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Abstract

Econometric analysis of large dimensional factor models has been a
heavily researched topic in recent years. This review surveys the main
theoretical results that relate to static factor models or dynamic fac-
tor models that can be cast in a static framework. Among the topics
covered are how to determine the number of factors, how to conduct
inference when estimated factors are used in regressions, how to assess
the adequacy of observed variables as proxies for latent factors, how to
exploit the estimated factors to test unit root tests and common trends,
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and how to estimate panel cointegration models. The fundamental
result that justifies these analyses is that the method of asymptotic
principal components consistently estimates the true factor space. We
use simulations to better understand the conditions that can affect the
precision of the factor estimates.



1
Introduction

An inevitable fact as we move forward in time and as information tech-
nology improves is that data will be available for many more series and
over an increasingly long span. While the availability of more data pro-
vides the opportunity to understand economic phenomena and anoma-
lies better, researchers can also suffer from an information overload
without some way to organize the data into an easy to interpret man-
ner. In recent years, the analysis of large dimensional data has received
the attention of theoretical and empirical researchers alike. The early
focus has primarily been on the use of factor models as a means of
dimension reduction. But the volume of research, both at the empirical
and theoretical levels, has grown substantially. Empirical researchers
have found it useful to extract a few factors from a large number of
series in many forecasting and policy exercises. Theoretical researchers
have taken up the challenge to extend standard factor analysis to allow
the size of both dimensions of a panel data set to increase. The theo-
retical implications of using estimated factors in both estimation and
inference are now better understood. Factor analysis plays a role not
just in forecasting. In recent years, the factor structure has been incor-
porated into regression analysis to deal with cross-sectionally correlated
errors and endogeneity bias.
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92 Introduction

This review provides a survey of the main theoretical results for
large dimensional factor models, emphasizing results that have impli-
cations for empirical work. We focus on the development of the static
factor models, which are to be distinguished from dynamic factor mod-
els in ways to be made precise. Key results concerning large dynamic
factor models are given in Forni et al. (2000, 2004, 2005). Results con-
cerning the use of factors in forecasting are discussed in Stock and Wat-
son (2006), Banerjee et al. (2006), and Giannone et al. (2007). Here,
our focus will be on the use of estimated factors in subsequent estima-
tion and inference. While we survey many of the analytical results that
are of use to empirical researchers, a survey of empirical applications of
large factor models will not be included. Surveys with heavier empiri-
cal focus can be found in Breitung and Eickmeier (2005) and Reichlin
(2003). Suffice it to say that factor models have been used in forecasting
of the conditional mean by Stock and Watson (2002b), Cristadoro et al.
(2001), Artis et al. (2005), Marcellino et al. (2003), Schumacher (2005),
Forni et al. (2001), den Reijer (2005), and many others. Boivin and Ng
(2005) compared the use of dynamic and static factors in forecasting.
Anderson and Vahid (2007) used the factor model to forecast volatility
with jump components. A non-exhaustive list of policy analyses that
adopt a factor approach includes Bernanke and Boivin (2003), Gian-
none et al. (2005a,b), Favero et al. (2005), Stock and Watson (2005),
and Forni et al. (2003). Use of factors as conditioning information is
discussed in the conditional risk-return analysis of Ludvigson and Ng
(2007), and term structure analysis of Ludvigson and Ng (2005).

This survey, drawing heavily from our previous work, is organized
to serve three purposes. First, the results are presented under a coher-
ent and general set of assumptions. Situations that require stronger
assumptions will be made clear as we go along. Second, results for
stationary and non-stationary data are discussed separately, as they
involve different assumptions and are used in different contexts. Third,
consistent estimation of the factor space is fundamental to many of the
results. We use simulations to study what are the main aspects of the
data that affect the precision of the factor estimates.



2
Factor Models

We begin by setting up notation and making a distinction between
a static and a dynamic factor model. Let N be the number of cross-
section units and T be the number of time series observations. For
i = 1, . . . ,N, t = 1, . . . ,T ,1 a static model is defined as

xit = λ′
iFt + eit

= Cit + eit. (2.1)

In factor analysis, eit is referred to as the idiosyncratic error and λi
is referred to as the factor loadings. This is a vector of weights that
unit i put on the corresponding r (static) common factors Ft. The
term Cit = λ′

iFt is often referred to as the common component of the
model. Factor models arise naturally in economics. For example, xit
is the GDP growth rate for country i in period t, Ft is a vector of
common shocks, λi is the heterogenous impact of the shocks, and eit is
the country-specific growth rate. In finance, xit is the return for asset
i in period t, and Ft is vector of systematic risks (or factor returns)

1 By letting x0
it be the observed data, the model can be generalized to xit = (1 − ρi(L))x0

it =
λ′

iFt + eit.
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94 Factor Models

and λi is the exposure to the factor risks, and eit is the idiosyncratic
returns.

LetXt = (x1t,x2t, . . . ,xNt)′, F = (F1, . . . ,FT )′, and Λ = (λ1, . . . ,λN )′.
In vector form, we have

Xt = ΛFt + et. (2.2)

Let X = (X ′
1, . . . ,X

′
N ) be a T × N matrix observations. The matrix

representation of the factor model is

X = FΛ′ + e, (2.3)

where e = (e′1,e′2, . . . ,e′N ) is T × N (The upper case E is reserved for
the expectation operator). Although the model specifies a static rela-
tionship between xit and Ft, Ft itself can be a dynamic vector process
that evolves according to

A(L)Ft = ut, (2.4)

where A(L) is a polynomial (possibly infinite order) of the lag oper-
ator. The idiosyncratic error eit can also be a dynamic process. The
assumptions to be stated below also permit eit to be cross-sectionally
correlated.

The static model is to be contrasted with a dynamic factor model,
defined as

xit = λ′
i(L)ft + eit,

where λi(L) = (1 − λi1L − ·· · − λisL
s) is a vector of dynamic factor

loadings of order s. The term “dynamic factor model” is sometimes
reserved for the case when s is finite, whereas a “generalized dynamic
factor model” allows s to be infinite. In either case, the factors are
assumed to evolve according to

ft = C(L)εt,

where εt are iid errors. The dimension of ft, denoted q, is the same as
the dimension of εt. We can rewrite the model as

xit = λi(L)′C(L)εt + eit.
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In the literature, q = dim(εt) is referred to as the number of dynamic
factors.

Both models have their origin in the statistics literature. Assuming
Ft and et are uncorrelated and have zero mean, the covariance structure
of the static model is given by

Σ = ΛΛ′ + Ω,

where Σ and Ω are the N × N population covariance matrix of Xt

and et, respectively; the normalization E(FtF ′
t) = Ir is assumed. If Ω is

diagonal, (2.1) is referred to as a strict factor model, see Chamberlain
and Rothschild (1983). In classical factor analysis, Ft and et in (2.1)
are generally assumed to be serially and cross-sectionally uncorrelated.
Properties of such a model, under the assumptions that (i) et is iid over
t; (ii) N is fixed as T tends to infinity (or vice versa); and (iii) both Ft
and et are normally distributed, are well documented; see Lawley and
Maxwell (1971), Anderson and Rubin (1956), and Anderson (1984),
Classical factor analysis estimates Λ and the diagonal elements of Ω,
with which factor scores Ft can also be estimated. The estimated score
cannot be consistent since N is fixed. The limiting distribution is based
on asymptotic normality for an estimator of Σ (e.g., the sample covari-
ance matrix). For large N , this method of analysis is not applicable
since Σ (N × N) is not consistently estimable.

Classical factor models have been widely used in psychology and
other disciplines of the social sciences but less so in economics, perhaps
because the assumption that the factors and errors are serially and
cross-sectionally correlated do not match up well with economic data.
The dynamic classical factor model maintains the assumption that the
errors are independent across i but explicitly recognizes the fact that
the data being analyzed are serially correlated. Sargent and Sims (1977)
and Geweke (1977) were amongst the first to apply the dynamic factor
approach to macroeconomic analysis.

A dynamic factor model with q factors can be written as a static
factor model with r factors, where r is finite. However, the dimension
of Ft will in general be different from the dimension of ft since Ft
includes the leads and lags of ft. More generally, if we have q dynamic
factors, we will end up with r = q(s + 1) ≥ q static factors. Although



96 Factor Models

knowledge of the dynamic factors is useful in some analysis such as
precisely establishing the number of primitive shocks in the economy,
it turns out that many econometric methods can be developed within
the static framework. Consequently, the properties of the estimated
static factors are much better understood from a theoretical standpoint.
Empirically, the static and the dynamic factor estimates produce rather
similar forecasts. From a practical perspective, the primary advantage
of the static framework is that it is easily estimated using time domain
methods and involves few choices of auxiliary parameters. Dynamic
factor models are estimated using tools of frequency domain analysis,
and the proper choice of the auxiliary parameters remains an issue
requiring further research.

An important characteristic of a static model with r factors is that
the largest r population eigenvalues of Σ increase with N , while the
remaining eigenvalues of Σ, as well as all eigenvalues of Ω, are bounded.
Intuitively, the information of the common component accumulates as
we sum up the observations across i and therefore the eigenvalues of the
population covariance matrix of the common component will increase
with N . In contrast, the eit are unit-specific errors and summing the
errors across i does not lead to the same accumulation of information.
In other words, the eigenvalues of Ω cannot increase without bound,
as N increases. It is this difference in the property of the eigenvalues
that distinguishes the common from the idiosyncratic component. If
the eigenvalues of the common component increases with N , so will
the population eigenvalues of Σ.

The large dimensional static factor model we consider differs from
the classical factor model by relaxing the three mentioned assump-
tions. Work in this direction was initiated by Stock and Watson in
the late 1990s. Around that same time, assumptions of the classi-
cal dynamic factor model were also relaxed, notably by Forni, Hallin,
Lippi, and Reichlin. The efforts of these researchers were instrumen-
tal in advancing the theory and use of large dimensional dynamic
factor models. Collectively, the new generation of factor models has
come to be known as “large dimensional approximate factor mod-
els.” By “large”, we mean that the sample size in both dimensions
tends to infinity in the asymptotic theory. By an “approximate” factor
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structure, we mean that the idiosyncratic errors are allowed to be
“weakly” correlated across i and t in a sense to be explained.

The only quantities that are observed in factor analysis are the data,
xit. Neither the factors, their loadings, nor the idiosyncratic errors are
observed, and the factors and the loadings are not even separately iden-
tifiable.2 Even estimation of classical factor models with the sample
size fixed in one dimension can pose difficulties if one allows for hetero-
geneous variables, for example. Large dimensional factor models pose
additional statistical problems that need to be solved. Whereas clas-
sical (static or dynamic) factor models can be estimated consistently
by methods that rely on sample moments converging to population
moments of fixed dimensions, this approach is no longer appropriate
when the dimensions of these moment matrices are themselves increas-
ing. The theory we explore below surrounds the new estimation and
inferential results that are developed specifically for the large N and T
environment. Results are presented for the principal components esti-
mator, which is easy to compute.

2 Connor et al. (2007) restrict the factor loadings to be unknown functions of some observ-
able variables such that λij = gj(zi) (j = 1,2, . . . , r). There are r unknown functions to be
estimated. The estimation of this model will not be considered in this survey.



3
Principal Components and Related Identities

Under largeN and large T , it is possible to estimate Λ and F simultane-
ously. That is, both Λ and F are treated as parameters. After obtaining
Λ and F , the residual matrix e is also obtained from e = X − FΛ′. In
contrast, classical factor analysis estimates Λ (under fixed N) and the
covariance matrix of et, which is assumed to be diagonal. Given Λ, fac-
tor scores Ft are then estimated at the second stage. The estimate for
Ft is not consistent under fixed N . Consider estimating (2.3),

X = FΛ′ + e.

