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1 Introduction.

Both the statistics and econometrics literature contain a vast amount of work on issues
related to structural change, most of it specifically designed for the case of a single change.
However, the problem of multiple structural changes has received considerably less attention.
Recently, Bai and Perron (1998, 2003a) provided a comprehensive treatment of various issues
in the context of multiple structural change models: consistency of estimates of the break
dates, tests for structural changes, confidence intervals for the break dates, methods to
select the number of breaks and efficient algorithms to compute the estimates. However,
their results are solely asymptotic in nature and the adequacy in finite samples remains to
be investigated. In this paper, we intend to partially fill this gap.

We present simulation results pertaining to the behavior of the estimators and tests in
finite samples. We consider the problem of forming confidence intervals for the break dates
under various hypotheses about the structure of the data and errors across segments. In
particular, we may allow the data and errors to have different distributions across segments
or impose a common structure. The issue of testing for structural changes is also considered
under very general conditions on the data and the errors and the properties of tests, both in
the data-generating processes and in the specification of the tests. We also address the issue
of estimating the number of breaks. To that effect, we discuss methods based on information
criteria and a method based on a sequential testing procedure as suggested in Bai and Perron
(1998).

The rest of this paper is structured as follows. Section 2 presents the model and the
estimator. Section 3 summarizes the relevant asymptotic results about the construction
of confidence intervals for the break dates, the tests for multiple structural changes and
methods to estimate the number of breaks. It describes the exact nature of the various
tests and procedures upon various specifications about the nature of the errors and data
across segments. Section 4 presents the results of simulations analyzing the adequacy of the
asymptotic approximations in finite samples, the size and power of the various tests and
the relative merits of several methods to estimate the number of structural changes. Some

concluding remarks and practical recommendations are contained in Section 5.



2 The Model and Estimators.

For the purpose of the simulation study, we consider the following multiple linear regression

with m breaks (m + 1 regimes):
Y = 2,05 + uy, t="T,_1+1,..,1j, (1)

for j =1,...,m+1. This is a special case of the general model considered in Bai and Perron
(1998) corresponding to a pure structural change model. Here, y; is the observed dependent
variable at time ¢; 2z; (¢ x 1) is a vectors of covariates and 6; (j = 1,...,m + 1) is the
corresponding vector of coefficients; u; is the disturbance at time ¢. The indices (T4, ..., Tpn),
or the break points, are explicitly treated as unknown (we use the convention that Ty = 0
and T,,,41 = T). The purpose is to estimate the unknown regression coefficients together
with the break points when 7" observations on (y;, 2;) are available.

The method of estimation considered is that based on the least-squares principle. For
each m-partition (11, ...,T,,), the associated least-squares estimates of §; are obtained by

minimizing the sum of squared residuals

m+1 T;

ST Ta) = Y. S0 [y — 26

i=1 t=T;_1+1

Let 6({T}}) denote the resulting estimates based on the given m-partition (T3, ..., T),,) denoted
{T;}. Substituting these estimates in the objective function, the estimated break points
(Ty, ..., T)) are such that

~

(T, ..., Tyn) = argming, o, Sp(Th, ..., T), (2)

where the minimization is taken over all partitions (71, ..., T;,) such that T; — T, 1 > h > q.
Thus the break-point estimators are global minimizers of the objective function. Finally, the
regression parameter estimates are obtained using the associated least-squares estimates at
the estimated m-partition {7}}, i.e. & = §({T;}). An efficient algorithm, based on the prin-
ciple of dynamic programming, to obtain global minimizers of the sum of squared residuals
is presented in Bai and Perron (2003a).

Note that, in general, A need not be set to q. Indeed, in many instances the choice of the
trimming is made independently of the number of regressors. This is the case, in particular
when obtaining estimates for the purpose of constructing test statistics (see Section 3.2
below).



A central result derived in Bai and Perron (1998) concerns the convergence of the break
fractions \; = T} /T and the rate of convergence. The results obtained show not only that
5\2» converges to its true value )\? but that it does so at the fast rate T i.e. T(S\Z — )\?) =
O,(1) for all 4. This convergence result is obtained under a very general set of assumptions
allowing a wide variety of models. It, however, precludes integrated variables (with an
autoregressive unit root) but permits trending regressors; for example with a trend of the
form g; = a + b(¢t/T). The assumptions concerning the nature of the errors in relation to
the regressors {z;} are of two kinds. First, when no lagged dependent variable is allowed
in {2}, the conditions on the residuals are quite general and allow substantial correlation
and heteroskedasticity. The second case allows lagged dependent variables as regressors but
then, of course, no serial correlation is permitted in the errors {u;}. In both cases, the
assumptions are general enough to allow different distributions for both the regressors and

the errors across segments.
3 Summary of Relevant Asymptotic Results.

3.1 Constructing Confidence Intervals.

To get an asymptotic distribution for the break dates, the strategy considered is to adopt an
asymptotic framework where the magnitudes of the shifts converge to zero as the sample size
increases. The resulting limiting distribution is then independent of the specific distribution
of the pair {z;,u:}. To describe the relevant distributional result, we need to define some

notations. For i = 1,...,m, and AT? =T? — T2 |, let

A = 8y -6,

T2
Qi = Lm(ATY) > E(zz),
t=T0  +1
T9 70

K3 7

Q= Lm(AT))™" Y > E(zezucw).

0 70
r=T0 +1t=T0  +1

In the case where the data are non-trending, we have, under various assumptions! stated in

!'The important ones are as follows: the magnitude of the shifts decreases at a suitable rate as the sample
size increases, a functional central limit theorem holds for the partial sums of the variables {z;u;}, also

. T2 +[sAT?
plim(AT?) ! Zt:”]’%oil[_i,_l !

trending regressors.

E(22;) = sQ; is assumed to exist with @Q; a fixed matrix. The latter precludes



Bai and Perron (1998), the following limiting distribution of the break dates:
(AJQiA) -

T, — 17 ® =1,...
A (T; V) = argmax VW(s), (i R (3)
where
, W (—s) — |s|/2, if s <0,
VE(Di2/0,)WE (5) — &3l /2, if 5> 0,
and

fi = A;Qi+1Ai/A;QiAia
P71 = AXLA/NQA;,
Gry = A A/AIQi A

Also, Wl(i)(s) and WQ(i)(s) are independent standard Weiner processes defined on [0, 00),
starting at the origin when s = 0. These processes are also independent across i.

The cumulative distribution function of argmax,V*)(s) is derived in Bai (1997a) and all
that is needed to compute the relevant critical values are estimates of A;, @);, and €2;. These
are given by

~ ~ A

Ai - 6i+1_6i7

A A TZ

Qi = (ATi)fl Z 221,
t=T;_14+1

and an estimate of 2; can be constructed using the covariance matrix estimator of An-
drews (1991) applied to the vector {z;u;} and using data over segment i only. We use the
Quadratic Spectral kernel with an AR(1) approximation for each element of the vector {z;u}
to construct the optimal bandwidth (henceforth referred to as a HAC estimator).

In practice, one may want to impose some constraints on this general framework related to
the distribution of the errors and regressors across segments. For ease of reference, especially
with the simulation results presented later, we shall adopt the following notation. We denote
by cor u =1 the case where the errors are allowed to be correlated and by cor w = 0 the
case where no correction for serial correlation is made. Similarly, het 2z = 1 denotes the case
where the regressors are allowed to have heterogenous distributions across segments and by
het _z = 0 the case where the distributions are assumed to be homogenous across segments.
Finally, het u = 1 permits heterogenous variances of the residuals across segments and
het _u = 0 imposes the same variance throughout. We have the following cases when adding

restrictions:



The regressors z; are identically distributed across segments (cor _u = 1, het _z = 0,
het _uw = 1). Then @Q; = Q;+1 = @ which can consistently be estimated by Q =

T-'>T | 22, In this case, the limiting result states that

AOA
(A’Q A> (T; — T) = argmax V9 (s),
i2iA)

The errors are identically distributed across segments (cor _u =1, het _z =1, het _u =
0). Then Q; = Q;,1 = Q which can consistently be estimated using a HAC estimator

applied to the variable {z;u;} using data over the whole sample.

