫ 1

s
ġn(τ)dVn(τ)

]
ds + op(1). (C.12)
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That is, we can replace V̂n by Vn. By comparing W̃n above with Wn in (A.3), we only need

to show that, uniformly in r ∈ [0, 1− ε],∫ r

0

[
ġn(s)′C−1

n (s)
∫ 1

s
ġn(τ)dVn(τ)

]
ds−

∫ r

0

[
ġ(s)′C−1(s)

∫ 1

s
ġ(τ)dVn(τ)

]
ds = op(1). (C.13)

Let bn(s) = ġn(s)′Cn(s)−1
∫ 1
s ġndVn and b(s) = ġ(s)C(s)−1

∫ 1
s ġ′dVn. Then (C.13) is equivalent

to
∫ r
0 [bn(s)− b(s)]ds = op(1) uniformly in r ∈ [0, 1− ε]. Now

bn(s)− b(s) = ġ′n[C−1
n (s)− C−1(s)]

∫ 1
s ġdVn

+ (ġn − ġ)′C−1(s)
∫ 1
s ġdVn

+ ġ′nC
−1
n (s)

∫ 1
s (ġn − ġ)dVn.

(C.14)

We show each of the three terms on r.h.s. of (C.14) is small. Denote hn = ġ′n − ġ′. We have∫ 1
s ġnġ

′
n =

∫ 1
s ġġ′ +

∫ 1
s ġh′n +

∫ 1
s hnġ

′ +
∫ 1
s hnh

′
n. Furthermore, ‖

∫ 1
s hnh

′
n‖ ≤

∫ 1
0 ‖hn‖2 = op(1)

and ‖
∫ 1
s ġhn‖2 ≤ (

∫ 1
0 ‖ġ‖2)(

∫ 1
0 ‖hn‖2) = op(1). From the matrix algebra A−1 − (A + B)−1 =

A−1B(A + B)−1, applied with A =
∫

ġġ′ and B =
∫

gh′n +
∫

hnġ
′ +

∫
hnh

′
n and noticing that

‖B‖ = op(1), we have

‖(
∫ 1

s
ġnġ

′
ndr)−1 − (

∫ 1

s
ġġ′dr)−1‖ ≤ op(1)‖(

∫ 1

s
ġnġ

′
ndr)−1‖ · ‖(

∫ 1

s
ġġ′dr)−1‖. (C.15)

For s ≤ 1− ε, we have∫ 1

s
ġnġ

′
ndr ≥

∫ 1

1−ε
ġnġ

′
ndr and

∫ 1

s
ġġ′dr ≥

∫ 1

1−ε
ġġ′dr

where R ≥ Q means that R−Q is positive semi-definite. Using the fact that if R > Q, then

‖Q−1‖ ≤ ‖R−1‖, we can rewrite (C.15) as, for all s ≤ 1− ε,

‖Cn(s)−1 − C(s)−1‖ = op(1)

because ‖(
∫ 1
1−ε ġnġ

′
n)−1‖ = Op(1) and ‖(

∫ 1
1−ε ġġ′)−1‖ = O(1).

Next, because
∫ 1
s ġdVn = n−1/2 ∑n

t=1[(Ut ≥ s)ġ(Ui)−E{(Ut ≥ s)ġ(Ut)}] is Op(1) uniformly

in s by the functional central limit theorem, we have

‖ġ′n[Cn(s)−1 − C(s)−1]
∫ 1

s
ġdVn‖ = ‖ġn‖op(1)Op(1) = ‖ġn‖op(1); (C.16)

‖(ġn − ġ)′C(s)−1
∫ 1

s
gdVn‖ ≤ ‖ġn − ġ‖ · ‖C(1− ε)−1‖Op(1) = ‖ġn − ġ‖Op(1). (C.17)

Finally, by condition (17),

‖ġ′nCn(s)−1
∫ 1

s
(ġn − ġ)dVn‖ ≤ ‖ġn‖‖Cn(1− ε)−1‖‖

∫ 1

s
(ġn − ġ)dVn‖ = ‖ġn‖op(1). (C.18)
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From (C.14), and combining (C.16)-(C.18), we see that for s ≤ 1 − ε, ‖bn(s) − b(s)‖ =

‖ġn‖op(1) + ‖ġn − ġ‖Op(1). Together with (16), it follows that, for r ≤ 1− ε,

‖
∫ r

0
[bn(s)− b(s)]ds‖ ≤

∫ r

0
‖bn(s)− b(s)‖ds ≤ op(1)(

∫ 1

0
‖ġn‖2dr)1/2

+ Op(1)(
∫ 1

0
‖ġn − ġ‖2dr)1/2 = op(1)Op(1) + Op(1)op(1) = op(1).

