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Abstract

This paper studies large-dimension factor models with nonstationary dynamic factors, also
referred to as cross-section common stochastic trends. We consider the problem of estimating
the dimension of the common stochastic trends and the stochastic trends themselves. We derive
the rates of convergence and the limiting distributions for the estimated common trends and for
the estimated loading coe+cients. Generalized dynamic factor models with nonstationary factors
are also considered. Cointegration among the factors is permitted. The method is applied to the
study of employment /uctuations across 60 industries for the U.S. We examine the hypothesis
that these /uctuations can be explained by a small number of aggregate factors. We also test
whether some observable macroeconomic variables are the underlying factors.
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1. Introduction

Factor models provide an e:ective way of synthesizing information contained in large
data sets. The latter are increasingly available due to the advancement in data gathering
technologies and the natural expansion of data sets over time. In this paper, we examine
large-dimension factor models with nonstationary dynamic factors. We consider the
problem of estimating the dimension of the factors and deriving the distribution theory
of the estimated factors and of the factor loadings.
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Dynamic factor models are useful in at least Bve areas of economic analysis. The
Brst is index modelling and extraction. Factors are regarded as unobservable economic
indices that capture the co-movement of many variables; see Quah and Sargent (1993),
Forni and Reichlin (1998) and Stock and Watson (1999a). The second is information
synthesizing. Based on large-dimension factor models, Bernanke and Boivin (2000)
examine, among other inquiries, the state of an economy when an expert artiBcial intel-
ligence system instead of the Fed sets the monetary policy. Their analysis demonstrates
the usefulness of factor models as a way of aggregating information from thousands of
economic indicators. The third is forecasting. Stock and Watson (1999b) and Favero
and Marcellino (2001), and Artis et al. (2001) show how dynamic factor models can
be used to improve forecasting accuracy. The fourth is modelling cross-section correla-
tions. One major source of cross-section correlation in macroeconomic data is common
shocks, e.g., oil price shocks and international Bnancial crises. Cross-section correla-
tion of this nature may well be characterized by common factor models. Consequently,
factor models are used in studying world business cycles as in Gregory and Head
(1999), and area-wide business cycles as in Forni and Reichlin (1998) and Forni
et al. (2000b). Cross-section correlation exists even in micro-level data (e.g., house-
hold data) because of herd behavior, fashions or fads. The general state of an economy,
such as recessions or booms, also a:ects household decision making. Factor models
allow for heterogeneous responses to common shocks through heterogeneous factor
loadings.

Finally, factor models can be used to study cross-section cointegration in nonsta-
tionary panel data. In testing the PPP hypothesis, for example, Banerjee et al. (2001)
argued that exchange rate series for the European countries share a common trend,
which implies strong cross-section correlation. Therefore, the standard assumption of
cross-section independence is violated, rendering many panel unit root tests invalid. Hall
et al. (1999) considered the problem of determining the number of common trends,
but not how to estimate the common factors.

In all the above applications, an often-asked question is how well the factors (or
unobservable economic indices) are estimated. Are the estimated factors a transforma-
tion of the underlying factors? Can conBdence intervals be constructed to assess the
accuracy of the estimates? What are the convergence rates of the estimates? Are the
estimated factors uniformly consistent for the underlying factors? Under what condi-
tions can the estimated factors be treated as known or the sampling errors be ignored?
How important is the common component relative to the idiosyncratic component? This
paper provides answers to these questions.

The contributions of this paper include (i) determining the number of nonstationary
factors; (ii) deriving the limiting distributions for the estimated factors, factor loadings,
and common components; (iii) construction of conBdence intervals; (iv) empirical ap-
plication of the technique. Consistent estimation of the number of factors is important
because it enables us to disentangle the common and idiosyncratic components, thereby
allowing us to measure the relative importance of each component. The rates of con-
vergence and the limiting distributions allow us to assess the accuracy of the estimates
and to construct conBdence intervals. The results are useful in testing whether an ob-
servable series is one of the underlying factors. Although not a focus of this paper,
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our results have implications for unit root and cointegration analysis for nonstationary
panel data. This topic was recently explored by Bai and Ng (2001) and Moon and
Perron (2001) based on factor models. For a recent survey on panel unit roots and
cointegration, the readers are referred to Baltagi and Kao (2000). The present paper
builds on the work of Bai and Ng (2002) and Bai (2003), where large-dimension factor
models of I(0) variables were analyzed. This paper makes a contribution to statistical
inference for large-dimension factor models of nonstationary variables. In addition, we
derive some inferential theory for generalized dynamic factor models most recently
studied by Forni et al. (2000a).

The rest of the paper is organized as follows. Section 2 introduces the model and
states the underlying assumptions. We also discuss the estimation procedure and derive
some useful properties for the estimated common stochastic trends. Section 3 focuses
on determining the number of common trends. Section 4 develops the asymptotic dis-
tribution theory for the estimated common trends and the estimated factor loadings. The
construction of conBdence intervals is also examined. Section 5 analyzes generalized
dynamic factor models. Section 6 reports simulation results. In Section 7, we apply our
technique to sectoral employment. Section 8 provides concluding remarks. All proofs
are provided in the appendix.

2. Model, assumptions, and estimation

We Brst consider a restricted dynamic factor model in which the factors are dynamic
but the relation between the dynamic factors and the observable variable is static.
Generalized dynamic models as in Forni et al. (2000a) will be considered later. The
analysis of this simpler model gives insight into the general model.

2.1. Model and assumptions

Consider:

Xit =
r∑
j=1

�ijFjt + eit = �′
iFt + eit (1)

(i= 1; 2; : : : ; N ; t = 1; 2; : : : ; T ), where eit is an I(0) error process which can be serially
correlated for each i, �i =(�i1; : : : ; �ir)′, and Ft =(F1t ; : : : ; Frt)′ is a vector of integrated
processes such that

Ft = Ft−1 + ut ;

and ut is a vector (r×1) of zero-mean I(0) processes (not necessarily i.i.d.) that drive
the stochastic trends Ft . For each given i, the process Xit is I(1) unless �i = 0. It is
clear that Xit and Ft are cointegrated for each i. We assume no cointegration among
Ft . The case in which Ft is cointegrated is discussed in Section 5.

The right-hand side variables are not observable and only Xit is observable. Note
that Xit and Xjt are correlated because they share the same Ft . While having a similar
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format, model (1) is di:erent from the common trend representation of Stock and
Watson (1988) in which the errors driving the common trends and the idiosyncratic
errors are the same. The latter property may not be suitable for panel data. In addition,
the number of series N is Bxed in Stock and Watson (1988). In this paper, we consider
the case in which N goes to inBnity.

The current set up di:ers from the classical factor analysis in a number of ways.
The size of cross-section units N (or the number of variables) goes to inBnity rather
than a Bxed number; the factors Ft are integrated processes rather than i.i.d. variables;
the errors eit are allowed to be correlated in both dimensions rather than i.i.d. in the
time dimension and independent in the cross-section dimension. For classical factor
analysis, see Lawley and Maxwell (1971) and Anderson (1984).

In classical factor analysis, with N Bxed and with T being allowed to grow, an un-
restricted variance–covariance matrix E(ete′t) will render the factor model completely
unidentiBable, where et = (e1t ; e2t ; : : : ; eNt)′. But this is no longer true if N also tends
to inBnity; see Chamberlain and Rothschild (1983), who introduced the notion of ap-
proximate factor models to allow for cross-section correlation in eit .

In what follows, we use F0
t , �

0
i and r to denote the true common trends, the true

factor loading coe+cient, and the true number of trends, respectively. At a given t, we
have

Xt = �0F0
t + et ; (2)

where Xt = (X1t ; X2t ; : : : ; XNt)′; �0 = (�0
1; �

0
2; : : : ; �

0
N )′, and et = (e1t ; e2t ; : : : ; eNt)′.

Let X i be a T × 1 vector of time series observations for the ith cross-section unit.
For a given i, we have

X i = F0�0
i + ei; (3)

where X i = (Xi1; Xi2; : : : ; XiT )′; F0 = (F0
1 ; F

0
2 ; : : : ; F

0
T )

′, and ei = (ei1; ei2; : : : ; eiT )′.
Our objective is to estimate r; F0, and �0. Clearly, F0 and �0 are not separately

identiBable. But they are identiBable up to a transformation. We shall state the assump-
tions needed for consistent estimation. Throughout, the norm of a matrix A is deBned as
‖A‖ = [tr(A′A)]1=2. The notation M stands for a Bnite positive constant, not depending
on N and T ; B(·) stands for a Brownian motion process on [0; 1]. In addition,

∫
BB′

means
∫ 1

0 B(�)B(�)′ d�, etc.

Assumption A (Common stochastic trends): (1) E‖ut‖4+�6M for some �¿ 0 and for
all t6T .

(2) As T → ∞; T−2∑T
t=1 F

0
t F

0
t

′ d→ ∫
BuB′

u, where Bu is a vector of Brownian
motions with covariance �uu = limT→∞ 1=T

∑T
s=1

∑T
t=1 E(utu′

s); the r × r matrix �uu
is positive deBnite.

(3) (iterated logarithm) lim inf T→∞ log log(T )T−2∑T
t=1 F

0
t F

0
t

′ = D, where D is a
nonrandom positive deBnite matrix.

(4) (initial value) E‖F0
0‖46M .
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Assumption B (Heterogeneous factor loadings). The loading �i is either determinis-
tic such that ‖�0

i ‖6M or it is stochastic such that E‖�0
i ‖46M . In either case,

�0′�0=N
p→�� as N → ∞ for some r × r positive deBnite non-random matrix ��.

Assumption C (Time and cross-section dependence and heteroskedasticity). (1)E(eit)=0;
E|eit |86M ;

(2) E(e′set=N ) = E(N−1∑N
i=1 eiseit) = �N (s; t) with |�N (s; s)|6M for all s, and

T−1
T∑
s=1

T∑
t=1

|�N (s; t)|6M ;

(2) E(eitejt) = �ij; t with |�ij; t |6 |�ij| for some �ij and for all t. In addition,

N−1
N∑
i=1

N∑
j=1

|�ij|6M ;

(3) E(eitejs) = �ij; ts and (NT )−1∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |�ij; ts|6M ;

(4) For every (t; s), E|N−1=2∑N
i=1 [eiseit − E(eiseit)]|46M .

Assumption D. {�i}; {ut}, and {eit} are three groups of mutually independent stochas-
tic variables.

Su+cient conditions for A2 can be found in Hansen (1992). The assumption that �uu
is positive deBnite rules out cointegration among the components of Ft . Cointegration
for Ft is equivalent to the presence of both I(1) and I(0) common factors. This case is
considered in Section 5. There, it is shown that the number of I(1) and I(0) common
factors can be separately identiBed, and that the cointegrating rank can be consistently
estimated.

Assumption A3 is implied by the law of the iterated logarithm; see Lai and Wei
(1983). The limiting matrix being positive deBnite follows from the Cramer-Wold
device and the law of the iterated logarithm. Assumption B is standard. Assump-
tion C allows for limited time series and cross-section dependence in the idiosyn-
cratic component. Heteroskedasticity in both the time and cross-section dimensions is
also allowed. Under stationarity in the time dimension, �N (s; t) = �N (s − t). Given
Assumption C1, the remaining assumptions in C are easily satisBed if the eit are in-
dependent for all i and t. The allowance for weak cross-section correlation in the
idiosyncratic components leads to the approximate factor structure of Chamberlain
and Rothschild (1983). It is more general than a strict factor model which assumes
eit is uncorrelated across i, a framework underpinning classical factor analysis.

In terms of estimating the dimension of I(1) common factors, Assumption C is more
than necessary. For example, we can assume eit=�′i�t+�it , where �t are I(0) series and
�it satisBes Assumption C. This implies strong cross-section correlations for eit because
�t are common I(0) factors. Again this is related to cointegration, and the number of
I(1) common trends can be consistently determined. In a special case that �t is equal
to ut , the model implies dynamic factor structure to be explained below. Assumption C
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is used when deriving the limiting distributions of the estimated common factors and
factor loadings.

Assumption D rules out correlation between eit and ut . Suppose eit and ut are
correlated and consider projecting eit on ut such that eit = �′iut + �it , with �it be-
ing uncorrelated with ut . From ut = Ft − Ft−1, we can rewrite the factor model as
Xit = (�i + �i)′Ft − �′iFt−1 + �it , giving rise to a dynamic factor model. As shown in
Section 5, the dimension of Ft can still be consistently estimated.

2.2. Estimating common stochastic trends

In this section we Brst outline the procedure for estimating common stochastic trends
and then derive some preliminary convergence results for the estimated common trends.
These results are required for analyzing the properties of the dimension estimator.

Because the true dimension r is unknown, we start with an arbitrary number k
(k ¡min{N; T}). The superscript in �ki and Fkt highlights the allowance for k stochas-
tic trends in the estimation. Estimates of �k and Fk are obtained by solving the opti-
mization problem

V (k) = min
�k ; Fk

(NT )−1
N∑
i=1

T∑
t=1

(Xit − �ki
′Fkt )

2 (4)

subject to the normalization of either Fk ′Fk=T 2 = Ik or �k ′�k=N = Ik , where T 2 and
N correspond to the rates in Assumptions A2 and B, respectively. If we concen-
trate out �k and use the normalization that Fk ′Fk=T 2 = Ik , the optimization problem
is identical to maximizing tr(Fk ′(XX ′)Fk), where X = (X 1; : : : ; X N ) is T × N . The
estimated common-trend matrix, denoted by F̃k , is T times the eigenvectors corre-
sponding to the k largest eigenvalues of the T × T matrix XX ′. Given F̃k , we have
�̃k ′ = (F̃k ′F̃k)−1F̃k ′X = F̃k ′X=T 2, which is the corresponding matrix of the estimated
factor loadings. Clearly, this is the method of principal components and is used by
many researchers, e.g., Connor and Korajczyk (1986) for large N but Bxed T and
Stock and Watson (1999a) for large N and large T .