The errors and the data are identically distributed across segments (cor u = 1,

het_z = 0, het_u = 0). Here, we have §; = 1, and ¢;; = ¢,;, and the limiting

distribution reduces to
(A10A )

M(T —T) = argmax{W ( ) —|sl/2},

which has a density function symmetric about the origin.

The errors are serially uncorrelated (cor _u = 0, het_z =1, het_u = 1). In this case
Q; = 02Q; and ¢}, = ¢7, = 07 which can be estimated using 67 = (AT})~ Z?;T}_ﬁl az.
The confidence intervals can then be constructed from the approximation

(AjQ:A)
5

(T; — T°) = argmax ,V @ (s). (5)

The errors are serially uncorrelated and the regressors are identically distributed across
segments (cor_u =0, het_z =0, het_u = 1). Here ¢}, = ¢7, = 07 and ¢; = 1. The
confidence intervals can then be constructed from the approximation

(A;QA)(T T7) = argmax{W(s) — |s|/2}. (6)

The errors are serially uncorrelated and identically distributed across segments (cor _u =
0, het_z =1, het_u = 0). The approximation is the same as (5) with 6% = T-' 7 42

instead of 7.



e The errors are serially uncorrelated and both the data and the errors are identically
distributed across segments (cor _u = 0, het_z = 0, het_u = 0). The approximation

is the same as (6) with 62 instead of 47.

Since the break dates are integer valued, we consider confidence intervals that are likewise
integer-valued by using the highest smaller integer for the lower bound and the smallest

higher integer for the upper bound.

3.2 Test Statistics for Multiple Breaks.

3.2.1 A Test of no break versus a fixed number of breaks.

We consider the sup F type test of no structural break (m = 0) versus the alternative
hypothesis that there are m = k breaks. Let (71, ..., T}) be a partition such that T; = [T'\;]
(¢ =1,...,k). Let R be the conventional matrix such that (R6)" = (67 — 85, ..., 0 — 8,41)-

Define
1

. T—(k+1
Fr(M, s M5 Q) = = <M

T kq

> §R(RV(6)R) ‘RS, (7)
where XA/((AS) is an estimate of the variance covariance matrix of ¢ that is robust to serial

correlation and heteroskedasticity; i.e. a consistent estimate of
V(8) = plimT(ZZ)*Z'0Z(Z'Z)~". (8)

The statistic F7. is simply the conventional F-statistic for testing 6; = --- = 41 against
8; # 0,41 for some i given the partition (71, ...,Ty). The supF type test statistic is then
defined as

supFh(k;q) = sup  Fr(A, ., Ak q),
(Al,...,Ak)EAE

where

Ac={(A, s M) Aigr = Nl 2 6 A > 6, A <1 =€},

for some arbitrary positive number €. In this general case, allowing for serial correlation in
the errors, the supF7.(k; ¢) may be rather cumbersome to compute. However, one can obtain
a much simpler, yet asymptotically equivalent, version by using the estimates of the break
dates obtained from the global minimization of the sum of squared residuals. Denote, these
estimates by \; = TZ/T for i = 1, ..., k, the test is then

supF(k; q) = Fj’i(j\l, ey S\k; q)



The estimates 5\1, ,;\k are equivalently the arguments that maximizes the following F-

statistic: - _
Fr(hs o M ) (%) § R (RV(B)R) RS,
and i
. 77
V(6) = (T) ,

the covariance matrix of & assuming spherical errors. This procedure is asymptotically
equivalent since the break dates are consistent even in the presence of serial correlation. The
asymptotic distribution still depends on the specification of the set A, via the imposition of
the minimal length A of a segment. Hence, e = h/T.

Various versions of the tests can be obtained depending on the assumptions made with
respect to the distribution of the data and the errors across segments. These variations relates
to different specifications in the construction of the estimate of the limiting covariance matrix

A

V' (6) given by (8). They are the following.

e No serial correlation, different distributions for the data and identical distribution for

the errors across segments (cor _u =0, het_z =1, het_u = 0). In this base case, the

() = 62 <%>

e No serial correlation in the errors, different variances of the errors and different dis-

estimate is .

tributions of the data across segments (cor _u = 0, het_z = 1, het_u = 1). In this

case,

V(6) = diag(V(61), ... V(bmi1)),

where f/(&) is the covariance matrix of the estimate &; using only data from segment
i, ie. V(6;) = 62[(AT)) ™! S 2z with 67 = (AT Y15 ., ;. These are
simply the OLS estimates obtained using data from each segment separately.

e Serial correlation in the errors, different distributions for the data and the errors across
segments (cor _u = 1, het_z = 1, het_u = 1). Here, we make use of the fact that
the errors in different segments are asymptotically independent. Hence, the limiting

variance is given by

~ ~

V(8) = diag(V(61), ... V(6mi1)),



where, forz:=1,...m+1,
V(8;) = pim(AT))(Z.Z:) * Zi4Z:(Z1 Z:) 2.

This can be consistently estimated, segment by segment, with a HAC estimator of

~

V' (6;) using only data from segment 1.

e Serial correlation in the errors, same distribution for the errors across segments (cor _u =

1, het_z =1, het_u =0). In this case the limiting covariance matrix is
V(6) = plimT(ZZ)" (A @ (202))(Z7Z)7,
where (using the convention that \g = 0 and A, = 1)

A1 — Ao
A2 — N\

)\m—i—l - )\m

This can be consistently estimated using =1, /T and a HAC estimator based on the
pair {z;4; } constructed using the full sample. Note that we have an implicit assumption
that the regressors z; have the same distribution across segments since the consistent
estimate of plim Z’Q2Z/T is constructed using the full sample. For reasons, discussed
below we do not impose that restriction when evaluating p lim 7’7/ T. That is, we still
use Z Z/T instead of an estimate of (A ® Q) obtained using Q = T~ 7, 22! based

on the full sample.

In the construction of the tests we do not consider imposing the restriction that the
distribution of the regressors z; be the same across segments even if they are (except as they
enter in the construction of a HAC estimate involving the pair {z4,}). This might at first
sight seem surprising since imposing a valid restriction should lead to more precise estimate.
This is, however, not true. Consider the case with no serial correlation in the errors and
the same distribution for the errors across segments (cor _u = 0, het_u = 0). Imposing the

restriction het z = 0, leads to the following asymptotic covariance matrix

V() =ct(he Q)



where Q = limy_ 77! L | E(z:2}). Note that a consistent estimate can be obtained using
Q=TT %z, 6° =TS 42 and A constructed using \; = T;/T (i = 1,...,m).
Suppose that the z’s are exogenous and the errors have the same variance across segments.

Then, for a given partition (77, ..., T,,), the exact variance of the estimated coefficients S is

V(8) = o? <¥>

Using the asymptotic version V(8) = 02(A ® Q) ! may imply an inaccurate approximation

-1

to the exact distribution. This would occur especially if small segments are allowed in which
case the exact moment matrix of the regressors may deviate substantially from its full sample
analog.

The same problem occurs in the case with no serial correlation in the errors and different
variance for the residuals across segments (cor _u = 0, het_u = 1). Imposing het z =0

gives the limiting variance

V() = (A2

where
O'%()\l — )\0)
A* _ O'%()\Q — )\1) ,
Uszrl()‘erl - )\m)
which can be consistently estimated using Q, A; = T;/T and 62 = (AT})! ZZZTAH 0.

Again, in finite samples, imposing the constraint that Z!Z;/(AT;) be approximated by Q
over all segments may imply a poor approximation in finite samples. We have found, in
these two cases, that imposing a common distribution for the regressors across segments
leads to tests with worse properties even when the data indeed have an invariant distribution.
These distortions becomes less important, however, when the sample size is large and/or the
trimming e is large.

The relevant asymptotic distribution has been derived in Bai and Perron (1998) and
critical values can be found in Bai and Perron (1998) for a trimming ¢ = .05 and values
of k from 1 to 9 and values of ¢ from 1 to 10. As the simulation experiments will show, a
trimming as small as 5% of the total sample can lead to tests with substantial size distortions
when allowing different variances of the errors across segments or when serial correlation is

permitted. This is because one is then trying to estimate various quantities using very few

9



observations; for example, if 7' = 100 and ¢ = .05, one ends up estimating, for some segments,
quantities like the variance of the residuals using only 5 observations. Similarly, with serial
correlation a HAC estimator would need to be applied to very short samples. The estimates
are then highly imprecise and the tests accordingly show size distortions. When allowing
different variances across segments or serial correlation a higher value of € should be used.

