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Abstract

Common factors play an important role in many disciplines of social science. In economics,
the factors are the common shocks that underlie the co-movements of the large number of
economic time series. The question of interest is whether some observable economic variables
are in fact the underlying unobserved factors. We consider statistics to determine if the
observed and the latent factors are exactly the same. We also provide simple to construct
statistics that indicate the extent to which the two sets of factors differ. The key to the analysis
is that the space spanned by the latent factors can be consistently estimated when the sample
size is large in both the cross-section and the time series dimensions. The tests are used to
assess how well the so-called Fama and French factors as well as several business cycle
indicators approximate the factors in portfolio and individual stock returns. Data from a large
panel of macroeconomic are also analyzed.
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1. Introduction

Many economic theories have found it useful to explain the behavior
of the observed data by means of a small number of fundamental factors.
For example, the arbitrage pricing theory (APT) of Ross (1976) is built
upon the existence of a set of common factors underlying all asset returns.
In the capital asset pricing theory (CAPM) of Sharpe (1964); Lintner (1965),
and Merton (1973), the ‘market return’ is the common risk factor that has
pervasive effects on all assets. In consumption-based CCAPM models of Breeden
(1989) and Lucas (1978), aggregate consumption is the source of systematic risk in
one-good exchange economies. More recently, Lettau and Ludvigson (2001) suggest
that the deviation between consumption and wealth is a fundamental factor. Because
interest rate of different maturities are highly correlated, most models of interest
rates have a factor structure. Indeed, Stambaugh (1988) derived the conditions under
which an affine-yield model implies a latent-variable structure for bond returns. A
fundamental characteristic of business cycles is the co-movement of a large number
of series, which is possible only if economic fluctuations are driven by common
sources.

While the development of the theory can proceed without a complete specification
of how many and what factors are required, empirical testing do not have this
luxury. To test the multifactor APT, one has to specify the empirical counterpart of
the theoretical risk factors. To test the CAPM, one must specify what the ‘market’ is,
and to test the CCAPM, one must specifically define consumption. To test term
structure models, the common practice is to identify instruments that are correlated
with the underlying state variables, which amounts to finding proxies for the latent
factors. To be able to asses the sources of business cycle fluctuations, one has to
specify the candidates for the primitive shocks.

A small number of applications have been proceeded by replacing the unobserved
factors with statistically estimated ones. For example, Lehmann and Modest (1988)
used factor analysis, while Connor and Korajzcyk (1998) adopted the method of
principal components. The drawback is that the statistical factors do not have
immediate economic interpretation. A more popular approach is to rely on intuition
and theory as guides to come up with a list of observed variables as proxies of the
unobserved theoretical factors. Variables such as the unemployment rate in excess of
the natural rate and the deviation of output from its potential are both popular
candidates for the state of the economy. In term structure analysis, the terms spread
and the short rate have been used as proxies of the factors underlying bond yields. In
the CAPM analysis, the equal-weighted and value-weighted market returns are often
used in place of the theoretical market return. In the CCAPM analysis, non-durable
consumption is frequently used as the systematic risk factor. By regressing asset
returns on a large number of financial and macroeconomic variables and analyzing
their explanatory power, Chen et al. (1986) found that the factors in APT are related
to expected and unexpected inflation, interest rate risk, term structure risk, and
industrial production. Perhaps the most well-known of observable risk factors are
the three discussed in Fama and French (1993): the market excess return, small
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minus big factor, and high minus low factor. Hereafter, we will simply refer to these
as the Fama and French (FF) factors.

There is a certain appeal in associating the latent factors with observed variables
as this facilitates economic interpretation. But as pointed out by Shanken (1992),
estimation of beta pricing relations using proxy factors are meaningful only if the
fundamental factors are spanned by the observed factors. Yet such a condition will
be violated even if a pure measurement error is added to a perfect proxy. To date,
there does not exist a formal test for the adequacy of the observed variables as
proxies for the unobserved factors. The problem is not so much that the fundamental
factors are unobserved because in principle, if we observe indicators of the factors,
we can estimate the factors from the data. The problem is that latent factors
estimated from a small number of indicators are imprecise, and in theory, consistent
estimation of the latent factors cannot be achieved under the traditional assumption
that T is large and N is fixed, or vice versa.

In this paper, we develop several procedures to compare the (individual or set of)
observed variables with estimates of the unobserved factors. The point of departure
is that we work with large dimensional panels. That is, we deal with datasets that
have a large number of cross-section units (N) and a large number of time series
observations (T). By allowing both N and T to tend to infinity, the space spanned by
the common factors can be estimated consistently. Our analysis thus combines the
statistical approach of Lehmann and Modest (1988) and Connor and Korajzcyk
(1998), with the economic approach of using observed variables as proxies. In
Section 2 we begin by considering estimation of the factors, stating the conditions
under which the estimated factors can be treated as though they are known. Section
3 presents tests to compare the observed variables with the estimated factors, making
precise how sampling variability of the factor estimates is reflected in the test
statistics. Monte carlo simulations are reported in Section 4. We then use the
procedures to compare observed variables with factors estimated from portfolio
returns, individual stock returns, and a large set of macroeconomic time series. These
are reported in Section 5. Proofs are given in the Appendix.

2. Preliminaries

Consider the factor representation for a panel of data xit ði ¼ 1; . . . ;N; t ¼
1; . . . ;TÞ

xit ¼ l0iF t þ eit,

where Ft ðr% 1Þ is the factor process, and li ðr% 1Þ is the factor loading for unit i. In
classical factor analysis, the number of units, N, is fixed and the number of
observations, T, tends to infinity. With macroeconomic and financial applications,
this assumption is not fully satisfactory because data for a large number of cross-
section units are often available over a long time span, and in some cases, N can be
much larger than T (and vice versa). For example, daily data on returns for well over
one hundred stocks are available since 1960, and a large number of price and interest
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rate series are available for over forty years on a monthly basis. Classical analysis
also assumes that eit is iid over t and independent over i. This implies a diagonal
variance covariance matrix for et ¼ ðe1t; . . . ; eNtÞ; an assumption that is rather
restrictive. To overcome these two limitations, we work with high-dimensional
approximate factor models that allow both N and T to tend to infinity, and in which
eit may be serially and cross-sectionally correlated so that the covariance matrix of et
does not have to be a diagonal matrix. In fact, all that is needed is that the largest
eigenvalue of the covariance matrix of eit is bounded as N tends to infinity.

Suppose we observe Gt; an ðm% 1Þ vector of economic variables. We are
ultimately interested in the relationship between Gt and Ft; but we do not observe Ft:
It would seem natural to proceed by regressing xit on Gt; and then use some metric to
assess the explanatory power of Gt:

1 The idea would be that if Gt is a good proxy for
Ft; it should explain xit: This, however, is not a satisfactory test because even if Gt

equals Ft exactly, Gt might still only be weakly correlated with xit if the variance of
the idiosyncratic error eit is large. In other words, a low explanatory power of Gt for
xit by itself may not be the proper criterion for deciding if Gt corresponds to the true
factors.

In the CAPM analysis, several approaches have been used to check if inference is
sensitive to the use of a proxy in place of the market portfolio. Stambaugh (1982)
considered returns from a number of broadly defined markets and conclude that
inference is not sensitive to the choice of proxies. This does not, however, suggest
that the unobservability of the market portfolio has no implication for inference, an
issue raised by Roll (1977). Another approach, used in Kandel and Stambaugh
(1987) and Shanken (1987), is to obtain the cutoff correlation between the proxy for
market return and the true market return that would change the conclusion on the
hypothesis being tested. They find that if the correlation between Gt and Ft is at or
above 0.7, inference will remain intact. However, this begs the question of whether
the correlation between the unobserved market return and the proxy variable is high.
While these approaches provide far more cautions inference, the basic problem
remains that we do not know how correlated Ft and Gt are. To be able to test Ft and
Gt directly, we must first confront the problem that Ft is not observed.

We use the method of principal components to estimate the factors. Throughout,
we use ‘tilde’ to denote the principal components estimates. Hatted variables are
based on least squares regressions with the principal component estimates as
regressors. Let X be the T by Nmatrix of observations such that the ith column is the
time series of the ith cross section. Let eV be a r% r diagonal matrix consisting of the
r largest eigenvalues of XX 0=NT : Let eF ¼ ðeF1; . . . ; eFT Þ0 be the principal component
estimates of F under the normalization that F 0F

T ¼ I r: Then eF is comprised of the r
eigenvectors (multiplied by

ffiffiffiffi
T

p Þ associated with the r largest eigenvalues of the
matrix XX 0=ðNT Þ in decreasing order. Let L ¼ ðl1; . . . ; lN Þ0 be the matrix of factor
loadings. The principal components estimator of L is eL ¼ X 0 eF=T : By definitioneeit ¼ xit & el0i eFt:
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Denote the norm of a matrix A by kAk ¼ ½trðA0AÞ(1=2: The notation M stands for a
finite positive constant, not depending on N and T. The following assumptions are
needed for consistent estimation of the factors by the method of principal
components.

Assumption A. Common factors

1. EkFtk4pM and 1
T

PT
t¼1 FtF

0
t &!

p
SF for a r% r positive definite matrix SF :

Assumption B. Heterogeneous factor loadings

The loading li is either deterministic such that klikpM or it is stochastic such that
Eklik4pM : In either case, L0L=N &!p SL as N ! 1 for some r% r positive definite
non-random matrix SL:

Assumption C. Time and cross-section dependence and heteroskedasticity

1. EðeitÞ ¼ 0; Ejeitj8pM ;
2. EðeitejsÞ ¼ tij;ts; jtij;tsjptij for all ðt; sÞ and jtij;tsjpgts for all ði; jÞ such that

1

N

XN
i;j¼1

tijpM;
1

T

XT
t;s¼1

gtspM ; and
1

NT

X
i;j;t;s¼1

jtij;tsjpM,

3. For every ðt; sÞ; EjN&1=2PN
i¼1 ½eiseit & EðeiseitÞ(j4pM :

Assumption D. flig; fFtg; and feitg are three groups of mutually independent
stochastic variables.

Assumptions A and B together imply r common factors. Assumption C allows for
limited time series and cross-section dependence in the idiosyncratic component.
Heteroskedasticity in both the time and cross-section dimensions is also allowed.
Given Assumption C1, the remaining assumptions in C are easily satisfied if the eit
are independent for all i and t. The allowance for weak cross-section correlation in
the idiosyncratic components leads to the approximate factor structure of
Chamberlain and Rothschild (1983). It is more general than a strict factor model
which assumes eit is uncorrelated across i. Assumption D is standard in factor
analysis.