The solution to the above minimization problem is not unique, even though the sum
of squared residuals V (k) is unique. Another useful solution is ( QFk; Q�k), where Q�k is
constructed as

√
N times the eigenvectors corresponding to the k largest eigenvalues

of the N ×N matrix X ′X and QFk = X Q�k=N . The second solution is easier to compute
when N ¡T and the Brst is easier when T ¡N .

DeBne

F̂k = QFk( QFk ′ QFk=T 2)1=2 and �̂k = Q�k( QFk ′ QFk=T 2)−1=2 (5)

a rescaled version of ( QFk; Q�k). The following lemma provides a preliminary but useful
property for the estimated common stochastic trends:

Lemma 1. Assume Assumptions A–D hold. For each &xed k¿ 1, there
exists an (r × k) matrix Hk with rank(Hk) = min{k; r}, and �NT = min

{√
N; T

}
,
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such that

�2
NT

(
1
T

T∑
t=1

‖F̂kt − Hk ′F0
t ‖2

)
= Op(1): (6)

This lemma is crucial for analyzing the estimated dimension. It is also used when
developing the limiting distributions for the various estimators. Because the trends (F0)
can only be identiBed up to transformation, the principal components method is estimat-
ing a rotation of F0. The lemma says that the time average of the squared deviations
between the estimated trends and a transformation of the true trends converges to zero
as N; T → ∞. The rate of convergence is the minimum of N and T 2.

Stock and Watson (1999a) considered uniform consistency of F̂ t when N�T 2 and
for stationary F0

t . Using di:erent arguments, stronger uniform result can be obtained:

Proposition 1. Under assumptions A–D and E1 (below),

max
16t6T

‖F̂kt − Hk ′F0
t ‖ = Op(T−1) + Op

(√
T=N

)
:

This bound is not the sharpest possible. The term Op

(√
T=N

)
can be replaced by

Op
(
log T=

√
N
)

if enough moment conditions (e.g., normality assumption) are imposed
on the idiosyncratic errors of eit . This lemma implies that when N is su+ciently large
relative to T , the estimated common stochastic trends are uniformly consistent. This
result is of independent interest.

3. The number of common stochastic trends

3.1. Using data in di7erences

A useful observation is that the di:erenced data satisfy all assumptions of Bai and
Ng (2002). Thus their information criterion approach is directly applicable to the dif-
ferenced data. Model (1) under Brst di:erencing takes the form

SXit = �′
iut + Seit :

Note that the idiosyncratic errors are over-di:erenced. But over-di:erencing does not
violate any conditions of Bai and Ng. Let

V (k) = min
�k ;Uk

(NT )−1
N∑
i=1

T∑
t=1

(SXit − �ki u
k
t )

2; (7)

where Uk = (uk1; u
k
2; : : : ; u

k
T )

′. Consider the criterion of the form:

PC(k) = V (k) + kg(N; T );
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where g(N; T ) is a penalty function. Let kmax be a positive integer such that r ¡kmax
and let

k̂ = arg min
06k6kmax

PC(k): (8)

Denote CNT = min
[√
N;

√
T
]
. Theorem 2 of Bai and Ng (2002) implies that

Proposition 2. Under assumptions of A–D, if (i) g(N; T ) → 0 and (ii) C2
NTg(N; T ) →

∞, then limN;T→∞ P(k̂ = r) = 1.

Let +̂2 be a consistent estimate of (NT )−1∑N
i=1

∑T
t=1 E(Seit)2, say +̂2 = V (kmax).

The criteria in (12) (see below) with ,T =1 satisfy the conditions of this proposition. 1

They are derived by Bai and Ng (2002) from the properties of V (k) as a function
of k.

3.2. New criteria for data in levels

It is not always desirable to di:erence the data. For example, for the generalized
dynamic factor models of Section 5, di:erencing the data will not yield consistent es-
timates for the number of I(1) trends. By introducing new criteria to re/ect integrated
common trends, we show that the dimension of stochastic trends can be consistently es-
timated without the need of di:erencing. This also allows us to simultaneously estimate
the stochastic trends themselves and the dimension. Let

V (k) = V (k; F̂k) = min
�k

1
NT

N∑
i=1

T∑
t=1

(Xit − �ki
′F̂kt )

2 (9)

denote the sum of squared residuals (divided by NT ) when k trends are estimated. 2

The objective is to Bnd penalty functions, g(N; T ), such that criteria of the form

IPC(k) = V (k) + kg(N; T ) (10)

can consistently estimate r, where the label “IPC” refers to “Integrated Panel Criterion.”
Again, assume r ¡kmax and let

k̂ = argmin
06k6kmax

IPC(k): (11)

Theorem 1. Assume Assumptions A–D hold. As N; T → ∞, if

(i) g(N; T ) log log(T )
T → 0,

(ii) g(N; T ) → ∞,

then limN;T→∞ Prob(k̂ = r) = 1.

1 For the third criterion, condition (ii) will be violated if N is excessively large relative to T (say
N = exp(T )) and vice versa.

2 This sum of squared residuals does not depend on which estimate of F0 is used. That is, V (k) =
V (k; F̃k) = V (k; QFk) = V (k; F̂k), where the three di:erent estimates for F0 are deBned in Section 2.



J. Bai / Journal of Econometrics 122 (2004) 137–183 145

Note that g(N; T ) diverges to inBnity, rather than converging to zero as in
Proposition 2. While a formal proof of Theorem 1 is provided in the appendix, its
rationale is this. When k ¡ r, the normalized sum of squared residuals, V (k), is such
that V (k) = O(T=log log(T )), and when k¿ r; V (k) = Op(1). Thus a penalty function
diverging at a slower rate than T=log log(T ) will pick up at least r trends. But it will
not pick up more than r trends because the reduction in sum of squared residuals is
only Op(1), whereas the cost (penalty) for estimating one more dimension is a larger
magnitude. Thus, the criterion function is minimized at r with probability tending to
one.

Let ,T = T=[4 log log(T )], which relates to the law of the iterated logarithm. Let +̂2

be an estimate of (NT )−1∑N
i=1

∑T
t=1 E(eit)2. In practice, +̂2 =V (kmax). Consider the

following criteria:

IPC1(k) = V (k) + k+̂2,T

(
N + T
NT

)
log
(

NT
N + T

)
;

IPC2(k) = V (k) + k+̂2,T

(
N + T
NT

)
logC2

NT ;

IPC3(k) = V (k) + k+̂2,T

(
N + T − k

NT

)
log(NT ): (12)

The Brst two criteria satisfy the requirements of Theorem 1. That is, log log(T )
T g(N; T ) →

0 and g(N; T ) → ∞. This is also true for the last criterion unless N is too large relative
to T such as N = O(eT ) (it is still valid when T is large relative to N ). 3

Remark 1. The conditions of Theorem 1 actually imply strong consistency, that is,
P(limN;T→∞ k̂ = r) = 1. Many of the existing results on dimension selection, e.g.,
Geweke and Meese (1981), although stated in terms of consistency, imply strong con-
sistency. Others such as Hannan and Quinn (1979) are explicit about strong consistency.
In our present situation, strong consistency is more desirable than mere consistency.
Although it is nontrivial to see why, the underlying reason is related to the limiting
behavior of T−2∑T

t=1 F
0
t F

0
t

′. While this matrix converges in distribution to a (stochas-
tic) positive-deBnite matrix, its inBmum limit (i.e., “lim inf ”) is zero by the law of
the iterated logarithm. The implication is that some consistency criteria do not imply
strong consistency. For example, replacing condition (i) with g(N; T )=T → 0 implies
consistency, but cannot guarantee strong consistency.

Remark 2. A penalty function satisfying conditions of Theorem 1 is able to pick up
I(2) nonstationary factors (it can also pick up linear or polynomial trends). However,
to separately identify the number of I(1) and the number of I(2) common trends, a
heavier penalty function that can pick up I(2) but not I(1) trends is also required. Such
a criterion is not considered in this paper.

3 It is also possible to consider criteria based on log-valued sum of squared residuals such that log V (k)+
kg(N; T ). In this case, the scaling factor +̂2 is not necessary. It can be shown that if (i) g(N; T )=log(T ) → 0
and (ii) g(N; T ) → ∞, then k̂ is consistent for r. The details are omitted.
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4. Distribution theory

In this section we investigate the limiting distribution of the estimated common
stochastic trends, the estimated loading coe+cients, and the estimated common com-
ponents. The number of common stochastic trends (r) is assumed to be known in this
section and k is taken to be r. The limiting distribution is not a:ected when r is
estimated because of consistent estimation and the discreteness of r. We shall simply
write the estimated common trends and the estimated loading coe+cients as F̂ t and �̂i
without the superscript k. See Section 2.2 for the deBnition of these estimators. We
shall write Hk as H1, which is a r × r matrix with full rank. In matrix notation, F̂ is
estimating F0H1. We will also show that F̃ is estimating F0H2 for some r × r matrix
H2 of full rank. In addition, we show �̂ is an estimator for �0(H ′

1)
−1 and �̃ is an

estimator for �0(H ′
2)

−1. While F0 and �0 are not separately identiBable, they can be
estimated up to a transformation. It is clear that F̂�̂

′
= F̃�̃

′
is an estimator of F0�0′,

the common components. That is, the common components are directly identiBable. For
many purposes, knowing F0H1 is as good as knowing F0. For example, in regression
analysis, using F0 as the regressor will give the same predicted value of a left-hand
side variable as using F0H1 as the regressor. Because F0 and F0H1 span the same
space, testing the signiBcance of F0 in a regression model containing F0 as regressors
is the same as testing the signiBcance of F0H1.

Additional assumptions are needed to derive the limiting distributions.

Assumption E (Weak dependence of idiosyncratic errors). For all T and N ,

1. For each t;
∑T

s=1 |�N (s; t)|6M , and
2. For each i;

∑N
k=1 |�ki|6M .

where �N (s; t) and �ki are deBned in Assumption C.

This assumption strengthens C2 and C3, respectively, and is still reasonable. For
example, in the case of independence over time, �N (s; t) = 0 for s �= t. Then Assump-
tion E1 is equivalent to (1=N )

∑N
i=1 E(e2it)6M for all t and N . Under cross-section

independence, E2 is equivalent to E(eit)26M , which is implied by Assumption C1.

Lemma 2. Under Assumptions A–E, we have, for each t

min
{√

N; T 3=2
}

(F̂ t − H ′
1F

0
t ) = Op(1):

The convergence rate is min
{√
N; T 3=2

}
. When the loading coe+cients �0

i (i =
1; 2; : : : ; N ) are all known, F0

t can be estimated by the least-squares method using the
cross-section data at period t, and the rate of convergence will be

√
N . The current rate

of convergence applies because the coe+cients �0
i are unknown and are also estimated.

The rate of convergence implied by Lemma 2 is useful in regression analysis or in
a forecasting equation involving estimated regressors such as

Yt+1 = ,′F0
t + 0′Wt + �t+1; t = 1; 2; : : : ; T;



J. Bai / Journal of Econometrics 122 (2004) 137–183 147

where Yt is scalar, and Yt and Wt are observable. The integrated process F0
t is not

observable but can be replaced by F̂ t . Let ,̂ denote the least-squares estimator with F̂
as the regressor. The limiting distribution of the estimated coe+cients is the same as
if F0H1 were used as long as N is large relative to T . Note that ,̂ is estimating H−1

1 ,
rather than ,.

Assumption F. The eigenvalues of the r×r random matrix �1=2
� (

∫
BuB′

u)�
1=2
� are distinct

with probability 1.

The matrices
∫
BuB′

u and �� are deBned in Assumptions A and B. Assumption F
guarantees a well-deBned limiting random variable for (F̃

′
F0=T 2), which appears in the

limiting distributions of F̂ t . A similar condition is imposed in classical factor analysis,
see Anderson (1963). Note that this assumption is not needed for determining the
number of common trends. This is because the number of trends is estimated using
the sum of squared residuals V (r), which is well deBned (unique) regardless of the
distinctness of the said eigenvalues. Also, Assumption F is not required for studying
the limiting distribution of the estimated common components. The underlying reason
is that the common components are identiBable. In the following analysis, we will use
the fact that for positive-deBnite matrices A and B, the eigenvalues of AB; BA and
A1=2BA1=2, etc., are the same.

Proposition 3. Under Assumptions A–F, as N; T → ∞,

F̃
′
F0

T 2
d→Q:

The random matrix Q has full rank, is thus invertible, and is given by Q=V 1=23 ′�−1=2
� ,

where V = diag(v1; v2; : : : ; vr) and v1¿v2¿ · · ·¿vr ¿ 0 are the eigenvalues of �1=2
�

(
∫
BuB′

u)�
1=2
� , and 3 is the corresponding eigenvector matrix such that 3 ′3 = Ir .

The proof is provided in the appendix. The random matrix Q appears in the limiting
distributions of F̂ t and �̂i.