Hence, the case (cor_u =0, het _z =1, het_u = 0) should be considered the base case
in which the tests can be constructed using an arbitrary small trimming e. For all other
cases, care should be exercised in the choice of € and larger values should be considered.
Critical values for trimming parameter ¢ = .10, .15, .20 and .25 can be found in Bai and
Perron (2003b). Note that when € = .10 the maximum number of break considered is 8 since
allowing 9 breaks impose the estimates to be exactly M=.1, =2 up to Xo = .9. For
similar reasons, the maximum number of breaks allowed is 5 when € = .15, 3 when ¢ = .20
and 2 when € = .25.

3.2.2 Double maximum tests.

Often, an investigator wishes not to pre-specify a particular number of breaks to make infer-
ence. To allow this Bai and Perron (1998) have introduced two tests of the null hypothesis
of no structural break against an unknown number of breaks given some upper bound M.
These are called the double maximum tests. The first is an equal weighted version defined
by

UDmax F;(M,q) = max su EX (A1, A q).
(M, q) B, s (A q)

We use the asymptotically equivalent version

UDmax Fr(M,q) = max Fr(A, .., Am; ),

!
where \; = T;/T (j = 1,..,m) are the estimates of the break points obtained using the
global minimization of the sum of squared residuals.

The second test applies weights to the individuals tests such that the marginal p-values
are equal across values of m. This implies weights that depend on ¢ and the significance
level of the test, say «. To be more precise, let ¢(q,«,m) be the asymptotic critical value
of the test sup(y, . 1.)ea. Fr(A, ..., \m; q) for a significance level a. The weights are then

defined as a; = 1 and for m > 1 as a,, = ¢(q,a, 1)/¢(q, &, m). This version is denoted

c(q,a, 1)
WDmax F7(M,q) = max ——————— su FZ(\, .., Ams Q). 9
7M. q) 1<m<M c(q, o, m) ()q,...,)\S)EAe (s 2 (9)

10



Again, we use the asymptotically equivalent version

Note that, unlike the UD max Frp(M, q) test, the value of the W D max Frp(M, q) depends
on the significance level chosen since the weights themselves depend on «. Critical values
can be found in Bai and Perron (1998, 2003b) for ¢ = .05 (M = 5), e = .10 (M = 5), .15
(M =5), .20 (M =3) and .25 (M = 2).

3.2.3 A test of ¢/ versus ¢ + 1 breaks.

Bai and Perron (1998) proposed a test for ¢ versus ¢ + 1 breaks. This test is labelled
sup Frr(¢+1[¢). The method amounts to the application of (¢+1) tests of the null hypothesis
of no structural change versus the alternative hypothesis of a single change. The test is
applied to each segment containing the observations T 1toT; (¢ =1,...,£41). The estimates
T; need not be the global minimizers of the sum of squared residuals, all that is required is
that the break fractions 5\, = TZ /T converge to their true value at rate T. We conclude for
a rejection in favor of a model with (¢ + 1) breaks if the overall minimal value of the sum
of squared residuals (over all segments where an additional break is included) is sufficiently
smaller than the sum of squared residuals from the ¢ breaks model. The break date thus
selected is the one associated with this overall minimum.

Asymptotic critical values were provided by Bai and Perron (1998, 2003b) for ¢ ranging
from 1 to 10, and for trimming values ¢ of .05, .10, .15, .20 and .25. Of course, all the same
options are available as for the previous tests concerning the potential specifications of the

nature of the distributions for the errors and the data across segments.

3.3 Estimating the number of breaks.

A common procedure to select the dimension of a model is to consider an information
criterion. Yao (1988) suggests the use of the Bayesian Information Criterion (BIC') defined
as

BIC(m) = Iné*(m) + p* In(T) /T,

where p* = (m + 1)g +m + p, and 6%(m) = T~ Sy (T4, ..., Tp,). He showed that the number
of breaks can be consistently estimated (at least for normal sequence of random variables
with shifts in mean). An alternative proposed by Liu, Wu and Zidek (1997) is a modified

11



Schwarz’ criterion that takes the form:
LW Z(m) = (Sp (T, o, T) /(T = p)) + (5 T)eo(In(T))2.

They suggest using 6o = 0.1 and ¢y = 0.299. Perron (1997) presented a simulation study of
the behavior of the these two information criteria and of the AIC in the context of estimating
the number of changes in the trend function of a series in the presence of serial correlation.
The results first showed the AIC' to perform very badly and, hence, this criterion will not
be considered any further. The BIC and LW Z perform reasonably well when no serial
correlation in the errors is present but imply choosing a number of breaks much higher than
the true value when serial correlation is present. When no serial correlation is present in
the errors but a lagged dependent variable is present, the BIC performs badly when the
coefficient on the lagged dependent variable is large (and more so as it approaches unity).
In such cases, the LW Z performs better under the null of no break but underestimate the
number of breaks when some are present.

The method suggested by Bai and Perron (1998) is based on the sequential application
of the sup Frp(£ + 1|¢) test. The procedure to estimate the number of breaks is the following,.
Start by estimating a model with a small number of breaks that are thought to be necessary
(or start with no break). Then perform parameter-constancy tests for each subsamples
(those obtained by cutting off at the estimated breaks), adding a break to a subsample
associated with a rejection with the test sup Frr(¢ + 1|¢). This process is repeated increasing
¢ sequentially until the test sup Frr(¢+ 1|¢) fails to reject the null hypothesis of no additional
structural changes. The limiting distribution of the test is the same when using global
minimizers for the estimates of the break dates or sequential one-at-a-time estimates since
both imply break fractions that converge at rate T' (see Bai (1997b)). The final number of
breaks is thus equal to the number of rejections obtained with the parameter constancy tests
plus the number of breaks used in the initial round.

A distinct advantage of model selection procedures based on hypothesis testing is that,
unlike information criteria, they can directly take into account the possible presence of serial

correlation in the errors and non-homogeneous variances across segments.

4 Simulation Experiments.

In this section, we present the results of simulation experiments to analyze the size and
power of the tests, the coverage rates of the confidence intervals for the break dates and the

adequacy of the various methods to select the number of structural changes. A wide variety

12



of data generating processes are considered allowing different variances for the residuals
and different distributions for the regressors across segments as well as serial correlation.
All computations are performed in GAUSS using a computer program that is available on
request for non-profit academic use (see Bai and Perron (2003a) for a thorough description

of the features of this program).

4.1 The case with no break.

We start with the case where the data generating processes exhibit no structural change and,
hence, analyze the size of the tests and how well the methods to select the number of break
points actually select none. Throughout {e;} denotes a sequence of i.i.d. N(0,1) random
variables, {¥;} is a sequence of i.i.d. N(1,1) random variables uncorrelated with {e;}. We
use sample sizes of T'= 120 and T" = 240. The values of the trimming ¢ and the maximum
number of breaks (M) considered are: € = .05 and M =5, e = .10 and M =5, ¢ = .15 and
M =5,e=.20and M =3, e =.25 and M = 2. In all cases, 2,000 replications are used.

The data generating processes and the corresponding regressors used are:

DGP-1: y; = ¢; and 2z, = {1} (¢ = 1);
e DGP-2: y; =V, + ¢, and 2z, = {1, ¥, } (¢ = 2);

e DGP-3: y; = 0.5y, 1 + e and 2z, = {1, 4, 1} (¢ = 2).

DGP-4: y; = vy with v, = 0.5v,_1 + ¢; and 2z, = {1} (¢ = 1);
e DGP-5: y; = vy with vy = e; + 0.5e;_1 and 2z, = {1} (¢ = 1);
e DGP-6: y; = v; with vy = e; — 0.3¢; 1 and 2z, = {1} (¢ = 1);

The DGP-1 with i.i.d. data is a base case to assess the basic properties of the tests and
methods to select the number of breaks. It is useful to assess the effect of allowing different
variances of the errors across segments and/or serial correlation when these features are not
present. The DGP-2 is a variation which includes an exogenous regressor. DGP-3 is one
where serial correlation is taken into account parametrically. DGPs 4 to 6 are used to assess
the effect of serial correlation in the errors and how well the corrections for its presence leads
to tests with adequate sizes.