The proof of Theorem 4 is complete. 2

Proof of Theorem 5. Assuming no information truncation for simplicity, we suppress

Ωt in the conditional distribution. We have the identity,

U∗
t = Gt(F

−1
t (Ût|θ̂) | θ0).

Thus Ût ≤ r if and only if

U∗
t ≤ Gt(F

−1
t (r|θ̂) | θ0)

= Ft(F
−1
t (r|θ̂) | θ0) + et(r)

= ξt(r, θ̂, θ0) + et(r)

where et(r) = δn−1/2[Ht(F
−1
t (r|θ̂) | θ0) − Ft(F

−1
t (r|θ̂)|θ0)]. Thus, adding and subtracting

terms, we have

V̂n(r) = n−1/2
n∑

t=1

[I(U∗
t ≤ r)− r] + d†n(r) + R†

n(r)

where

d†n(r) = n−1/2
n∑

t=1

[ξt(r, θ̂, θ0)− r] + n−1/2
n∑

t=1

et(r) (C.19)

R†
n(r) = n−1/2

n∑
t=1

[
I(U∗

t ≤ ξt(r, θ̂, θ0) + et(r))− ξt(r, θ̂, θ0)− et(r)− I(U∗
t ≤ r) + r

]
. (C.20)

The first term on the r.h.s. of (C.19) is −ḡ(r)′
√

n(θ̂ − θ0) + op(1), and the second term is

n−1/2
n∑

t=1

et(r) = δ
1

n

n∑
t=1

[Ht(F
−1
t (r|θ̂) | θ0)− Ft(F

−1
t (r|θ̂) | θ0)]

= δ
1

n

n∑
t=1

[Ht(F
−1
t (r|θ̂)|θ0)− r] + δ

1

n

n∑
t=1

[Ft(F
−1
t (r|θ̂)|θ0)− r].

The first term converges to δk(r) in probability, and the second term is Op(n
−1/2) by the

Taylor expansion, assumptions A2 and A3. Thus

d†n(r) = −ḡ(r)′
√

n(θ̂ − θ0) + δk(r) + op(1).
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Finally, the proof of R†
n(r) = op(1) is similar to that of R∗

n(r) = op(1). Next,

Ŵn = V̂n − φg(V̂n)

= V ∗
n − φg(V

∗
n ) + δk − δφg(k) + op(1).

Note that V ∗
n − φg(V

∗
n ) ⇒ W , a Brownian motion. The desired result follows. 2

Proof of Lemma 2.

The proof is easy once the right approach is discovered. Differentiate the identity (23) on

both sides we have

k̇(r) = ġ(r)′C(r)−1
∫ 1

r
ġ(v)k̇(v)dv. (C.21)

Let a(x) be the vector function

a(r) = C(r)−1
∫ 1

r
ġ(v)k̇(v)dv

we have

k̇(r) = ġ(r)′a(r).

We next show a(r) is a constant vector by showing ȧ(r) ≡ 0. Note that the derivative of the

inverse matrix C(r)−1 is given by C(r)−1Ċ(r)C(r)−1 = C(r)−1ġġ′C(r)−1. Thus

ȧ(r) = C(r)−1ġġ′C(r)−1
∫ 1

r
ġ(v)k̇(v)dv

− C(r)−1ġ(r)k̇(r)

= C(r)−1ġ(r)k̇(r) by (C.21)

− C(r)−1ġ(r)k̇(r)

= 0

Thus ȧ(r) ≡ 0 and a(r) is a constant vector and is denoted by a. It follows that k̇(r) = ġ(r)′a.

Integrating this new identity on both sides we obtain k(r) = g(r)′a+ c, where c is a constant.

But for c 6= 0, k(r) does not satisfy the integral equation. So k(r) = a′g(r) is the only solution.
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