As is well known, the factor model is fundamentally unidentified because
l0iLL

&1Ft ¼ l0iF t for any invertible matrix L. In economics, exact identification of
the factors, Ft; may not always be necessary. If the estimated Ft is used for
forecasting as in Stock and Watson (2002), the distinction between Ft and LFt is
immaterial because they will give the same forecast. When stationarity or the
cointegrating rank of Ft is of interest, knowing LFt is sufficient, as Ft has the same
cointegrating rank as LFt: In these situations as well as addressing the question we
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are interested in, namely, determining if Ft is close to Gt; what is important is
consistent estimation of the space spanned by the factors.

Lemma 1. Let H ¼ eV&1ðeF 0
F=TÞðL0L=NÞ: Under Assumptions A–D, and as

N;T ! 1;

(i) min½N;T ( 1
T

PT
t¼1k eFt &HFtk2

" #
¼ Opð1Þ;

(ii) If
ffiffiffiffiffi
N

p
=T ! 0;

ffiffiffiffiffi
N

p ðeFt &HFtÞ &!d V&1QNð0;GtÞ; where eF 0
F=T &!p Q; eV &!p V ;

and Gt ¼ limN!1 1
N

PN
i¼1

PN
j¼1 Eðlil0jeitejtÞ:

Part (i), shown in Bai and Ng (2002), establishes that the squared difference
between the estimated and the scaled true factors vanish as N and T tend to infinity.
As shown in Bai (2003),

ffiffiffiffiffi
N

p ðeFt &HFtÞ ¼ eV&1ðeF 0
F=TÞ 1ffiffiffi

N
p
PN

i¼1 lieit þ opð1Þ; from
which the sampling distribution of the factor estimates given in (ii) follows. These
limiting distributions are asymptotically independent across t if eit is serially
uncorrelated. The tests to be developed are built upon Lemma 1 and the fact that Gt

is consistently estimable.

3. Comparing the estimated and the observed factors

We observe Gt; and want to know if its m elements are generated by (or is a linear
combination of) the r latent factors, Ft: In general, r is an unknown parameter.
Consider estimating r using one of the two panel information criterion:br ¼ argmax

k¼0;...;kmax

PCPðkÞ where PCPðkÞ ¼ es2ðkÞ þ es2ðkmaxÞk ) gðN;TÞ,

br ¼ argmax
k¼0;...;kmax

ICPðkÞ where ICPðkÞ ¼ log es2ðkÞ þ k ) gðN;TÞ,

where es2ðkÞ ¼ 1
NT

PN
i¼1

PT
t¼1ee2it; eeit ¼ xit & el0i eFt; with eli and eFt estimated by the

method of principal components. In Bai and Ng (2002), we showed that probðbr ¼
rÞ ! 1 as N;T ! 1 if gðN;TÞ is chosen such that gðN;TÞ ! 0 and
min½N ;T (gðN;TÞ ! 1: Because r can be consistently estimated, in what follows,
we simply treat it as though it is known.

Obviously, if mor; the m observed variables cannot span the space of the r latent
factors. Testing for the adequacy of G as a set is meaningful only if mXr:
Nonetheless, regardless of the dimension of Gt and Ft; it is still of interest to know if
a particular Gt is in fact a fundamental factor. Section 3.1 therefore begins with
testing the observed variables one by one. Section 3.2 considers testing the observed
variables as a set.

3.1. Testing Gt one at a time

Let Gjt be an element of the m vector Gt: The null hypothesis is that Gjt is an exact
factor, or more precisely, that there exists a dj such that Gjt ¼ d0jF t for all t. Consider
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the regression Gjt ¼ g0j eFt þ error: Let bgj be the least squares estimate of gj and letbGjt ¼ bg0j eFt: Consider the t-statistic

ttðjÞ ¼ ð bGjt & GjtÞ
ðvarð bGjtÞÞ1=2

. (1)

Let Ft
a be the a percentage point of the limiting distribution of ttðjÞ: Then AðjÞ ¼

1
T

PT
t¼1 1ðjttðjÞj4Ft

aÞ is the frequency that ttðjÞ exceeds the a percent critical value in a
sample of size T.

The AðjÞ statistic allows Gjt to deviate from bGjt for a pre-specified number of time
points as specified by a: A stronger test is to require Gjt not to deviate from bGjt by
more than the sampling error at every t. To this end, we also consider the statistic
MðjÞ ¼ max1ptpT jttðjÞj: The MðjÞ statistic is a test of how far is the bGjt curve from
Gjt: It is a stronger test than AðjÞ which tests Gjt point by point.

Proposition 1 (exact tests). Let Gt be a vector of m observed factors, and Ft be a
vector of r latent factors. Let bttðjÞ be obtained with varð bGjtÞ replaced by its consistent
estimate, cvarð bGjtÞ: Consider the statistics

AðjÞ ¼ 1

T

XT
t¼1

1ðjbttðjÞj4FaÞ, (2)

MðjÞ ¼ max
1ptpT

jbttðjÞj. (3)

Under the null hypothesis that Gjt ¼ d0Ft and as N;T ! 1 with
ffiffiffiffiffi
N

p
=T ! 0; then (i)

AðjÞ &!p 2a: If, in addition, eit is serially uncorrelated, then (ii) PðMðjÞpxÞ * ½2FðxÞ &
1(T; where FðxÞ is the cdf of a standard normal random variable.

Under the null hypothesis that Gjt ¼ d0jF t and that dj is time invariant, the rate of
convergence of bGjt to Gjt is

ffiffiffiffiffi
N

p
and the distribution is asymptotically normal. To see

this, rewrite Gjt ¼ g0jHFt with g0j ¼ d0jH
&1: Adding and subtracting,

ffiffiffiffiffi
N

p ð bGjt & GjtÞ ¼ffiffiffiffiffi
N

p ðbg0j & g0jÞHFt þbg0j ffiffiffiffiffi
N

p ðeFt &HFtÞ: The first term is shown to be opð1Þ in the
Appendix under the null hypothesis. So the second term dictates the limiting
distribution of

ffiffiffiffiffi
N

p ð bGjt & GjtÞ; but this is asymptotically normal by Lemma 1 (ii).
Thus ttðjÞ; the standardized bGjt & Gjt; has a standard normal limiting distribution.
Part (i) of the proposition permits eit to be serially correlated, since the law of large
numbers holds even if ttðjÞ is time dependent. In contrast, part (ii) of the proposition
requires eit to be serially uncorrelated, so that ttðjÞ is asymptotically uncorrelated and
thus independent by normality.2 The stated property of the MðjÞ statistic then
follows from consideration of the maximum of iid normal variates.

Let Avarð bGjtÞ denote the asymptotic variance of
ffiffiffiffiffi
N

p ð bGjt & GjtÞ: It follows that

Avarð bGjtÞ ¼ plimbg0j AvarðeFtÞbgj ¼ plimbg0j eV&1 eF 0
F

T

 !
Gt

eF 0
F

T

 ! eV&1bgj,
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with Gt ¼ limN!1 1
N

PN
i¼1

PN
j¼1 Eðlil0jeitejtÞ: Let varð bGjtÞ denote the asymptotic

variance divided by N. That is,

varð bGjtÞ ¼ 1

N
Avarð bGjtÞ.

An estimate of it can be obtained by first substituting eF for F, and noting that eF 0 eF=T
is an r-dimensional identity matrix by construction. Thus,

cvarð bGjtÞ ¼ 1

N
bg0j eV&1eGt

eV&1bgj,
where eGt is a consistent estimate of H 0&1GtH

&1: For each fixed t, unless eit is cross-
sectionally uncorrelated, Gt (more precisely H 0&1GtH

&1) is not consistently
estimable. The problem is akin to the problem in time series that summing the T
autocovariances will not yield a consistent estimate of the spectrum. With cross-
section data, the data have no natural ordering, and the time series solution of
truncation is neither intuitive nor possible without a precise definition of distance
between observations. However, if Gt does not depend on t, that is, if eit is stationary
so that Eðe2itÞ ¼ s2i for all t, the following estimator is consistent for H 0&1GtH

&1:

eGt ¼ 1

n

Xn
i¼1

Xn
j¼1

eliel0j 1

T

XT
t¼1

eeiteejt 8t, (4)

where n
min½N ;T ( ! 0: This covariance estimator is robust to cross-correlation, and

accordingly, we refer to it as CS-HAC. It makes use of repeated observations over
time, so that under covariance stationarity, the time series observations can be used
to estimate the cross-section correlation matrix. However, because of error from
estimation of the factors and factor loadings, we can only use noN observations
when estimating Gt: A formal analysis of the CS-HAC is given in Bai and Ng (2004).

When eit is cross-sectionally uncorrelated, an alternative estimator is

eGt ¼ 1

N

XN
i¼1

ee2iteliel0i. (5)

The above estimator does not require time-series homoskedasticity of eit: In the
absence of cross-section correlation, time series heteroskedasticity of eit is permitted.
If, in addition, Eðe2itÞ ¼ s2e for all i and all t, an appropriate estimator is

eG ¼ bs2e eL0eL
N

, (6)

where bs2e ¼ 1
NT

PN
i¼1

PT
t¼1 ee2it; and eL is the N % r matrix of estimated factor loadings.

In summary, Eq. (4) allows cross-section correlation but assumes time-series
stationarity of eit: Eq. (5) allows time-series heteroskedasticity, but assumes no cross-
section correlation. Eq. (6) assumes no cross-section correlation and constant
variance for all i and all t.

Once an appropriate eGt is chosen to construct cvarð bGjtÞ; testing if Gjt is an exact
factor is then quite simple. For example, if a ¼ 0:025; the fraction of ttðjÞ that
exceeds 1.96 in absolute value should be close to 5% for large N and T. Thus, AðjÞ
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should be close to 0.05. Furthermore, MðjÞ should not exceed the maximum of a
vector of Nð0; 1Þ random variables (in absolute values) of length T. This maximum
value increases with T, but can be easily tabulated by simulations or theoretical
computations. The 1%, 5% and 10% critical values are as follows:

Critical values for the MðjÞ test
T

50 100 200 400

0.01 3.775 3.935 4.109 4.219
0.05 3.283 3.467 3.656 3.830
0.10 3.076 3.278 3.475 3.632

Requiring that Gt be an exact linear combination of the latent factors is rather
strong. An observed series might match the variations of the latent factors very
closely, and yet is not an exact factor in a mathematical sense. Measurement error
and time aggregation, for example, could be responsible for deviations between the
observed variables and the latent factors, as discussed in Breeden et al. (1989). In
such cases, it would be useful to gauge how far the proxies are from the true factors.