The results are presented in Table 1. Consider first, the base case represented by DGP-1

where the series is white noise. With the specification cor u = 0 and het u = 0 all tests

13



have the right size for any value of the trimming €. As expected, the sequential procedure
chooses no break around 95% of the time. The BIC between 94% and 98 % (depending on ¢)
and the LW Z 100% of the time. When different variances of the residuals are allowed across
segments, we see substantial size distortions when the trimming € is small. These, however,
disappear when ¢ reaches .15 or .20. The sequential procedure is somewhat biased when
e = .05 but this bias disappears quickly as soon as ¢ reaches .10. Similar size distortions
occur when allowing serial correlation in the errors (cor _u = 1). These are somewhat more
severe if, in addition, different variances are allowed. When het u = 0, the sequential
procedure shows no size distortion at any values of . However, if het u = 1, the sequential
procedure is adequate only if ¢ is at least .15.

A similar picture emerges for DGP-2 where a random regressors is included. If cor u =
het _u = 0, all tests have the right size. However, allowing for either different variances
and/or serial correlation in the residuals induces substantial size distortions unless ¢ is large.
When no serial correlation is allowed, the procedures have the right size if ¢ is at least .15;
when serial correlation is allowed a larger value is needed.

The results for DGP-3, which is an AR(1), shows that if one is testing against a large
number of breaks (or using the WD max test) there are some distortions even if cor u =
het _u = 0 when ¢ is small. The sequential procedure remains, however, adequate for any
values of ¢. If different variances are allowed size distortions occur unless ¢ is at least .20.

The DGPs 4 to 6 are cases where serial correlation is present in the residuals. As expected,
if cor_u = 0, all procedures show substantial size distortions (with positive correlation
the tests are liberal and with negative correlation they are conservative). It is therefore
important to correct for serial correlation. This, however, can be done adequately only if a
large trimming is used, .15 or .20 depending on the cases. An interesting feature, however,
is that the sequential procedure works very well for any values of € when the variances are
constrained to be the same (het _u = 0). In particular, it performs much better than the
information criterion BIC (and also LW Z in the case of positive AR errors).

In summary, if no serial correlation is present and allowed for, all procedures work well
for any values of the trimming € when the specification cor _u = het _u = 0 is used. If serial
correlation is present a larger value of the trimming is needed when constructing the tests
using the specification cor _u = 1. This is also the case if different variances are allowed
across segments. Also, the results show the sequential procedure to perform quite well for
any values of the trimming provided one is correcting for serial correlation when needed and

not correcting for it when it is not needed.
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4.2 The case with one break.

The basic data generating process considered is (Case 1):

vy = ppt+7Ve+ e if ¢ < [0.577,
Y = o + YoV + ey, if t > [0.577,

where ¥, ~ i.i.d N(1,1) and e; ~ i.i.d N(0,1) and both are uncorrelated. Since, no serial
correlation is present in the errors and no change in the distribution of the data or the errors
is allowed, we use the specification cor u = het _u = 0 and € = .05. For the tests, we use
het z =1 and to construct the confidence intervals on the break dates, we use het z = 0.
We consider three types of shifts: a) a change in intercept only (v, = v, = 1), b) a change
in slope only (1, = puy, = 0), and ¢) a simultaneous change in slope and intercept.

We also consider a variation without the regressor ¥; with errors that are serially corre-
lated:

e Case 2: 7, =7, =0, and ¢; replaced by v; = 0.5v; 1 + €;. Here z, = {1}.

In this second case, we use the specifications cor u =1, het _u = 0 and € = .20. Again,
for the tests, we use het 2z = 1 and to construct the confidence intervals on the break dates,
we use het _z = 0. The experiments are performed for 7" = 120 and 7" = 240 and again 2,000
replications are used.

The results are presented in Table 2. Row (a) presents a case with a small change in
intercept only. Here the power of the test is rather low and the coverage rate of the break
date is imprecise. We shall use this base case to investigate what increases power. There are,
nevertheless, some features of interest. First, the power of the sup F'(k) test is decreasing
as k increases (more so as k reaches 5; not shown). However, both D max tests have power
as high as the case with & = 1 (which gives the highest power). Also, of the three methods
to select the number of breaks, the sequential methods works best. The criterion LW Z is
quite inaccurate since it chooses no break 98% of the times. Row (b) considers the same
specifications but doubling the sample size to 240. The power of the tests increases, the
sequential method selects 1 break more often and the coverage rate is better but not to a
great extent. For comparisons, row (c) keeps 7' = 120 but doubles the size of the shift in
intercept. Here power increases a lot, the sequential procedure chooses m = 1 95% of the
time and the exact coverage rate is close to the nominal 95%. Hence, we can conclude that

what is important is not the size of the sample but the size of the break.
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Row (d) presents the case of a mild change in slope. Again, the power of the supF (k)
decreases as k increases but the D max tests have as high power as the sup F'(1) test. Also,
the sequential procedure is best to select the correct value m = 1 while the LW Z is very
inaccurate. Row (e) considers merging the small shifts in intercept and slope. We see that
the simultaneous occurrence of two shifts at the same dates increases considerably the power
of the tests and the precision of the selected number of breaks, as well as the coverage rate
of the break date (much more than an increase in sample size). Rows (e) and (f) consider a
larger change in slope only and larger simultaneous changes, respectively. Here, the power
of the tests is one. In such cases, the coverage rates are accurate and all methods select the
correct number of breaks accurately.

Rows (h) to (k) consider case 2 of a change in mean with serially correlated errors. We
see that the presence of serial correlation decreases the power of the test substantially. Here,
for a given shift, doubling the sample size induces a negligible increase in power and in the
accuracy of the selection methods or coverage rates. Nevertheless, the coverage rates are
quite accurate which shows that the non-parametric correction for the presence of serial

correlation seems to be effective.

4.3 The case with two breaks.

For Case 1, the basic structure is similar except that now the data generating process is:

yt - M1+71\DZ+6:7 1f1<t§[T/3]7
Y = po+7Y; + e, if [T'/3] <t < [2T/3],
vy = pg+v3Y; +ep, if [2T/3] <t < T,

where
Uy~ did.d N(sp,1), if 1 <t <[T/3],
Uy~ did.d N(so,1), if [T/3] <t <[2T/3],
Uy~ dd.d N(s3, 1), if 2T/3] <t <T,
and

e ~ iidN(0,07), if1<t<[T/3],
e, ~ iidN(0,03), if [T/3] <t<[2T/3],
e ~ iidN(0,03), if[2T/3]<t<T.
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For Case 2, we have only changes in mean with serially correlated errors. That is

Y o=y + v if 1 <t<I[T/3],
Y = g+ Uy, if [T/3] <t <[2T/3],
Y = s+ v if [2T/3] <t <T,

where v; = 0.5v;_1 + e; with e; ~ i.i.d. N(0,1).

We first consider Case 1 where the data and errors are identically distributed across
segments, that is a% = a% = a§ and ¢; = ¢» = ¢3. Results are first presented in Table 3
for cases where the shifts involve either only the intercept (rows (a) to (h)) or in the slope
(rows (j) to (0)). In all cases T' = 120, T} = 40, T» = 80, ¢ = .05, cor_u = 0, het_u = 0,
and het z = 1 for the construction of the tests and het z = 0 for the construction of the
confidence intervals for the break dates.

We start with a case where the detection of the number of breaks is notoriously difficult.
Here, the intercept increases by some value at 77 = 40 and goes back to its original value
at T, = 80. Row (a) considers the case where this change is .5. The power is, indeed, very
low and all methods basically select no break. The case where the change is 1 (row (b))
is very instructive about the usefulness of the D max tests and the sup F'(¢ + 1]¢) test to
determine the number of breaks. Here the power of the sup F(1) test is very low and, hence,
the sequential procedure selects 2 breaks only 31% of the time. However, the U D max and
WD max tests have high power (82% and 88%, respectively). The sup(2|1) test also has
high power (73%). Hence, a useful strategy is to fist decide that some break is present based
on the D max test. Then look at the sup F'(£+1|¢) to see if more than one is present. In the
example of row (b) this would lead to selecting 2 breaks 64% of the time. Another example
of the usefulness of this strategy is presented in row (k). Here there is a change in slope
from 1 to 2 then back to 1. The sequential procedure chooses 2 breaks only 69% of the
time. However, the strategy discussed above would lead to select 2 breaks almost 100% of
the times since the D max tests have 99% power and the supF'(2|1) has 98% power.