4.1. Limiting distribution of estimated common trends

Assumptions B and C imply that N−1=2∑N
i=1 �

0
i eit = Op(1) for each t. It is now

strengthened to have a normal limiting distribution as N tends to inBnity.

Assumption G (Central limit theorem). For each t, as N → ∞,

1√
N

N∑
i=1

�0
i eit

d→N (0; 6t)

where 6t = limN→∞(1=N )
∑N

i=1

∑N
j=1 E(�0

i �
0
j
′eitejt).
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Theorem 2. Under Assumptions A–G, as N; T → ∞ with N=T 3 → 0, we have, for
each t

√
N (F̂ t − H ′

1F
0
t ) =

(
F̃

′
F0

T 2

)
1√
N

N∑
i=1

�0
i eit + op(1)

d→QN (0; 6t);

where Q is de&ned in Proposition 3 and 6t is de&ned in Assumption G. In addition,
Q is independent of N (0; 6t).

Corollary 1. Under Assumptions A–G and N=T 3 → 0, then
√
N (F̃ t−H ′

2F
0
t )

d→V−1QN
(0; 6t), where H2 is a r×r matrix of rank r, and Q and V are de&ned in Proposition 3.
In addition, Q and V are independent of N (0; 6t).

While restrictions on N and T are needed, the theorem is not a sequential limiting
result but a simultaneous one. In addition, the theorem holds not only for a particular
relationship between N and T , but also for many combinations of N and T . The
restriction that N=T 3 → 0 is a weak one and is easily satisBed.

4.2. Limiting distribution of estimated factor loadings

The previous subsection shows that F̂ is estimating F0H1. Now we show that �̂ is
estimating �0(H ′

1)
−1. That is, �̂i is estimating H−1

1 �0
i for every i. First, we state the

rate of convergence.

Lemma 3. Under Assumptions A–E, we have, for each i,

T (�̂i − H−1
1 �0

i ) = Op(1):

It is worth noting that the rate of convergence depends only on Assumptions A–E.
This rate is the same as if F0

t (t= 1; 2; : : : ; T ) were known. But if F0
t were observable

for each t, then we could directly estimate �0
i , as opposed to a matrix transformation

of �0
i .

To obtain the limiting distribution of �̂i, we need an additional assumption.

Assumption H. For each i, as T → ∞,

1
T

T∑
t=1

F0
t eit

d→
∫
Bu dB(i)

e ;

where Bu is a r × 1 vector of Brownian motions deBned earlier; and B(i)
e is scalar

Brownian motion process with variance �(i)
ee = lim(1=T )

∑T
t=1

∑T
s=1 E(eiteis). Bu and

B(i)
e are independent.
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Theorem 3. Suppose that Assumptions A–F and H hold. Then for each i, as N; T →
∞, we have

T (�̂i − H−1
1 �0

i ) = H−1
1

(
F0′F0

T 2

)−1
1
T

T∑
t=1

F0
t eit + op(1)

d→ (��Q′)−1
(∫

BuB′
u

)−1 ∫
Bu dB(i)

e ;

where �� is given in Assumption B, and Q is given in Proposition 3.

The limiting distribution is conditionally normal. Similar to Corollary 1, Theorem 3
implies the following limiting distribution for �̃:

Corollary 2. Under the assumptions of Theorem 3, we have

T (�̃i − H−1
2 �0

i )
d→V (��Q′)−1

(∫
BuB′

u

)−1 ∫
Bu dB(i)

e

where V and Q are de&ned in Proposition 3.

4.3. Limiting distribution of estimated common components

The limit theory of estimated common components can be derived from the previous
two theorems. Let C0

it = F0
t

′�0
i and Ĉit = F̂ ′

t �̂i = F̃ ′
t �̃i.

Theorem 4. Suppose that Assumptions A–H hold. As N; T → ∞, we have

(i) If N=T → 0, then for each (i; t)
√
N (Ĉit − C0

it)
d→N (0; Vit);

where Vit = �0
i
′�−1
� 6t�−1

� �0
i , and �� and 6t are as de&ned earlier.

(ii) If T=N → 0, then for each (i; t) such that t = [T�],

√
T (Ĉit − C0

it)
d→Bu(�)′

(∫
BuB′

u

)−1 ∫
Bu dB(i)

e :

(iii) If N=T → 7, then for each (i; t) with t = [T�],

√
N (Ĉit − C0

it)
d→N (0; Vit) +

√
7Bu(�)′

(∫
BuB′

u

)−1 ∫
Bu dB(i)

e :

In practice, (iii) is the most useful case because we can simply replace 7 by its
estimate N=T . The two limiting random variables in (iii) are independent. The rate
of convergence for the estimated common components is min

{√
N;

√
T
}
, which is

the best possible rate. When F0 is observable, the best rate for �̂i is T . When �0 is
observable, the best rate for F̂ t is

√
N . It follows that when both are estimated, the
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best rate for �̂′
i F̂ t does not exceed the minimum of

√
N and T . Because the magnitude

of F̂ t is large such that F̂ t =Op
(√
T
)
, the best rate for the product is min

{√
N;

√
T
}
.

4.4. Con&dence intervals

After obtaining the estimated factors, it is of interest to examine the relationship
between some observable economic variables and the estimated statistical factors. The
distribution theory derived in the previous section allows us to evaluate whether a
given economic series is one of (or a linear combination) the underlying factors.

Suppose Rt (t = 1; 2 : : : ; T ) is a scalar observable series and we are to test if Rt is
one of the underlying factors (or any linear combination of the underlying factors),
i.e., Rt = �′F0

t for all t. Many observable economic variables are indices, and their
levels and scales may be arbitrarily set. Therefore, it may be more reasonable to test
whether Rt = , + �′F0

t for all t, where , can capture the arbitrariness in levels and
� can capture the arbitrariness in scales. Consider a rotation of F̃ t toward Rt via the
regression

Rt = ,+ F̃ ′
t�+ error: (13)

Let (,̂; �̂) be the least-squares estimator, and deBne R̂t=,̂+F̃ ′
t �̂. We have the following:

Proposition 4. Under the assumptions of Theorem 2 and cross-section uncorrelation
for the idiosyncratic errors, as N; T → ∞ with N=T 3 → 0, we have

√
N (R̂t − ,− �′F0

t )[
�̂

′
V−1
NT

(
1
N

∑N
i=1 ẽ

2
it �̃i�̃

′
i

)
V−1
NT �̂

]1=2
d→N (0; 1);

where ẽ it = Xit − �̃′
i F̃ t and VNT is a diagonal matrix consisting of the Brst r largest

eigenvalues of XX ′=(T 2N ). From this, the 95% conBdence interval for Rt=,+�′F0
t (t=

1; 2; : : : ; T ) is

(R̂t − 1:96StN−1=2; R̂t + 1:96StN−1=2); (14)

where St is the denominator expression given in Proposition 4. The test procedure does
not require the knowledge of the remaining (r− 1) underlying factors. The conBdence
intervals can be easily plotted along with the true observable series, as illustrated in our
simulation and in our empirical application. When the Rt series is a linear combination
of the true factors F0

t , we expect 95% of the T observations on Rt fall into the
conBdence band.

For the null hypothesis Rt = �′F0
t for all t, the constant regressor in (13) can be

suppressed, and Proposition 4 is still valid.
Testing statistics concerning factor loading can be constructed using Theorem 3. A

useful test is whether a given cross-section (i) is a:ected by the common trends. This
is equivalent to testing if the factor loading (�i) is zero or any sub-vector of �i is
zero. Because of the conditional normality, the chi-square distribution is applicable
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for testing �i = 0 and the normal distribution is applicable for testing �ik = 0 for
component k.

5. Generalized dynamic factor models

Consider the following dynamic factor models:

Xit = �i(L)′Ft + eit ; (15)

Ft = Ft−1 + ut ;

where �i(L) is a vector of polynomials of the lag operator. The relation between Xit and
Ft is now dynamic, whereas in (1), the relation is static even though the factor Ft itself
is dynamic. The above model was considered by Quah and Sargent (1993) and Forni
and Reichlin (1998). A dynamic model is more /exible than a static one for empirical
applications. For example, it allows shocks to a:ect di:erent sectors or regions of an
economy at di:erent times and also allows for transmission e:ects. Following Forni
et al. (2000a), we assume

�i(L) =
∞∑
i=0

aijLj

with
∑∞

j=0 j|aij|¡∞. It is noted that �i(L)′Ft is well deBned because we assume
Ft = 0 for t ¡ 0, which is a standard assumption for integrated processes. Forni and
Reichlin (1998) and Forni et al. (2000a) proposed some informal methods to estimate
the number of common trends. Here, we show that the dimension of Ft can be con-
sistently estimated for the dynamic models. It is important to note that the di:erenced
data method considered in Section 3.1 does not work for dynamic models. To see
this, consider the case in which Ft is a scalar such that Xit = �i1Ft + �i2Ft−1 + eit .
From a dynamic point of view, there is only one factor. With di:erencing, we have
SXit = �i1ut + �i2ut−1 +Seit , which satisBes the conditions of Bai and Ng (2002) with
two factors. Thus the di:erenced data method will identify two factors. With data in
levels, however, we can consistently estimate the true number of factors.

Assumption I. Let �i=�i(1)=
∑∞

j=0 aij; E‖�i‖46M ¡∞ and (1=N )
∑N

i=1 �i�
′
i

p→��,
a positive-deBnite matrix. In addition, let �∗

i (L)=
∑∞

j=0 a
∗
ijL

j with a∗
ij=

∑∞
k=j+1 aik . We

assume E‖�∗
i (L)ut‖46M ¡∞ for all i and t.

Theorem 5. Assume Assumptions A, C–D and I hold. If g(N; T ) satis&es conditions
(i) and (ii) of Theorem 1, then limN;T→∞ P(k̂ = r) = 1.

Thus the dimension of the common factors can be consistently estimated for the
generalized dynamic factor models (the proof is provided in Appendix C). Much more
challenging is the limiting distribution of the estimated factors for the generalized
dynamic factor models. If �i(L) is a Bnite order polynomial in L, however, then limiting
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distributions are not di+cult to obtain. Thus for deriving the limiting distribution, we
restrict �i(L) to be a Bnite order polynomial. To Bx ideas, consider

Xit = �′
i0Ft + �′

i1Ft−1 + · · · + �′
ipFt−p + eit : (16)

This can be rewritten as

Xit = �′i0Ft − �′i1SFt−1 − · · · − �′ipSFt−p + eit ; (17)

where �ik = �ik + �ik+1 + · · · + �ip. Denoting

�′i = (�′i0;−�′i1; : : : ;−�′ip) and Ft = (F ′
t ;SF

′
t−1; : : : ;SF

′
t−p)

′

Eq. (17) can be rewritten as

Xit = �′iFt + eit (18)

= �′i0Ft + �′i0−Gt + eit ; (19)

where Gt = (SF ′
t−1; : : : ;SF

′
t−p)

′, and �i0− is a sub-vector of �i other than �i0. This
reparametrization implies that Ft is a vector of I(1) factors and Gt is a vector of I(0)
factors.

For model (16), or equivalently (19), to have r of I(1) factors, the limiting matrix
of (1=N )

∑N
i=1 �i0�

′
i0 must be an r × r positive-deBnite matrix. This is, Assumption I

holds. The total number of I(1) and I(0) factors is equal to the rank of the limiting
matrix of (1=N )

∑N
i=1 �i�

′
i , where �i =(�′i0; �

′
i0−)′. Because the vector �i is an invertible

transformation of �i, where �′
i = (�′

i0; �
′
i1; : : : ; �

′
ip) (the coe+cients of model (16)), the

rank of the matrix (1=N )
∑N

i=1 �i�
′
i is equal to the rank of (1=N )

∑N
i=1 �i�

′
i . In (16),

some lag of Ft , say Ft−k (k ¡p) may not enter into the equation, i.e., the vector
�ik is zero, or some components of �ik can be zero. Consider, for example, Xit =
�i0Ft + �i2Ft−2 + eit , where Ft is a scalar and �i1 = 0. This model can be rewritten as
Xit = (�i0 + �i2)Ft − �i2(SFt−1 + SFt−2) + eit . In this case, we shall deBne Gt to be
(SFt−1 + SFt−2). By combining the columns of (SFt−1; : : : ;SFt−p) when necessary,
we shall assume that the loading matrix of Gt has a full column rank. More speciBcally,
we assume the loading coe+cients of model (19) satisfy

Assumption J. E‖�i‖46M and p limN→∞(1=N )
∑N

i=1 �i�
′
i =�6, where �6 is an (r+

q) × (r + q) positive-deBnite matrix.

Because there are r of I(1) factors, the above assumption implies the existence of q of
I(0) factors. According to Theorem 5, the r I(1) factors can be consistently estimated
by the data in levels. In addition, the di:erenced data approach leads to consistent
estimation of the total number of factors (r + q). Thus, q can also be consistently
estimated. We state this result in the following corollary.