Proposition 2 (approximate tests). Suppose Gjt ¼ d0jF t þ !jt; with !jt + ð0; s2! ðjÞÞ: LetbGjt ¼ bg0j eFt; where bgj is obtained by least squares from a regression of Gjt on eFt: Letb!jt ¼ Gjt & bGjt: Then as N;T ! 1; (i) bs2! ðjÞ ¼ 1
T

PT
t¼1b!2jt &!p s2! ðjÞ; and (ii)

ðb!jt & !jtÞ
sjt

&!d Nð0; 1Þ,

where s2jt ¼ 1
T F 0

tAvarðd̄jÞFt þ 1
N Avarð bGjtÞ; where Avarðd̄jÞ is the asymptotic variance

from a hypothetical regression of Gjt on Ft:

We generically refer to !jt as a measurement error, even though it might be due to
systematic differences between Ft and Gjt: If Ft was observed, d̄j would have been the
resulting estimate. The error in fitting Gjt would then be confined to the first term of
s2jt; as is standard of regression analysis. But because we regress Gt on eFt; b!jt now
consists of the error from estimation of Ft: Notably, the error from having to
estimate Ft is decreasing in N. The convergence rate of b!jt to !jt is min½ ffiffiffiffiffi

N
p

;
ffiffiffiffi
T

p ( and
follows from Theorem 2 of Bai and Ng (2004). As can be seen from the expression of
sjt; no restriction is placed on the relative rate of increase between N and T.

When !t is homoskedastic, Avarðd̄jÞ ¼ s2! ðF
0F
T Þ&1 and thus s2jt ¼ 1

T F
0
tðF

0F
T Þ&1Fts2! þ

1
N Avarð bGjtÞ: A consistent estimator of s2jt when !jt is conditionally homoskedastic is thus

bs2jt ¼ 1

T
eF 0
t
eFtbs2! ðjÞ þ 1

N
dAvarð bGjtÞ,

where dAvarð bGjtÞ is given earlier, and again noting that
eF 0eF
T ¼ I r: When !jt is

heteroskedastic, the first term of bs2jt is replaced by 1
T
eF 0
tð1T
PT

s¼1
eFs
eF 0
sb!2jsÞeFt following

White (1980).
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Explicit consideration of measurement error allows us to construct, for each t, a
confidence interval for !jt: For example, at the 95% level, the confidence interval is

ð!&jt ; !þjt Þ ¼ ðb!jt & 1:96bsjt; b!jt þ 1:96bsjtÞ. (7)

If Gjt is an exact factor, zero should lie in the confidence interval for each t. It could
be of economic interest to know at which time points Gjt deviates from bGjt:

Instead of comparing Gjt with bGjt at each t, two overall statistics can also be
constructed.

NSðjÞ ¼ cvarðb!ðjÞÞcvarð bGðjÞÞ
(8)

R2ðjÞ ¼ cvarð bGðjÞÞcvarðGðjÞÞ . (9)

The NSðjÞ statistic is simply the noise-to-signal ratio. If Gjt is an exact factor, the
population value of NSðjÞ is zero. A large NSðjÞ thus indicates important departures
of Gjt from the latent factors. A limitation of this statistic is that it leaves open the
question of what is small and what is large. For this reason, we also consider R2ðjÞ;
which should be unity if Gjt is an exact factor, and zero if the observed variable is
irrelevant. The practitioner can draw inference as to how good Gjt is as a proxy
factor by picking cutoff points for NSðjÞ and R2ðjÞ; in the same way we select the size
of the test. These statistics are useful because instead of asking how large the
measurement error is in the proxy variable that would overturn hypothesis, we now
have consistent estimates for the size of the measurement error.

3.2. Testing Gt as a set

Suppose there are r latent and m observed factors. Whether r exceeds m or vice
versa, it is useful to gauge the general coherency between Ft and Gt: To this end, we
consider the canonical correlations between Ft and Gt: Let SFF and SGG be the
sample variance–covariance matrix of F and G, respectively. The sample squared-

canonical correlations, denoted by br2k; k ¼ 1; . . . ;min½m; r(; are the largest eigenva-

lues of the r% r matrix S&1
FFSFGS

&1
GGSGF : It is well known that if F and G are observed

and are normally distributed, zk ¼
ffiffiffi
T

p ðbr2k&r2
k
Þ

2rkð1&r2
k
Þ &!

d
Nð0; 1Þ for k ¼ 1; . . . ;min½m; r(; see

Anderson (1984). Muirhead and Waternaux (1980) provide results for non-normal

distributions. For elliptical distributions, they showed that zk ¼
1

ð1þk=3Þ

ffiffiffi
T

p ðbr2k&r2
k
Þ

2rkð1&r2
k
Þ &!

d
Nð0; 1Þ; where k is the excess kurtosis of the distribution.3 Their

results cover the multivariate normal, some contaminated normal (mixture normal),
and the multivariate t, which are all elliptical distributions. Properties of canonical
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3A random vector Y is said to have an elliptical distribution if its density is of the form cjO&1=2jgðy0O&1yÞ
for some constant c, positive-definite matrix O; and nonnegative function g.
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correlations for non-elliptical distributions can be obtained using results in Yuan
and Bentler (2000). Our analysis is complicated by the fact that F is not observed but
estimated. Nevertheless, the following holds.

Proposition 3. Let er21; . . . ;er2p be the largest p ¼ min½m; r( sample squared-canonical
correlations between eF and G, where eFt is the principal components estimate of Ft: Let
N;T ! 1 with

ffiffiffiffi
T

p
=N ! 0:

(i) Suppose that ðF 0
t;G

0
tÞ0 are iid normally distributed,

ezk ¼
ffiffiffiffi
T

p ðer2k & r2kÞ
2erkð1& er2kÞ &!d Nð0; 1Þ; k ¼ 1; . . . ;min½m; r(. (10)

(ii) Suppose that ðF 0
t;G

0
tÞ0 are iid and elliptically distributed. Then

ezk ¼ 1

ð1þ k=3Þ

ffiffiffiffi
T

p ðer2k & r2kÞ
2erkð1& er2kÞ &!d Nð0; 1Þ; k ¼ 1; . . . ;min½m; r(, (11)

where k is the excess kurtosis.

The results hold for a class of non-elliptical distributions characterized by Yuan
and Bentler (2000). The iid assumption on ðF 0

t;G
0
tÞ0 can also be relaxed. For example,

suppose Ft and Gt can be described by finite order VARs such that AðLÞFt ¼ xt and
BðLÞGt ¼ Zt; where ðx0t; Z0tÞ0 are iid. Then canonical correlations can be performed
using the residuals after fitting the VARs.4 We expect that the same limiting
distributions will be obtained when using eFt in place of Ft in the VAR.

Proposition 3 establishes that ezk is asymptotically the same as zk; so that having to
estimate F has no effect on the sampling distribution of the canonical correlations.
This allows us to construct ð1& aÞ percent confidence intervals for the population
canonical correlations as follows. For k ¼ 1; . . . ;min½m; r(;

ðr2&k ; r2þk Þ ¼ er2k & 2Fa
erið1& er2i Þffiffiffiffi

T
p ; er2k þ 2Fa

erið1& er2i Þffiffiffiffi
T

p
 !

. (12)

If every element of Gt is an exact factor, all the non-zero population canonical
correlations should be unity. The confidence interval for the smallest non-zero
canonical correlation is thus a bound for the weakest correlation between Ft and Gt:

The only non-zero canonical correlation between a single series, say, Gjt and eFt iser21: But this is simply the coefficient of determination from a projection of Gjt ontoeFt; and thus coincide with R2ðjÞ as defined in (9). The formula in (12) can therefore
be used to obtain a confidence interval for R2ðjÞ also.

The results provided in this section suggest that tests of the factor pricing theory
using consistently estimated factors should be more precise than using proxy
variables. In two-pass regression tests, one first regresses excess returns on the proxy
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factors to obtain the ‘betas’. In the second step, the estimated betas are used as
regressors to obtain estimates of the risk premia. Although the betas with respect to
Gt can be consistently estimated, covðXit;GtÞ

varðGtÞ will, in general, be different from covðXit;FtÞ
varðFtÞ ;

the true betas with respect to Ft: Instead of asking how large must measurement
errors be to overturn conclusions drawn from the proxy factors as in Shanken
(1992), we can estimate the size of the measurement error. Furthermore, the true
betas can be consistently estimated up to a matrix transformation using eFt in the first
pass regression. With additional identifying assumptions, the estimates can, in
principle, be rotated so that the risk premia estimated in the second step can be given
interesting economic interpretation.5 Formulas in the preceding section can then be
used to provide standard errors for the risk premia.

Factor pricing theory also implies that if Xit is excess returns and Ft is the vector
of factor returns, then in the time-series regression Xit ¼ ai þ biF t þ !it; the
restriction ai ¼ 0 should hold for all i. If eFt is used in place of Ft in the regression,
we can use the foregoing results to adjust the variance of baiðeF Þ to reflect the error due
to eFt:Note, however, that this error falls with N. But if we use Gt to proxy for Ft and
Gt ¼ d0Ft þ !t; the measurement error has a non-vanishing effect on baiðGÞ even when
N and T are large. In addition, the estimated ai will not be consistent in the presence
of measurement errors. Since inference may be invalid, use of consistently estimated
Ft is preferred over use of proxy variables, with the proviso that inference takes into
the account that the factors are being estimated. The present analysis shows how this
correction can be made for the tests considered. A more general analysis of using
estimated factors in forecast and regression analysis is given in Bai and Ng (2004).

4. Simulations

We use simulations to assess the finite sample properties of the tests. Throughout,
we assume Fkt + Nð0; 1Þ; k ¼ 1; . . . ; r; and eit + Nð0;s2eðiÞÞ; where eit is uncorrelated
with ejt for iaj; i; j ¼ 1; . . . ;N: When s2eðiÞ ¼ s2e for all i, we have the case of
homogeneous data. The factor loadings are standard normal, i.e. lij + Nð0; 1Þ; j ¼
1; . . . ; r; i ¼ 1; . . . ;N: The data are generated as xit ¼ l0iF t þ eit: In the experiments,
we assume that there are r ¼ 2 factors and that this is known.6 The data are
standardized to have mean zero and unit variance prior to estimation of the factors
by the method of principal components.

The observed factors are generated as Gjt ¼ d0jF t þ !jt; where dj is a r% 1 vector of
weights, and !jt + s!ðjÞNð0; varðd0jF tÞÞ: We test m ¼ 7 observed variables parameter-
ized as follows:7
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5Identification of factors using a priori restrictions is also referred to as confirmatory factor analysis. See
Anderson (1984).

6In finite samples, the criteria developed in Bai and Ng (2002) for selecting the number of factors are
excellent even under heteroskedasticity, mild, weak and cross-section correlation.