Clearly F and Λ are not separately identifiable. For an arbitrary
r × r invertible matrix A, FΛ′ = FAA−1Λ′ = F ∗Λ∗′, where F ∗ = FA

and Λ∗ = ΛA−1′, the factor model is observationally equivalent to
X = F ∗Λ∗′ + e. Hence restrictions are needed to uniquely fix F and Λ.
Since an arbitrary r × r matrix has r2 free parameters, we need r2

number of restrictions. The normalization

F ′F/T = Ir

provides r(r + 1)/2 restrictions. The requirement of Λ′Λ being diagonal
gives r(r − 1)/2 additional restrictions.1 Combining normalization and

1 Diagonality in fact imposes r(r − 1) restrictions. Within the class of symmetric matrices,
diagonality only imposes half as many restrictions.
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diagonality we have r2 restrictions, which will uniquely fix F and Λ
(still up to a column sign change) given the product FΛ′. Alternatively,
the normalization Λ′Λ/N = Ir and F ′F being diagonal can be used.
These restrictions are used in the principal components method. When
k factors are estimated, k2 restrictions are required.

The method of asymptotic principal components was first consid-
ered by Connor and Korajzcyk (1986) and Connor and Korajzcyk
(1998) as an estimator of the factors in a large N , fixed T setup. For
any given k not necessarily equal to the true number of factors r, the
method of principal components (PC) constructs a T × k matrix of esti-
mated factors and a corresponding N × k matrix of estimated loadings
by solving the optimization problem

min
Λk,Fk

S(k), with S(k) = (NT )−1
N∑
i=1

T∑
t=1

(xit − λk′i F
k
t )2

subject to the normalization that Λk′Λk/N = Ik and F k′F k being diag-
onal, or F k′F k/T = Ik and Λk′Λk being diagonal.

Mechanically speaking, the estimates can be obtained in one of two
ways. The first solution obtains if we concentrate out Λk. The problem
is then identical to maximizing tr(F k′(X ′X)F k). The estimated fac-
tor matrix, F̃ k, is

√
T times the eigenvectors corresponding to the k

largest eigenvalues of the T × T matrix XX ′. Using the normalization
F̃ k′F̃ /T = Ik yields Λ̃k′ = F̃ k′X/T . Note that in this case, Λ̃k′Λ̃k being
diagonal is automatically fulfilled. The solution for F k that maximizes
tr(F k′(X ′X)F k) is not unique under the restriction F k′F/T = Ik. Any
orthogonal rotation of a solution is also a solution. Choosing F k to be
the eigenvector fixes this rotational indeterminacy and, at the same
time, makes Λk′Λk diagonal.

The second solution obtains if we concentrate out F k. Then the
matrix of factor loadings Λ̄k is

√
N times the eigenvectors correspond-

ing to the k largest eigenvalues of the N × N matrix X ′X. Using the
normalization that Λ̄k′Λ̄k/N = Ik yields F̄ k = XΛ̄k/N . The second set
of calculations is computationally less costly when T > N while the
first is less intensive when T < N . In all except one case that will be
stated below, our results do not depend on which of the two methods
is used.
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Let Ṽ k denote the k × k diagonal matrix consisting of the first k
largest eigenvalues of the matrix XX ′/(TN), arranged in decreasing
order. Note that the matrices XX ′ and X ′X have identical nonzero
eigenvalues. We first explore some identities among different estimators.
First, we have

F̄ k
′
F̄ k

T
= Ṽ k

Λ̃k
′
Λ̃k

N
= Ṽ k

(3.1)

To see this, by the definition of the eigenvalues and eigenvectors,
(NT )−1X ′XΛ̄k = Λ̄kṼ k. Left multiplying the transpose of Λ̄k, and
using Λ̄k

′
Λ̄k = N and F̄ k = XΛ̄k/N , the first equality is obtained. The

second equality follows from a similar argument (or simply by symme-
try). Additional useful identities are

F̄ k = F̃ k(Ṽ k)1/2

Λ̃k = Λ̄k(Ṽ k)1/2.
(3.2)

To see this, by the definition of eigen relationship,(
1
NT

X ′X
)

Λ̄k = Λ̄k Ṽ k.

Left multiplying X/N on each side of above and noting F̄ k = XΛk/N ,
we have (

1
NT

XX ′
)
F̄ k = F̄ kṼ k.

This means that F̄ k is a T × k matrix consisting of the eigenvectors
of the matrix XX ′. By the uniqueness of eigenvector with probabil-
ity 1 (up to a scale), each column of F̄ k is a scalar multiple of the
corresponding column of F̃ k because F̃ k is also an eigenvector matrix.
The squared length of each column in F̄ k is equal to the correspond-
ing eigenvalue (see Equation (3.1)), and the columns of F̃ k have unit
length, it follows that F̄ k = F̃ k(Ṽ k)1/2. The second equality in (3.2)
follows from symmetry.
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Throughout this survey, when k is equal to r (the true number of
fators), we simply drop the subscript k to write F̃ , Λ̃, and Ṽ . Similarly,
the superscript k will be dropped for the “bar” version of the estimates
when k = r. The matrix Ṽ is identical to its bar version (does not
depend on the estimation method).



4
Theory: Stationary Data

To study the properties of this estimator, we let F 0
t and λ0

i denote the
true factors and the loadings, respectively. LetM be a generic constant.
For stationary data, the following assumptions underlie much of the
analysis:

Assumption F(0): E‖F 0
t ‖4 ≤ M and 1

T

∑T
t=1F

0
t F

0′
t

p−→ΣF > 0 for
an r × r non-random matrix ΣF .

Assumption L: λ0
i is either deterministic such that ‖λ0

i ‖ ≤ M , or it
is stochastic such that E‖λ0

i ‖4 ≤ M . In either case, N−1Λ0′Λ0 p−→ΣΛ >

0 for an r × r non-random matrix ΣΛ, as N → ∞.

Assumption E:

(a) E(eit) = 0, E|eit|8 ≤ M .
(b) E(eitejs) = σij,ts, |σij,ts| ≤ σ̄ij for all (t,s) and |σij,ts| ≤

τts for all (i, j) such that 1
N

∑N
i,j=1 σ̄ij ≤ M, 1

T

∑T
t,s=1 τts ≤

M, and 1
NT

∑
i,j,t,s=1 |σij,ts| ≤ M .

(c) For every (t,s), E|N−1/2∑N
i=1
[
eiseit − E(eiseit)

]|4 ≤ M .
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(d) For each t, 1√
N

∑N
i=1λieit

d−→N(0,Γt), as N → ∞ where

Γt = lim
N→∞

1
N

N∑
i=1

N∑
j=1

E(λiλj ′eitejt).

(e) For each i, 1√
T

∑T
t=1Fteit

d−→N(0,Φi) as T → ∞ where

Φi = lim
T→∞

T−1
T∑
s=1

T∑
t=1

E(F 0
t F

0′
s eiseit).

Assumption LFE: {λi}, {Ft}, and {eit} are three mutually inde-
pendent groups. Dependence within each group is allowed.

Assumption IE: For all t ≤ T , i ≤ N ,
∑T

s=1 |τs,t| ≤ M , and∑N
i=1 |σ̄ij | ≤ M .

Assumptions F(0) (stationary factors) and L are moment conditions
on the factors and the loadings, respectively and are standard in factor
models. They ensure that the factors are non-degenerate and that each
factor has a nontrivial contribution to the variance of Xt. Assump-
tion E concerns the idiosyncratic errors. Part (b) allows for “weak”
time series and cross-section dependence in the idiosyncratic errors so
that the model has an approximate instead of a strict factor structure.
The notion of an approximate factor model is due to Chamberlain and
Rothschild (1983) who showed in the context of asset returns that so
long as the largest eigenvalue of Ω is bounded, the idiosyncratic errors
are allowed to be mildly cross-sectionally correlated. A similar assump-
tion was used by Connor and Korajzcyk (1986). Our restrictions on
the errors allow weak correlation not just cross-sectionally, but also
serially; heteroskedasticity is also allowed. Now under covariance sta-
tionarity with E(eitejt) = σij for all t, the largest eigenvalue of Ω is
bounded by maxi

∑N
j=1 |σij |. By assuming that

∑N
j=1 |σij | ≤ M for all i

and N as in (b), the assumptions of an approximate factor model in the
sense of Chamberlain and Rothschild (1983) are satisfied. As Heaton
and Solo (2006) noted, the maximum eigenvalue bound of Chamberlain
and Rothschild can be obtained even if the number of correlated series
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increases with N . Our assumption, also used by Stock and Watson
(2002a), indeed allows the number of strongly cross-correlated errors to
grow at a rate slower than

√
N , and in this sense, we permit a stronger

degree of cross-section correlation in the errors than the approximate
factor model of Chamberlain and Rothschild. Part (d) permits weak
dependence between the factors and the idiosyncratic errors and falls
short of requiring Ft to be independent of eit.

Within group dependence in Assumption LFE means that Ft can be
serially correlated, λi can be correlated over i, and eit can have serial
and cross-sectional correlations. None of these correlations can be too
strong if Assumption E is to hold. However, we assume no dependence
between the factor loadings and the factors, or between the factors and
the idiosyncratic errors, which is the meaning of mutual independence
among the three groups.

Assumption IE strengthens E. When eit is independent over time,
the first part of (IE) is equivalent to requiring E(e2it) ≤ M for all t.
Similarly, under cross-section independence, the second part of (IE) is
equivalent to E(e2it) ≤ M for all i. Thus, under time series and cross-
section independence, both parts of (IE) are implied by (E).

Let F̂ k = F̄ k(F̄ k′F̄ k/T )1/2. By the relationship given in Section 3,

F̂ k = F̄ k(Ṽ )1/2 = F̃ kṼ k.

And for k = r, dropping the superscript, we have F̂ = F̃ Ṽ . Equiva-
lently, for every t,

F̂t = Ṽ F̃t.

Let V be an r × r diagonal matrix with the eigenvalues of
Σ1/2

Λ ΣFΣ1/2
Λ as its elements. The matrix Ṽ has been shown to have

an invertible limit, given by V , see Bai (2003). Since Ṽ is invertible,
F̂ and F̃ are equivalent in the sense that knowing one will lead to the
other.

Our main results concerning the factor estimates can be summarized
as follows. The first result is for an arbitrary k, and the remaining
results are for k = r. Throughout, we let CNT = min[

√
N,

√
T ].
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Result A: Factor Space

A.1. For any fixed k > 1 and under Assumptions F(0), L, and E,

C2
NT

(
1
T

T∑
t=1

‖F̂ kt − H̄k′F 0
t ‖2

)
= Op(1),

where H̄k = (F̃ k
′
F 0/T )(Λ0′Λ0/N) with rank(H̄k) = min

(k,r). If, in addition,
∑T

s=1 τs,t ≤ M for all t and T , then

C2
NT ‖F̂ kt − H̄k′F 0

t ‖2 = Op(1)

for each t. Note that matrix Hk depends on both N and
T , but not on t.

A.2. Let H = Ṽ −1(F̃ ′F 0/T )(Λ0′Λ0/N), Q = V 1/2Υ′Σ−1/2
Λ ,

where Υ are the eigenvectors corresponding to the
eigenvalues V of the matrix Σ−1/2

Λ ΣFΣ−1/2
Λ . Under

Assumptions F(0), L, E, and LFE,

(a) if
√
N/T → 0, then for each t,

√
N(F̃t − H ′F 0

t ) d−→N(0,V −1QΓtQ′V −1).

(b) if
√
T/N → 0, then for each i,

√
T (λ̃i − H−1λ0

i )
d−→N(0,(Q′)−1ΦiQ

−1).