The case discussed above clearly show the usefulness of considering tests for multiple
structural changes. As shown in Andrews (1993) a test for a single change is consistent
against an alternative hypothesis of multiple changes. However, as shown here, in finite
samples its power can be quite low while tests against more than one change can have
much higher power. This also suggests that a mechanical application of a specific to general
sequential testing procedure to select the number of breaks can be sub-optimal. Indeed, in

practice it is advisable to look at the double maximum tests first to avoid such cases where it
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is difficult to distinguish between no break and a single break while it is easy to distinguish
between no break and more than on break.

The other cases of Table 3 show various configurations for changes in intercept or slope.
The results can be summarized as follows. First, intercept changes of the form p; = 0,
py =1, pg = 2 (increasing steps) are also difficult cases where most procedures fail to select
two breaks (the same is true for slope changes of the same form). In general, when the
magnitude of the change is small (or difficult to identify) the coverage rates for the break
dates are too small (e.g. rows (a,b,j,1,0)). If the changes are very large (e.g., row (h) or row
(f, second break)) they are too wide. However, in most cases where the number of breaks is
well identified the coverage rates are adequate.

Table 4 first considers Case 1 with simultaneous changes in intercept and slope. Row (a)
shows that very little gain in power or accuracy of the coverage rates is gained when two
shifts that are very difficult to identify individually occur simultaneously. However, rows (b)
and (c) shows that important gains can be obtained in other cases (in particular compare
row (b) of Table 4 with row (c) of Table 3).

The other parts of Table 4 consider Case 2 with intercept shifts and serially correlated
errors with the specification cor _u = 1. Rows (d) to (k) consider the difficult cases where the
mean return to its old value at the second break. Here power is low when the change is .5 and
even 1. Hence, serial correlation induces a loss in power. The coverage rates are adequate
and we conclude that the non-parametric correction for the presence of serial correlation
works well. Also, we see that for given changes in mean, an increase in the sample size has
some effect on power, probably due to the fact that, for given trimming e, a larger number
of observations allows more precise estimates of nuisance parameters related to correlation
in the residuals. When the change in mean is larger, say 2 or 4 (see rows (h) to (k)) the
power of the sup F'(1) test is low but the power of the supF'(2) and sup F(2|1) tests are high.
Hence, a model selection strategy based on these statistic would conclude basically 100% of
the times that 2 breaks are present.

Tables 5.a and 5.b consider cases where the distribution of the errors and the data are
heterogenous across segments. The goal is to see if applying the required corrections lead to
tests, model selections and coverage rates that are better. Table 5.a considers data generated
by the two breaks model with v; = 1,7, = 1.5,73 = 0.5 and p; = 0, s = 1.5, 3 = .5. Table
5.b considers data generated by the two breaks model with v, = 1,7, = 1.5,73 = 2 and
py = 0,09 = .5z = 1. In all cases, 0? = 02 = 1, ¢; = ¢3 = 1 and we vary o3 and

¢o. To ensure tests with adequate sizes, we set € = .15 for the cases in Table 5.a and we
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consider ¢ = .20 for the cases in Table 5.b. We compare the properties of the procedures
using the uncorrected versions (het _z = 1 and het_u = 0 in the construction of the tests,
het _z = het_u = 0 in the construction of the confidence intervals) and the corrected
versions (het _z = het_u = 1 in the construction of the tests and in the construction of
the confidence intervals). The relevant columns are the sup F'(2|1) test, the probabilities
of selecting 2 breaks and the coverage rates of the break dates (note that for the selection
procedures based on the BIC and LW Z, only the uncorrected version is presented since
these methods cannot be modified to account for heterogeneity across segments).

The results show that important gains in the power of the tests can be obtained when
allowing for different distribution of the errors across segments. In almost all cases, the power
of the sup(2|1) test is higher when corrected. For example, in Table 5.b when the variance
of the errors is four times higher in the middle segment (and the mean of the regressors is
also 4 times higher) and 7" = 120 (row(g)), the power of the uncorrected version is .53 while
it is .78 when allowing for different variances. This also translates into a higher probability
of selecting two breaks, 76% instead of 52% making the sequential procedure more adequate
to select the number of breaks than the BIC. Even stronger comparisons obtain with the
second case presented in Table 5.b. For example, in row (g) we see an increase in the power
of the sup F'(2|1) test and the probability of choosing 2 breaks rising from 22% to 60%. The
results also show that correcting for heterogeneity in the data improves the coverage rates

of the confidence intervals of the break dates.

5 Summary and Practical Recommendations.

The simulations have shown the tests, model selection procedures and the construction of the
confidence intervals for the break dates to be useful tools to analyze models with multiple
breaks. However, care must be taken when using particular specifications. We make the

following recommendations.

e First, ensure that the specifications are such that the size of the tests are adequate
under the hypothesis of no break. If serial correlation and/or heterogeneity in the
data or errors across segments are not allowed in the estimated regression model (and
not present in the DGP), using any value of the trimming ¢ will lead to tests with
adequate sizes. However, if such features are allowed, a higher trimming is needed.
The simulations show that, with a sample of T" = 120, ¢ = .15 should be enough for

heterogeneity in the errors or the data. If serial correlation is allowed, € = .20 may be
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needed. These could be reduced if larger sample sizes are available.

Overall, selecting the break point using the BIC' works well when breaks are present
but less so under the null hypothesis, especially if serial correlation is present. The
method based on the LW Z criterion works better under the null hypothesis (even with
serial correlation) by imposing a higher penalty. However, this higher penalty translates
into a very bad performance when breaks are present. Also, model selection procedures
based on information criteria cannot take into account potential heterogeneity across
segments unlike the sequential method. Overall, the sequential procedure works best

in selecting the number of breaks.

There are important instances where the performance of the sequential procedure can
be improved. A useful strategy is to first look at the UD max or W D max tests to see
if at least a break is present. Then the number of breaks can be decided based upon
an examination of the sup F'(¢+ 1]¢) statistics constructed using estimates of the break
dates obtained from a global minimization of the sum of squared residuals. This is, in

our opinion, the preferred strategy.

The power of the UD max or W D max tests is almost as high as the power of a test of
no change versus an alternative hypothesis that specifies the true number of changes.

This provides added justifications for its use in practice.

The coverage rates for the break dates are adequate unless the break is either too small
(so small as not to be detected by the tests) or too big. This is, from a practical point
of view, however, an encouraging result. The confidence intervals are inadequate (in
that they miss the true break value too often) exactly in those cases where it would
be quite difficult to conclude that a break is present (in which case they would not be
used anyway). When the breaks are very large the confidence intervals do contain the
true values but are quite wide leading to a conservative assessment of the accuracy of
the estimates. It was found that correcting for heterogeneity in the data and/or errors
across segments yields improvements over a more straightforward uncorrected interval.

Correcting for serial correlation also does lead to substantial improvements.