Corollary 3. Under Assumptions of A–D, and I–J, the number of I(1) and I(0) factors
can be consistently estimated.
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General I(0) factors. It is noted that Gt does not have to be the lags of SFt , it
can be a vector of general I(0) variables. This is because our proof does not depend
on Gt to be the lags of SFt , but only on Gt being I(0). For general Gt , we naturally
assume E‖Gt‖46M for all t, and


T−2

T∑
t=1

FtF ′
t T−3=2

T∑
t=1

FtG′
t

T−3=2
T∑
t=1

G′
t Ft T−1

T∑
t=1

GtG′
t




d→�;

where � is a (r + q) × (r + q) positive-deBnite (random) matrix with probability 1.
When Gt is the lags of SFt , this assumption holds, given the assumptions on ut . It is
pointed out that Gt does not have to be mean zero. When a component of Gt is the
constant 1 (for all t), the true model has an intercept. The theoretical results of this
section holds for general I(0) Gt .
Cointegrated non-stationary factors. The presence of I(0) factors can accommodate

cointegration. More speciBcally, let Ft be a vector of cointegrated I(1) factors. Then
there exists an invertible matrix P such that PFt = (>′

t ; �
′
t)

′, where >t is a vector of
non-cointegrated I(1) factors, and �t is a vector of I(0) factors that are linear combi-
nations of Ft . With some abuse of notation, denote >t by Ft; �t by Gt , and �iP−1 by
�i so that cointegrated I(1) factors can be expressed as (19). Corollary 3 implies that
the dimension of non-cointegrated I(1) factors and the dimension of I(0) factors can
be identiBed.

We next consider the limiting distributions of the estimated factors and of the factor
loadings. In deriving the limiting distributions below, both r and q are assumed to be
known. Let F̃ be the r eigenvectors of XX ′ corresponding to the Brst r largest eigen-
values normalized such that F̃

′
F̃=T 2 = I and let G̃ be the q eigenvectors corresponding

to the next q largest eigenvalues, normalized such that G̃
′
G̃=T = I . Denote

F̃ = (F̃ ; G̃):

Let V rNT be the diagonal matrix of the Brst r eigenvalues of the matrix XX ′=(T 2N )
and VqNT be the diagonal matrix of the (r+ 1)th to (r+ q)th largest eigenvalues of the
matrix XX ′=(TN ). Denote VNT =diag(V rNT ; V

q
NT ). We use superscript 0 to represent the

true quantities so that F0 = (F0
1; F

0
2; : : : ; F

0
T )

′ is the T × (r + q) true factor matrix and
60 = (�01; �

0
2; : : : ; �

0
N )′ is the N × (r + q) true factor loading matrix. We estimate F0 by

F̃ and estimate 60 by

6̃ = X ′F̃3−2
T ;

where 3T = diag
(
TIr;

√
TIq

)
. We have the following results:

Theorem 6. Under Assumptions A, C–J, as N; T → ∞,

(i) 3−2
T F̃

′
F0 d→Q for some invertible but random matrix Q.
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(ii) VNT
d→V , where V is a full-rank diagonal random matrix.

(iii) There exists an invertible matrix H , such that if N; T → ∞ with N=T 2 → 0 and
if
(
1=

√
N
)∑N

i=1 �
0
i eit

d→N (0; �t), then

√
N (F̃ t − H ′F0

t ) = V−1
NT (3−2

T F̃
′
F0)

(
1√
N

) N∑
i=1

�0i eit + op(1)

d→V−1QN (0; �t);

where V and Q are independent of N (0; �t).

(iv) If 3−1
T

∑T
t=1 F

0
t eit

d→WF (a conditionally normal vector), then

3T (�̃i − H−1�0i ) = VNTH−1(3−1
T F0′F03−1

T )−1

×3−1
T

T∑
t=1

F0
t eit + op(1) d→AWF;

where A=V (�6Q′)−1�−1
F and �F is a block diagonal matrix with the &rst block

being
∫
BuB′

u and the second block being p lim (1=T )
∑T

t=1 GtG
′
t .

Both the estimated factors and factor loadings are conditionally normal. This im-
plies an easy construction of conBdence intervals. Suppose we are interested in testing
the hypothesis that an observable sequence Rt is one of (or a linear combination)
the underlying factors. The test can be constructed similar to the method given in
Section 4.4. Consider rotating the estimated factors toward Rt by running the
regression:

Rt = ,+ �′F̃ t + error (t = 1; 2; : : : ; T ):

Let (,̂; �̂) be the least-squares estimator and deBne R̂t = ,̂+ �̂
′
F̃ t .

Corollary 4. Under the assumptions of Theorem 6 and cross-section independence of
the idiosyncratic errors, as N; T → ∞ with N=T 2 → 0, we have

√
N (R̂t − ,− �′F0

t )[
�̂

′
V−1
NT

(
(1=N )

∑N
i=1 ẽ

2
it �̃i �̃

′
i

)
V−1
NT �̂

]1=2
d→N (0; 1):

From this, the 95% conBdence interval for Rt (t = 1; 2; : : : ; T ) is

(R̂t − 1:96StN−1=2; R̂t + 1:96StN−1=2); (20)

where St is the denominator expression of this corollary. If we test Rt = �′F0
t (i.e.,

,=0), the constant in the regression should be suppressed and the corollary continues
to hold.



J. Bai / Journal of Econometrics 122 (2004) 137–183 155

6. Simulation results

The dimension of common trends. We Brst consider standard dynamic factor models
(no lags of Ft entering into Xit). Data are generated according to

Xit =
r∑
j=1

�ijFjt + eit ; (21)

Fjt = Fjt−1 + ujt ; (22)

eit = ?eit−1 + vit + @vit−1; (23)

where �ij; ujt , and vit are i.i.d. N (0; 1) for all (i; j; t) and are independent of each other.
The parameter values are r = 2; ?= 0:5, and @= 0:5. Thirteen combinations of N and
T of various sizes are considered. In all cases, kmax = 8. Both the di:erenced data
and level data methods are used and evaluated. Table 1 reports the average k̂ over
1000 simulations. The di:erenced and level methods are both estimating r = 2. All
criteria perform reasonably well, except the Brst two criteria for the di:erenced data
with T = 40 and with T = N = 50.

We next consider generalized dynamic factor models. Eq. (21) is replaced by

Xit =
r∑
j=1

p∑
k=0

�ijkFjt−k + eit ; (24)

where the �ijk are i.i.d. N (0; 1). Eqs. (22) and (23) follow the same speciBcation as
in the previous case. Only the conBguration of r=2 and p=1 is reported to conserve
space. Given r = 2, (24) can be rewritten as

Xit = �i10F1t + �i11F1t−1 + �i20F2t + �i21F2t−1 + eit : (25)

According to Theorem 5, with data in levels, two factors should be identiBed. By
Proposition 2, with data in di:erences, four factors should be identiBed. The results
are reported in Table 2, with each entry representing the average of k̂ over 1000
repetitions. The simulation results are consistent with the theory that the number of
factors in a generalized dynamic factor model can be identiBed.
Estimating common trends. We shall use graphs to present the factor estimates

and the true factors. Both the standard and generalized dynamic factor models are
considered. For the former, data are generated according to Eqs. (21)–(23) with r=2,
?= 0:5; @= 0:5. The true factors are denoted by F0 (T × 2). We Bx T at T = 30. A
larger T yields more precise factor estimates but produces a crowded graphic display.
We examine the behavior of the factor estimates as N varies from N = 25 to 50 and
then to 100. For each (T; N ), we simulate a sample of observations, denoted by X , a
T × N matrix. We use the estimator F̃ (T × 2), which is equal to the eigenvectors
of the Brst two largest eigenvalues of XX ′ multiplied by T (see Section 2.2). To see
that F̃ is estimating a transformation of F0, we rotate F̃ toward each of the true factor
process via the following regression

F0
kt = �′

k F̃ t + error (26)
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Table 1
Estimated number of factors (k̂) averaged over 1000 repetitions

N T Di:erenced data Level data

PC1 PC2 PC3 IPC1 IPC2 IPC3

100 40 3.73 2.77 2.00 2.00 2.00 1.92
100 60 2.13 2.00 2.00 2.00 2.00 1.92
200 60 2.00 2.00 2.00 2.00 2.00 1.92
500 60 2.00 2.00 2.00 2.00 2.00 1.93

1000 60 2.00 2.00 2.00 2.00 2.00 1.92

40 100 2.33 2.04 2.00 1.99 1.98 1.84
60 100 2.00 2.00 2.00 1.99 1.99 1.88
60 200 2.00 2.00 2.00 2.00 1.99 1.86
60 500 2.00 2.00 2.00 2.00 2.00 1.87
60 1000 2.00 2.00 2.00 2.00 2.00 1.88

50 50 4.26 2.59 2.00 2.00 1.99 1.91
100 100 2.00 2.00 2.00 2.00 2.00 1.92
200 200 2.00 2.00 2.00 2.00 2.00 1.98

DGP : Xit =
r∑
j=1

�ijFjt + eit

Fjt = Fjt−1 + ujt

eit = ?eit−1 + vit + @vit−1

r = 2; ? = 0:5; @ = 0:5

Note: The true number of I(1) factors is r = 2. When the average of k̂ is an integer, the corresponding
standard error is exactly zero. In the few cases when the averaged k̂ over replications is not an integer, the
standard errors are small. In view of the precision of the estimates in the majority of cases, the standard
errors in the simulations are not reported.

for k = 1; 2. Let �̂k be the least-squares estimate of �k . Then �̂′
k F̃ t is the predicted

value of F0
kt using the predictor F̃ t . The precision of the factor estimates increases as

N becomes larger. For example, the sample correlation coe+cient between the two
sequences {F0

1t} and {�̂′
1F̃ t} is 0.9964 for N = 25, 0.9973 for N = 50, and 0.9998

for N = 100. The sample correlation coe+cient between {F0
2t} and {�̂′

2F̃ t} is 0.9934,
0.9945, and 0.9987, respectively, for N=25; 50 and 100. A plot of �̂′

k F̃ t along with F0
kt

would show that they track each other extremely well, but instead, we have plotted the
conBdence intervals. ConBdence intervals for F0

kt are computed according to Proposition
4 and Eq. (14). These intervals together with the true factor process are plotted in
Fig. 1. The left panels are for the Brst factor and the right panels for the second factor.
The true factor processes are indeed located inside the conBdence intervals with the
exception of a small number of data points.

Next, we examine the corresponding results for generalized dynamic factor models.
The data are generated according to Eqs. (24), (22), and (23) with r=2; p=1; ?=0:5,



J. Bai / Journal of Econometrics 122 (2004) 137–183 157

Table 2
Estimated number of factors ( Qk) averaged over 1000 repititions (Generalized dynamic factor model)

Di:erenced data Level data

N T PC1 PC2 PC3 IPC1 IPC2 IPC3

100 40 4.70 4.17 4.00 2.06 2.02 1.97
100 60 4.01 4.00 4.00 2.00 2.00 1.98
200 60 4.00 4.00 4.00 2.00 2.00 1.98
500 60 4.00 4.00 4.00 2.00 2.00 1.98

1000 60 4.00 4.00 4.00 2.00 2.00 1.98

40 100 4.04 4.00 4.00 2.00 2.00 1.96
60 100 4.00 4.00 4.00 2.00 2.00 1.98
60 200 4.00 4.00 4.00 2.00 2.00 1.98
60 500 4.00 4.00 4.00 2.00 2.00 1.99
60 1000 4.00 4.00 4.00 2.00 2.00 1.98

50 50 5.08 4.08 4.00 2.00 2.00 1.97
100 100 4.00 4.00 4.00 2.00 2.00 1.99
200 200 4.00 4.00 4.00 2.00 2.00 2.00

DGP : Xit =
r∑
j=1

p∑
k=0

�ijkFjt−k + eit

Fjt = Fjt−1 + ujt

eit = ?eit−1 + vit + @vit−1

r = 2; p = 1; ? = 0:5; @ = 0:5

Note: The level-data method gives an estimate of r (true value r=2) and the di:erenced-data method gives
an estimate of r(p + 1) (true value is 4).

and @ = 0:5. Again T is Bxed at 30 and N takes on the values 25, 50, and 100. The
same F0 generated earlier is used here for comparison purpose. But now the lag F0

t−1
also enters into the Xit equation. In this case, four factors need to be estimated, with
two being I(1) and two being I(0). Let F̃ be the T × 4 factor estimate described in
Section 5. For k = 1; 2, we consider the rotation

F0
kt = �′

k F̃ t + error:

Now the sample correlation coe+cient between {F0
1t} and {�̂′

1F̃ t} is 0.9966, 0.9934,
and 0.9995, respectively, for N = 25; 50 and 100. The correlation coe+cient between
{F0

2t} and {�̂′
2F̃ t} is 0.9956, 0.9967, and 0.9989, respectively, as N takes on the three

values. Again, �̂′
k F̃ t tracks F0

kt extremely well.
ConBdence intervals for F0

kt are constructed according to Corollary 4 and Eq. (20).
These intervals along with the true factor process {F0

kt} are plotted in Fig. 2. The left
panels are for factor {F0

1t} and the right ones for factor {F0
2t}. With the exception of a

small number of data points, the true factor process lies within the conBdence intervals.
The distribution theory appears to be adequate.
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Fig. 1. ConBdence intervals for the true factor process. Data are generated according to the model speciBed
in Table 1. The left three panels are the conBdence intervals (dashed line) for the Brst true factor and the
intervals are estimated from N = 25; 50 and 100 cross-sections, respectively. The true factor process F0

1t
(solid line) is also plotted. The right three panels are the conBdence intervals for the second factor process
along with the true factor process F0

2t .

7. Application: sectoral employment

In this section we study /uctuations in employment across 60 industries for the
U.S. We examine the hypothesis that these /uctuations can be explained by a small
number of aggregate factors. Quah and Sargent (1993) also studied sectoral employ-
ment /uctuations. However, they did not estimate the number of factors. Neither
did they conduct hypothesis testings in the absence of an inferential theory. This
point was emphasized by Geweke (1993) in his comment on Quah and Sargent’s
work. With the theory developed in this paper, we are able to address a number
of issues raised in Geweke’s comments. In addition, interesting insight is gained by
examining the relationship between the estimated factors and observable macroeco-
nomic factors. Our empirical analysis also illustrates the techniques proposed in this
paper.