7Results for fat-tailed and cross-correlated errors are available in working version of this paper,
available at http://www.econ.lsa.umich.edu/+ngse/papers/observe.pdf.
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Parameters for Gjt

j 1 2 3 4 5 6 7

dj1 1 1 1 1 1 1 0
dj2 1 0 1 0 1 0 0
s! 0 0 0.2 0.2 2 2 1

The first two factors, G1t and G2t; are exact factors since s! ¼ 0: Factors three to six
are linear combinations of the two latent factors but are contaminated by errors. The
variance of this error is small relative to the variations of the factors for G3t and G4t;
but is large for G5t and G6t: Finally, G7t is an irrelevant factor as it is simply a Nð0; 1Þ
random variable unrelated to Ft: Prior to testing, the Gts are also standardized to
have mean zero and unit variance. We conduct 1000 replications using Matlab 6.5.

We report results with a set to 0.025. Results with cvarð bGtÞ defined as in (6), (5) and
(4) are given in Table 1a–c, respectively. According to the theory, AðjÞ should be 2a if
Gjt is a true factor, and unity if the factor is irrelevant. Furthermore, MðjÞ should
exceed the critical value at percentage point a with probability 2a: Columns four and
five report the properties of these tests averaged over 1000 replications. Indeed, for
G1t and G2t; the rejection rates are close to the nominal size of 5%, even for small
samples. For the irrelevant factor G7t; the tests reject the null hypothesis with high
probabilities, showing the tests have power.8 The power of the MðjÞ test is especially
impressive. Even when heteroskedasticity in the errors has to be accounted for, the
rejection rate is 100%, for all sample sizes considered. This means that even with
ðN;TÞ ¼ ð50; 50Þ; the test can very precisely determine if an observed variable is an
exact factor. The NSðjÞ test reinforces the conclusion that G1t and G2t are exact
factors, and that G7t has no coherence with the latent factors. Table 1 also reports
the average estimate of R2ðjÞ: The two exact factors have estimates of R2ðjÞ well
above 0.95, while uninformative factors have R2ðjÞ well below 0.05, with tight
confidence intervals.9

Because we know the data generating process, we can assess whether or not the
confidence intervals around !jt give correct inference. In the column labelled CI !ðjÞ in
Table 1, we report the probability that the true !jt lies inside the two-tailed 95%
confidence interval defined by (7). Evidently, the coverage is excellent for !1t; !2t; and
!7t: The result for !7t might seem surprising at first, but this is in fact showing that the
measurement error can be precisely estimated even when Ft and Gjt are totally
unrelated.

In theory, tðjÞ and MðjÞ should always reject the null hypothesis when G3;G4;G5

and G6 are being tested since none of these are exact factors. Table 1 shows that this
is the case when N and T both exceed 100. For smaller N and/or T, the power of the
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8This notwithstanding, there may exist other tests that have higher power. Admissibility of the test is
beyond the scope of the present analysis.

9Since R2ðjÞ is bounded between zero and one, the estimated lower bound should be interpreted in this
light.
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Table 1
Properties of test statistics: 1000 replications

N T j AðjÞ MðjÞ NSðjÞ CI !ðjÞ R2ðjÞ R2&ðjÞ R2þðjÞ

(a) Tests for Gjt: eGt defined in (6)a

50 50 1 0.03 0.02 0.03 0.97 0.97 0.96 0.99
50 50 2 0.03 0.03 0.03 0.97 0.97 0.95 0.99
50 50 3 0.17 0.64 0.07 0.97 0.94 0.90 0.97
50 50 4 0.16 0.60 0.07 0.97 0.94 0.90 0.97
50 50 5 0.85 1.00 5.05 0.95 0.22 0.03 0.41
50 50 6 0.85 1.00 5.08 0.95 0.22 0.03 0.41
50 50 7 0.95 1.00 339.24 0.96 0.04 0.00 0.13

100 50 1 0.03 0.01 0.01 0.97 0.99 0.98 0.99
100 50 2 0.03 0.01 0.01 0.97 0.99 0.98 0.99
100 50 3 0.27 0.94 0.05 0.97 0.95 0.92 0.98
100 50 4 0.27 0.94 0.05 0.97 0.95 0.92 0.98
100 50 5 0.89 1.00 4.79 0.95 0.23 0.04 0.42
100 50 6 0.89 1.00 4.77 0.95 0.22 0.03 0.42
100 50 7 0.96 1.00 290.41 0.94 0.04 0.00 0.14

50 100 1 0.03 0.01 0.03 0.97 0.97 0.96 0.98
50 100 2 0.03 0.01 0.03 0.97 0.97 0.96 0.98
50 100 3 0.17 0.74 0.07 0.97 0.94 0.91 0.96
50 100 4 0.17 0.73 0.07 0.97 0.94 0.91 0.96
50 100 5 0.85 1.00 4.52 0.96 0.21 0.07 0.35
50 100 6 0.86 1.00 4.49 0.96 0.21 0.07 0.34
50 100 7 0.96 1.00 1780.38 0.97 0.02 0.00 0.07

200 100 1 0.03 0.01 0.01 0.97 0.99 0.99 1.00
200 100 2 0.03 0.01 0.01 0.97 0.99 0.99 1.00
200 100 3 0.40 1.00 0.05 0.97 0.96 0.94 0.97
200 100 4 0.40 1.00 0.05 0.97 0.96 0.94 0.97
200 100 5 0.93 1.00 4.32 0.95 0.21 0.07 0.35
200 100 6 0.92 1.00 4.27 0.95 0.21 0.08 0.35
200 100 7 0.98 1.00 431.39 0.96 0.02 0.00 0.07

100 200 1 0.03 0.01 0.01 0.97 0.99 0.98 0.99
100 200 2 0.03 0.00 0.01 0.97 0.99 0.98 0.99
100 200 3 0.27 1.00 0.05 0.97 0.95 0.94 0.96
100 200 4 0.27 1.00 0.05 0.97 0.95 0.94 0.96
100 200 5 0.90 1.00 4.23 0.96 0.20 0.11 0.30
100 200 6 0.90 1.00 4.15 0.96 0.21 0.11 0.30
100 200 7 0.98 1.00 946.21 0.96 0.01 0.00 0.03

(b) Tests for Gjt: eGt defined in (5)

50 50 1 0.05 0.07 0.01 0.95 0.99 0.99 1.00
50 50 2 0.05 0.07 0.01 0.95 0.99 0.99 1.00
50 50 3 0.41 1.00 0.05 0.95 0.96 0.93 0.98
50 50 4 0.42 1.00 0.05 0.95 0.95 0.93 0.98
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Table 1 (continued )

N T j AðjÞ MðjÞ NSðjÞ CI !ðjÞ R2ðjÞ R2&ðjÞ R2þðjÞ

50 50 5 0.92 1.00 4.92 0.94 0.23 0.03 0.42
50 50 6 0.92 1.00 4.89 0.94 0.23 0.03 0.42
50 50 7 0.97 1.00 193.91 0.94 0.04 0.00 0.13

100 50 1 0.05 0.05 0.00 0.95 1.00 0.99 1.00
100 50 2 0.05 0.05 0.00 0.96 1.00 0.99 1.00
100 50 3 0.55 1.00 0.04 0.95 0.96 0.94 0.98
100 50 4 0.55 1.00 0.04 0.95 0.96 0.94 0.98
100 50 5 0.95 1.00 4.75 0.94 0.23 0.04 0.43
100 50 6 0.95 1.00 4.69 0.95 0.23 0.03 0.42
100 50 7 0.98 1.00 177.17 0.93 0.04 0.00 0.14

50 100 1 0.05 0.07 0.01 0.95 0.99 0.99 0.99
50 100 2 0.05 0.06 0.01 0.95 0.99 0.99 0.99
50 100 3 0.42 1.00 0.05 0.95 0.95 0.94 0.97
50 100 4 0.42 1.00 0.05 0.95 0.95 0.94 0.97
50 100 5 0.93 1.00 4.41 0.95 0.21 0.07 0.35
50 100 6 0.93 1.00 4.39 0.95 0.21 0.07 0.35
50 100 7 0.98 1.00 408.56 0.95 0.02 0.00 0.07

200 100 1 0.05 0.05 0.00 0.95 1.00 1.00 1.00
200 100 2 0.05 0.04 0.00 0.95 1.00 1.00 1.00
200 100 3 0.67 1.00 0.04 0.95 0.96 0.95 0.98
200 100 4 0.67 1.00 0.04 0.95 0.96 0.94 0.98
200 100 5 0.96 1.00 4.29 0.95 0.21 0.07 0.35
200 100 6 0.96 1.00 4.24 0.94 0.22 0.08 0.35
200 100 7 0.99 1.00 465.28 0.95 0.02 0.00 0.07

100 200 1 0.05 0.07 0.00 0.95 1.00 0.99 1.00
100 200 2 0.05 0.07 0.00 0.95 1.00 0.99 1.00
100 200 3 0.55 1.00 0.04 0.95 0.96 0.95 0.97
100 200 4 0.56 1.00 0.04 0.95 0.96 0.95 0.97
100 200 5 0.95 1.00 4.17 0.95 0.21 0.11 0.30
100 200 6 0.95 1.00 4.09 0.95 0.21 0.11 0.31
100 200 7 0.99 1.00 751.77 0.95 0.01 0.00 0.03

(c) Tests for Gjt: eGt defined in (4)

50 50 1 0.01 0.01 0.03 0.99 0.97 0.96 0.99
50 50 2 0.01 0.01 0.03 0.99 0.97 0.95 0.99
50 50 3 0.07 0.21 0.07 0.99 0.94 0.90 0.97
50 50 4 0.07 0.20 0.07 0.99 0.94 0.90 0.97
50 50 5 0.66 1.00 5.05 0.98 0.22 0.03 0.41
50 50 6 0.66 1.00 5.08 0.98 0.22 0.03 0.41
50 50 7 0.72 1.00 339.24 0.99 0.04 0.00 0.13

100 50 1 0.04 0.08 0.01 0.96 0.99 0.98 0.99
100 50 2 0.04 0.08 0.01 0.97 0.99 0.98 0.99
100 50 3 0.22 0.63 0.05 0.97 0.95 0.92 0.98
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tests depend on how large are the measurement errors. For G5t and G6t; which have a
high noise-to-signal ratio of 4, MðjÞ still rejects with probability one when N and T
are small, while the AðjÞ has a respectable rejection rate of 0.85. However, when the
signal-to-noise ratio is only 0.04 as in G3t and G4t; both the AðjÞ and the MðjÞ under-
reject the null hypothesis, and the problem is much more severe for AðjÞ:

Notice that when the noise-to-signal ratio is 0.04, R2ðjÞ remains at around 0.95.
This would be judged high in a typical regression analysis, and yet we would reject
the null hypothesis that Gjt is an exact factor. It is for cases such as these that having
a sense of how big is the measurement error is useful. In our experience,
an NSðjÞ above 0.5, and/or a R2ðjÞ below 0.95 is symptomatic of non-negligible
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Table 1 (continued )