A.3. Let Ait = λ0′
i Σ−1

Λ ΓtΣ−1
Λ λ0

i and Bit = F 0′
t Σ−1

F ΦiΣ−1
F F 0

t ,
where Φi is the variance of T−1/2∑T

t=1F
0
t eit;

(a) Under Assumptions F(0), L, E, LFE, and IE

(N−1Ait + T−1Bit)−1/2(C̃it − C0
it)

d−→N(0,1)

(b) if N/T → 0, then
√
N(C̃it − Cit)

d−→N(0,Ait);

(c) if T/N → 0, then
√
T (C̃it − Cit)

d−→N(0,Bit).

A.4. Suppose Assumptions F(0), L, E, and LFE hold. Then

max
1≤t≤T

∥∥F̃t − H ′F 0
t

∥∥ = Op(T−1/2) + Op((T/N)1/2).
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As we can only estimate the space spanned by the factors, all results
concerning the factor estimates are stated in terms of the difference
between the estimated and the true factor space,Hk′F 0

t . Part 1, derived
by Bai and Ng (2002), says that if we estimate k (not necessarily the
same as r) factors, the average squared deviation between the k esti-
mated factors and the space spanned by k of the true factors will vanish
at rate min[N,T ], or in other words, the smaller of the sample size in
the two dimensions. Result A.1 is useful for determining the number
of factors, which will be considered later on. The second part of A.1
imposes stronger condition on the error correlations.

Result A.1 has been extended by Anderson and Vahid (2007) to
allow for jumps, an issue that is relevant in volatility analysis. The
authors argue that jumps can distort the principal components esti-
mates. Treating jumps as measurement error, an IV approach is used
to correct for the bias. Their IV estimate of the factors are the eigenvec-
tors of the covariance matrix of X̂, where X̂ is the orthogonal projection
of X on lags of X.

Whereas A.1 provides the starting point for estimation, the asymp-
totic distribution is required to assess the sampling variability of the
factor estimates. These results are derived by Bai (2003) and are sum-
marized in A.2 and A.3. Essentially, for each t, F̃t is

√
N consistent for

the true factor space while for each i, λ̃i is
√
T consistent for the space

spanned by the true factor loadings. Although these results put restric-
tions between N and T , note that N and T pass to infinity jointly, not
sequentially. It is clear that

√
N/T → 0 and

√
T/N → 0 are not strong

conditions. The approximation should work well even for panels with
just 50 units in each dimension. A.4 provides an upper bound on the
maximum deviation of the estimated factors from the space spanned
by the true ones. The upper bound goes to zero if T/N → 0. A sharper
bound is obtained in Bai and Ng (2008). If there exists � ≥ 4 such that
E‖Ft||� ≤ M and E‖N−1/2∑N

i=1λ
0
i eit‖� ≤ M for all t, then

max
1≤t≤T

‖F̃t − H ′F 0
t ‖ = Op(T−1+1/�) + Op(T 1/�/N1/2). (4.1)

For � = 4 as is assumed, the maximum deviation goes to zero provided
that T/N2 → 0.
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The sampling uncertainty of F̃t is captured by Avar(F̃t) =
V −1QΓtQ′V −1, which can be rewritten as V −1QH(H−1ΓtH−1′)
H ′Q′V −1. Matrix Ṽ −1 is a consistent estimate for V −1. Matrix Q is
the limit of F̃ ′F 0/T . An approximation for QH is obtained by substi-
tuting F̃ for F 0H since F̃ provides an approximation for F 0H. Note
that Q̃ = F̃ ′F̃ /T is just an identity matrix by construction (the limit
of QH is indeed an identity). It remains to obtain a consistent estimate
for H−1ΓtH−1′. Denote its consistent estimate by Γ̃t. This leads to

̂
Avar(F̃t) = Ṽ −1Γ̃tṼ −1.

Several estimators of the r × r matrix H−1ΓtH−1′ are possible. There
is no need to estimate H. When estimating Γt, we have to use λ̃i in
place of λi because λi cannot be observed. Since λ̃i = H−1λi + op(1),
H−1 is implicitly estimated.

Result B: Estimation of Γt. Let ẽit = xit − λ̃′
iF̃t:

B.1. Cross-sectionally independent but heterogeneous panels:
let

Γ̃t =
1
N

N∑
i=1

ẽ2itλ̃iλ̃
′
i.

Under Assumption F(0), L, E, and LFE, we have ‖Γ̃t −
H−1ΓtH−1′‖ p−→0.

B.2. Cross-sectionally independent and homogeneous panels:
let

Γ̃t = σ̃2
e

1
N

N∑
i=1

λ̃iλ̃
′
i.

where σ̃2
e = 1

NT−r(T+N−r)
∑N

i=1
∑T

t=1 ẽ
2
it. The result of B.1

still holds.
B.3. Cross-sectionally correlated but stationary panels: let

Γ̃ =
1
n

n∑
i=1

n∑
j=1

λ̃iλ̃
′
j

1
T

T∑
t=1

ẽitẽjt.
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Suppose Assumption F(0), IE, E, and LFE hold, and
E(eitejt) = σij for all t so that Γt = Γ not depending on t.
If n is such that with n/min[N,T ] → 0, then

‖Γ̃ − H−1′ΓH−1‖ p−→0.

The estimator defined in B.3 is referred to the CS-HAC estimator in
Bai and Ng (2006a). It is robust to cross-section correlation and cross-
section heteroskedasticity but requires the assumption of covariance
stationarity. If there is cross-section correlation of an unknown form and
the data have no natural ordering, estimation of Γt runs into problems
analogous to the estimation of the spectrum in time series. Specifically,
some truncation is necessary to obtain a consistent estimate of Γt. Here
in a panel setting, we use the fact that if covariance stationarity holds,
the time series observations will allow us to consistently estimate the
cross-section correlations provided T is large. Furthermore, the covari-
ance matrix of interest is of dimension (r × r) and can be estimated
with n < N observations. The assumption of covariance stationarity
is not necessary for B.1 and B.2 since these assume cross-sectionally
uncorrelated idiosyncratic errors.

4.1 Estimating the Number of Factors

Some economic models have a natural role for factors and thus deter-
mining the number of factors is of interest in its own right. For exam-
ple, underlying the APT theory of Ross (1976) is the assumption that
there are common risk factors across assets, while underlying con-
sumer demand analysis is the notion that there are individual fac-
tors common across goods. From a statistical standpoint, being able
to consistently estimate the number of factors enables the researcher
to treat r as known, so that we can simply deal with the r × 1
vector of factor estimates F̃t, instead of a sequence of factor esti-
mates F̃ kt . The result concerning estimation of r can be summarized
as follows:

Let S(k) = (NT )−1∑N
i=1
∑T

t=1(xit − λ̂k′i F̂
k
t )2 be the sum of squared

residuals (divided by NT ) when k factors are estimated. Let g(N,T )
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be a penalty function. Define the information criteria

PCP (k) = S(k) + k σ̄2 g(N,T )

IC(k) = ln(S(k)) + kg(N,T ),

where σ̄2 is equal to S(kmax) for a pre-specified value kmax. The
second criterion does not depend on σ̄2. The estimator for the number
of factors is defined as

k̂PCP = argmin
0≤k≤kmax

PCP (k)

k̂IC = argmin
0≤k≤kmax

IC(k).

Result C: Number of Static Factors

C.1. Suppose Assumptions F(0), L, E, and LFE hold. If (i)
g(N,T ) → 0 and (ii) C2

NT g(N,T ) → 0 as N,T → ∞, then

prob(k̂PCP = r) → 1, and prob(k̂IC = r) → 1.

Result C is based on Bai and Ng (2002). The first condition in C.1
prevents under-fitting while the second condition prevents over-fitting.
Similar looking conditions underlie well-known model selection proce-
dures such as the AIC and the BIC that are often used in time series
and cross section analysis. The notable and important difference is that
our penalty factor g(N,T ) depends on the sample size in both dimen-
sions, not just N or T . In problems for which

√
T consistent estimates

are available, condition (ii) would require divergence of Tg(T ). But
in our particular panel setting, the convergence rate of the estimated
factor space dictates that min[N,T ]g(N,T ) must diverge. Examples of
g(N,T ) that satisfy the required conditions are

g1(N,T ) =
N + T

NT
ln
(

NT

N + T

)
g2(N,T ) =

N + T

NT
lnC2

NT

g3(N,T ) =
lnC2

NT

C2
NT

.
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We have frequently used g2(N,T ) in empirical work because it tends
to be more stable. In our experience,

g4(N,T ) = (N + T − k) ln(NT )/NT

has good properties especially when the errors are cross correlated.
Strictly speaking, g4(N,T ) fails condition (i) when T = exp(N) or N =
exp(T ). But these configurations of N and T do not seem empirically
relevant. Thus, g4(N,T ) should not be ruled out in practice.

Random matrix theory has recently been used to determine the
number of factors. The idea is to exploit the largest and the smallest
eigenvalue of large matrices whose properties are known for iid normal
data. See Onatski (2005) and Kapetanios (2007). These methods use
different and often stronger assumptions than the ones stated in this
survey. In simulations, the tests seem to have good properties when the
factor structure is weak, or the idiosyncratic errors are highly serially
or cross-sectionally correlated. Whether a factor model with these char-
acteristics is a better characterization of the data remains debatable. It
should be noted that a positive limit for Λ′Λ/N still permits zero factor
loadings for many series, implying weak factors for the corresponding
series.

Onatski (2006b) developed a formal test for the number of factors
in data with correlated Gaussian idiosyncratic errors. The idea is to
test the slope of the scree plot to identify changes in curvature.1 His
analysis provides a formal justification for the use of the scree plot
in determining the number of factors, and appears to be the first to
obtain the asymptotic distribution of tests that determine the number
of factors. Under the assumptions in Onatski (2006b) and the large
sample properties of random matrices, his proposed test is characterized
by the Tracy-Widom distribution.

There are specific instances when knowledge of the number of
dynamic factors, q, is useful. If the static factors Ft are driven by q ≤ r

primitive innovations (say, εt), then the innovations of Ft and εt are
related by ut = Rεt. It then follows that Σu = RΣεR

′ has rank q ≤ r,

1 A scree diagram is a plot of the ordered eigenvalues against the corresponding order
number.
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and Ft can be represented as

A(L)Ft = Rεt.

These features lead to two ways of determining q using time domain
methods.

The first, from Stock and Watson (2005) and Amengual and Watson
(2007), takes the dynamic factor model xit = λ′

iFt + ρi(L)xit−1 + eit as
starting point. Rewriting A(L) = I − A+(L)L together with A(L)Ft =
Rεt yields

xit = λ′
iA

+(L)Ft−1 + ρi(L)xit−1 + λ′
iRεt + eit.

Then wt = λ′
iRεt + eit has a factor structure. This factor structure has

q = dim(εt) dynamic factors. The PCP and IC criteria can be used to
determine q, upon replacing wit by a consistent estimate.

The second, developed in Bai and Ng (2007), starts with the premise
that if the r × r matrix Σu has rank q, then the r − q smallest eigenval-
ues are zero. Let c1 > c2 · · ·cN be the ordered eigenvalues of Σu. Define

D1k =
(

c2k+1∑r
j=1 c

2
j

)1/2

and D2,k =
(∑r

j=k+1 c
2
j∑r

j=1 c
2
j

)
.

The test is based on the idea that when the true eigenvalues cq+1, . . . , cr
are zero, D1,k and D2,k should be zero for k ≥ q. To estimate Σu,
a VAR model is fitted to the estimated factors F̄t (but not F̃t).
Let ût be the residuals from estimation of a VAR(p) in F̄t, and let
Σ̂u = 1

T−p
∑T

t=1 ûtû
′
t. Let ĉ1 > ĉ2 · · · ĉr be the eigenvalues of Σ̂u. Replace

cj in D1k and D2,k by ĉj to obtain D̂1k and D̂2k. For some 0 < m < ∞
and 0 < δ < 1/2, let

MNT (δ) =
m

min[N1/2−δ,T 1/2−δ]
.