The Bureau of Economic Analysis (BEA) reports the number of full-time equivalent
(FTE) workers across various industries (NIPA, Tables 6.5b and 6.5c). There are a
total of sixty private sector industries. A list of them is provided in Appendix D.
The data are annual frequency, ranging from 1948 to 2000. Our analysis is based on
the log-valued data. For graphical display, the series are ordered cross-sectionally to
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Fig. 2. ConBdence intervals for the true factor process. Data are generated according to the model speciBed
in Table 2 (generalized dynamic factor models). The left three panels are the conBdence intervals (dashed
lines) for the Brst factor and the intervals are estimated from N =25; 50 and 100 cross-sections, respectively.
The true factor process F0

1t is also plotted (solid line). The right three panels are the conBdence intervals
for the second factor process along with the true factor process F0

2t .

have a better view of the data. Two plots are given according to di:erent methods
of ordering. In Fig. 3, we order the cross-sections according to their 1948 values in
ascending order. In Fig. 4, the cross-sections are ordered according to their 2000 values
also in ascending order. The vertical axis represents the log-valued employment in each
sector. The statistical analysis below does not depend on the ordering of cross-sections,
and any permutation will give the same results.
The number of factors. For data in levels, we estimate the number of factors using

the three criteria in Eq. (12). With kmax= 6, the Brst two criteria suggest four factors
and the last criterion gives two factors. If we set kmax= 4, all three criteria yield two
factors. If we choose kmax to 2, all criteria still give two factors. These results provide
evidence in support of two nonstationary common factors.

For data in di:erences, we start with kmax = 6, and then set kmax at the estimated
value in the Brst around as in the previous paragraph. All criteria indicate three factors.
This suggests an additional I(0) factor in the system. The estimated residuals resulting
from a three-factor model is plotted in Fig. 5. No discernable pattern is found in the
residuals, indicating a reasonable Bt.
Macroeconomic factors. Quah and Sargent (1993) examined an observable factor

model with total employment and total output (with leads and lags) as potential factors.
They found that future GNP has better explaining power than past GNP. In terms of
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Fig. 3. The number of full-time equivalent employees across 60 sectors. The sectors are arranged in ascending
order according to their 1948 values.

the number of factors, our result is consistent with the following empirical model for
sectoral employment:

Sit = �i1Et + �i2Yt + �i3Yt+1 + eit ; (27)

where Sit is the log-valued employment (multiplied by 10) of sector i; Et is total
employment, deBned as the log-valued total employment of the 60 industries; and Yt
is the log-valued real GNP at year t. Eq. (27) can be rewritten as Sit = �i1Et + (�i2 +
�i3)Yt + �i3SYt+1 + eit , where SYt = Yt − Yt−1 is the growth rate of real GNP. This
model postulates that disaggregated employment is explained by total employment, total
output, and changes in total output. If this speciBcation is correct, we should identify
two factors with data in levels, and three factors with data in di:erences.

Our next inquiry is whether the unobservable factor model is consistent with the em-
pirical model of (27). That is, whether or not total employment and total output are the
underlying factors. If correctly speciBed, model (27) leads to a simpler representation,
more e+cient estimation, and a direct economic interpretation. But if total employ-
ment and GNP are not the underlying factors, model (27) would be misspeciBed. The
advantage of the unobservable factor model is that we can consistently estimate the
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Fig. 4. The number of full-time equivalent employees across 60 sectors. The sectors are arranged in ascending
order according to their 2000 values.

underlying factors. Once these factors are estimated, the inferential theory allows us to
test if the observable variables are the factors.

To test whether total employment is a true underlying factor, we rotate the three
statistical factors toward Et by running the regression Et = �′F̃ t + error, as explained
in Section 5 (including an intercept in the regression does not alter the conclusion).
We then compute and plot the conBdence intervals for the true underlying factor. Also
plotted is the observable total employment. It is seen that total employment lies inside
the conBdence intervals throughout the whole period 1948–2000, see Fig. 6. This sug-
gests that we can accept the hypothesis that total employment is one of the underlying
factors.

To test whether GNP is one of the true factors, we rotate the three statistical factors
toward Yt by running the regression Yt = �′F̃ t + error. Since there are many periods
for which GNP stays outside the conBdence intervals, the evidence in supporting GNP
as a factor is dubious, see Fig. 7. It remains an open question as to which economic
variable constitutes the second nonstationary factor.

Overall, there is strong evidence that employment /uctuations across industries can
be well explained by two nonstationary dynamic factors. The evidence is also consistent
with the hypothesis that total employment is one of the underlying factors. But the
evidence for GNP as a factor is not strong.
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Fig. 5. The number of full-time equivalent employees across 60 sectors. Estimated residuals from a
three-factor model.
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Fig. 6. ConBdence intervals for testing total employment as a factor. ConBdence intervals—dashed line,
log-valued total employment—solid line.
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Fig. 7. ConBdence intervals for testing GNP as a factor. ConBdence intervals—dashed line, log-valued GNP—
solid line.

8. Conclusion

This paper studies the estimation and inference of cross-section common stochastic
trends in nonstationary panel data. We show that the dimension and the common
trends themselves can be consistently estimated. When estimating the dimension, no
restriction is imposed on the relationship between N and T . We also derive the rates
of convergence and the limiting distributions for the estimated common trends and the
estimated loading coe+cients. Corresponding results for a class of generalized dynamic
factor models are also obtained. The method is applied to the study of employment
/uctuations across 60 U.S. industries. It is found that two nonstationary dynamic factors
can explain much of the /uctuations in the sectoral employment. The statistical evidence
is consistent with the hypothesis that aggregate employment is one of the underlying
factors.

High-dimension data analysis that takes into account cross-section correlation and
co-movement should become an important framework of econometric analysis, in view
of the increasing availability of high-dimensional data sets and the increasing inter-
connectedness of the world economy. This paper may be considered a step in this
direction.

Acknowledgements

I thank Gary Chamberlain, Jinyong Hahn, Peter Hansen, Jerry Hausman, Arthur
Lewbel, and seminar participants at Brown University, Ohio State University,
Harvard/MIT, NYU, University of Maryland, and Triangle Econometrics Workshop for



164 J. Bai / Journal of Econometrics 122 (2004) 137–183

many useful comments. Serena Ng and Richard Tresch read the manuscript carefully
and provided many valuable comments. All remaining errors are my own
responsibility.

Financial support from the National Science Foundation under grants SBR-9896329
and SES-0137084 is gratefully acknowledged.

Appendix A. The number of common trends

The proofs of Lemma 1, Proposition 1, and Lemmas A.1 and A.2 below are similar
to those of Bai and Ng (2002) and thus are omitted. Detailed proofs are available from
the author.

Lemma A.1. Under Assumptions A–C, we have for some M ¡∞, and for all N
and T ,

(i) E

(
T−1

T∑
t=1

‖N−1=2e′t�
0‖2

)
= E

(
T−1

T∑
t=1

‖N−1=2
N∑
i=1

eit�0
i ‖2

)
6M;

(ii) E


T−4

T∑
t=1

T∑
s=1

(
N−1

N∑
i=1

XitXis

)2

6M;

(iii) E

∣∣∣∣∣
∣∣∣∣∣(NT )−1=2

N∑
i=1

T∑
t=1

eit�0
i

∣∣∣∣∣
∣∣∣∣∣6M:

We use the identity F̂k =N−1X �̃k and �̃k =T−2X ′F̃k . That is, F̂k =(1=T 2N )XX ′F̃k .
From the normalization F̃k ′F̃k =T 2 = Ik , we also have T−2∑T

t=1 ‖F̃kt ‖2 = Op(1). For
Hk = (�0′�0=N )(F0′F̃k =T 2), upon expanding XX ′, we have

F̂kt − Hk ′F0
t = T−2

T∑
s=1

F̃ks �N (s; t) + T−2
T∑
s=1

F̃ks Ast + T−2
T∑
s=1

F̃ks �st

+T−2
T∑
s=1

F̃ks >st ; (A.1)

where

Ast =
e′set
N

− �N (s; t);

�st = F0
s

′�0′et=N;

>st = F0
t

′�0′es=N:
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Lemma A.2. For each k; 16 k6 r, and let Hk be the matrix de&ned earlier, then

V (k; F̂k) − V (k; F0Hk) = Op(T 1=2�−1
NT );

where V (k; F̂k) is de&ned in (9) and V (k; F0Hk) is de&ned by replacing F̂k with F0Hk .

Lemma A.3. For the matrix Hk de&ned in Lemma 1, and for each k with k ¡ r, we
have

lim inf
N;T→∞

log log T
T

(V (k; F0Hk) − V (r; F0)) = �¿ 0:

Proof. For a matrix A, let PA = A(A′A)−1A′ and MA = I − PA. Then

V (k; F0Hk) − V (r; F0) =N−1T−1
N∑
i

X ′
i(PF0 − PF0Hk )X i

=N−1T−1
N∑
i=1

�0
i
′F0′(PF0 − PF0Hk )F0�0

i

+ 2N−1T−1
N∑
i=1

e′i(PF0 − PF0Hk )F0�0
i

+N−1T−1
N∑
i=1

e′i(PF0 − PF0Hk )ei = I + II + III:

First, note that PF0 − PF0Hk ¿ 0. Hence, III¿ 0. Consider term I:

I = tr

[
T−1F0′(PF0 − PF0Hk )F0N−1

N∑
i=1

�0
i �

0
i
′
]

= T tr

([
F0′F0

T 2 − F0′F0Hk

T 2

(
Hk ′F0′F0Hk

T 2

)−1
Hk ′F0′F0

T 2

]
N−1

N∑
i=1

�0
i �

0
i
′
)
:

Thus,

log log T
T

I = tr

([
BT − BTHk(Hk ′BTHk)−1Hk ′BT

]
N−1

N∑
i=1

�0
i �

0
i
′
)
;

where BT=(log log T )(F0′F0=T 2). The matrix in the square brackets is positive semidef-
inite. Furthermore, because rank(Hk)=k ¡ r, the matrix is not identically zero in view
of rank(F0′F0=T 2) = r. In addition, N−1 ∑N

i=1 �
0
i �

0
i
′ is positive deBnite by Assump-

tion B. These imply that the trace is positive and the trace does not converge to zero
because lim inf BT is a positive-deBnite matrix by Assumption A(iii). This implies that
lim infN;T→∞ (log log T )I=T ¿ 0.
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Now II = 2N−1T−1∑N
i=1 e

′
iPF0F0�0

i − 2N−1T−1∑N
i=1 e

′
iPF0HkF0�0

i . But∣∣∣∣∣N−1T−1
N∑
i=1

e′iPF0F0�0
i

∣∣∣∣∣
=

∣∣∣∣∣N−1T−1
N∑
i=1

T∑
t=1

eitF0
t

′�0
i

∣∣∣∣∣

6T 1=2

(
T−2

T∑
t=1

‖F0
t ‖2

)1=2

· 1√
N


T−1

T∑
t=1

∣∣∣∣∣
∣∣∣∣∣ 1√
N

N∑
i=1

eit�0
i

∣∣∣∣∣
∣∣∣∣∣
2



1=2

= Op((T=N )1=2):

The last equality follows from Lemma A.1(i). The second term of II is also
Op((T=N )1=2), and hence (log log T )II=T = Op(log log T=(TN )1=2)

p→0. This proves
Lemma A.3.

Lemma A.4. For each &xed k with k¿ r; V (k; F̂k) − V (r; F̂r) = Op(1).

Proof. This follows easily from V (k; F̂k) = Op(1) for each k¿ r because

V (k; F̂k)6V (r; F̂r)6V (r; F0)6
1
TN

N∑
i=1

T∑
t=1

e2it = Op(1):

The Brst inequality follows from k¿ r. The second is a deBning property of minimiza-
tion (the sum of squared residuals is no larger than the case of known F0 and thus
not minimized with respect to F0). The third inequality says that the sum of squared
residuals V (r; F0) is no larger than the sum of squared residuals evaluated at �0 and
F0 (without minimizing with respect to �0 and F0). The last equality follows from
the assumptions on eit .

Proof of Theorem 1. Consider k ¡ r. We have the identity:

V (k; F̂k) − V (r; F̂r) = [V (k; F̂k) − V (k; F0Hk)]

+ [V (k; F0Hk) − V (r; F0Hr)] + [V (r; F0Hr) − V (r; F̂r)]:

Lemma A.2 implies that the Brst and the third terms are both Op(T 1=2�−1
NT ). Next, con-

sider the second term. Because F0Hr and F0 span the same column space, V (r; F0Hr)=
V (r; F0). Thus the second term can be rewritten as V (k; F0Hk) − V (r; F0), which is
Op(T=log log T ) [but not op(T=log log T ) and is positive] by Lemma A.3.
Hence, V (k; F̂k) − V (r; F̂r) = Op(T=log log T ). Using PC(k) − PC(r) = V (k; F̂k) −
V (r; F̂r)− (r− k)g(N; T ), it follows that if g(N; T )(log log T )=T → 0, then P[PC(k)¡
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PC(r)] → 0. Next for k ¿ r,

P[PC(k) − PC(r)¡ 0] = P[V (r; F̂r) − V (k; F̂k)¿ (k − r)g(N; T )]:

By Lemma A.4, V (r; F̂r)−V (k; F̂k)=Op(1). For k ¿ r; (k−r)g(N; T )¿ g(N; T ) → ∞.
Thus for k ¿ r; P[PC(k)¡PC(r)] → 0 as N; T → ∞.