N T j AðjÞ MðjÞ NSðjÞ CI !ðjÞ R2ðjÞ R2&ðjÞ R2þðjÞ

100 50 4 0.22 0.62 0.05 0.97 0.95 0.92 0.98
100 50 5 0.77 1.00 4.79 0.98 0.23 0.04 0.42
100 50 6 0.77 1.00 4.77 0.98 0.22 0.03 0.42
100 50 7 0.80 1.00 290.41 0.97 0.04 0.00 0.14

50 100 1 0.00 0.00 0.03 1.00 0.97 0.96 0.98
50 100 2 0.00 0.00 0.03 1.00 0.97 0.96 0.98
50 100 3 0.03 0.03 0.07 1.00 0.94 0.91 0.96
50 100 4 0.03 0.03 0.07 1.00 0.94 0.91 0.96
50 100 5 0.64 1.00 4.52 0.99 0.21 0.07 0.35
50 100 6 0.64 1.00 4.49 0.99 0.21 0.07 0.34
50 100 7 0.72 1.00 1780.38 0.99 0.02 0.00 0.07

200 100 1 0.04 0.09 0.01 0.97 0.99 0.99 1.00
200 100 2 0.04 0.09 0.01 0.96 0.99 0.99 1.00
200 100 3 0.34 0.89 0.05 0.97 0.96 0.94 0.97
200 100 4 0.34 0.90 0.05 0.97 0.96 0.94 0.97
200 100 5 0.84 1.00 4.32 0.98 0.21 0.07 0.35
200 100 6 0.83 1.00 4.27 0.97 0.21 0.08 0.35
200 100 7 0.86 1.00 431.39 0.98 0.02 0.00 0.07

100 200 1 0.00 0.00 0.01 1.00 0.99 0.98 0.99
100 200 2 0.00 0.00 0.01 1.00 0.99 0.98 0.99
100 200 3 0.08 0.29 0.05 1.00 0.95 0.94 0.96
100 200 4 0.08 0.26 0.05 1.00 0.95 0.94 0.96
100 200 5 0.74 1.00 4.23 0.99 0.20 0.11 0.30
100 200 6 0.74 1.00 4.15 1.00 0.21 0.11 0.30
100 200 7 0.81 1.00 946.21 0.99 0.01 0.00 0.03

aAðjÞ is the frequency that jbttðjÞj exceeds the critical value of 1.96 in the sample of size T. The column
labelled MðjÞ reports the frequency that max1ptpT jbttðjÞj exceeds the critical value for a sample of size T.
CI ! is the coverage frequency for !; the measurement error. NSðjÞ is the noise-to-signal ratio, see (8). R2 is
defined in (9), R2& and R2þ are the lower and upper 95% confidence interval, averaged over 1000
replications.
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measurement errors. By these guides, G3t and G4t are strong proxies for the latent
factors.

It is interesting to remark whether the measurement error has a large or small
variance, the confidence intervals constructed according to (7) bracket the true error
quite precisely. This is useful in empirical work since we can learn if the discrepancy
between Gjt and the latent factors are systematic or occasional.

Table 2 reports results of testing four sets of observed factors using canonical
correlations. These are formed from G1t to G6t as defined above, plus four Nð0; 1Þ
random variables unrelated to Ft; labelled G7t to G10t: The four sets of factors are
defined as follows:

Set 1: G3t;G4t; and G7t Set 2:G5t;G6t; and G7t

Set 3: G1t;G2t; and G7t Set 4: G7t;G8t;G9t; and G10t.

Because min½m; r( is 2 in each of the four cases, the largest two canonical correlations
should be unity if every Gt is an exact factor. We use (12) to construct confidence
intervals for r22; i.e. the smaller of the two non-zero canonical correlations. Table 2
shows that Set 3 has maximal correlation with eFt as should be the case since G1t and
G2t are exact factors, and a weight of zero on G7t would indeed maximize the
correlation between Gt and eFt: When Set 4 is being tested, zero is in the confidence
interval as should be the case since this is a set of irrelevant factors. For Set 2 which
has factors contaminated by large measurement errors, the test also correctly detects
a very small canonical correlation. When measurement errors are small but non-
zero, the sample correlations are non-zero and also not unity. The practitioner again
has to take a stand on whether a set of factors is useful. The values of br22 for Set 1 are
around 0.9, below our cutoff point of 0.95. We would thus be more concerned with
accepting Set 1 as a valid set than accepting its elements (i.e. G3t and G4t) as
individually valid factors.

Finally, to illustrate the performance of proposed tests, we first consider the case
of two latent factors (F 1t; F2t) and two observed factors (G1t ¼ F 1t; G2t ¼ F2t). Thus
by design, the observed variables are exact factors. Fig. 1 displays the true Gt along
with the confidence intervals computed as

½ bGjt & 1:96 cvarð bGjtÞ1=2; bGjt þ 1:96 cvarð bGjtÞ1=2(
for t ¼ 1; . . . ;T and j ¼ 1; 2: The top left panel is for the first factor with N ¼ 50; and
the top right panel is for the second factor. The bottom panel plots the confidence
intervals when N ¼ 100: Clearly, the true Gjt is inside the confidence intervals and
these become narrower for larger N.

Next, we assume Gjt ¼ Fjt þ !jt with !jt + Nð0; 1Þ for j ¼ 1; 2: The measurement
errors !jt are estimated for t ¼ 1; . . . ;T ; j ¼ 1; 2; and the confidence intervals are
constructed according to Proposition 2:

½b!jt & 1:96bsjt; b!jt þ 1:96bsjt(.
Since in simulations, the true error processes !jt are known, they are also plotted in
Fig. 2 along with the confidence intervals. It is clear that the confidence intervals
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cover the true process. However, in contrast to Fig. 1 with exact factors, the
confidence intervals do not become narrower as N increases. This is because d is
estimated with T observations. In results not reported, we verify that the confidence
bands are narrower as T increases.

5. Empirical applications

In this section, we take our tests to the data. Factors estimated from portfolios,
stock returns, and a large set of economic variables will be tested against various
Gjts. The base factors are the three factors considered in Fama and French (1993),
denoted ‘Market’, ‘SMB’, and ‘HML’.10 In addition to the FF factors, we also
include variables considered in Chen et al. (1986). These are the first lag of
innovations to annual consumption growth ‘DC’, inflation ‘DP’, the growth rate of
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Table 2
Testing Gt jointly

T Set br2s br2&s br2þs
50 50 1 0.85 0.78 0.93
50 50 2 0.09 0.00 0.23
50 50 3 0.96 0.94 0.98
50 50 4 0.03 0.00 0.13
100 50 1 0.87 0.80 0.94
100 50 2 0.10 0.00 0.24
100 50 3 0.98 0.97 0.99
100 50 4 0.04 0.00 0.13
50 100 1 0.85 0.80 0.91
50 100 2 0.08 0.00 0.18
50 100 3 0.97 0.95 0.98
50 100 4 0.02 0.00 0.06
200 100 1 0.88 0.83 0.92
200 100 2 0.08 0.00 0.18
200 100 3 0.99 0.99 1.00
200 100 4 0.02 0.00 0.06
100 200 1 0.87 0.83 0.90
100 200 2 0.07 0.01 0.14
100 200 3 0.98 0.98 0.99
100 200 4 0.01 0.00 0.03

br2s is the smallest non-zero canonical correlation between eF and G, br2&s and r2þs define the 95% confidence
interval.

10Small minus big is the difference between the average return of three small portfolios and three big
portfolios. High minus low is the average return on two values and two growth portfolios. See Fama and
French (1993). Market ¼ Rm &Rf is value weighted return on all NYSE, AMEX, and NASDAQ minus
the 1 month treasury bill rate from Ibbotson Associates.
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industrial production ‘DIP’, a term premia ‘TERM’, and a risk premia ‘RISK’.11

For annual data, the innovations are the residuals from estimation of autoregres-
sions with two lags. For monthly data, the innovations are the residuals from an
autoregression with six lags. In each case, we analyze the data from 1960 to 1996. We
also split the sample at various points to look for changes in relations between the
observed and the latent factors over the forty years. The data are standardized to be
mean zero with unit variances prior to estimation by the method of principal
components. The Gts are likewise standardized prior to implementation of the tests.
In view of the properties of the data, we only report results for heteroskedastic errors
with cvarð bGtÞ defined as in (5).
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Fig. 1. Factor processes and their confidence intervals. Solid line: Ft: Dotted lines: bGt , 1:96 cvarð bGjtÞ:

11The data are taken from citibase. ‘DC’ is the growth rate of PCEND, ‘DIP’ is the growth rate of IP,
‘DP’ is the growth rate of PUNEW. The risk premium,‘RISK’, is the BAA rated bond rate (FYBAAC)
minus the 10 year government bond rate (FYGT10). The term premia, ‘TERM’ is 10 year government
bond FYGT10 minus the 3 month treasury bill rate FYGM3.
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5.1. Portfolios

In this application, xit are monthly or annual observations on 100 portfolios
available from Kenneth French’s web site.12 These are the intersections of 10
portfolios formed on size (market equity) and 10 portfolios formed on the ratio of
book to market equity. A total of 89 portfolios are continuously available for the full
sample. Depending on the sample period, the PCP and ICP select between 4 and 6
factors.13 We set r ¼ 6 in all subsequent tests. The results are reported in Table 3.

For annual data, the AðjÞ test rejects the null hypothesis of exact factors in more
than 5% of the sample. The critical value for theMðjÞ test is 3.28. It cannot reject the
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Fig. 2. Measurement errors and their confidence intervals. Solid line: !: Dotted lines: b!, 1:96bsjt:

12Web site mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/
det_100_port_sz.html.

13We consider g1ðN;TÞ ¼ logð NT
NþTÞ NþT

NT ; g2ðN;TÞ ¼ logðmin½N ;T (Þ NþT
NT :
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null hypothesis that SMB is an exact factor at the 5% level, and HML and Market at
around the 10% level. However, the evidence does not support the macroeconomic
variables as exact factors. The NSðjÞ and R2ðjÞ also indicate the presence of non-
trivial measurement errors. The canonical correlations suggest only three well-
defined relations between Ft and Gt: The remaining relations are extremely weak.
The canonical correlations between the three FF factors alone, and eFt are 0.970,
0.962, and 0.950, respectively. Little is gained by including ‘DC’, ‘DIP’, ‘DP’,
‘TERM’, and ‘RISK’. This suggests that the FF factors underlie the three non-zero
canonical correlations in the eight variable set. Of the macroeconomic variables
considered, ‘RISK’ has the highest explanatory power for returns.