As there are sampling errors from estimation of Σu, D̂1,k and D̂2,k will
not be zero exactly. The cut-off point of MNT (δ) is used to account for
estimation error. We now summarize the properties of these two tests.
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Result D: Number of Dynamic Factors

D.1. Stock and Watson (2005). Let ŵit be the residuals from
a restricted regression of xit on the lags of F̃t and xit.
Let S(k) be the sum of squared residuals when k fac-
tors are estimated from the data matrix {ŵit}. Let q̂ =
argminkPCP (k) or q̂ = argmink IC(k). If (i) g(N,T ) → 0,
and (ii) C2

NT g(N,T ) → ∞ as N,T → ∞,

prob(q̂ = q) → 1.

D.2. Bai and Ng (2007). Let q̂1 be the smallest k such that
D̂1,k <MNT (δ) and q̂2 be the smallest k such that D̂2,k <

MNT (δ). For 0 < m < ∞ and 0 < δ < 1/2, as N,T → ∞
P (q̂ = q) → 1

Both approaches enable q to be determined without having to esti-
mate the spectrum of F . Note, however, that the Bai–Ng method
assumes Ft is estimated by F̄t (i.e., with normalization Λ′Λ/N = Ik)
and is not valid when F̃t is used. The Stock–Watson method is flexible
on which normalization is used to construct the principle component
estimates.

Hallin and Liska (2007) proposed a method for determining the
number of factors in a generalized dynamic factor model. The test is
based on the eigenvalues ci(θ) of the spectral density matrix of the data
at frequency θ, denoted Σ(θ). Specifically, for m = −MT , . . . ,MT , and
θm = πm

MT +1/2 with MT → ∞ and MTT
−1 → 0, define

PCP (k) =
1
N

N∑
i=k+1

1
2MT + 1

MT∑
m=−MT

ci(θm) + kḡ(N,T ), 0 ≤ k ≤ qmax

and

IC(k) = log

[
1
N

N∑
i=k+1

1
2MT + 1

MT∑
m=−MT

ci(θm)

]
+ kḡ(N,T ).

Under somewhat different assumptions from the ones considered here,
the authors showed that if (i) ḡ(N,T ) → 0, and (ii) min[N,M−2

T ,
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M
1/2
T T 1/2]ḡ(N,T ) → ∞, then P (q̂ = q) → 1. The authors suggest

using MT = 0.5
√
T and penalties ḡ1(N,T ) = (M−2

T + M
1/2
T T−1/2 +

N−1) logAT , ḡ2(N,T ) = AT , and ḡ3(N,T ) = A−1
T log(AT ) with AT =

min[N,M2
T ,M

−1/2
T T1/2]. Not surprisingly, their method outperforms

D̂1,k and D̂2,k when the loadings have an autoregressive structure,
which does not satisfy the assumption of Bai and Ng (2007). Imple-
mentation of their procedure requires careful selection of the auxiliary
parameters. The authors suggest cross-validation as a possibility.

Work is on-going to find improved ways to estimate r. The issue is
important as estimation and inference often hinge on precise estimation
of r and q. One can expect new and improved tests to appear.



5
Applications

The motivation for considering factor analysis is to deal with large
number of variables. Use of a small number of factors as conditioning
variables is a parsimonious way to capture information in a data rich
environment, and there should be efficient gains over (carefully) select-
ing a handful of predictors. There are three strands of research that
evolve around this theme. The first concerns using the estimated fac-
tors as predictors; the second uses the estimated factors as improved
instruments over observed variables. The third concerns testing the
validity of observed proxies. These are discussed in the next three
subsections.

5.1 Factor-Augmented Regressions

The distinctive feature of a so-called “factor-augmented” regression is
to add factors estimated by the method of principal components to an
otherwise standard regression:

yt+h = α′F̃t + β′Wt + εt+h

= z̃′
t+hδ + εt+h, (5.1)

114
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where Wt are predetermined variables (such as lags) that the researcher
would include whether or not F̃t is available. The following assumptions
will be used.

Assumption FAR:

(a) Let zt = (F ′
t W

′
t)

′, E‖zt‖4 ≤ M ; E(εt+h|yt,zt,yt−1,zt−1, . . .)
= 0 for any h > 0; zt and εt are independent of the
idiosyncratic errors eis for all i and s. Furthermore,
1
T

∑T
t=1 ztz

′
t

p−→Σzz > 0
(b) 1√

T

∑T
t=1 ztεt+h

d−→N(0,Σzz,ε), where Σzz,ε = plim 1
T

∑T
t=1

(ε2t+hztz
′
t) > 0.

The regression model given by (5.1) encompasses many applications of
interest. If h = 0, (5.1) is simply a regression with generated regres-
sors F̃t, and z̃′

tδ̂ is the estimated conditional mean of yt. For example,
if yt is stock returns, then z̃′

tδ̂ is the estimated conditional mean of
stock returns, and if yt is the volatility of stock returns, then z̃′

tδ̂ is
the estimated conditional volatility of stock returns with condition-
ing information z̃t. The ratio of the two estimates is the conditional
Sharp ratio, which is useful in studying the risk-return trade-off of stock
returns.

When h > 0, (5.1) is a forecasting equation and forms the basis
of the so-called Diffusion Index (DI) forecasting methodology of Stock
and Watson (2002a). The advantage of DI is that F̃t drastically reduces
the dimension of the information spanned by the predictors from N

to a much smaller number as determined by the number of factors
included. As such, it is capable of exploiting the information in a
large panel of data while keeping the size of the forecasting model
small. The DI framework is now used by various government agen-
cies in a number of countries, as well as by independent and academic
researchers alike.

In addition to forecasting, Equation (5.1) also provides a frame-
work for assessing predictability. For example, under the expectations
hypothesis, excess bond returns should be unpredictable given the infor-
mation available. Predictability tests are often sensitive to the choice
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of the predictors. A finding of non-predictability in a small information
set may not be robust to changes in the set of predictors, or the extent
to which the variable of interest is predictable. The factor augmented
framework is well suited for these analysis because the inclusion of F̃t
brings the empirical problem closer to the conceptual problem of test-
ing predictability with respect to “all information available.” Not only
can we assess if the “usual suspects” Wt contain all relevant informa-
tion (and that all other predictors are irrelevant), we can do so without
much efficiency loss because F̃t is of small dimension.

As written, Equation (5.1) is a single equation. But multivariate
models can also accommodate F̃t. More specifically, if yt is a vector of
m series, and Ft is a vector of r factors, a Factor Augmented Vector
Autoregression of order p, or simply FAVAR(p), can be obtained.

yt+1 =
p∑

k=0

a11(k)yt−k +
p∑

k=0

a12(k)F̃t−k + ε1t+1

F̃t+1 =
p∑

k=0

a21(k)yt−k +
p∑

k=0

a22(k)F̃t−k + ε2t+1,

where a11(k) and a21(k) are coefficients on yt−k, while a12(k) and a22(k)
are coefficients on F̃t−k.

The following results validate estimation and inference based
upon (5.1).

Result E: Linear Factor Augmented Regressions. Bai and Ng
(2006a). Suppose Assumptions F(0), L, E, and FAR hold.

E.1. If
√
T/N → 0, then

√
T (δ̂ − δ) d−→N(0,Σδ),

where Σδ = Φ′−1
0 Σ−1

zz Σzz,εΣ−1
zz Φ−1

0 , Φ0 = diag(V −1QΣΛ, I)
is block diagonal, V = plim Ṽ , Q = plim F̃ ′F/T , and ΣΛ

defined in Assumption E. A consistent estimator for
Avar(δ̂) = Σδ is

̂
Avar(δ̂) =

(
1
T

T−h∑
t=1

ẑtẑ
′
t

)−1(
1
T

T−h∑
t=1

ε̂2t+hẑtẑ
′
t

)(
1
T

T−h∑
t=1

ẑtẑ
′
t

)−1

.
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E.2. Consider a pth order vector autoregression inm observable
variables yt and r factors, F̃t, estimated by the method of
principal components. Let ẑt = (y′

t, . . . ,y
′
t−p, F̃ ′

t , . . . , F̃
′
t−p)′.

Define Ŷt = (y′
t, F̃

′
t)

′ and let Ŷjt be the jth element of Ŷt.
For j = 1, . . . ,m + r, let δ̂j be obtained by least squares
from regressing Ŷjt+1 on ẑt. Let ε̂jt+1 = Ŷjt+1 − δ̂′

j ẑt. If√
T/N → 0 as N,T → ∞,

√
T (δ̂j − δj)

d−→ N

(
0,plim

(
1
T

T∑
t=1

ẑtẑ
′
t

)−1(
1
T

T∑
t=1

(ε̂jt)2ẑtẑ′
t

)

×
(

1
T

T∑
t=1

ẑtẑ
′
t

)−1)
.

E.3. Let ŷT+h|T = δ̂′ẑT . If
√
N/T → 0 and Assumptions F(0),

L, and E hold, then for any h ≥ 0,

(ŷT+h|T − yT+h|T )√
var(ŷT+h|T )

d−→N(0,1),

where var(ŷT+h|T ) = 1
T ẑ

′
T Avar(δ̂) ẑT + 1

N α̂
′Avar(F̃T ) α̂.

Result E states that parameter estimates of equations involving F̃t+1,
whether as regressand or regressors, are

√
T consistent. Result E also

shows how standard errors can be computed and provides a complete
inferential theory for factor augmented regressions.

Conventionally generated regressors are obtained as the fitted val-
ues from a first step regression of some observed variable related to the
latent variable of interest on a finite set of other observed regressors.
As shown in Pagan (1984), sampling variability from the first step esti-
mation is Op(1) in the second stage. Consequently, the standard errors
of the second step parameter estimates must account for the estimation
error from the first step. As indicated by Result E, no such adjustment
is necessary when the generated regressors are F̃t if

√
T/N → 0. This is

because the term that is Op(1) in a conventional setting is Op(
√
T

min[N,T ])
in the factor augmented regression setting, and this term vanishes if
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√
T/N → 0. Note, however, that although the condition

√
T/N → 0 is

not stringent, it does put discipline on when estimated factors can be
used in regression analysis.

Result E.3 concerns the prediction interval for the conditional mean.
There are two terms in var(ŷT+h|T ), and the overall convergence rate
for ŷT+h|T is min[

√
T ,

√
N ]. In a standard setting, var(ŷT+h|T ) falls at

rate T , and for a given T , it increases with the number of observed pre-
dictors through a loss in degrees of freedom. With factor forecasts,
the error variance decreases at rate min[N,T ], and for a given T ,
efficiency improves with the number of predictors used to estimate
Ft. A large N enables better estimation of the common factors and
thus directly affects the efficiency of subsequent estimations involv-
ing F̃t. Note that if the estimation of Ft was based upon a fixed
N , consistent estimation of the factor space would not be possible
however large T becomes. That is to say, Result E will not apply if
we simply use F̃t to reduce the dimension of an already small set of
predictors.

5.2 Extremum Estimation

The estimated factors can be used in estimation not just in linear mod-
els, but also when the models are nonlinear in the parameters. Suppose
we observe zt = (yt,wt,Ft), where yt is typically the dependent variables
and (wt,Ft) is a set of explanatory variables ( t = 1, . . . ,T ). Consider
the problem of estimating θ as

θ̂ = argmax
θ

QT (θ), QT =
1
T

T∑
t=1

m(zt,θ).