Appendix B. Distribution theory

Lemma B.1. Under Assumptions A–D, we have for k = r (omitting superscript k)

�2
NT

(
1
T

T∑
t=1

‖F̃ t − H ′
2F

0
t ‖2

)
= Op(1);

where H2 = H1V−1
NT has full rank and VNT is an r × r diagonal matrix consisting of

the &rst r largest eigenvalues of (1=NT 2)XX ′ in decreasing order.

Proof. From the identity F̂ = (1=NT 2)XX ′F̃ and the deBnition of eigenvectors and
eigenvalues, (1=T 2N )XX ′F̃ = F̃VNT . The left-hand side is simply F̂ . Thus, we obtain
immediately another identity linking F̂ and F̃ . That is, F̂ = F̃VNT , or F̂ t = VNT F̃t and
F̃ t = V−1

NT F̂ t ; (t = 1; 2; : : : ; T ). Thus F̃ t −H ′
2F

0
t = V−1

NT (F̂ t −H ′
1F

0
t ). The lemma follows

from Lemma 1 and ‖V−1
NT ‖ = Op(1) (see Lemma B.3 below).

Note that both H1 and H2 are full rank matrices, and ‖H1‖=Op(1) and ‖H2‖=Op(1).

Proof of Lemma 2. By taking k = r, we can rewrite (A.1) as

F̂ t − H ′
1F

0
t = T−2

T∑
s=1

F̃s�N (s; t) + T−2
T∑
s=1

F̃sAst + T−2
T∑
s=1

F̃s�st

+T−2
T∑
s=1

F̃s>st : (B.1)

The desired result follows from Lemma B.2 below.

Lemma B.2. Under Assumptions A–E, we have, for each t,

(a) T−2∑T
s=1 F̃s�N (s; t) = Op(T−3=2);

(b) T−2∑T
s=1 F̃sAst = Op

(
1√
NT

)
;

(c) T−2∑T
s=1 F̃s�st = Op

(
1√
N

)
;

(d) T−2∑T
s=1 F̃s>st = Op

(
1√
NT

)
.
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Proof. Consider part (a). By adding and subtracting terms, we have

T−2
T∑
s=1

F̃s�N (s; t) = T−2
T∑
s=1

(F̃s − H ′
2F

0
s )�N (s; t) + H ′

2T
−2

T∑
s=1

F0
s �N (s; t): (B.2)

Now T−2∑T
s=1 F

0
s �N (s; t)=Op(T−3=2) since E|∑T

s=1 F
0
s �N (s; t)|6 (maxs E‖F0

s ‖)
∑T

s=1

|�N (s; t)|6T 1=2M by E‖F0
t ‖ = O

(√
T
)

and Assumption E(1). Consider the Brst term:∣∣∣∣∣
∣∣∣∣∣T−2

T∑
s=1

(F̃s − H ′
2F

0
s )�N (s; t)

∣∣∣∣∣
∣∣∣∣∣6 1

T 3=2

(
1
T

T∑
s=1

‖F̃s − H ′
2F

0
s ‖2

)1=2

×
(

T∑
s=1

|�N (s; t)|2
)1=2

;

which is T−3=2Op(�−1
NT ) by Lemma B.1 and Assumption E(1). Consider part (b).

T−2
T∑
s=1

F̃sAst = T−2
T∑
s=1

(F̃s − H ′
2F

0
s )Ast + H ′

2T
−2

T∑
s=1

F0
s Ast = I + II:

I = ‖T−2
T∑
s=1

(F̃s − H ′
2F

0
s )Ast‖6

1
T

(
1
T

T∑
s=1

‖F̃s − H ′
2F

0
s ‖2

)1=2(
1
T

T∑
s=1

A2st

)1=2

:

Furthermore,

T−1
T∑
s=1

A2st =
1
N

1
T

T∑
s=1

[
N−1=2

N∑
i=1

(eiseit − E(eiseit))

]2

= Op

(
1
N

)
:

Thus term I is 1
TOp( 1

�NT
)Op

(
1√
N

)
. Consider II,∣∣∣∣∣

∣∣∣∣∣T−2
T∑
s=1

F0
s Ast

∣∣∣∣∣
∣∣∣∣∣6 1√

T

(
1
T 2

T∑
s=1

‖F0
s ‖2

)1=2(
1
T

T∑
s=1

A2st

)1=2

= Op

(
1√
NT

)
:

Thus (I) is dominated by (II) and hence (b) is Op
(
1=

√
NT

)
. Consider part (c).

T−2
T∑
s=1

F̃s�st = T−2
T∑
s=1

(F̃s − H ′
2F

0
s )�st + H ′

2T
−2

T∑
s=1

F0
s �st :

Now T−2∑T
s=1 F

0
s �st = ((1=T 2)

∑T
s=1 F

0
s F

0
s

′)(1=N )
∑N

k=1 �kekt = Op
(
1=

√
N
)
. The Brst

term above is∣∣∣∣∣
∣∣∣∣∣T−2

T∑
s=1

(F̃s − H ′
2F

0
s )�st

∣∣∣∣∣
∣∣∣∣∣6T−1=2

(
1
T

T∑
s=1

‖F̃s − H ′
2F

0
s ‖2

)1=2(
1
T 2

T∑
s=1

�2
st

)1=2

:
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But

T−2
T∑
s=1

�2
st = T−2

T∑
s=1

(F0
s

′�0′et=N )26 ‖�0′et=N‖2

(
T−2

T∑
s=1

‖F0
s ‖2

)
= Op

(
1
N

)
;

for ‖�0′et=
√
N‖2=Op(1). Thus, ‖T−2∑T

s=1(F̃s−H ′
2F

0
s )�st‖=Op((TN )−1=2�−1

NT ). There-

fore, (c) is Op

(
1√
N

)
. Finally for part (d),

T−2
T∑
s=1

F̃s>st = T−2
T∑
s=1

F̃sF0
t

′�0′es=N = T−2
T∑
s=1

(F̃se′s�
0=N )F0

t

=
1
NT 2

T∑
s=1

(F̃s − H ′
2F

0
s )e

′
s�

0F0
t +

1
NT 2

T∑
s=1

H ′
2F

0
s e

′
s�

0F0
t :

Consider the Brst term∣∣∣∣∣
∣∣∣∣∣
(

1
NT 2

T∑
s=1

(F̃s − H ′
2F

0
s )e

′
s�

0

)
F0
t

∣∣∣∣∣
∣∣∣∣∣6 1√

TN

(
1
T

T∑
s=1

‖F̃s − H ′
2F

0
s ‖2

)1=2

×
(

1
T

T∑
s=1

∣∣∣∣
∣∣∣∣e′s�0
√
N

∣∣∣∣
∣∣∣∣
2
)1=2

‖F0
t ‖√
T
;

which is Op
(
1=

√
TNCNT

)
. For the second term of (d),

1
NT 2

T∑
s=1

F0
s e

′
s�

0F0
t =

1√
NT

(
1

T
√
N

T∑
s=1

N∑
k=1

F0
s �

0
k
′eks

)(
F0
t =

√
T
)

= Op((TN )−1=2):

Thus, (d) is Op
(
1=

√
NT

)
. The proof of Lemma B.2 is complete.

Lemma B.3. Assume Assumptions A–D hold. Let VNT be the diagonal matrix con-
sisting of the &rst r largest eigenvalues of (1=T 2N )XX ′ and let V †

NT be counterpart
of the matrix (1=T 2N )F0(�0′�0)F0′. As, T; N → ∞,

(i) T−2F̃
′
((1=T 2N )XX ′)F̃ = VNT

d→V ,
(ii) V †

NT = VNT + op(1),

(iii) F̃
′
F0=T 2(�0′�0=N )F0′F̃=T 2 d→V ,

where V is a diagonal matrix (random) consisting of the eigenvalues of ��
∫
BuB′

u.

Proof. By the deBnition of eigenvalues and eigenvectors, we have (1=T 2N )XX ′F̃ =
F̃VNT . From F̃

′
F̃=T 2 = I , we further have T−2F̃

′
(1=T 2N )XX ′F̃ = VNT . Next,

‖T−4N−1F̃
′
(XX ′)F̃ − T−4N−1F̃

′
F0(�0′�0)F0′F̃‖ = op(1) (B.3)

is implied by the proof of Lemma 2. Associated with the eigenvalues of V †
NT is the

eigenvector matrix F̃† such that F̃ ′
†F̃†=T 2 = I. By deBnition, T−4N−1F̃ ′

†F
0(�0′�0)
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F0′F̃† = V †
NT . It can be shown that

‖T−4N−1F̃
′
F0(�0′�0)F0′F̃ − T−4N−1F̃ ′

†F
0(�0′�0)F0′F̃†‖ = op(1): (B.4)

Note that the r largest eigenvalues of the matrix (1=T 2)F0(�0′�0=N )F0′ are the same
as those of the matrix (�0′�0=N )(F0′F0=T 2). But the latter matrix converges in distri-
bution to ��

∫
BuB′

u. Thus V †
NT converges in distribution to V . Eqs. (B.3) and (B.4)

imply VNT = V †
NT + op(1). Thus VNT

d→V , proving parts (i) and (ii). Part (iii) follows
from part (i) and (B.3).

In what follows, an eigenvector matrix of W refers to the matrix whose columns
are the eigenvectors of W with unit length and the ith column corresponds to the ith
largest eigenvalue.

Proof of Proposition 3. Let VNT be as stated earlier, then (1=T 2N )XX ′F̃= F̃VNT . Mul-
tiplying this identity on both sides by T−2(�0′�0=N )1=2F0′, we have(

�0′�0

N

)1=2

T−2F0′
(
XX ′

T 2N

)
F̃ =

(
�0′�0

N

)1=2(
F0′F̃
T 2

)
VNT :

Expanding XX ′ with X = F0�0′ + e, we can rewrite above as(
�0′�0

N

)1=2(
F0′F0

T 2

)(
�0′�0

N

)(
F0′F̃
T 2

)
+ dNT

=
(
�0′�0

N

)1=2(
F0′F̃
T 2

)
VNT ; (B.5)

where dNT = (�0′�0=N )1=2[(F0′F0=T 2)�0′e′F̃=(T 2N ) + (1=T 2N )F0′e�0F0′(F̃)=T 2 +
(1=T 2N )F0′ee′F̃=T 2] = op(1), where the op(1) is implied by Lemma B.2. Let

BNT =
(
�0′�0

N

)1=2(
F0′F0

T 2

)(
�0′�0

N

)1=2

;

and

RNT =
(
�0′�0

N

)1=2(
F0′F̃
T 2

)
; (B.6)

then we can rewrite (B.5) as

[BNT + dNTR−1
NT ]RNT = RNTVNT :

Thus each column RNT , though not unit length, is an eigenvector of the matrix [BNT +
dNTR−1

NT ]. Let V ∗
NT be a diagonal matrix consisting of the diagonal elements of R′

NTRNT .
Denote 3NT = RNT (V ∗

NT )
−1=2 so that each column of 3NT has a unit length, and we

have

[BNT + dNTR−1
NT ]3NT =3NTVNT :

This equality holds because V ∗
NT and VNT are diagonal matrices and thus commutable.

Therefore 3NT is the eigenvector matrix of [BNT + dNTR−1
NT ]. Note that BNT + dNTR−1

NT
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converges to B=�1=2
� (

∫
BuB′

u)�
1=2
� by Assumptions A and B and dNT =op(1). Because

the eigenvalues of B are distinct by Assumption F, the eigenvalues of BNT + dNTR−1
NT

will also be distinct for large N and large T . This implies that the eigenvector matrix
of BNT + dNTR−1

NT is unique except that each column can be replaced by the neg-
ative of itself. In addition, the kth column of RNT (see (B.6)) depends on F̃ only
through the kth column of F̃ (k = 1; 2; : : : ; r). Thus the sign of each column in RNT
and thus in 3NT = RNTV

−1=2
NT∗ is implicitly determined by the sign of each column in

F̃ . Thus, given the column sign of F̃ , 3NT is uniquely determined. By the eigenvec-
tor perturbation theory (which requires the distinctness of eigenvalues, see Franklin
(1968)), there exists a unique eigenvector matrix 3 of B = �1=2

�

∫
BuB′

u�
1=2
� such that

3NT
d→3 . Rewrite (B.6) as F0′F̃=T 2 =(�0′�0=N )−1=2RNT =(�0′�0=N )−1=23NT (V ∗

NT )
1=2,

we have F0′F̃=T 2 d→�−1=2
� 3V 1=2 by Assumption B and by V ∗

NT
d→V in view of Lemma

B.3(ii).

Proof of Theorem 2. By Lemma B.2, we have

F̂ t − H ′
1F

0
t = Op

(
1
T 3=2

)
+ Op

(
1√
NT

)
+ Op

(
1√
N

)
+ Op

(
1√
NT

)
(B.7)

and
√
N (F̂ t − H ′

1F
0
t ) = Op(N 1=2T−3=2) + Op(T−1=2) + Op(1) + Op(T−1=2):

The limiting distribution is determined by the third term of (B.1). By the deBnition of
�st ,

√
N (F̂ t − H ′

1F
0
t ) = T−2

T∑
s=1

(F̃sF0
s

′)
1√
N

N∑
i=1

�0
i eit + op(1):

Now
(
1=

√
N
)∑N

i=1 �
0
i eit

d→N (0; 6t) by Assumption G. Together with Proposition 3, we

have
√
N (F̂ t − H ′

1Ft)
d→QN (0; 6t) as stated. Note that Q is independent of N (0; 6t).