Results for testing monthly data are given in Table 4. Several features are
noteworthy. First, the FF factors continue to be strong proxies for systematic risks.
Statistically, we cannot reject the null hypothesis that the SMB is an exact factor in
the 1988–1996 sub-sample. Of the three FF factors, ‘Market’ has the highest R2ðjÞ:
Second, over the entire sample, RISK has the highest R2ðjÞ and the lowest NSðjÞ; but
its relation with the latent factors is far weaker than the FF factors. Third, it could be
argued that the macroeconomic variables have unstable relations with the
unobserved factors over time, and that we are jointly testing the joint hypothesis
that Gjt is a linear combination of the fundamental factors and the relation is stable.
We therefore consider various subsamples. The change from fixed to flexible
exchange rate regime and the 1982 recession are plausible times that the relation
between the observed and fundamental factors changed.14 The statistics suggest that
the relations have become stronger in more recent subsamples. However, even after
allowing for parameter instability, the evidence remains that there is lack of
coherence between the observed and the macroeconomic variables. In contrast, the
relation between the FF factors and the latent factors appears to be quite stable,
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Table 3
Testing the factors in 100 FF portfolios: annual data

Sample j AðjÞ MðjÞ R2ðjÞ NSðjÞ brðkÞ2
60–96 Market 0.270 4.343 0.984 (0.974, 0.994) 0.016 0.995 (0.992, 0.998)
T ¼ 37 SMB 0.162 2.865 0.971 (0.952, 0.989) 0.030 0.970 (0.951, 0.989)
N ¼ 94 HML 0.081 2.479 0.962 (0.938, 0.986) 0.039 0.933 (0.891, 0.975)

DC 0.730 20.216 0.238 (0.000, 0.478) 3.199 0.192 (0.000, 0.420)
DIP 0.865 33.642 0.146 (0.000, 0.356) 5.845 0.149 (0.000, 0.360)
DP 0.649 19.401 0.198 (0.000, 0.428) 4.047 0.111 (0.000, 0.302)
TERM 0.838 16.800 0.249 (0.007, 0.490) 3.021 0.000 (0.000, 0.000)
RISK 0.730 21.169 0.313 (0.066, 0.561) 2.190 0.000 (0.000, 0.000)

AðjÞ is the frequency that jbttðjÞj exceeds the 5% asymptotic critical value. MðjÞ is the value of the test. R2 is
defined in (9), NSðjÞ defined in (8), and brðkÞ2 is vector of canonical correlations of Gt with respect to Ft: eGt

is defined in (5).

14As suggested by a referee, a variable could be a fundamental factor in one subsample and not the
other, and therefore not in the full sample, which could account for the rejections in the full sample.
Indeed, there is instability in dj :
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Table 4
Testing the factors in 100 FF portfolios: monthly data

Sample j AðjÞ MðjÞ R2ðjÞ NSðjÞ brðkÞ2
60–96 Market 0.288 9.847 0.973 (0.968, 0.978) 0.028 0.992 (0.990, 0.993)
T ¼ 444 SMB 0.259 7.132 0.926 (0.913, 0.940) 0.079 0.917 (0.902, 0.932)
N ¼ 95 HML 0.182 5.351 0.886 (0.867, 0.906) 0.128 0.832 (0.804, 0.861)

DC 0.928 103.708 0.035 (0.001, 0.068) 27.913 0.039 (0.004, 0.074)
DIP 0.901 85.148 0.043 (0.006, 0.080) 22.158 0.019 (0.000, 0.044)
DP 0.957 155.614 0.011 (0.000, 0.031) 86.468 0.005 (0.000, 0.019)
TERM 0.919 115.840 0.040 (0.004, 0.076) 23.881 0.000 (0.000, 0.000)
RISK 0.935 149.179 0.075 (0.028, 0.121) 12.423 0.000 (0.000, 0.000)

60–82 Market 0.380 9.041 0.965 (0.957, 0.973) 0.036 0.992 (0.991, 0.994)
T ¼ 276 SMB 0.341 6.488 0.913 (0.893, 0.933) 0.095 0.904 (0.883, 0.926)
N ¼ 95 HML 0.178 4.556 0.887 (0.862, 0.912) 0.128 0.792 (0.749, 0.836)

DC 0.895 61.140 0.059 (0.005, 0.113) 15.844 0.136 (0.061, 0.211)
DIP 0.906 47.236 0.087 (0.024, 0.151) 10.450 0.024 (0.012, 0.059)
DP 0.924 121.266 0.051 (0.000, 0.101) 18.658 0.015 (0.000, 0.043)
TERM 0.891 70.307 0.041 (0.000, 0.087) 23.271 0.000 (0.000, 0.000)
RISK 0.913 74.944 0.097 (0.031, 0.164) 9.258 0.000 (0.000, 0.000)

83–96 Market 0.238 5.098 0.982 (0.977, 0.987) 0.018 0.993 (0.991, 0.995)
T ¼ 168 SMB 0.208 4.034 0.940 (0.923, 0.958) 0.063 0.922 (0.899, 0.944)
N ¼ 101 HML 0.190 4.340 0.917 (0.893, 0.941) 0.090 0.898 (0.868, 0.927)

DC 0.857 47.584 0.090 (0.008, 0.173) 10.072 0.244 (0.131, 0.356)
DIP 0.750 26.945 0.143 (0.045, 0.241) 6.003 0.086 (0.005, 0.168)
DP 0.774 43.981 0.125 (0.032, 0.219) 6.971 0.016 (0.000, 0.053)
TERM 0.881 45.842 0.070 (0.000, 0.144) 13.322 0.000 (0.000, 0.000)
RISK 0.661 33.635 0.309 (0.193, 0.426) 2.231 0.000 (0.000, 0.000)

73–87 Market 0.383 9.075 0.970 (0.962, 0.979) 0.030 0.992 (0.990, 0.994)
T ¼ 180 SMB 0.428 6.840 0.903 (0.876, 0.930) 0.108 0.925 (0.904, 0.946)
N ¼ 98 HML 0.200 4.287 0.912 (0.888, 0.937) 0.096 0.804 (0.753, 0.856)

DC 0.856 58.510 0.193 (0.089, 0.297) 4.183 0.276 (0.165, 0.387)
DIP 0.917 71.336 0.045 (0.000, 0.104) 21.300 0.049 (0.000, 0.111)
DP 0.817 48.647 0.147 (0.052, 0.243) 5.799 0.007 (0.000, 0.031)
TERM 0.950 64.405 0.035 (0.000, 0.088) 27.622 0.000 (0.000, 0.000)
RISK 0.939 66.935 0.036 (0.000, 0.090) 26.425 0.000 (0.000, 0.000)

88–96 Market 0.176 4.581 0.983 (0.977, 0.990) 0.017 0.991 (0.987, 0.994)
T ¼ 108 SMB 0.046 3.568 0.962 (0.948, 0.976) 0.039 0.960 (0.945, 0.975)
N ¼ 101 HML 0.148 4.075 0.909 (0.877, 0.942) 0.100 0.907 (0.873, 0.940)

DC 0.750 21.920 0.130 (0.012, 0.248) 6.693 0.397 (0.253, 0.540)
DIP 0.685 24.591 0.133 (0.014, 0.252) 6.530 0.081 (0.000, 0.179)
DP 0.611 19.617 0.269 (0.126, 0.412) 2.715 0.016 (0.000, 0.063)
TERM 0.833 44.342 0.079 (0.000, 0.177) 11.637 0.000 (0.000, 0.000)
RISK 0.509 22.147 0.318 (0.173, 0.463) 2.147 0.000 (0.000, 0.000)

AðjÞ is the frequency that jbttðjÞj exceeds the 5% asymptotic critical value. MðjÞ is the value of the test. R2 is
defined in (9), NSðjÞ defined in (8), and brðkÞ2 is vector of canonical correlations of Gt with respect to Ft: eGt

is defined in (5).

J. Bai, S. Ng / Journal of Econometrics 131 (2006) 507–537528



displaying little variation in both R2ðjÞ and NSðjÞ over time. Fourth, three of the six
sample canonical correlations (since min½m; r( ¼ 6) between eFt and Gt are practically
zero, from which we can conclude that the eight observed factors considered cannot
span the true factor space. Because the five non-zero canonical correlations are also
far from unity, we can also conclude that measurement errors are significant enough
that the eight observed variables cannot even span a five dimensional subspace of the
true factors.

5.2. Stock returns

We next apply our tests to monthly stock returns. Because portfolios are
aggregated from stocks, individual stock returns should have larger idiosyncratic
variances than portfolios. Thus, the common components in the individual returns
can be expected to be smaller than those in the portfolios. It is thus of interest to see
if good proxy variables can be found when the data have larger idiosyncratic noises.

Data for 190 firms are available from CRSP over the entire sample.15 The two
PCP criteria select 6 and 5 factors in this panel of data, while the ICP always selects
4. We set r to 6 in the analysis. The results are reported in Table 5. None of the
observed variables can be considered an exact factor, though ‘Market’ is a strong
proxy factor with a low noise-to-signal ratio and a high R2: However, SMB, HML,
and especially the macroeconomic variables are poor proxies for the factors in the
returns data. The best of the proxy macroeconomic variable, ‘RISK’, still has a
noise-to-signal ratio that is ten times larger than the ‘Market’ factor.

The above analysis indicates that the factors in annual portfolios are better
approximated by observed variables than the factors in monthly portfolios, and
finding proxies for the factors in the monthly portfolios is in turn a less challenging
task than finding observed variables to proxy the factors in individual returns. This is
because high frequency and/or disaggregated data are more likely to be
contaminated by noise. Thus, even though more data are available at the high
frequency and disaggregated levels, they are less reliable proxies for the systematic
variations in the data. Inference using observed variables as proxies for the common
factors will likely be distorted by the measurement noise. Of all the variables
considered, the most satisfactory proxy for the latent factors in both portfolios and
individual stock returns appears to be the ‘Market’ factor as described in Fama and
French (1993). Its signal-to-noise ratio is systematically high, and its coherence with
the latent factors is robust across sample periods.