If zt are iid with density function f(zt|θ), the MLE can be written
as m(zt,θ) = logf(zt|θ). For nonlinear regressions, yt = g(wt,Ft,θ) +
εt, the nonlinear squares method is equivalent to m(zt,θ) = −[yt −
g(wt,Ft,θ)]2. Under some regularity conditions, θ̂ can be shown to
be

√
T consistent and asymptotically normal. However, if Ft is not

observed but we instead observe a large panel of data xit with a fac-
tor structure, xit = λ′

iFt + eit, we can replace Ft by F̃t in estimation.
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Replacing zt by z̃t = (yt,wt, F̃t) gives the feasible objective function

Q̃T (θ) =
1
T

T∑
t=1

m(z̃t,θ)

and the estimator is defined as

θ̃ = argmaxQ̃T (θ).

Let h(zt,θ) = ∂m(zt,θ)
∂θ and K(zt,θ) = ∂2m(zt,θ)

∂θ∂θ′ . The following
assumptions are made:

Assumption EE:

(i) Eh(zt;θ0) = 0, Eh(zt;θ) �= 0 for all θ �= θ0 and
1√
T

∑T
t=1h(zt,θ0)

d−→N(0,Σ), where Σ is positive
definite.

(ii) E supθ ‖h(zt;θ)‖ < ∞.
(iii) h(z;θ) is twice continuously differentiable with respect

to Ft and θ, and K0 = EK(zt,θ0) is invertible.
(iv) For some bNT → 0

sup
{F ∗

t :‖F ∗
t −Ft‖≤bNT ,∀ t}

sup
θ∈Θ

1
T

T∑
t=1

‖h(yt,xt,F ∗
t ,θ)‖2 = Op(1).

(5.2)
(v) ξt = (∂/∂Ft)h(zt,θ0) is uncorrelated with eit and

E‖ξt‖2 ≤ M for all t.
(vi) For j = 1,2, . . . ,p = dim(θ), and for some bNT → 0,

sup
{F ∗

t :‖F ∗
t −Ft‖≤bNT ,∀ t}

sup
{θ∗:‖θ∗−θ0‖≤bNT }

× 1
T

T∑
t=1

∥∥∥∥∂2hj(yt,xt,F ∗
t ,θ

∗)
∂η1∂η′

2

∥∥∥∥2

= Op(1)

for η1,η2 ∈ {Ft,θ}.

Assumptions EE(i)–(iii) are sufficient conditions for consistency and
asymptotic normality when zt is observable. Assumption EE(iv) guar-
antees consistency of θ̃ when Ft is replaced by F̃t. The remaining con-
ditions are for asymptotic normality when using F̃t in place of Ft.
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Result F: Extreme Estimation. Bai and Ng (2008).
Under Assumptions of EE, F(0), L, E, and T 5/8/N → 0, we have

√
T (θ̃ − θ0)

d−→N(0,K−1
0 ΣK−1

0 ).

The limiting distribution is the same as if Ft are observable. For
linear models, only T 1/2/N → 0 is required. A larger N is required for
nonlinear models. Bai and Ng (2008) also consider a GMM estimator
and obtain similar results.

5.3 Instrumental Variable Estimation

A different use of F̃t is as instrumental variables. Consider the regres-
sion model

yt = x′
1tβ1 + x′

2tβ2 + εt

= x′
tβ + εt,

where xt = (x′
1t,x

′
2t)

′ isK × 1. TheK1 × 1 regressors x1t are exogenous
or predetermined and may include lags of yt. The K2 × 1 regressors x2t

are endogenous; K = K1 + k2. Suppose that

x2t = Ψ′Ft + ut

and E(utεt) �= 0 and E(Ftεt) = 0. This implies that E(x2tεt) �= 0, and
thus x2t is endogenous. The least squares estimator of β will be incon-
sistent. The conventional treatment of endogeneity bias is to use lags
of y,x1, and x2 as instruments for x2. Our point of departure is to
note that in this setting, Ft are the ideal instruments in the sense of
satisfying both instrument exogeneity and instrument relevance. The
reason why the moments gt = Ftεt are not used to estimate β is that
Ft are not observed. We assume that there is a “large” panel of valid
instruments, z1t, . . . ,zNt that are weakly exogenous for β and generated
as follows:

zit = λ′
iFt + eit. (5.3)

The idea is to estimate F from the above factor model and then use the
estimated F as instruments for x2t. For a related study, see Kapetan-
ios and Marcellino (2006a). The following analysis assumes no x1t for
simplicity. Otherwise, use F+

t = (x′
1t,F

′
t)

′ in place of Ft as instrument.
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Assumption IV:

(a) E(εt) = 0, E|εt|4+δ < ∞ for some δ > 0. The r × 1 vec-
tor process gt(β0) = Ftεt(β0) satisfies E[gt(β0)] ≡ E(g0

t ) = 0
with E(gt(β)) �= 0 when β �= β0. Furthermore,

√
T ḡ0 d−→N

(0,S0), where S0 is the asymptotic variance of
√
T ḡ0, and

ḡ0 = 1
T

∑T
t=1Ftεt(β

0).
(b) x1t is predetermined such that E(x1tεt) = 0.
(c) x2t = Ψ′Ft + ut with Ψ′Ψ > 0, E(Ftut) = 0, and E(utεt) �= 0.
(d) For all i = 1, . . . ,N , E(eitut) = 0, and E(eitεt) = 0.

Assumption IV(c) restricts consideration to the case of strong instru-
ments, while IV(d) assumes that zit are valid instruments. Let gt =
F̃tεt, ḡ = 1

T

∑T
t=1 gt, and let S̆ = 1

T

∑T
t=1(ğtğ

′
t), with ğt = F̃tε̆t, and

ε̆t = yt − x′
tβ̆FIV , where β̆FIV is an initial consistent estimator for β.

The two-step efficient estimator with F̃ as instruments is defined as

β̂FIV = argmin
β

ḡ(β)′S̆−1ḡ(β).

Result G: Factor IV

G.1. Under Assumptions F, L, E, LFE, and FIV,
√
T (β̂FIV − β0) d−→N

(
0,Avar(β̂FIV )

)
,

where Avar(β̂FIV ) is the probability limit of
(S
F̃ x

(Ŝ)−1S′
F̃ x

)−1, which is therefore a consistent estima-

tor for the asymptotic variance, and S
F̃ x

= 1
T

∑T
t=1 F̃txt.

G.2. Let z2 be a subset of r of the N observed instru-
ments (z1t, . . . ,zNt). Let mt = z2t(yt − x′

tβ) with
√
Tm̄

d−→
N(0,Q). Let β̂IV be the minimizer of m̄′(Q̆)−1m̄ with the
property that

√
T (β̂IV − β0) d−→N(0,Avar(β̂IV )). Under

the assumption that E(e2it) > 0 for all i in the subset of z2,

Avar(β̂IV ) − Avar(β̂FIV ) ≥ 0.
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Result G is based on Bai and Ng (2006c). G.1 and G.2 say that
not only do the instruments F̃t yield

√
T consistent and asymptotically

normal estimates, but that the estimates so obtained are more efficient
than using an equal number of observed instruments. The intuition is
straightforward. The observed instruments are the ideal instruments
contaminated with errors while F̃ is consistent for the ideal instru-
ment space. More efficient instruments thus lead to more efficient esti-
mates. Pooling information across the observed variables washes out
the noise to generate more efficient instruments for x2. Result F.1 is
stated assuming that all instruments are valid, but this can be relaxed.
Result F.1 still holds if

∑N
i=1 |E(εteit)| ≤ M < ∞ for all N with M not

depending on N , and
√
T/N → 0. Thus in a data rich environment, use

of invalid instruments does not preclude consistent estimation. How-
ever, use of invalid instruments will not yield consistent estimates if N
is fixed; this highlights how a large N and T can open up new horizons
for estimation and inference.

The factor estimates can also be used as instruments in a panel
context.

yit = x′
itβ + εit,

where xit is K × 1. We continue to maintain the assumption that

xit = Λ′
iFt + uit = Cit + uit.

Assumption E-Panel: Same as Assumption L and E with three
changes. Part (i) holds with λi replaced by Λi; part (ii) holds with eit
replaced by each component of uit (note that uit is a vector).

Assumption IV-Panel:

(a) E(εit) = 0, E|εit|4+δ <M < ∞ for all i, t, and for some δ >
0; εit is independent over i and εit is independent of Ft
and Λi.

(b) xit = Λ′
iFt + uit; E(uitεit) �= 0; uit is independent over i.
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(c) (NT )−1/2∑N
i=1
∑T

t=1Citεit
d−→N(0,S), where

S = lim
N,T→∞

1
NT

N∑
i=1

T∑
t,s=1

E(CitC ′
isεitεis),

which is the long run variance of ξt = N−1/2∑N
i=1Citεit.

The pooled two-stage least-squares estimator with C̃it as instruments is

β̂PFIV =

(
N∑
i=1

T∑
t=1

C̃itx
′
it

)−1 N∑
i=1

T∑
t=1

C̃ityit.

Result G: Panel FIV. Under Assumptions E-Panel and IV-Panel,

G.3. (i) β̂PFIV − β0 = Op(T−1) + Op(N−1) and thus β̂PFIV
p−→β0.

(ii) If T/N → τ > 0, then
√
NT (β̂PFIV − β0) d−→N(τ1/2∆0

1 + τ−1/2∆0
2, Ω),

where Ω = plim[Sx̃x̃]−1S[S′
x̃x̃]

−1 with Sx̃x̃ = (NT )−1∑N
i=1 C̃itx

′
it, and ∆0

1 and ∆0
2 are bias terms.

(iii) Suppose εit are serially uncorrelated. Let ∆̂ = 1
N ∆̂1 +

1
T ∆̂2, where ∆̂k is a consistent estimate of ∆k (k =
1,2), see Bai and Ng (2006c). Suppose Assump-
tions F(0), L, E-Panel, LFE, and FAR-Panel hold.
If T/N2 → 0, and N/T 2 → 0, then

√
NT (β̂PFIV − ∆̂ − β0) d−→N(0,Ω).

Result G.3 indicates that there can be no valid instrument in the
conventional sense, yet, we can still consistently estimate the large
simultaneous equations system. In a data-rich environment, the infor-
mation in the data collectively permits consistent instrumental variable
estimation under much weaker conditions on individual instruments.
However, Cit is not observed, and biases arise from the estimation of
Cit. More precisely, C̃it contains elements of uit, which are correlated
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with εit. This motivates the bias-corrected estimator stated in (iii).
Although the biased estimator is reasonably precise, the bias correction
terms, defined in Bai and Ng (2006c), are necessary for the t statistic
to have the appropriate size.

5.4 Testing the Validity of Observed Proxies

Finance theory postulates that systematic risks should be priced. Many
observed variables including inflation, term and premia, as well as
variables constructed by Fama and French have been used as prox-
ies for the latent risk factors. But are these factors guided by eco-
nomic theory close to the statistical factors constructed in a data rich
environment?

Let Gt = (G1t, . . . ,Gmt) be a m × 1 vector of observed variables that
are thought to be useful proxies of a set of otherwise unobserved factors,
Ft. The objective is to get a sense of how close F and G are. We
consider two cases: (i) Gjt is an exact linear combination of Ft such
that Gjt = δ′

jFt for some vector δj ; (ii) Gjt is a linear combination of
Ft plus an error term such that Gjt = δ′

jFt + εjt. In the second case, we
want to measure how big is the error εjt relative to δ′

jFt. We also want
to make inference about the correlation between the vector Gt and Ft.
But Ft is not observable, so we use F̃t instead.

Let γ̂j be obtained from the least squares estimation of

Gjt = γ′
jF̃t + error.

Let τ̂t(j) be the corresponding t statistic and let Φα be the α percentage
point of the limiting distribution of τ̂t(j).