Correcting for heterogeneity in the distribution of the data or the errors and for serial
correlation also improves the power of the tests and the accuracy in the selection of

the number of breaks.
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Table 1: Size of the tests and probabilities of selecting breaks

DGP-1 | DGP-2 DGP-3
€ 05 10 15 20 25 05 .10 15 20 25| .05 .10 .15 .20 .25
cor u=0,het u=0
sup F (1) 05 .04 05 .04 .04|.05 .04 .05 .05 .05|.06 .06 .07 .05 .06
sup F'(2) 05 05 05 04 04|04 04 04 05 .05|.06 .07 .08 .07 .06
sup F'(3) .05 05 .04 .03 .05 .05 .04 .05 09 .09 .08 .07
sup F'(4) 06 .05 .04 .07 .06 .04 12 .11 .08
sup F(5) 06 .05 .04 .08 .07 .03 A5 .12 .07
UDMAX 05 .04 05 .04 .04|.05 .04 .05 .05 .05|.06 .06 .07 .06 .07
WDMAX 06 05 04 04 04|06 .05 .05 .05 .05|.10 .09 .09 .07 .06
Sequa — Pr{m = 0] 95 96 95 96 96| .95 96 95 95 95| .95 95 94 95 94
Sequa — Pr{m = 1] 05 04 05 04 04|05 04 .05 .05 .05|.05 .05 .06 .05 .06
Sequa — Pr[m = 2] .00 .00 .00 .00 .00|.00 .00 .00 .00 .00|.00 .00 .00 .00 .00
cor_u=0het u=1
sup F'(1) 10 06 .06 .05 .04|.16 .08 .0r .06 .05|.18 .10 .10 .07 .07
sup F(2) 24 11 08 .06 .06|.35 .14 .09 .06 .06 | .40 .22 .14 .10 .08
sup F(3) 24 11 .07 .05 42 17 .08 .07 49 .26 .14 .11
sup F'(4) 29 11 .07 48 .19 .08 59 .29 15
sup F'(5) 31 12 .06 b3 18 .07 .65 30 .13
UDMAX 27 10 06 .05 .04| 46 .14 .08 .06 .06 .51 .17 .13 .09 .08
WDMAX 33 12 07 06 .05|.57 .19 .10 .07 .06 | .66 .27 .16 .10 .08
Sequa — Pr[m = 0] 90 94 94 95 96| .8 92 93 94 95|.82 .90 .90 .93 .93
Sequa — Pr[m = 1] .09 .06 .06 .05 .04|.14 .08 .07r .06 .05|.16 .09 .09 .07 .07
Sequa — Pr{m = 2] .01r 00 .00 .00 .00|.01 .00 .00 .00 .00|.02 .01 .01 .00 .00
cor u=1het u=0
sup F(1) .06 .06 .06 .05 .05|.08 .06 .06 .07 .07
sup F(2) .08 .08 .07 .06 .06 |.10 .09 .09 .08 .08
sup F'(3) 11 .10 .08 .05 1412 10 .08
sup F'(4) 15 .12 .08 A8 .16 .10
sup F(5) 21 .14 .07 23 .20 .10
UDMAX .08 .07 .07 .06 .05|.12 .09 .08 .08 .07
WDMAX 14 11 .08 .06 .05|.21 .17 .11 .09 .07
Sequa — Pr{m = 0] 94 95 94 95 95).92 94 93 .93 .93
Sequa — Pr{m = 1] .06 .05 .06 .05 .05|.07 .06 .07 .07 .07
Sequa — Pr{m = 2] .00 .00 .00 .00 .00].01 .00 .00 .00 .00
cor u=1het u=1
sup F(1) 12 08 07 05 .05 .25 .14 .11 .10 .08
sup F'(2) 29 14 10 Or 07| .54 31 .19 13 .10
sup F(3) 32 .15 .10 .07 65 .39 .22 .15
sup F(4) 37 .16 .09 S5 44025
sup F(5) 39 .16 .09 81 48 .24
UDMAX B6 .14 .09 .07 05| .77 35 .18 .12 .09
WDMAX 43 17 10 Or .06 | .86 .49 24 15 .10
Sequa — Pr{m = 0] 88 92 93 95 95| .75 86 .89 .90 .92
Sequa — Pr[m = 1] 11 .08 .07 .05 .05(.21 .13 .11 .10 .08
Sequa — Pr[m = 2] .01 .00 .00 .00 .00|.04 .01 .00 .00 .00
BIC — Pr[m = 0] 94 96 97 98 98|97 98 99 99 99| .97 98 98 98 .99
BIC — Pr[m = 1] 04 03 03 02 .02].03 .02 .01 01 .01].03 .02 .02 .02 .01
BIC — Pr[m = 2] .02 01 .00 .00 .00|.00 .00 .00 .00 .00|.00 .00 .00 .00 .00
LWZ — Prim =0 10 10 10 10 1010 10 1.0 1.0 10|10 1.0 1.0 1.0 1.0
LWZ — Prim = 1] .00 .00 .00 .00 .00{.00 .00 .00 .00 .00|.00 .00 .00 .00 .00
LWZ — Prim = 2] .00 .00 .00 .00 .00|.00 .00 .00 .00 .00(.00 .00 .00 .00 .00




Table 1 (cont’d): Size of the tests and probabilities of selecting breaks

DGP-4 | DGP-5 DGP-6
€ 05 .10 .15 20 .25 .05 .10 .15 .20 .25].05 .10 .15 .20 .25
cor_u=0,het u=0
sup F(1) b2 52 50 44 44| .24 24 24 21 20(.00 .00 .00 .00 .00
sup F(2) L2 .77 69 59 53| .42 38 34 29 .24).00 .00 .00 .00 .00
sup F'(3) 90 84 .74 .60 b5l 44039 .30 .00 .00 .00 .00
sup F'(4) 94 88 .75 .60 .49 .39 .00 .00 .00
sup F'(5) 95 89 .71 .67 .53 .36 .00 .00 .00
UDMAX 8l .73 64 53 49 (.38 33 31 .25 .23|.00 .00 .00 .00 .00
WDMAX 92 8 73 59 53| .55 46 .38 .28 .24).00 .00 .00 .00 .00
Sequa — Pr[m = 0] 48 48 50 56 .56 (.76 .76 .76 .79 80|10 1.0 1.0 1.0 1.0
Sequa — Pr{m = 1] 29 31 33 31 35(.18 .18 .21 .18 18| .00 .00 .00 .00 .00
Sequa — Pr{m = 2] A6 .15 14 .12 09| .05 .05 .03 .03 .02 .00 .00 .00 .00 .00
cor u=0het u=1
sup F(1) .61 58 52 46 44| 35 30 28 22 21(.01 .00 .00 .00 .00
sup F'(2) 92 84 72 62 56(|.70 51 41 31 27|.04 .00 .00 .00 .00
sup F'(3) 96 .89 7T .64 76 .57 45 .33 .02 .00 .00 .00
sup F(4) 98 .92 .78 .84 .63 .46 .03 .00 .00
sup F(5) 99 93 .76 87 .65 .43 .02 .00 .00
UDMAX 96 84 .70 57 b1 | .77 49 38 2T 24 |.04 .00 .00 .00 .00
WDMAX 98 92 78 62 55| .8 62 46 31 27|.04 .00 .00 .00 .00
Sequa — Pr{m = 0] B39 42 48 55 S56 (.65 70 73 78 79199 1.0 1.0 1.0 1.0
Sequa — Pr[m = 1] 27 32 33 32 35(.23 23 .23 .19 .19(.01 .00 .00 .00 .00
Sequa — Pr[m = 2] 21 .18 15 12 .09 (.09 .06 .04 .03 .02].00 .00 .00 .00 .00
cor u=1het u=0
sup F'(1) .Or .08 .08 .07 .07|.09 .08 .10 .08 .08|.03 .03 .03 .03 .03
sup F(2) 12 .14 .12 .10 09| .15 .16 .14 .12 .11 |.05 .04 .04 .03 .03
sup F(3) 22 .21 .16 .10 25 .22 17 12 .07 .06 .04 .03
sup F'(4) 34 28 17 38 .29 18 A1 .08 .05
sup F'(5) 46 32 15 A7 32 17 15 .09 .04
UDMAX A8 14 11 08 08| .18 .14 .12 10 .08 .04 .03 .03 .03 .03
WDMAX g5 .27 .15 .11 .08 .36 .26 .17 .12 .10(|.09 .06 .05 .03 .03
Sequa — Pr[m = 0] 93 92 92 93 93(.91 92 91 92 93|.97 97 97 97 .97
Sequa — Pr[m = 1] .06 .08 .08 .06 .07.08 .08 .09 .08 .07].03 .03 .03 .03 .03
Sequa — Pr{m = 2] .01 .00 .00 .00 .00|.01 .00 .00 .00 .00 (.00 .00 .00 .00 .00
cor u=1het u=1
sup F(1) 22 15 .13 08 .08).18 .13 .11 .09 .08 .04 .02 .02 .02 .02
sup F'(2) b6 360 .23 14 1251 .28 19 13 11| .11 .04 .03 .02 .02
sup F'(3) .64 41 26 .15 b6 31 21 13 10 .03 .02 .02
sup F'(4) 76 .47 28 65 34 21 11 .03 .02
sup F(5) .82 .51 .28 2700 .37 .19 100 .03 .02
UDMAX 50039 24 .11 0962 .26 .17 11 .09 (.11 .03 .02 .02 .02
WDMAX L84 052 31 .15 11 .72 36 .21 13 11| .14 .04 .03 .02 .02
Sequa — Pr{m = 0] 78 8 87 92 93| .82 87 .89 92 92| .96 .98 .98 .98 .98
Sequa — Pr{m = 1] A7 14 12 08 07| .15 .12 11 .08 .08 .04 .02 .02 .02 .02
Sequa — Pr[m = 2] .04 01 .01 .00 .00[.03 .01 .00 .00 .00].00 .00 .00 .00 .00
BIC — Prm = 0] 21 33 45 58 63| .62 71 77 84 87|10 1.0 1.0 1.0 1.0
BIC — Prim =1] A1 .20 .25 .23 .26|.13 .13 .15 .12 .11 (.00 .00 .00 .00 .00
BIC — Pr[m = 2] 21 24 22 1v 11|.15 .12 .07 .04 .02|.00 .00 .00 .00 .00
LWZ — Prim =0 82 84 87 90 92|97 98 98 98 99|10 1.0 1.0 1.0 1.0
LWZ — Prim = 1] 12 .10 .10 .08 .07 (.03 .02 .02 .02 .01].00 .00 .00 .00 .00
LWZ — Prim = 2] .05 .05 .03 .01 .01|.00 .00 .00 .00 .00].00 .00 .00 .00 .00