5.3. Macroeconomic factors

A fundamental characteristic of business cycles is the co-movement of a large
number of economic series. Such a phenomenon can be rationalized by common
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15There are data on many more firms that exist in a given year, but returns for only 190 firms are
available continuously over the entire sample. The readers are cautioned that the results could be distorted
by survivorship bias.
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Table 5
Testing the factors in monthly CRSP returns

Sample j AðjÞ MðjÞ R2ðjÞ NSðjÞ brðkÞ2
60–96 Market 0.255 6.685 0.967 (0.961, 0.973) 0.034 0.972 (0.966, 0.977)
T ¼ 444 SMB 0.468 9.677 0.603 (0.545, 0.660) 0.660 0.588 (0.529, 0.647)
N ¼ 190 HML 0.628 14.925 0.436 (0.367, 0.505) 1.294 0.359 (0.288, 0.431)

DC 0.869 45.269 0.050 (0.010, 0.089) 19.046 0.042 (0.005, 0.078)
DIP 0.883 70.418 0.032 (0.000, 0.065) 29.897 0.005 (0.000, 0.017)
DP 0.919 87.720 0.021 (0.000, 0.048) 46.206 0.001 (0.000, 0.007)
TERM 0.955 105.516 0.011 (0.000, 0.030) 90.426 0.000 (0.000, 0.000)
RISK 0.899 63.344 0.059 (0.017, 0.102) 15.880 0.000 (0.000, 0.000)

60–82 Market 0.264 6.299 0.969 (0.961, 0.976) 0.032 0.974 (0.968, 0.980)
T ¼ 276 SMB 0.471 7.261 0.664 (0.600, 0.729) 0.505 0.635 (0.567, 0.704)
N ¼ 190 HML 0.562 11.003 0.525 (0.444, 0.606) 0.904 0.448 (0.361, 0.536)

DC 0.880 32.922 0.085 (0.022, 0.147) 10.818 0.069 (0.011, 0.126)
DIP 0.895 60.978 0.033 (0.000, 0.074) 29.732 0.012 (0.000, 0.038)
DP 0.924 66.766 0.026 (0.000, 0.063) 37.155 0.006 (0.000, 0.024)
TERM 0.924 63.639 0.025 (0.000, 0.062) 38.283 0.000 (0.000, 0.000)
RISK 0.891 54.577 0.064 (0.008, 0.120) 14.625 0.000 (0.000, 0.000)

83–96 Market 0.286 4.747 0.967 (0.957, 0.977) 0.034 0.972 (0.963, 0.980)
T ¼ 168 SMB 0.530 10.600 0.556 (0.456, 0.656) 0.799 0.582 (0.486, 0.678)
N ¼ 190 HML 0.619 17.831 0.464 (0.354, 0.574) 1.155 0.390 (0.275, 0.506)

DC 0.940 71.082 0.016 (0.000, 0.054) 60.212 0.026 (0.000, 0.073)
DIP 0.911 88.930 0.021 (0.000, 0.064) 47.009 0.017 (0.000, 0.055)
DP 0.952 123.024 0.008 (0.000, 0.035) 120.873 0.004 (0.000, 0.021)
TERM 0.917 67.360 0.024 (0.000, 0.070) 40.716 0.000 (0.000, 0.000)
RISK 0.714 37.568 0.101 (0.014, 0.187) 8.929 0.000 (0.000, 0.000)

73–87 Market 0.256 6.538 0.973 (0.965, 0.981) 0.028 0.976 (0.969, 0.983)
T ¼ 180 SMB 0.467 9.064 0.662 (0.582, 0.742) 0.510 0.661 (0.581, 0.742)
N ¼ 190 HML 0.656 16.801 0.553 (0.456, 0.650) 0.808 0.417 (0.307, 0.527)

DC 0.850 54.418 0.107 (0.021, 0.192) 8.367 0.093 (0.012, 0.174)
DIP 0.911 50.229 0.047 (0.000 0.107) 20.349 0.019 (0.000, 0.058)
DP 0.950 91.785 0.037 (0.000, 0.091) 26.128 0.004 (0.000, 0.024)
TERM 0.967 122.675 0.009 (0.000, 0.036) 112.690 0.000 (0.000, 0.000)
RISK 0.928 55.851 0.039 (0.000, 0.095) 24.385 0.000 (0.000, 0.000)

88–96 Market 0.250 4.272 0.963 (0.950, 0.977) 0.038 0.967 (0.955, 0.979)
T ¼ 108 SMB 0.583 10.659 0.551 (0.425, 0.677) 0.815 0.621 (0.508, 0.733)
N ¼ 190 HML 0.648 18.149 0.437 (0.296, 0.577) 1.290 0.369 (0.225, 0.514)

DC 0.898 62.467 0.034 (0.000, 0.101) 28.662 0.058 (0.000, 0.144)
DIP 0.880 54.120 0.031 (0.000, 0.095) 31.255 0.017 (0.000, 0.066)
DP 0.926 58.978 0.044 (0.000, 0.120) 21.639 0.010 (0.000, 0.047)
TERM 0.870 51.365 0.034 (0.000, 0.102) 28.268 0.000 (0.000, 0.000)
RISK 0.750 35.048 0.137 (0.017, 0.258) 6.274 0.000 (0.000, 0.000)

AðjÞ is the frequency that jbttðjÞj exceeds the 5% asymptotic critical value. MðjÞ is the value of the test. R2 is
defined in (9), NSðjÞ defined in (8), and brðkÞ2 is vector of canonical correlations of Gt with respect to Ft: eGt

is defined in (5).
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Table 6
Testing the factors in macroeconomic data

Sample j AðjÞ MðjÞ R2ðjÞ NSðjÞ brðkÞ2
60–96 Market 0.941 364.555 0.008 (0.000, 0.024) 124.359 0.624 (0.568, 0.679)
T ¼ 444 SMB 0.917 380.642 0.019 (0.000, 0.045) 50.978 0.335 (0.263, 0.406)
N ¼ 150 HML 0.926 466.551 0.010 (0.000, 0.029) 97.817 0.093 (0.042, 0.144)

DC 0.833 28.531 0.283 (0.212, 0.354) 2.535 0.065 (0.021, 0.110)
DIP 0.700 22.855 0.442 (0.373, 0.511) 1.261 0.021 (0.000, 0.048)
DP 0.773 28.293 0.258 (0.188, 0.328) 2.879 0.002 (0.000, 0.009)
TERM 0.768 36.474 0.274 (0.204, 0.345) 2.644 0.000 (0.000, 0.000)
RISK 0.739 22.111 0.463 (0.395, 0.531) 1.162 0.000 (0.000, 0.000)
UR 0.604 60.188 0.353 (0.281, 0.424) 1.835 0.000 (0.000, 0.000)

60–82 Market 0.924 337.746 0.011 (0.000, 0.035) 91.476 0.617 (0.547, 0.688)
T ¼ 276 SMB 0.906 230.985 0.023 (0.000, 0.059) 41.760 0.385 (0.294, 0.475)
N ¼ 150 HML 0.938 456.227 0.011 (0.000, 0.035) 92.165 0.113 (0.043, 0.184)

DC 0.826 32.509 0.267 (0.178, 0.356) 2.746 0.056 (0.003, 0.109)
DIP 0.717 29.180 0.400 (0.311, 0.490) 1.500 0.010 (0.000, 0.032)
DP 0.750 28.225 0.290 (0.200, 0.380) 2.449 0.006 (0.000, 0.024)
TERM 0.681 34.419 0.368 (0.278, 0.459) 1.716 0.000 (0.000, 0.000)
RISK 0.754 26.045 0.466 (0.380, 0.552) 1.145 0.000 (0.000, 0.000)
UR 0.663 43.591 0.325 (0.234, 0.416) 2.078 0.000 (0.000, 0.000)

83–96 Market 0.917 78.037 0.075 (0.000, 0.152) 12.277 0.728 (0.658, 0.798)
T ¼ 168 SMB 0.839 40.687 0.073 (0.000, 0.149) 12.683 0.581 (0.484, 0.677)
N ¼ 150 HML 0.905 136.574 0.036 (0.000, 0.091) 27.151 0.248 (0.135, 0.361)

DC 0.899 53.801 0.207 (0.098, 0.316) 3.832 0.111 (0.022, 0.201)
DIP 0.565 15.231 0.544 (0.442, 0.645) 0.839 0.043 (0.000, 0.103)
DP 0.869 74.283 0.133 (0.037, 0.228) 6.538 0.013 (0.000, 0.048)
TERM 0.762 19.521 0.383 (0.268, 0.499) 1.611 0.000 (0.000, 0.000)
RISK 0.708 35.981 0.456 (0.345, 0.567) 1.191 0.000 (0.000, 0.000)
UR 0.685 34.315 0.542 (0.440, 0.644) 0.844 0.000 (0.000, 0.000)

73–96 Market 0.924 90.926 0.037 (0.00, 0.079) 26.279 0.641 (0.575, 0.708)
T ¼ 288 SMB 0.903 162.320 0.065 (0.010, 0.120) 14.472 0.477 (0.393, 0.560)
N ¼ 150 HML 0.944 311.158 0.024 (0.000, 0.058) 41.259 0.225 (0.140, 0.309)

DC 0.792 31.037 0.418 (0.332, 0.505) 1.390 0.113 (0.044, 0.182)
DIP 0.670 19.184 0.510 (0.429, 0.591) 0.961 0.043 (0.000, 0.088)
DP 0.753 30.671 0.353 (0.264, 0.441) 1.837 0.007 (0.000, 0.027)
TERM 0.806 36.448 0.254 (0.167, 0.340) 2.942 0.000 (0.000, 0.000)
RISK 0.771 43.639 0.334 (0.245, 0.423) 1.991 0.000 (0.000, 0.000)
UR 0.795 98.987 0.209 (0.125, 0.292) 3.787 0.000 (0.000, 0.000)

AðjÞ is the frequency that jbttðjÞj exceeds the 5% asymptotic critical value. MðjÞ is the value of the test. R2 is
defined in (9), NSðjÞ defined in (8), and brðkÞ2 is vector of canonical correlations of Gt with respect to Ft: eGt

is defined in (5).
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factors being the driving force of economic fluctuations. This has been used as a
justification to represent the unobserved state of the economy by variables thought
to be dominated by variations arising from common sources. Industrial production,
unemployment rate, and various interest rate spreads have been used for this
purpose. However, there has been no formal analysis of how good the proxy
variables are.

We estimate the latent factors from 150 monthly series considered in Stock and
Watson (2002). These data consist of series from output, consumption, employment,
investment, prices, wages, interest rate, and other financial series such as exchange
rates. In addition to the five macroeconomic variables considered throughout, we
also tested if unemployment rate (LHUR) is a common factor. For this application,
we also consider a post-Bretton Woods sub-sample. The results are reported in
Table 6.

Given the noise in monthly data, rejecting the null hypothesis that the variables
are exact factors is hardly surprising. Industrial production is a widely used indicator
of economic activity. While it has one of the strongest relations with the latent
factors, the R2 is only around 0.5, indicating that the noise component is also non-
trivial. Interestingly, ‘RISK’ bears a strong relation not only with the latent factors
in portfolios, but also in the macroeconomic variables. As in the results for asset
returns, the relations between the macroeconomic variables and the factors also
appear to be unstable. While inflation has become less important since 1983,
unemployment has become more important. The non-zero canonical correlations
also reveal instability in the relations, as they are higher in the later than the earlier
sub-samples. One interpretation of this result is that idiosyncratic shocks were more
important in the sixties and seventies, but common shocks have become more
important in recent years as sources of economic fluctuations.