Result H: Testing Validity of Observed Factors

H.1. Let A(j) = 1
T

∑T
t=1 I(|τ̂t(j)| > Φα) and M(j) = max1≤t≤T

|τ̂t(j)|. Under the null hypothesis of exact linear com-
bination Gjt = δ′

jFt and
√
N/T → 0 as N,T → ∞, then

A(j) → 2α. If, in addition, eit is serially uncorrelated,
P (M(j) ≤ x) ≈ [2Φ(x) − 1]T , where Φ(x) is the cdf of a
standard normal random variable.
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H.2. Consider the null hypothesis Gjt = δ′
jFt + εjt. Let ε̂jt =

Gjt − Ĝjt. As N,T → ∞ and with s2jt = T−1F̃ ′
t(T

−1∑T
s=1

F̃sF̃
′
sε̂

2
js)

−1F̃t + N−1Avar(Ĝjt), then for each t

ε̂jt − εjt
sjt

d−→N(0,1).

An estimate of 1
NAvar(Ĝjt) is N−1γ̂′

j Ṽ
−1Γ̃tṼ −1γ̂j , where

Ṽ and Γ̃t are defined in previous sections. Also define two
overall statistics (not depending on t)

NS(j) =
v̂ar(ε̂(j))

v̂ar(Ĝ(j))
and R2(j) =

v̂ar(Ĝ(j))
v̂ar(G(j))

,

where v̂ar(·) is simply the sample variance. Then NS(j)
should be close to zero and R2(j) should be close to one
under the null hypothesis of an exact linear combination.

H.3. Let ρ̃2
1, . . . , ρ̃

2
p be the largest p = min[m,r] sample squared

canonical correlations between F̃ and G. Suppose that
(F ′

t ,G
′
t)

′ are iid normally distributed and the true canoni-
cal correlation coefficient between Ft and Gt are given by
ρ2
1, . . . ,ρ

2
p. As N,T → ∞ with

√
T/N → 0,

z̃k =

√
T (ρ̃2

k − ρ2
k)

2ρ̃k(1 − ρ̃2
k)

d−→N(0,1), k = 1, . . . ,min[m,r].

These results are based on Bai and Ng (2006b). Both A(j) and
M(j) are tests for exact factors. The A(j) statistic allows Gjt to deviate
from Ĝjt for a specified number of time periods as specified by α. The
M(j) test is stronger and requires Gjt not to deviate from Ĝjt by more
than the sampling error at every t. As measurement error and time
aggregation can be responsible for deviations between the observed and
latent factors, an approximate test is given in G.2. Instead of asking
how large the measurement errors in the proxy variables are, the two
overall statistics, NS(j) and R2(j), provide a guide to the size of the
measurement error. Under normality, how close is the set Gt to the set
of latent factors can also be assessed by testing the canonical correlation
coefficients. The normality assumption can be relaxed to iid elliptically
distributed errors with a suitable rescaling of z̃k.



6
Panel Regression Models with a Factor

Structure in the Errors

Consider the following model

Yit = X ′
itβ + uit

and

uit = λ′
iFt + εit,

where Xit is a p × 1 vector of observable regressors, β is a p × 1 vector
of unknown coefficients; uit has a factor structure, but λi, Ft, and εit are
all unobserved. We are interested in the estimation of β, the common
slope coefficients.

We assume that εit are independent of the regressors. If both λi
and Ft are also independent of the regressor Xit, the aggregate error
uit will also be independent of the regressor and the model can be
estimated with pooled least squares. More efficient estimation could
be obtained by GLS based on the factor error structure. However, we
allow the regressors to be correlated with either the factors Ft or the
factor loadings or both. In this case GLS will be inconsistent.

The above model with a factor error structure encompasses the fixed
effect model as a special case. To see this, let r = 2, and for all i and
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all t, define

Ft =
[
1
ξt

]
and λi =

[
αi
1

]
.

Then

λ′
iFt = αi + ξt.

Hence, the model reduces to

Yit = X ′
itβ + αi + ξt + εit,

which is the fixed effect model where the individual effects αi and the
time effects ξt enter the model additively instead of interactively.

The fixed effect model is usually estimated by the least squares
dummy variable approach which treats αi and ξt as parameters to be
estimated. This suggests that for models with factor errors, we can also
treat λi and Ft as parameters. The unknown parameters β, λi, and
Ft can be estimated by simply minimizing the least squares objective
function

∑N
i=1
∑T

t=1(Yit − X ′
itβ − λ′

iFt)
2. The model is, however, over-

parameterized since λ′
iFt = λiAA

−1Ft for an arbitrary invertible matrix
A. We need r2 restrictions since an arbitrary invertible r × r matrix
has r2 free parameters. These restrictions are most clearly stated using
vector representation of the model

Yi = Xiβ + Fλi + εi,

where for i = 1,2, . . . ,N , Yi = (Yi1, . . . ,YiT )′, Xi = (Xi1, . . . ,XiT )′ (T ×
k), and F = (Fi1, . . . ,FiT )′ (T × r). Also let Λ = (λi1, . . . ,λiN )′ (N × r).
The constraint

F ′F/T = I

implies r(r + 1)/2 restrictions since a symmetric matrix has r(r + 1)/2
free parameters. The additional constraint that Λ′Λ is a diagonal matrix
(i.e., the off diagonal elements are zero) gives r(r − 1)/2 restrictions
since the off-diagonal elements of a symmetric matrix has r(r − 1)/2
free parameters. These restrictions are similar to those in the pure
factor model stated in previous sections. They are restated here for
completeness.
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Now consider minimizing the least squares objective function

SSR(β,F,Λ) =
N∑
i=1

(Yi − Xiβ − Fλi)′(Yi − Xiβ − Fλi)

subject to the constraint F ′F/T = Ir and Λ′Λ being diagonal. Define
the projection matrix

MF = IT − F (F ′F )−1F = IT − FF ′/T.

The least squares estimator for β for each given F is simply

β̂(F ) =

(
N∑
i=1

X ′
iMFXi

)−1 N∑
i=1

X ′
iMFYi.

Given β, Wi = Yi − Xiβ has a pure factor structure given by

Wi = Fλi + εi.

Define W = (W1,W2, . . . ,WN ), a T × N matrix. Thus F is estimated
as the first r eigenvectors associated with first r largest eigenvalues of
the matrix

WW ′ =
N∑
i=1

WiW
′
i =

N∑
i=1

(Yi − Xiβ)(Yi − Xiβ)′.

Denote this estimate by F̂ (β). Then Λ̂(β) = W ′F̂ (β)/T . Therefore,
given F , we can estimate β, and given β, we can estimate F . The
final least squares estimator (β̂, F̂ ) is the solution to the following set
of nonlinear equations

β̂ =

(
N∑
i=1

X ′
iMF̂

Xi

)−1 N∑
i=1

X ′
iMF̂

Yi, (6.1)

and [
1
NT

N∑
i=1

(Yi − Xiβ̂)(Yi − Xiβ̂)′
]
F̂ = F̂ VNT , (6.2)

where VNT is a diagonal matrix consisting of the r largest eigenvalues
of the above matrix1 in the brackets, arranged in decreasing order.

1 We divide this matrix by NT to make VNT have a proper limit. The scaling does not
affect F̂ .
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The solution (β̂, F̂ ) can be simply obtained by iteration. Given F̂ , we
have Λ̂ = W ′F̂ /T . An alternative estimation procedure is suggested
by Pesaran (2006), in which time averages of the dependent variable
and independent variables are included as additional regressors. These
averages play the role of estimated common factors.

Assumptions: EF-Panel. Assume F(0), L, E, and IE of Section 3
hold, together with one of the following assumptions

(i) εit are iid for all i and t;
(ii) εit are correlated and heteroskedastic only in the cross-

section dimension, and T/N → 0;
(iii) εit are correlated and heteroskedastic only in the time dimen-

sion, and N/T → 0.

Under the above assumption, the estimator β̂ has the following
asymptotic distribution

√
NT (β̂ − β0) =

(
1
NT

N∑
i=1

Z ′
iZi

)−1
1√
NT

N∑
i=1

Z ′
iεi + op(1),

where

Zi = MFXi − 1
N

N∑
i=1

aikMFXk

and aik = λ′
i(Λ

′Λ/N)−1λk. The right-hand side of the representation
does not depend on any estimated quantity.

Result I: Panel Data Models with Interactive Effects. Under
the assumption

1
NT

N∑
i=1

Z ′
iZi

p−→D0 and
1√
NT

N∑
i=1

Z ′
iεi

d−→N(0,DZ),

I.1. If (i) of EF-Panel holds, then
√
NT (β̂ − β) d−→N(0,D−1

0 DZD
−1
0 ).
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I.2. If (ii) or (iii) of EF-PANEL holds, and T/N → ρ > 0,
√
NT (β̂ − β) d−→N(ρ1/2B0 + ρ−1/2C0,D

−1
0 DZD

−1
0 ).

If the εit are allowed to be correlated and heteroskedastic in both
dimensions and if T/N → ρ > 0, asymptotic bias exists. The expres-
sion of B0 and C0 are given in Bai (2005), who also derived the biased-
corrected estimator. It is possible to test factor error structure against
additive fixed effect. The model can be extended to

Yit = X ′
itβ + αi + ξt + τ ′

iδt + εit.

But in this model, τ ′
iδt must have a genuine factor structure in the

sense that τi cannot be one for all i or Ft cannot be one for all t. The
details are given by Bai (2005).



7
Theory: Non-Stationary Data

Consider the following data generating process:

Xit = Dit + λ′
iFt + eit

(1 − L)Ft = C(L)ηt (7.1)

eit = ρi eit−1 + εit,

where Dit =
∑p

i=0 δit
i is the deterministic component. When p = 0,

Dit = δi is the individual specific fixed effect, and when p = 1, an indi-
vidual specific time effect is also present. When there is no deterministic
term, Dit is null and we will refer to this as case p = −1.

Assumption F(1): (i) ηt ∼ iid(0,Ση), E ‖ηt‖4 ≤ M , (ii) var(∆Ft) =∑∞
j=0CjΣηC

′
j > 0, (iii)

∑∞
j=0 j ‖Cj‖ <M , (iv) C(1) has rank r1, 0 ≤

r1 ≤ r, and (v) E ‖F0‖ ≤ M .

Assumption E(1): E|εi0| <M for all i = 1, . . . ,N .
Under F(1) (non-stationary factors), the short-run variance of ∆Ft

is positive definite but the long run variance can be reduced rank.
Initial conditions are also imposed on the factors and the errors to
permit asymptotic analysis.
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The number of common stochastic trends is determined by r1, the
rank of C(1). When r1 = 0, ∆Ft is overdifferenced and the common
factors are stationary.

In this model, Xit can be non-stationary when Ft has unit roots,
or ρi = 1, or both. Clearly, if the common factors share a stochastic
trend, Xit will all be non-stationary. But even if a series indeed has a
common and trending component, the series may appear stationary if
the idiosyncratic component is stationary.

7.1 Estimation of Ft when eit may be I(1)

Suppose now that we observe only Xit and we do not know if it is
the factors or the idiosyncratic errors are stationary. The possibility
that eit is non-stationary poses a serious problem for estimation, as
any regression with a non-stationary error (observed or otherwise) is
spurious. We now consider how to estimate the factors when we do not
know a priori if eit is stationary.

(a) Case p = 0: Let ∆Xit = λ′
i∆Ft + ∆eit. Denote xit = ∆Xit,

ft = ∆Ft, and zit = ∆eit. Let (λ̂i, . . . , λ̂N ) and (f̂1, . . . , f̂T )
and ẑit for all i and t be the principal components estimates
of λi,ft, and zit.

(b) Case p = 1: Let xit = ∆Xit − ∆Xi, ft = ∆Ft − ∆F , and
zit = ∆eit − ∆ei. Let f̂t and λ̂i be obtained by applying
the method of principal components to the differenced and
demeaned data. Let F̂t =

∑t
s=2 f̂s and êit =

∑t
s=2 ẑis.