This is because the limiting behavior of (F̃
′
F0=T 2) is determined by the common trends

only, see (B.4) and the common trends are independent of the idiosyncratic errors.

Proof of Corollary 1. From F̃ t =V−1
NT F̂ t and H ′

2 =V−1
NT H

′
1, we have

√
N (F̃ t −H ′

2F
0
t )=

V−1
NT

√
N (F̂ t − H ′

1F
0
t ). The corollary follows from Theorem 2 and VNT → V by

Lemma B.3.

Lemma B.4. Under Assumptions A–E, the r × r matrices satisfy

(i) T−1(F̂ − F0H1)′F0 = Op(T−1) + Op(N−1=2),
(ii) T−1(F̂ − F0H1)′F̂ = Op(T−1) + Op(N−1=2),
(iii) T−1‖∑T

t=1(F̂ t − H ′
1F

0
t )‖ = Op(T−3=2) + Op((NT )−1=2).

Furthermore, (i)–(iii) hold with F̂ replaced by F̃ and H1 replaced by H2.
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Proof. Consider (i). Using the identity (B.1), we have

T−1
T∑
t=1

(F̂ t − H ′
1F

0
t )F

0
t

′ = T−3
T∑
t=1

T∑
s=1

F̃sF0
t

′�N (s; t) + T−3
T∑
t=1

T∑
s=1

F̃sF0
t

′Ast

+T−3
T∑
t=1

T∑
s=1

F̃sF0
t

′�st + T−3
T∑
t=1

T∑
s=1

F̃sF0
t

′>st

= I + II + III + IV:

We shall show I=Op(T−1). We can simply treat F̃s as H ′
2F

0
s because (after adding and

subtracting) the term involving F̃s − H ′
2F

0
s is a dominated term. Thus it is su+cient

to prove T−3∑T
t=1

∑T
s=1 F

0
s F

0
t

′�N (s; t) = Op(T−1). But this follows from E‖F0
s F

0
t

′

�N (s; t)‖6 |�N (s; t)|max16t6T E‖F0
t ‖26MT�N (s; t) and Assumption C2. Consider II.

From Ast=e′set=N−�N (s; t); II=(1=T 3N )
∑T

t=1

∑T
s=1 F̃sF

0
t

′e′set−I. To prove II=Op(T−1),
it su+ces to prove (treating F̃s as H ′

2F
0
s , i.e., ignoring F̃s − H ′

2F
0
s )

1
T 3N

T∑
t=1

T∑
s=1

F0
s F

0
t

′e′set = Op(T−1):

The above is bounded by

1
T

∣∣∣∣∣∣
∣∣∣∣∣∣
1
N

N∑
i=1

(
1
T

T∑
s=1

F0
s eis

)(
1
T

T∑
t=1

F0
t eit

)′∣∣∣∣∣∣
∣∣∣∣∣∣6

1
T

1
N

N∑
i=1

∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

F0
t eit

∣∣∣∣∣
∣∣∣∣∣
2

= Op(T−1)

because the assumptions imply E‖ 1
T

∑T
t=1 F

0
t eit‖26M . Next, rewrite III as

III =

(
1
T 2

T∑
s=1

F̃sF0
s

′
)(

1
TN

T∑
t=1

N∑
k=1

�0
kF

0
t

′ekt

)
:

The Brst expression is Op(1) and the second is Op(N−1=2). Thus III = Op(N−1=2).
Consider IV. Because �st is a scalar we can use F0

t
′�st = �stF0

t
′ = �′

stF
0
t

′ to rewrite IV
as

IV =

(
1
TN

T∑
s=1

F̃se′s�
0

)(
1
T 2

T∑
t=1

F0
t F

0
t

′
)
:

The second expression is Op(1) and the Brst can be rewritten as

1
TN

T∑
s=1

(F̃s − H ′
2F

0
s )

N∑
k=1

�0
k
′eks + H ′

2
1
TN

T∑
s=1

N∑
k=1

F0
s �

0
k
′eks: (B.8)

The Brst term of (B.8) is bounded by ((1=T )
∑T

s=1 ‖F̃s − H ′
2F

0
s ‖2)1=2((1=T )

∑T
s=1 ‖(

1=
√
N
)∑N

k=1 �
0
keks‖2)1=2N−1=2, which is Op(N−1=2�−1

NT ). The second term is Op(N−1=2).
Combining results, we prove (i).
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Part (ii) of this lemma follows easily from (i). Rewrite

T−1F̂
′
(F0H1 − F̂) = −T−1(F̂ − F0H1)′(F̂ − F0H1):− H ′

1T
−1F0′(F̂ − F0H1):

The norm of the Brst expression is bounded by T−1∑T
t=1 ‖F̂ t −H ′

1F
0
t ‖2 =Op(�−2

NT ) and
the second expression is Op(T−1 + N−1=2) by part (i), proving part (ii).

Next consider (iii). By (B.7), each term except the third on the right-hand side
is of Op(T−3=2) or Op((NT )−1=2), thus the average over t is still of this magnitude.
The average over t for the third term is given by T−2∑T

s=1 (F̃sF0
s

′)(1=TN )
∑N

i=1 �
0
i eit ,

which is equal to Op((NT )−1=2), proving (iii).
The remaining claim of this lemma follows from the relationship between F̂

and F̃ .

Proof of Lemma 3 and Theorem 3. The estimator �̂i has an alternative expression: �̂i=
(F̂

′
F̂)−1F̂

′
X i, where X i = F0�0

i + ei. Thus

�̂i = (F̂
′
F̂)−1F̂

′
[F̂H−1

1 �0
i + ei + (F0 − F̂H−1

1 )�0
i ]

=H−1
1 �0

i + (F̂
′
F̂)−1F̂

′
ei + (F̂

′
F̂)−1F̂

′
(F0 − F̂H−1

1 )�0
i :

Rewriting F̂
′
ei = H ′

1F
0′ei + (F̂ − F0H1)′ei, we have

T (�̂i − H−1
1 �0

i ) =

(
F̂

′
F̂
T 2

)−1

H ′
1

1
T
F0′ei +

(
F̂

′
F̂
T 2

)−1
1
T

(F̂ − F0H1)′ei

+

(
F̂

′
F̂
T 2

)−1
1
T
F̂

′
(F0H1 − F̂)H−1

1 �0
i : (B.9)

Consider each term on the right-hand side above. From ‖(F̂
′
F̂=T 2)−1‖=Op(1); ‖H1‖=

Op(1), and T−1F0′ei =T−1∑T
t=1 F

0
t eit =Op(1), the Brst term of (B.9) is Op(1). Next,

T−1‖(F̂ − F0H1)′ei‖ = T−1

∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

(F̂ t − H ′
1F

0
t )eit

∣∣∣∣∣
∣∣∣∣∣

6

(
T−1

T∑
t=1

‖F̂ t − H ′
1F

0
t ‖2

)1=2(
T−1

T∑
t=1

e2it

)1=2

= Op(�−1
NT )Op(1):

So the second expression of (B.9) is Op(�−1
NT ). Finally, by Lemma B.4(ii), the last

expression of (B.9) is op(1). Combining results we obtain Lemma 3. In addition,

T (�̂i − H−1
1 �0

i ) =

(
F̂

′
F̂
T 2

)−1

H ′
1
1
T

T∑
t=1

F0
t eit + op(1): (B.10)
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Note that (F̂
′
F̂=T 2)−1H ′

1 = H−1
1 (F0′F0=T 2)−1 + op(1) and H−1

1 (F0′F0=T 2)−1 =
[(�0′�0=N )(F0′F̃=T 2)]−1(F0′F0=T 2)−1 → (��Q′)−1(

∫
BuB′

u)
−1; see Proposition 3. This

implies Theorem 3 in view of Assumption H.

Proof of Corollary 2. The mathematical identity �̃=�̂VNT can be shown to hold. That
is, �̃i=VNT �̂i. From H2=H1V−1

NT , or H−1
2 =VNTH−1

1 , we have T (�̃i−H−1
2 �0

i )=VNTT (�̂i−
H−1

1 �0
i ). The corollary follows immediately from Theorem 3 and VNT → V .

Proof of Theorem 4. From C0
it = F0

t
′�0
i and Ĉit = F̂ ′

t �̂i, we have

Ĉit − C0
it = (F̂ t − H ′

1F
0
t )

′H−1
1 �0

i + F̂ ′
t(�̂i − H−1

1 �0
i ): (B.11)

(i) N=T → 0. Multiplying
√
N on each side of above,

√
N (Ĉit − C0

it) =
√
N (F̂ t − H ′

1F
0
t )

′H−1
1 �0

i + F̂ ′
tOp(N 1=2=T ):

Because N=T → 0 and F̂ t = Op(T 1=2), the second term on the right is op(1). By
Theorem 2,

√
N (F̂ t − H ′

1F
0
t ) =

(
F̃

′
F0

T 2

)
1√
N

N∑
j=1

�0
j ejt + op(1)

=

(
F̃

′
F0

T 2

)(
�0′�0

N

)(
�0′�0

N

)−1
1√
N

N∑
j=1

�0
j ejt + op(1)

=H ′
1

(
�0′�0

N

)−1
1√
N

N∑
j=1

�0
j ejt + op(1)

by the deBnition of H1. Therefore,

�0
i
′(H ′

1)
−1

√
N (F̂ t − H ′

1F
0
t ) = �0

i
′
(
�0′�0

N

)−1
1√
N

N∑
j=1

�0
j ejt + op(1)

d→N (0; �0′
i�

−1
� 6t�−1

� �0
i ): (B.12)

That is,
√
N (Ĉit − C0

it)
d→N (0; �0

i
′�−1
� 6t�−1

� �0
i ).

(ii) If T=N → 0 then T 1=2(F̂ t − H ′
1F

0
t ) = op(1) by (B.7). From (B.11) and (B.10),

√
T (Ĉit − C0

it) = op(1) + (T−1=2F̂ ′
t)T (�̂i − H−1

1 �i)

= op(1) + (T−1=2F0
t

′)(F0′F0=T 2)−1 1
T

T∑
s=1

F0
s eis

d→ Bu(�)′
(∫

BuB′
u

)−1 ∫
Bu dB(i)

e : (B.13)
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(iii) N=T → 7. Rewrite (B.11) as
√
N (Ĉit − C0

it) =
√
N (F̂ t − H ′

1F
0
t )

′H−1
1 �0

i +
(√

N=T
)

(T−1=2F̂ ′
t)T (�̂i − H−1

1 �i):

The desired result follows from cases 1 and 2. In addition, B(i)
e is asymptotically

independent of N−1=2∑N
j=1 �jejt because the latter involves every cross-section unit.

Moreover, B(i)
e is independent of Bu by assumption. Thus, the limits of (B.12) and

(B.13) are independent.

Proof of Proposition 4. For notational simplicity, we write H for H ′
2. From R̂t = ,̂ +

�̂
′
F̃ t ; R̂t − , − �′F0

t = (,̂ − ,) + �̂
′
F̃ t − �′F0

t . Adding and subtracting terms, and then
multiplying

√
N on each side, we have

√
N (R̂t − ,− �′F0

t ) =
√
N (,̂− ,) +

√
N (�̂− H−1′�)′F̃ t

+ �′H−1
√
N (F̃ t − HF0

t ):

We next show the Brst two terms on the right-hand side are negligible. Let – =
(1; 1; : : : ; 1)′ and deBne Z = (–; F̃) to be the regressor matrix of (13). Let 0̂ = (,̂; �̂

′
)′

be the least-squares estimator. Then 0̂ = (Z ′Z)−1Z ′R, where R = (R1; : : : ; RT )′. Under
the null hypothesis, Rt = ,+ �′F0

t . Adding and subtracting terms, Rt = ,+ �′H−1F̃ t +
�′H−1(HF0

t −F̃ t). In matrix notation, R=Z�−(F̃−F0H ′)H−1′�, where �=(,; �′H−1)′.
Thus

0̂ − �= −(Z ′Z)−1Z ′(F̃ − F0H ′)H−1′�:

DeBne DT = diag
(√
T ; T; : : : ; T

)
, then D−1

T Z ′ZD−1
T = Op(1). We have

DT (0̂ − �) = (D−1
T Z ′ZD−1

T )−1D−1
T Z ′(F̃ − F0H ′)H−1′�:

This implies that

,̂− ,=M11
1
T
–′(F̃ − F0H ′)H−1′�+M12

1
T 3=2 F̃

′
(F̃ − F0H ′)H−1�;

�̂− H−1′�=M21
1
T 3=2 –

′(F̃ − F0H ′)H−1′�+M22
1
T 2

×F̃ ′
(F̃ − F0H ′)H−1′�; (B.14)

where Mij is the (i; j)th block entry of (D−1
T Z ′ZD−1

T )−1, partitioned conformably. Each
Mij is Op(1). By Lemma B.4(iii), T−1–′(F̃ − F0H ′) = Op(T−3=2) + Op