To the extent that the FF factors are good proxies for the factors in portfolios, one
might wonder if the common shocks to economic activity are also the common
shocks to portfolio returns. To shed some light on this issue, we also tested if the FF
factors are related to the factors in macroeconomic data. As seen from Table 5, there
is hardly any evidence for a relation between the FF factors and the panel of
macroeconomic variables.

6. Conclusion

It is a common practice in empirical work to proxy unobserved common factors
by observed variables, yet hardly any formal procedures exist to assess if the
observed variables equal, or are close to the factors. This paper exploits the fact that
the space spanned by the common factors can be consistently estimated from large
dimensional panels. We develop several tests that can serve as guides as to which
variables are close to the factors. The tests have good properties in simulations. We
estimate the common factors in portfolios, individual returns, as well as a large set of
macroeconomic data. The Fama and French factors approximate the factors in
portfolios and individual stock returns much better than any single macroeconomic
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variable. None of the macroeconomic variables considered, namely industrial
production, inflation, unemployment rate, and the risk premium, have stronger
coherence with the macroeconomic factors. Inflation was a good proxy of the factors
in portfolios and macroeconomic data prior to the 1980s, but its importance has
diminished since.
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Appendix A

Proof of Proposition 1. For notational simplicity, we omit the subscript j, which
refers to the jth series. We will use results of Bai (2003) repeatedly, though it should
be noted that the H matrix in the present paper is H 0 in Bai (2003), purely for
notational simplicity.

Under the null hypothesis, Gt ¼ d0Ft for all t. Adding and subtracting terms,
Gt ¼ d0H&1 eFt þ d0H&1ðHFt & eFtÞ; or

Gt ¼ g0 eFt þ g0ðHFt & eFtÞ,
where g ¼ H&10d: In matrix notation,

G ¼ eFgþ ðFH 0 & eF Þg. (13)

The least squares estimator of g is

bg ¼ ðeF 0 eF=TÞ&1ðeF 0
G=TÞ ¼ 1

T
eF 0
G.

Substituting G of (13) into bg; we have

bg ¼ gþ 1

T
eF 0ðFH 0 & eF Þg,

ffiffiffiffiffi
N

p
ðbg& gÞ ¼

ffiffiffiffiffi
N

p 1

T
eF 0ðFH 0 & eF Þg.

From Lemma B.3 of Bai (2003), 1
T
eF 0ðFH 0 & eF Þ ¼ Opðmin½N ;T (&1Þ: So ffiffiffiffiffi

N
p ðbg& gÞ ¼ffiffiffiffiffi

N
p )Opðmin½N;T (&1Þ ! 0 provided

ffiffiffiffiffi
N

p
=T ! 0:

Next,
ffiffiffiffiffi
N

p ð bGt & GtÞ ¼
ffiffiffiffiffi
N

p ðbg0 & g0ÞHFt þbg0 ffiffiffiffiffi
N

p ðeFt &HFtÞ: The above analysis
shows

ffiffiffiffiffi
N

p ð bGt & GtÞ ¼ bg0 ffiffiffiffiffi
N

p ðeFt &HFtÞ þ opð1Þ: Let AvarðeFtÞ denote the
asymptotic variance of

ffiffiffiffiffi
N

p ðeFt &HFtÞ: Then Lemma 1(ii) implies that, as N ;T !
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1 with
ffiffiffiffiffi
N

p
=T ! 0;ffiffiffiffiffi

N
p ð bGt & GtÞ

ðbg0AvarðeFtÞbgÞ1=2 &!d Nð0; 1Þ.

Let varð bGtÞ ¼ 1
N
bg0Avarð eFtÞbg; then the above is the same as ttðjÞ &!d Nð0; 1Þ; where

ttðjÞ is defined in (1). Recall bttðjÞ is obtained when varð bGtÞ is replaced by a consistent
estimator cvarð bGtÞ; thus bttðjÞ &!d Nð0; 1Þ: It follows that PðjbttðjÞj4FaÞ ! 2a: We next
show that 1

T

PT
t¼11ðjbttðjÞj4FaÞ ! 2a:The essential argument is the law of large

numbers, but because the object of interest depends on both N and T, extra
considerations are required.

Note first that in the preceding analysis, the limiting normality of bttðjÞ is derived
from the limiting normality of bg0 ffiffiffiffiffi

N
p ðeFt &HFtÞ: From Bai (2003),ffiffiffiffiffi

N
p

ðeFt &HFtÞ ¼ eV&1ðeF 0
F=TÞ 1ffiffiffiffiffi

N
p

XN
i¼1

lieit þ opð1Þ.

The normality of
ffiffiffiffiffi
N

p ðeFt &HFtÞ is therefore derived from the CLT for 1ffiffiffi
N

p
PN

i¼1 lieit
when N ! 1: Thus, we can writebttðjÞ ¼ tt;N þ opð1Þ (14)

where tt;N ¼ c0 1ffiffiffi
N

p
PN

i¼1 lieit; and c is a vector of constant, and tt;N &!d Nð0; 1Þ: For
any fixed real number x040; if tt;N has a continuous distribution, then Pðtt;N ¼
x0Þ ¼ 0: Because the limit of tt;N is a continuous random variable, Pðtt;N ¼ x0Þ ! 0;
as N ! 1: This means that the indicator function 1ðjxjXx0Þ is (asymptotically) an
almost surely continuous function with respect to the measure of tt;N : It follows from
(14) that

1ðjbttðjÞjXx0Þ ¼ 1ðjtt;N jXx0Þ þ opð1Þ.
Replacing x0 by Fa; averaging over t, we obtain

1

T

XT
t¼1

1ðjbttðjÞjXFaÞ ¼ 1

T

XT
t¼1

1ðjtt;N jXFaÞ þ opð1Þ.

Let XT ;N denote the first term on the right-hand side above. We will show the joint
probability limit of XT ;N is 2a: We use Theorem 1 of Phillips and Moon (1999),
switching the role of N and T in their paper.

Define Yt;N ¼ 1ðjtt;N jXFaÞ: From tt;N &!d Zt + Nð0; 1Þ; we have Yt;N &!d Yt ¼
1ðjZtjXFaÞ: For each fixed T, XT ;N &!d XT ¼ 1

T

PT
t¼1Yt as N ! 1: Because

EðYtÞ ¼ 2a; by the law of large numbers, XT &!p 2a; as T ! 1: To show this holds
not just sequentially as N ! 1 and then T ! 1 but also as N;T ! 1 jointly, we
need to verify conditions (i)–(iv) of Phillips and Moon. Because Yt;N is bounded by
1, all conditions except (ii) of Phillips and Moon are trivially satisfied. For (ii) we
need to show

lim
T ;N!1

1

T

XT
t¼1

jPðjtt;N jXFaÞ & PðjZtjXFaÞj ¼ 0.
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But by the Berry–Esseen Theorem, jPðjtt;N jXFaÞ & PðjZtjXFaÞjpN&1=2C for a
constant C not depending on t given the moment conditions on eit: Thus their
condition (ii) is also met. This proves part (i) of Proposition 1.

Let M ¼ maxfjZ1j; jZ2; . . . ; jZT jg; where Zt are iid Nð0; 1Þ: Then PðMoxÞ ¼
ð2FðxÞ & 1ÞT: Assuming that the idiosyncratic errors eit are serially uncorrelated,
then ttðjÞ are asymptotically independent over t. This is because the limiting
distribution of

ffiffiffiffiffi
N

p ðeFt &HFtÞ and thus ttðjÞ is determined by N&1=2PN
i¼1 eit: Because

N&1=2PN
i¼1 eit and N&1=2PN

i¼1 ei;tþs (sa0) are uncorrelated and asymptotically
normal, they are asymptotically independent. This implies the asymptotic
independence of ttðjÞ and ttþsðjÞ and thus PðMðjÞoxÞ + ð2FðxÞ & 1ÞT; proving
Proposition 1. &

The proof of Proposition 2 Follows from the same argument in the proof of
Theorem 2 of Bai and Ng (2004). The details are omitted.

Proof of Proposition 3. Let eB ¼ S&1eF eFSeFGS&1
GGSGeF ; and B ¼ S&1

FFSFGS
&1
GGSGF :

Let erk and brk be the canonical correlations of eB and B, respectively.
Because eigenvalues are continuous functions, we will have

ffiffiffiffi
T

p ðer2k & br2kÞ &!p 0
provided that

ffiffiffiffi
T

p ðeB& BÞ &!p 0: That is, the canonical correlations of eB
have the same limiting distributions as those of B when eB and B are asymptotically
equivalent. We next establish

ffiffiffiffi
T

p ðeB& BÞ &!p 0: First note that because H is
full rank, the canonical correlations of B is the same as the canonical correlations of
B-; where

B- ¼ S&1
HF HFSHF GS

&1
GGSG HF .

Thus, it suffices to show that
ffiffiffiffi
T

p ðeB& B-Þ&!p 0: But this is implied byffiffiffiffi
T

p
ðS&1eF eF & S&1

HF HF Þ &!
p

0, (15)

ffiffiffiffi
T

p
ðSeFG & SHF GÞ &!

p
0. (16)

Consider (15). Now

ðS&1eF eF & S&1
HF HF Þ ¼ S&1eF eF ðSHF HF & SeF eF ÞS&1

HF HF .

Thus, (15) is implied by
ffiffiffiffi
T

p ðSHF HF & SeF eF Þ &!p 0; or thatffiffiffiffi
T

p H 0F 0FH
T

&
eF 0 eF
T

 !
&!p 0. (17)

By Lemmas B.2 and B.3 of Bai (2003),eF 0ð eF & FH 0Þ
T

¼ Opðmin½N;T (&1Þ,

F 0ð eF & FH 0Þ
T

¼ Opðmin½N;T (&1Þ.
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Adding and subtracting terms, (17) becomes

& ffiffiffiffi
T

p ð eF & FH 0Þ0 eF
T

&& ffiffiffiffi
T

p
HF 0ðeF & FH 0Þ

T
¼

ffiffiffiffi
T

p
Opðmin½N ;T (&1Þ ! 0

if
ffiffiffiffi
T

p
=N ! 0: For (16),ffiffiffiffi
T

p eF 0
G

T
&HF 0G

T

 !
¼

ffiffiffiffi
T

p ðeF & FH 0Þ0G
T

 !
.

But 1
T ð eF & FH 0Þ0G ¼ Opðmin½N;T (&1Þ; see Lemma B.2 of Bai (2003). Thus, (16) is

Opð
ffiffiffiffi
T

p
=min½N;T (Þ &!p 0; establishing

ffiffiffiffi
T

p ðeB& B-Þ ¼ opð1Þ and thus the proposi-
tion. &
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