Result A1. Let F̂t =
∑t

s=2 f̂s and êit =
∑t

s=2 ẑis. Suppose ft and λi
satisfy Assumption F(0), and zit satisfies Assumption L and E. Then

max
1≤t≤T

‖F̂t − HFt + HF1‖ = Op(T 1/2N−1/2) + Op(T−1/4).

The basis of Result A1, developed in Bai and Ng (2004), is that
xit = λ′

ift + zit is a pure factor model satisfying Assumption F(0). By
Result A0, f̂t, λ̂i, and ẑit are consistent for ft,λi, and zit. Result A1 says
that if T/N → 0 as N,T → ∞, then F̂t is uniformly consistent for HFt.
Pointwise convergence (for each given t) does not require T/N → 0;
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the deviation of F̂t from HFt is of order min[N−1/2,T−1/2]. This result
is quite remarkable, as it is obtained without knowledge of whether
Ft or eit is I(1) or I(0). This means that even if each cross-section
equation is a spurious regression, the common stochastic trends are
well defined and can be consistently estimated, if they exist. This is
certainly not possible within the framework of traditional time series
analysis in which N is fixed.

To see the method actually work, we simulate an I(1) common fac-
tor process Ft = Ft−1 + ηt, and independent I(1) idiosyncratic errors
eit = ei,t−1 + εit for t = 1,2, . . . ,T ; i = 1,2, . . . ,N (N = 40,T = 100) to
form Xit = λiFt + eit with λi iid N(0,1). The observable processes Xit

are not cointegrated because eit are independent I(1) processes. Once
the data are generated, we treat Ft and eit as unobservable. We then
estimate Ft by the difference-recumulating method discussed earlier. To
demonstrate that the estimated common trend Ft is close to the actual
Ft, we rotate F̂t toward Ft by running the regression Ft = bF̂t + error.
Figure 7.1 displays both Ft and b̂F̂t. The estimated F̂t tracks Ft quite
well. If the data are not differenced, one cannot expect consistent esti-
mation of Ft, unless the data are I(0). To see this, we present, in
Figure 7.2, the estimate without differencing the data. As can be seen,
the estimate is unsatisfactory.

Result A1 pertains to the case when we do not know if Ft and eit
are stationary or not. The case in which Ft is a vector of integrated pro-
cesses and eit is stationary is considered by Bai (2004). He shows that
the estimated common factors have a faster rate of convergence than
the case in which Ft being I(0). He also derives the limiting distribution
for the estimated common factors.

7.2 Unit Root Tests

The ability to estimate Ft when the data are non-stationary opens up
new possibilities of re-examining hypotheses that have been difficult
to test. For example, when xit has a factor structure, non-stationarity
can arise because Ft is I(1), or eit is I(1), or both. When one of the
components is stationary but the other is not, testing xit for non-
stationarity can be misleading. A more informative approach is to test
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Fig. 7.1 Estimated common trend from a large spurious system: Differenced data approach.

Ft and eit separately. Result A1 shows that this is possible. Consider
the regression

∆êit = d0êit−1 + di1∆êit−1 + · · · + dik∆êit−k + error. (7.2)

Result J: PANIC (Panel Analysis of Non-stationarity in
Idiosyncratic and Common Components). Suppose F(1), and
E(1) hold. Let ADF ci be the t test for d0 in (7.2) with k chosen such
that k3

min[N,T ] → 0. Let Wεi be a standard Brownian and Vei(s) be a
Brownian bridge.

J.1. Case p = 0:

ADF 0
i ⇒

∫ 1
0 Wεi(s)dWεi(s)

(
∫ 1
0 Wεi(s)2ds)1/2

.
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Fig. 7.2 Estimated common trend from a large spurious system: Level data approach.

J.2. Case p = 1:

ADF 1
i ⇒ −1

2

(∫ 1

0
Vei(s)2ds

)−1/2

.

Result J says that the said Dickey–Fuller test can be used to test if êit
is non-stationary, one series at a time. When p = 0, the test has the
same limiting distribution as the usual Dickey–Fuller test without an
intercept. When p = 1, the limiting distribution is not a DF type but is
proportional to the reciprocal of a Brownian bridge. Result I suggests
that other unit root and stationary tests, not just the ADF, can be
used to test êit. Our conjecture is that the limiting distribution when
p = 0 will be the same as the one when an observed series is tested but
without the intercept. When p = 1, the limiting distribution will likely
be different.
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Perhaps the most exploited aspect of the factor structure is that it
enables construction of panel unit root tests in the presence of cross-
section dependence. By assuming that the cross-section correlations are
strong and are induced by the common factors, they can be directly
removed from xit to yield êit. Thus, while pooling xit will yield tests
with size distortions, pooling êit is valid. Result K below considers three
types of pooled tests.

Result K: Pooled Unit Root Tests

K.1. Suppose the eit are iid across i. Let pi be the p-values
associated with ADF cê or ADF τê . Then

Pε =
−2
∑N

i=1 logpi − 2N√
4N

d−→N(0,1).

K.2. Given êit from PANIC, define the PMSB (panel MSB) as

PMSB =

√
N
(
tr( 1

NT 2 ê
′ê) − ψ̂

)√
φ̂4
ε/K

, (7.3)

where ψ̂ = ω̂2/2 and K = 3 when p = 0, and ψ̂ = ω̂2/6 and
K = 45 when p = 1. Under the null hypothesis that all eit
are non-stationary and iid across i, then as N,T → ∞ with
N/T → 0,

PMSB
d−→N(0,1).

Result K.1 pools the p values of the test and is especially appropriate
when there is substantial heterogeneity in the data. Result K.2 exploits
an important feature that distinguishes stationary from non-stationary
processes, namely, that their sample moments require different rates of
normalization in order to be bounded asymptotically. Assuming cross-
section independence, Phillips and Ploberger (2002) proposed a point
optimal test for panel unit root in the presence of incidental trends that
has some resemblance to the Sargan–Bhargava test, first proposed in
Sargan and Bhargava (1983). Stock (1990) modified the test to allow
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for serial correlation in the errors. The properties of the test are ana-
lyzed in Perron and Ng (1998). Our PMSB is explicitly motivated
by the Sargan–Bhargava test and permits xit to be cross-sectionally
correlated. Standard methods that do not take into account common
stochastic trends perform poorly, as documented by Banerjee et al.
(2005). Other procedures that allow factor structures can be found in
Moon and Perron (2004), Phillips and Sul (2003), Breitung and Das
(2007), Pesaran (2007), among others. A recent survey on panel unit
root and cointegration is provided by Breitung and Pesaran (2007).

Moon and Perron (2004) considered a panel unit root test that
estimates the pooled autoregressive coefficient of the defactored data.
The test, like Pε, is also a test of the idiosyncratic errors. As such, a
PANIC test of the pooled autoregressive coefficient in eit can also be
developed. Consider pooled OLS estimation of the model êit = ρêit−1 +
εit, where ê−1 and ê are (T − 2) × N matrices. When p = 1, we add
an intercept and a linear trend in the above regression. Define the bias
corrected estimator

ρ̂+ =
tr(ê ′−1Mz ê − NTψ̂)

tr(ê ′−1Mz ê−1)
,

where ψ̂ is the bias correction estimated from ε̂ = Mz ê − ρ̂Mz ê−1,
where M1 = IT−2 − z(z′z)z′ with z = (z1,z2, . . . ,zT−2)′. Let ω̂2 =
1
N

∑N
i=1 ω̂

2
i , ω̂

2
i being the estimate for the long run variance of εit, com-

puted from the residuals ε̂it. Also let σ̂2 = 1
N

∑N
i=1 σ̂

2
i with σ̂2

i being the
variance estimate for εit, and φ̂4

ε = 1
N

∑N
i=1 ω̂

4
i .

K.3 Consider the test statistics

Pa =
√
NT (ρ̂+ − 1)√
Kaφ̂ 4

ε /ω̂
4

Pb =
√
NT (ρ̂+ − 1)

√
1

NT 2 tr(ê−1Mê ′−1)Kb
ω̂2

φ̂4
ε

.

Then Pa,Pb
d−→N(0,1), where the parameter values are given in the

following table:
Result K.3 is a test of whether the pooled autoregressive coeffi-

cient is unity, and was recently developed in Bai and Ng (2006d).
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p Mz ψ̂ Ka Kb

0 IT−2 λ̂ε 2 1
1 M1 −σ̂2

ε/2 15/4 4

The statistics Pa,b are the analog of ta,b of Moon and Perron (2004),
except that (i) the tests are based on PANIC residuals and (ii) the
method of “defactoring” of the data is different from MP. Improved
versions of the tests can also be obtained by iteration. As discussed in
Bai and Ng (2006d), iteration ensures that the estimate of ρ used to
construct the long-run variance estimates coincides with the estimate
of ρ that is being test for deviation from unity.

When p = 0, whether one tests the pooled autoregressive coefficient
using Pa,Pb, or the divergence of the sample moments using PMSB,
the results in terms of both size and power are quite similar. Both tests
have better power than testing the pooled p values. However, we find
in Bai and Ng (2006d) that Pe and PMSB are superior to tests of a
common unit root against incidental trends. Moon et al. (2007) and
Phillips and Ploberger (2002) also documented that panel unit root
tests that rely on a pooled estimate of autoregressive parameter do not
have good power properties against deterministic trends.

In a recent paper, Westerlund and Larsson (2007) point out that
the asymptotic distribution of a test that pools the individual unit
root tests is not centered around zero. While this suggests that the Pe
(which pools p values instead of the tests) may have size distortion,
simulations suggest that this is a problem in finite samples only when
N is very small (less than 10). On the other hand, the Pe is still the
test with the best properties when there are incidental trends.

7.3 Common Trends

If there are common factors in the data xit, and one or more of the
factors are non-stationary, any two series xit and xjt are cointegrated
in the sense of Engle and Granger (1987). Result A1 shows that Ft can
be consistently estimated without knowing if the data are stationary or
not. Testing if F̂t is non-stationary, however, is more involved because
F̂t is a vector process and there can be multiple unit roots. Define F̂ ct =



7.4 Panel Unit Roots with Structural Breaks 139

F̂t − F̂ , F̂ = (T − 1)−1∑T
t=2 F̂t. For some m ≤ r, let Ŷ c

t = β̂′
⊥F̂

c
t , where

β̂⊥ are the m eigenvectors associated with the m largest eigenvalues of
T−2∑T

t=2 F̂
c
t F̂

c′
t . Let ŷct = Π̂(L)Ŷ c

t and v̂cf be the smallest eigenvalue of
Φ̂c
f (m) = 1

2 [
∑T

t=2(ŷ
c
t ŷ
c′
t−1 + ŷct−1ŷ

c′
t )](

∑T
t=2 y

c
t−1ŷ

c′
t−1)

−1. Similarly define
ŷτt and F̂ τt when there is a time trend.

Result L: Testing for Common Trends. Consider the null hypo-
thesis that Ft has m stochastic trends with finite VAR representation.

L.1 (intercept model). Let W c
m be a vector of m dimensional

demeaned Brownian motions. Then MQcf (m) = T (v̂cf (m) −
1) d−→vc∗(m), where vc∗(m) is the smallest eigenvalue of

Φc
∗(m) =

1
2
[W c

m(1)W c
m(1)′ − Im]

[∫ 1

0
W c
m(s)W c

m(s)′ds
]−1

.

L.2 (linear trend case). Let W τ
m be a vector of m dimensional

detrended Brownian motions. Then MQτf (m) = T (v̂τf (m) −
1) d−→vτ∗ (m), where vτ∗ (m) is the smallest eigenvalue of

Φτ
∗(m) =

1
2
[W τ

m(1)W τ
m(1)′ − Im]

[∫ 1

0
W τ
m(s)W τ

m(s)′ds
]−1

.