Table 2: Power of the tests and break selection when m = 1.

Tests (probability of rejection) Probability of selecting k breaks Coverage
sup F (k) sup F(¢ +1]¢) | Dmax Sequa BIC LWZ Rate
Case Values Specifications' [T T2 T3 [2[1]3]2 vlwilo [1 2 Jo [J1 [2 [0 [1 [2 ]95%
a) 1 1=y =1 cor_u =0 43 35 34 .03 .01 42 42 57 42 .02 66 .32 .02 98 .02 .00 .74
e=.05 p=0pu=.5
T =120
b) 1 mn=v=1 cor_u =10 .66 .53 .50 .02 .01 65 62 34 65 .01 .57 43 .00 99 .01 .00 .80
e=.05 w1 =0,p0=.5
T =240
c) 1 Hn=v=1 coru=10 99 97 96 .04 .02 99 99 01 95 .04 .02 95 .03 .36 .64 .00 .93
e=.05 M:O,;ngl
T =120
d 1 1=1Lv%=15 coru=0 79 .69 66 .03 .01 g8 7tro21 o .02 28 .68 .03 .87 .13 .00 .83
e =.05 w1 =po =0
T =120
e) 1 v1=1Lv%=15 corou=0 1.0 .99 98 .04 .02 1.0 1.0 .00 .96 .04 .01 96 .03 .18 .82 .00 .94
e=.05 p=0pu=.5
T =120
f) 1 y1=1,7%=2 cor_u =0 1.0 1.0 1.0 .04 .02 1.0 1.0 .00 .96 .04 .00 97 .03 .02 .98 .00 .93
e=.05 /~L1:/,L2:0
T =120
g) 1 y1=1,72=2 cor_u =0 1.0 1.0 1.0 .04 .02 1.0 1.0 .00 .96 .04 .00 .97 .03 .00 1.0 .00 .96
e=.00 i =0,pu=1
T =120
h) 2 w1 =0, =.5 coru=1 25 .27 .30 .04 .00 B0 31 75 24 .01 32 48 .18 .68 .29 .03 .93
e=.20
T =120
i) 2 w=0,pp=.5 coru=1 B8 .34 31 .02 .00 B9 38 62 3r .01 21 58 19 64 35 .01 91
e =.20
T =240
i) 2 w1 =0,p2 =1 coru=1 .66 .61 .61 .03 .00 68 .69 34 63 .02 .05 .71 22 23 .74 .04 .89
e=.20
T =120
k) 2 w=0,p0 =1 coru=1 91 8 .82 .03 .00 91 90 .09 88 .03 01 .74 23 07 90 .02 .91
e =.20
T =240

Note: ! In all cases het_u = 0. When constructing the tests, het_z = 1 and when constructing the confidence intervals het_z = 0.




Table 3: Power of the tests and break selection when m = 2.

Case 1, T = 120, € = .05, cor_u = 0, het_u = 0.1

Tests (probability of rejection) Probability of selecting k breaks Coverage
sup F (k) sup F(( + 1[0) | Dmax Sequa BIC LWZ Rate | 95% |

Values 1 [2 [3 21 | 3]2 U lwilo |1 [2 0 [1 [2 0 [1 [2 #1 #2

a) mMm=72=73=1 A3 .23 260 .11 .01 A8 25 87 .11 .02 90 .06 .04 1.0 .00 .00 .51 .49
M1 = (3 = 0,/,L2 =.5

b) m=vn=vm=1 41 .89 89 .73 .03 82 8 59 08 31 31 .05 .62 98 .00 .02 .87 .85
pr=p3 =02 =1

) m=r2=73=1 1.0 1.0 1.0 .56 .03 1.0 1.0 .00 .44 54 .00 .38 .59 .00 .96 .04 .88 .86
pr=0,p2 =1, p3 =2

d) m=rp=y;3=1 1.0 1.0 1.0 .86 .04 1.0 1.0 .00 .14 .82 .00 .13 .83 .02 .67 .31 .89 .96
w1 =0,p0=1pu3=-1

f) m=ywn=vn=1 1.0 1.0 1.0 .86 .05 1.0 1.0 .00 .14 .82 .00 .13 .82 .00 .71 .29 .88 .99
pr=0,p2 =—1,u3 =2

g Mm=re=y=1 1.0 1.0 1.0 .83 .06 1.0 1.0 .00 .17 .77 .00 .15 .80 .00 .75 .25 .88 .96
p1=0,p2 =1,pu3 =3

h) y1=vw=93=1 1.0 1.0 1.0 1.0 .05 1.0 1.0 .00 .00 .95 .00 .00 .96 .00 .00 1.0 .98 .99
H1 :07,LL2 :27/1‘3 =-1

) m=1=1%=15 2249 52 .28 .03 40 50 78 14 07 75 .08 .16 1.0 .00 .00 .67 .66
M1 = P2 = (U3 = 0

k) m=wn=17n=2 g7 1.0 1.0 .98 .04 99 99 23 01 69 .02 .01 .93 .61 .01 .38 .92 .93
pr = pg=p3 =0

) m=LlL%2=15v=2 10 1.0 1.0 .14 .02 1.0 99 .00 .85 .13 .01 .85 .13 .24 .76 .00 .68 .68
M1 = H2 = (U3 = 0

m) ym=1lLv=2y=3 1.0 1.0 1.0 .97 .05 1.0 1.0 .00 .03 .8 .00 .02 .94 .00 .36 .64 .92 .92
1 =pe=pu3=20

o) mm=Lyw=5y=-5 10 1.0 1.0 41 .04 1.0 1.0 .00 .59 .39 .00 .57 .40 .00 .98 .02 .72 .87

p1=p2=p3 =0

Note: 'For the construction of the tests, we use het_z = 1 and for the construction of the confidence intervals of the break dates, we
use het_z = 0.



Table 4: Power of the tests and break selection when m =2 (cont’d).