(
1=

√
NT

)
, and

by Lemma B.4(ii). T−3=2F̃
′
(F̃−F0H ′)=Op(T−3=2)+Op

(
1=

√
NT

)
. Thus,

√
N (,̂−,)=

Op(
√
NT−3=2) + Op(T−1=2) and

√
N (�̂ − H−1′�) = Op(

√
NT−2) + Op(T−1). Because

F̃ t = Op
(√
T
)
, we have

√
N (�̂ − H−1′�)′F̃ t = Op

(√
NT−3=2

)
+ Op(T−1=2). Now it is

clear that both
√
N (,̂−,) and

√
N (�̂−H−1′�)′F̃ t converge to zero if N=T 3 → 0. Thus,

√
N (R̂t − ,− �′F0

t ) = op(1) + �′H−1
√
N (F̃ t − HF0

t ):
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By Theorem 2 and Corollary 1,
√
N (F̃ t − HF0

t ) = V−1
NT

√
N (F̂ t − H ′

1F
0
t ) (B.15)

= V−1
NT

(
F̃

′
F0

T 2

)
1√
N

N∑
i=1

�0
i eit + op(1): (B.16)

Thus,

�′H−1
√
N (F̃ t − HF0

t ) = �′H−1V−1
NT

(
F̃

′
F0

T 2

)
1√
N

N∑
i=1

�0
i eit + op(1):

Because H; V−1
NT , and T−2F̃

′
F0 are all asymptotically independent of

(
1=

√
N
)∑N

i=1
�0
i eit , we have

√
N (R̂t − ,− �′F0

t )

[�′H−1V−1
NT (F̃

′
F0=T 2)6t(F̃

′
F0=T 2)′V−1

NT H−1′�]1=2
d→N (0; 1);

where 6t is the asymptotic variance of
(
1=

√
N
)∑N

i=1 �
0
i eit . That is, 6t = p limN→∞

(1=N )
∑N

i=1 e
2
it�

0
i �

0
i
′ under cross-section uncorrelation for idiosyncratic errors. We can

estimate (F̃
′
F0=T 2)6t(F̃

′
F0=T 2)′ by replacing F0 with F̃ , replacing �0 by �̃ (equiv-

alently, replacing �0
i with �̃i for every i), and by replacing e2it with ẽ2it . Noticing that

F̃
′
F̃=T 2 = I , it is not di+cult to show that(

F̃
′
F0

T 2

)
6t

(
F̃

′
F0

T 2

)′
− 1
N

N∑
i=1

ẽ2it �̃i�̃
′
i = op(1):

Finally, H−1′� is estimated by �̂, see (B.14). This implies that
√
N (R̂t − ,− �′F0

t )[
�̂

′
V−1
NT

(
(1=N )

∑N
i=1 ê

2
it �̃i�̃

′
i

)
V−1
NT �̂

]1=2
d→N (0; 1);

proving Proposition 4.

Appendix C. Generalized dynamic factor models

Lemma C.1. Under the assumptions of Theorem 5, and for Hk de&ned in Lemma 1,
we have, for each k6 r

1
T

T∑
t=1

‖F̂kt − Hk ′F0
t ‖2 = Op(1): (C.1)

This lemma provides a rough bound on the behavior of F̂kt . Although not sharpest
possible, the bound is su+cient for our purpose.
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Proof. By the Beveridge–Nelson decomposition, we have �i(L)=�i(1)+�∗
i (L)(1−L),

where �∗
i (L) =

∑∞
j=0 a

∗
ijL

j with a∗
ij =

∑∞
k=j+1 aik . Thus, �i(L)′Ft = �i(1)Ft + �∗

i (L)ut .
That is, Xit = �i(1)′Ft + �∗

i (L)ut + eit , which can be rewritten as Xit = �′
iFt + Dit , where

�i = �i(1) and Dit = �∗
i (L)ut + eit . Note that Dit does not have the weak cross-section

correlation properties imposed on eit . Thus Lemma C.1 is much weaker than Lemma 1.
Combining the Brst two terms on the right-hand side of (A.1), we can rewrite (A.1)

as

F̂kt − Hk ′F0
t = T−2

T∑
s=1

F̃ks Ast + T−2
T∑
s=1

F̃ks �st + T−2
T∑
s=1

F̃ks >st (C.2)

where, upon introducing Dt = (D1t ; D2t ; : : : ; DNt)′

Ast =
D′sDt
N
; �st = F0

s
′�0′Dt=N; >st = F0

t
′�0′Ds=N:

The rest of proof involving bounding each term on the right-hand side of (C.2). The
proof is similar to that of Theorem 1 of Bai and Ng (2002), and thus is omitted.

Lemma C.2. Under the assumptions of Theorem 5, we have, for each k with 16k6r,

V (k; F̂k) − V (k; F0Hk) = Op(T 1=2):

Proof. Let Dk = F̂k ′F̂k =T 2 and D0 = Hk ′F0′F0Hk=T 2. Then adding and subtracting,

PF̂k − PF0Hk = T−2[(F̂k − F0Hk)D−1
k (F̂k − F0Hk)′ + (F̂k − F0Hk)D−1

k Hk ′F0′

+F0HkD−1
k (F̂k − F0Hk)′ + F0Hk(D−1

k − D−1
0 )Hk ′F0′];

V (k; F0Hk) − V (k; F̂k) =N−1T−1
N∑
i=1

X ′
i(PF̂k − P0

FHk )X i

= I + II + III + IV; (C.3)

where the four terms correspond to the decomposition of PF̂k − PF0Hk as above. Now

I = N−1T−3
N∑
i=1

T∑
t=1

T∑
s=1

(F̂kt − Hk ′F0
t )

′D−1
k (F̂ks − Hk ′F0

s )XitXis

6

(
T−2

T∑
t=1

T∑
s=1

[(F̂kt − Hk ′F0
t )

′D−1
k (F̂ks − Hk ′F0

s )]
2

)1=2

×

T−4

T∑
t=1

T∑
s=1

(
N−1

N∑
i=1

XitXis

)2



1=2

6

(
T−1

T∑
t=1

‖F̂kt − Hk ′F0
t ‖2

)
‖D−1

k ‖Op(1) = Op(1)
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by Lemma C.1 and Lemma A.1(iii). Note that ‖D−1
k ‖=Op(1), which is proved below.

II = N−1T−3
N∑
i=1

T∑
t=1

T∑
s=1

(F̂kt − Hk ′F0
t )

′D−1
k Hk ′F0

s XitXis

6

(
T−2

T∑
t=1

T∑
s=1

‖F̂kt − Hk ′F0
t ‖2‖Hk ′F0

s ‖2‖D−1
k ‖2

)1=2

×

T−4

T∑
t=1

T∑
s=1

(
N−1

N∑
i=1

XitXis

)2



1=2

6 T 1=2

(
T−1

T∑
t=1

‖F̂kt − Hk ′F0
t ‖2

)1=2

‖D−1
k ‖

(
T−2

T∑
s=1

‖Hk ′F0
s ‖2

)1=2

Op(1)

= T 1=2

(
T−1

T∑
t=1

‖F̂kt − Hk ′F0
t ‖2

)1=2

Op(1) = Op(T 1=2):

It can be veriBed that III is also Op(T 1=2). Next,

IV = N−1T−3
N∑
i=1

T∑
t=1

T∑
s=1

F0
t

′Hk(D−1
k − D−1

0 )Hk ′F0
s XitXis

6 T‖D−1
k − D−1

0 ‖N−1
N∑
i=1

(
T−2

T∑
t=1

‖Hk ′F0
t ‖ · |Xit |

)2

= T‖D−1
k − D−1

0 ‖Op(1);

where Op(1) is obtained because the term is bounded (using |Xit |6 ‖�0
i ‖F0

t ‖+ |eit |) by
2‖Hk‖2( 1

T 2

∑T
t=1 ‖F0

t ‖2)2( 1
N

∑N
i=1 ‖�0

i ‖2) + 2‖Hk‖2 1
N

∑N
i=1(

1
T 2

∑T
t=1 ‖F0

t ‖|eit |)2, which
is Op(1) by Assumptions A and B. Next, we prove that ‖Dk−D0‖=Op(T−1=2). Notice

Dk − D0 = T−2
T∑
t=1

[F̂kt F̂
k
t
′ − Hk ′F0

t F
0
t

′Hk ]

= T−2
T∑
t=1

(F̂kt − Hk ′F0
t )(F̂

k
t − Hk ′F0

t )
′

+T−2
T∑
t=1

(F̂kt − Hk ′F0
t )F

0
t

′Hk + T−2
T∑
t=1

Hk ′F0
t (F̂

k
t − Hk ′F0

t )
′;
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‖Dk − D0‖6 T−2
T∑
t=1

‖F̂kt − Hk ′F0
t ‖2

+2T−1=2

(
T−1

T∑
t=1

‖F̂kt − Hk ′F0
t ‖2

)1=2(
T−2

T∑
t=1

‖Hk ′F0
t ‖2

)1=2

= T−1Op(1) + T−1=2Op(1)Op(1) = T−1=2Op(1):

Because the limit of F0′F0=T 2 is positive deBnite and rank(Hk)= k6 r; D0 (k× k) is
invertible and ‖D−1

0 ‖=Op(1). From ‖Dk−D0‖=T−1=2Op(1) → 0; Dk is also invertible
and ‖D−1

k ‖ = Op(1). From D−1
k −D−1

0 =D−1
k (D0 −Dk)D−1

0 , we have ‖D−1
k −D−1

0 ‖ =
‖Dk − D0‖Op(1) = T−1=2Op(1). Thus IV = T‖Dk − D0‖Op(1) = Op(T 1=2). This proves
Lemma C.2.

Lemma C.3. Lemma A.3 still holds. That is, for each k with k ¡ r, there exists a
�¿ 0,

lim inf
N;T→∞

log log T
T

[V (k; F0Hk) − V (r; F0)] = �¿ 0:

Proof. The proof is the same as that of Lemma A.3 but with ei replaced by Di, where
Di = (Di1; Di2; : : : ; DiT )′ with Dit = �∗

i (L)
′ut + eit . More speciBcally,

V (k; F0Hk) − V (r; F0) =N−1T−1
N∑
i=1

�0
i
′F0′(P0

F − P0
FH )F0�0

i

+ 2N−1T−1
N∑
i=1

D′i(P
0
F − P0

FH )F0�0
i

+N−1T−1
N∑
i=1

D′i(P
0
F − P0

FH )Di = I + II + III:

The proof for I and III is the same as before. That is, III¿ 0 and lim inf (log log T )
I=T ¿ 0. Next, II = 2N−1T−1∑N

i=1 D
′
iPF0F0�0

i − 2N−1T−1∑N
i=1 D

′
iPF0HkF0�0

i . But

|N−1T−1
N∑
i=1

D′iP
0
FF

0�0
i | = |N−1T−1

N∑
i=1

T∑
t=1

DitF0
t

′�0
i |

6 T 1=2

(
T−2

T∑
t=1

‖F0
t ‖2

)1=2

T−1

T∑
t=1

∣∣∣∣∣
∣∣∣∣∣ 1
N

N∑
i=1

Dit�0
i

∣∣∣∣∣
∣∣∣∣∣
2



1=2

= Op(T 1=2):

The second term of II is also Op(T 1=2), and hence (log log T )II=T = Op(log

log T=T 1=2)
p→0. This proves Lemma C.3.
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Lemma C.4. For each &xed k with k¿ r; V (k; F̂k) − V (r; F̂r) = Op(1).

Proof. This follows easily from V (k; F̂k) = Op(1) for each k¿ r because

V (k; F̂k)6V (r; F̂r)6V (r; F0)6
1
TN

N∑
i=1

T∑
t=1

D2it = Op(1)

The Brst three inequalities are explained in the proof of Lemma A.4. The last equality
follows from the assumptions on �i(L); ut , and eit .

Proof of Theorem 5. The proof is identical to that of Theorem 1. Instead of using
Lemmas A.2–A.4 we use Lemmas C.2–C.4.

Proof of Theorem 6 and Corollary 4. The proof of Theorem 6 is similar to that of
Theorems 2 and 3; the proof of Corollary 4 is similar to that of Proposition 4. Thus
these proofs are omitted.

Appendix D. List of industries

Agriculture, forestry, and Bshing
Farms
Agricultural services, forestry, and Bshing

Mining
Metal mining
Coal mining
Oil and gas extraction
Nonmetallic minerals, except fuels

Construction
Manufacturing

Durable goods
Lumber and wood products
Furniture and Bxtures
Stone, clay, and glass products
Primary metal industries
Fabricated metal products
Machinery, except electrical
Electric and electronic equipment
Motor vehicles and equipment
Other transportation equipment
Instruments and related products
Miscellaneous manufacturing industries
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Nondurable goods
Food and kindred products
Tobacco manufactures
Textile mill products
Apparel and other textile products
Paper and allied products
Printing and publishing
Chemicals and allied products
Petroleum and coal products
Rubber and miscellaneous plastics products
Leather and leather products

Transportation and public utilities
Transportation

Railroad transportation
Local and interurban passenger transit
Trucking and warehousing
Water transportation
Transportation by air
Pipelines, except natural gas
Transportation services

Communication
Telephone and telegraph
Radio and television

Electric, gas, and sanitary services
Wholesale trade
Retail trade
Finance, insurance, and real estate

Banking
Credit agencies other than banks
Security and commodity brokers
Insurance carriers
Insurance agents, brokers, and service
Real estate
Holding and other investment o+ces
Services

Hotels and other lodging places
Personal services
Business services
Auto repair, services, and parking
Miscellaneous repair services
Motion pictures
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Amusement and recreation services
Health services
Legal services
Educational services
Social services and membership organizations

Social services
Membership organizations
Miscellaneous professional services
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