Tests (probability of rejection) Probability of selecting k breaks Coverage
sup F(k) sup F({ + 1)) | Dmax Sequa BIC IWZ Rate | 95% |
Case Values Specifications' [1 [2 T3 21 [ 32 U lwilo |1 [2 0 [1 [2 0 [1 J2 #1 #2
a) 1 m=Lvw=.5v3=1 coru=0 A20.21 24 .08 .01 A7 .25 8 10 .02 90 .06 .03 1.0 .00 .00 .46 46
e=.05 w1 =p3=0,us=.5
T =120
b) 1 1=Lvw=15v=2 coru=0 1.0 1.0 1.0 1.0 .05 1.0 10 .00 .00 .89 .00 .00 .95 .00 .12 .88 .95 .95
e=.05 /~L1:0,/~L3:1,,U,2:2
T =240
c) 1 =1L =2vy=1 corou=0 1.0 1.0 1.0 .82 .04 10 10 .00 .19 .78 .00 .17 .79 .00 .72 .28 .95 .85
e=.05 ,LL1:0,‘LL2:1,/1,3:2
T =120
d) 2 w=pu3=0,u=.5 corou=1 A4 028 25 .09 .00 23 28 8 13 .01 39 24 37 .79 .12 .08 .96 .95
e =.20
T =120
e) 2 w1 =p3 =0, =.5 corou=1 A8 .32 .29 .11 .00 26 31 .82 15 .03 32 20 46 .82 .11 .07 .96 .95
e =.20
T = 240
f) 2 w=pu3=0,u =1 corou=1 25 B8 B3 .29 .00 48 55 .75 15 .09 .13 12 .73 51 .12 .36 .94 94
e =.20
T =120
g) 2 p1=p3 =0 =1 coru =1 43 83 74 55 .00 o108 57 160 .26 .03 .04 90 .33 .11 .56 .93 .93
e =.20
T = 240
h) 2 w1 =ps =0, =2 coru =1 47 97 94 86 .00 94 96 53 .06 .41 .00 .00 95 .02 .01 .96 .93 .93
e =.20
T =120
i) 2 p1=ps =0, =2 corou=1 91 1.0 1.0 1.0 .00 1.0 10 .09 .00 .90 .00 .00 .97 .00 .00 1.0 .95 94
e =.20
T = 240
i 2 w1 =pu3 =0, =4 coru =1 37 1.0 1.0 1.0 .00 1.0 10 63 .00 .37 .00 .00 1.0 .00 .00 1.0 .99 .99
e =.20
T =120
k) 2 p1=ps=0,u2 =4 corou=1 96 1.0 1.0 1.0 .00 10 10 .04 .00 96 .00 .00 1.0 .00 .00 1.0 .99 .99
e =.20
T = 240

Note: ! In all cases het_u = 0. When constructing the tests, het_z = 1 and when constructing the confidence intervals het_z = 0.



Different distributions for the errors and data across segments; cor_u =0, ¢ = .15.

Table 5.a: Power of the tests and break selection when m = 2.

Case 1 with vy = 1,79 =1.5,y3 = .5 and p1 =0, ua = .5, us = —.5.

Tests (probability of rejection) Probability of selecting k breaks Coverage
sup F(k) sup F(( + 1]0) Sequa BIC LWZ Rate | 95% |

Values Specifications! | 1 [ 3 21 | 32 0 [1 [2 0 [1 J2 0 [1 [2 #1 #2
a) T =120 uncorrected 1.0 1.0 1.0 .91 .02 .00 .09 .89 .00 .08 .89 .01 .57 .42 .90 .96

U% = 1,(7% = 2,(7% =1

ag=1Le=2¢=1 corrected 1.0 1.0 10 .94 .01 .00 .06 .92 .89 .96
b) T =240 uncorrected 1.0 1.0 1.0 1.0 .02 .00 .00 98 .00 .00 .98 .00 .20 .80 .93 .96

0?=1,03=2,03=1

g=lLe=2¢=1 corrected 1.0 1.0 1.0 1.0 .02 .00 .00 .98 .93 97
c) T=120 uncorrected 1.0 1.0 10 .78 .02 00 22 77 00 .21 .76 .01 .75 .23 .83 94

02 =1,03=2,03=1

ga=1,¢0=4¢=1 corrected 1.0 1.0 1.0 .89 .02 .00 .11 .87 .89 .96
d) T =240 uncorrected 1.0 1.0 1.0 .99 .02 .00 .01 98 .00 .02 97 .00 .44 .56 .87 97

0?=1,0% = 2,(7% =1

g=1¢=4¢g=1 corrected 1.0 1.0 1.0 10 .01 .00 .00 .99 92 .98
e) T =120 uncorrected 1.0 1.0 1.0 .70 .02 .00 30 68 .00 .22 .73 .09 .68 .23 .84 93

U% = 1,(7% :4,0% =1

ag=1Le=2¢=1 corrected 1.0 1.0 10 .76 .02 .00 24 75 .87 94
f) T =240 uncorrected 1.0 1.0 1.0 .97 .02 .00 .03 96 .00 .03 .93 .00 .54 .46 .88 94

0?=1,03=4,03=1

g=lLe=2¢=1 corrected 1.0 1.0 1.0 .98 .02 .00 .02 .97 .90 .96
g) T=120 uncorrected 1.0 1.0 1.0 .54 .03 .00 46 53 .00 36 .39 .09 .80 .11 .79 93

02 =1,03=4,02=1

gg=1,¢0=4¢=1 corrected 1.0 1.0 1.0 .80 .04 .00 .19 .79 .86 94
h) T =240 uncorrected 1.0 1.0 1.0 .91 .02 .00 .09 9 .00 .09 86 .00 .77 .23 .88 97

0?=1,03 :4,0% =1

g=1¢=4¢g=1 corrected 1.0 1.0 1.0 .98 .03 .00 .01 .96 .90 97

Note: ! Uncorrected means using het_z = 1 and het_u = 0 in the construction of the tests and het_z = 0, het_u = 0 in the
construction of the confidence intervals. Corrected means that het_z = 1 and het_u = 1 for the construction of the tests and the

confidence intervals.



Different distributions for the errors and data across segments; cor_u = 0,¢ = .20.

Table 5.b: Power of the tests and break selection when m = 2.

Case 1 with y1 = 1,2 =15,y3=2and u1 =0, s = .5, u3 =1

Tests (probability of rejection) Probability of selecting k breaks Coverage
sup F(k) sup F(( + 1]0) Sequa BIC LWZ Rate | 95% |

Values Specifications' [1 2 |3 21 | 32 0 [1 [2 0 [1 J2 0 [1 [2 #1 #2
a) T =120 Uncorrected 1.0 1.0 1.0 .73 .00 .00 27 73 .00 28 72 .01 91 .09 .92 91

U% = 1,(7% = 2,(7% =1

ag=1Le=2¢=1 Corrected 1.0 1.0 1.0 .78 .00 .00 22 .77 91 .90
b) T =240 Uncorrected 1.0 1.0 1.0 1.0 .00 .00 .01 98 .00 .01 .99 .00 .46 .54 .94 94

0?=1,03=2,03=1

g=lLe=2¢=1 Corrected 1.0 1.0 1.0 1.0 .00 .00 .00 .98 94 94
c) T=120 Uncorrected 1.0 1.0 1.0 .63 .00 .00 37 63 .00 39 .61 .00 .95 .05 .83 .85

02 =1,03=2,03=1

ga=1,¢0=4¢=1 Corrected 1.0 1.0 1.0 .79 .00 .00 .21 .79 .90 91
d) T =240 Uncorrected 1.0 1.0 1.0 .99 .00 .00 .02 98 .00 .03 .97 .00 .69 .31 .88 .89

0?=1,0% = 2,(7% =1

g=1¢=4¢g=1 Corrected 1.0 1.0 1.0 .99 .00 .00 .01 .98 93 .92
e) T=120 Uncorrected 1.0 1.0 1.0 .28 .00 00 72 28 .00 .68 .32 .08 .91 .01 .90 91

U% = 1,(7% :4,0% =1

ag=1Le=2¢=1 Corrected 1.0 1.0 1.0 40 .02 .00 .60 .40 .92 .92
f) T =240 Uncorrected 1.0 1.0 1.0 .87 .00 .00 13 87 .00 .15 .8 .00 .94 .06 .92 91

0?=1,03=4,03=1

g=lLe=2¢=1 Corrected 1.0 1.0 1.0 .91 .00 .00 .09 .90 .92 .93
g) T=120 Uncorrected 1.0 1.0 1.0 .22 .01 00 78 22 00 .71 .28 .06 .93 .01 .84 .84

02 =1,03=4,02=1

gg=1,¢0=4¢=1 Corrected 1.0 1.0 1.0 .60 .02 .00 .40 .60 .90 .90
h) T =240 Uncorrected 1.0 1.0 1.0 .82 .00 .00 18 81 .00 .23 .7 .00 .97 .03 .88 .89

0?=1,03 :4,0% =1

g=1¢=4¢g=1 Corrected 1.0 1.0 1.0 .98 .01 .00 .02 .96 91 91

Note: ! Uncorrected means using het_z = 1 and het_u = 0 in the construction of the tests and het_z = 0, het_u = 0 in the
construction of the confidence intervals. Corrected means that het_z = 1 and het_u = 1 for the construction of the tests and the
confidence intervals.