Result L states that the number of common trends in Ft can be tested
using F̂t. The proposed statistic is a modified variation of Stock and
Watson (1988). Their test is based on the idea that the real part of
the smallest eigenvalue of an autoregressive coefficient matrix should
be unity. Our modification ensures that the eigenvalues are always real
and enables simplifications to the proofs.

7.4 Panel Unit Roots with Structural Breaks

The model has the same form as (7.1) except that the determin-
istic components have structural breaks. Bai and Carrion-i-Silvestre
(2004) consider two specifications, referred to as Model 1 and Model 2,
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respectively,

Model 1 : Di,t = µi +
li∑
j=1

θi,jDUi,j,t (7.4)

Model 2 : Di,t = µi + βit +
li∑
j=1

θi,kDUi,j,t +
mi∑
k=1

γi,kDT
∗
i,k,t, (7.5)

where DUi,j,t = 1 for t > T ia,j and 0 elsewhere, and DT ∗
i,k,t = (t − T ib,k)

for t > T ib,k and 0 elsewhere, where T ia,j and T ib,k denote the jth and
kth dates of the break for the ith individual, j = 1, . . . , li, k = 1, . . . ,mi.
There are li structural breaks affecting the mean and mi structural
breaks affecting the trend of the time series, where li is not necessarily
equal to mi.

The structural breaks are heterogeneous across individuals because
(i) the break dates T ia,j and T ib,k are individual specific, (ii) the magni-
tude of shifts are also individual specific, (iii) each individual may have
a different number of structural breaks, and (iv) the break points for
the level and the slope can be at different times. While Model 1 is a
special case of Model 2, the limiting distribution of the test statistic
for Model 1 is not a special case for Model 2. Thus we will consider the
two models separately.

To estimate the model, we follow Bai and Ng (2004). For Model 1,
differencing leads to

∆Xit = ∆F ′
tπi + ∆e∗it,

where

∆e∗it = ∆eit +
�i∑
j=1

θi,jD(T ia,j)t, (7.6)

withD(T ia,j)t = 1 if t = T ia,j andD(T ia,j)t = 0 otherwise. In matrix nota-
tion, we can rewrite the above as

∆Xi = ∆Fπi + ∆e∗i ,

where ∆Xi = (∆Xi,2,∆Xi,3, . . . ,∆Xi,T )′ and ∆e∗i = (∆e∗i,2,∆e
∗
i,3, . . . ,

∆e∗i,T )′ are two (T − 1) × 1 vectors for the ith individual, ∆F =
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[∆F1, ∆F2, . . . ,∆FT ]′ is a (T − 1) × r matrix and πi = (πi,1, . . . ,πi,r)
′

is the (r × 1)-vector of loading parameters for the ith individual,
i = 1, . . . ,N .

We can rewrite the model more compactly as

xi = fπi + zi, (7.7)

where xi = ∆Xi, f = ∆F , and zi = ∆e∗i . Now f and z can be estimated
by the principal components method. The unit root test statistic for
each individual time series can be based on

êi,t =
t∑

s=2

ẑi,s.

A consistent unit root test is the modified Sargan–Bhargava (MSB)
statistic, defined as

MSBi =
T−2∑T

t=1 ê
2
i,t

σ̂2
i

, (7.8)

where σ̂2
i is a consistent estimator of the long-run variance of eit −

ρiei,t−1.
For Model 2, differencing leads to

∆Xi,t = ∆F ′
tπi + βi +

mi∑
k=1

γi,kDUi,k,t + ∆e∗i,t,

where DUi,k,t = 1 when t > T ib,k and 0 otherwise. The dummy variables
result from differencing the broken trends, see Equation (7.5). There
is no loss of generality by assuming ∆Ft to have zero mean, otherwise,
define ft = ∆Ft − τ with τ = E(∆Ft) and redefine the intercept as βi +
τ ′πi. More compactly, we also have

xi = fπi + aiδi + zi, (7.9)

where xi, f , and zi are defined earlier; δi = (βi,γi,1, . . . ,γi,mi)
′ and

ai = (ai,2, . . . ,ai,T )′ with ai,t = (1,DUi,1,t, . . . ,DUi,mi,t)
′. Thus ai is the

matrix of regressors for the ith cross section, and δi is the corresponding
vector of coefficients.
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The matrix ai is not completely specified, as it depends on unknown
break points in the slope. But a slight modification of the iterative
approach considered in Section 4 can be used. Suppose the break points
are known. Then we can start the iteration by first estimating δi with
the least squares, i.e., δ̃i = (a′

iai)
−1a′

ixi. Because f has zero mean and
may therefore be treated as a part of regression errors, δ̃i is in fact
root-T consistent in the first step. Given δ̃i, we estimate the factors
and factor loadings based on w̃i = xi − aiδ̃i (i = 1,2, . . . ,N). Due to
the good starting value for δ̃i, convergence is rapid, where convergence
is achieved when the successive change in sum of squared residuals
is small than a prespecified small number. The iteration procedure is
equivalent to simultaneously estimating f , πi, and δi.

In general, we need to estimate the break points. Because ∆Ft has
zero mean, we can regard fπi + zei as the overall disturbance. Then
Equation (7.9) is a simple model with mean breaks. We can apply the
Bai–Perron dynamic programming algorithm to estimate the number
and the location of the breaks. This is done equation by equation,
unless one assumes common break dates across equations. Owing to the
consistency and fast convergence rate for the estimated break points,
the regression matrix ai indeed can be treated as known. A formal
argument is presented in Bai and Carrion-i-Silvestre (2004).

With breaks in slope, the estimation procedure consists of two steps.
The first step estimates mi and the break points T ib,k, k = 1, . . . ,mi,
to obtain (m̂i, T̂

i
b,k;k = 1, . . . ,mi), from which we define the regressor

matrix âi. The second step estimates f , πi, and δi (i = 1,2, . . . ,N) from
the equation xi = fπi + âiδi + zi with an iteration procedure described
earlier. Let f̂ , π̂i, and δ̂i be the final estimates. The residual vector is
given by

ẑi = xi − f̂ π̂i − âiδ̂i.

The cumulative sum of ẑi,t gives êi,t =
∑t

s=2 ẑi,s. The MSB test based
on the sequence êi,t is computed as in Equation (7.8) for each i to test
the null hypothesis that ρi = 1 in Equation (7.1), against the alternative
hypothesis that |ρi| < 1. The limiting distribution of the MSB statistics
when there are common factors and multiple structural breaks is given
in the following result.
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Result M: Unit Root Test with Breaks. Assume that the trend
break points satisfy T ib,k = [Tλi,k], where [x] denotes the largest integer
less than or equal to x, and λi,k ∈ (0,1), k = 1,2, . . . ,mi, i = 1,2, . . . ,N .
Under the null hypothesis that ρi = 1, the MSB test in (7.8) converges
in distribution to

(1) Model 1: MSB i ⇒ ∫ 1
0 W

2
i (r)dr

(2) Model 2: MSB i (λi) ⇒∑mi+1
k=1 (λi,k − λi,k−1)

2 ∫ 1
0 V

2
i,k (b)db,

where Wi (r) is the standard Brownian motion independent across i,
Vi,k (b) = Wi,k (b) − bWi,k (1) is a Brownian bridge independent across
i and k, k = 1, . . . ,mi + 1, and λi,0 = 0 and λi,mi+1 = 1, i = 1, . . . ,N .

Since the common factors F do not appear in the limiting distri-
bution, the test statistics MSBi(λ) are asymptotically independent
provided that eit are independent over i. This implies that one can
construct a valid pooled test statistic. Let ξi denote the limiting dis-
tribution. It is very easy to derive the mean and variance of ξi which
are given in Bai and Carrion-i-Silvestre (2005). One way of pooling is
through standardization

P1 =
1√
N

N∑
i=1

MSBi(λi) − E(ξi)
var(ξi)

.

The other way of pooling is the combination of individual p-values. Let
pi denote the p-value for MSB i(λi). Define

P2 =
−2
∑N

i=1 log(pi) − 2N
2
√
N

.

Given a value of test statistic MSBi(λi), its p-value can be easily
obtained via the response surfaces computed by Bai and Carrion-i-
Silvestre (2004). The above discussion focuses on breaks in the mean
and slopes. Breaks in factor loadings are studied by Kao et al. (2007).

7.5 Panel Cointegration with Global Trends

Consider now the model

Yit = X ′
itβ + uit,
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where for i = 1, . . . ,N, t = 1, . . . ,T , Yit is a scalar, Xit = Xit−1 + νit. If
uit is stationary and iid across i, we can then say the panel shares a com-
mon cointegrating vector, (1,−β′). It is straightforward to show that β̂
is superconsistent, even though its limiting distribution is, in general,
non-standard. The assumption that uit is cross-sectionally independent
is strong. To remove this assumption, we assume

uit = λ′
iFt + eit,

where Ft is a r × 1 vector of latent common factors, λi is a r × 1 vector
of factor loadings and eit is the idiosyncratic error. If Ft is stationary,
Yit and Xit are still cointegrated in a panel sense. But if Ft is non-
stationary, panel cointegration effectively occurs between Yit,Xit and
Ft. For obvious reasons, the model can be termed panel cointegration
with global stochastic trends. Define

wi = Yi − Xiβ = Fλi + ei.

Our proposed continuous updated estimator (Cup) for (β,F ) is
defined as

(β̂Cup, F̂Cup) = argmin
β,F

SNT (β,F ).

More precisely, (β̂Cup, F̂Cup) is the solution to the following two non-
linear equations

β̂ =

(
N∑
i=1

X
′
iMF̂

Xi

)−1 N∑
i=1

X
′
iMF̂

Yi (7.10)

F̂ VNT =

[
1

NT 2

N∑
i=1

(
Yi − Xiβ̂

)(
Yi − Xiβ̂

)′
]
F̂ , (7.11)

where M
F̂

= IT − T−2F̂ F̂ ′ since F̂ ′F̂ /T 2 = Ir, and VNT is a diagonal
matrix consisting of the r largest eigenvalues of the matrix inside the
brackets, arranged in decreasing order. The estimator of β̂ has the
same form as in the stationary case considered earlier. But the limiting
distribution is different.
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Result N: Panel Cointegration and Global Trends. Define
the bias-corrected Cup estimator as β̂CupBC = β̂Cup − 1

T φ̂NT , where
φNT is a bias correction term defined in Bai et al. (2006). Then√
NT (β̂CupBC − β0) d−→N(0,Σ) for some positive definite matrix Σ.
The result is based on Bai et al. (2006). Because of asymptotic nor-

mality, the usual chi-square test for hypothesis on the coefficient β can
be performed. The Cup estimator is obtained by iteratively solving for
β̂ and F̂ using (7.10) and (7.11). It is a nonlinear estimator even though
linear least squares estimation is involved at each iteration. The CupBC
estimator is consistent with a limiting distribution that is centered at
zero as long as (N,T ) → ∞ and N

T → 0. A fully modified estimator
can also be obtained along the lines of Phillips and Hansen (1990).
The resulting bias-corrected CupFM estimator is also

√
NT consistent

and asymptotically normally. An extension to include incidental trends
such as

Yit = µi + γi t + X ′
itβ + λ′

iFt + eit

is also possible. The presence of incidental trends will affect the limit-
ing covariance matrix Σ, but asymptotic normality and and thus chi-
squared distribution for hypothesis testing on β remain valid.

7.6 Testing Panel Cointegration with Global Trends

Panel cointegration imposes the restriction that eit in (7.12) are all
I(0). This restriction can be tested. Bai and Carrion-i-Silvestre (2005)
consider testing the null hypothesis of no cointegration versus cointegra-
tion. More specifically, consider testing H0 : eit ∼ I(1) versus H1 : eit ∼
I(0) in the following heterogeneous slope panel cointegration model:

Yit = µi + γi t + X ′
itβi + λ′

iFt + eit. (7.12)

We assume both Xit and Ft are I(1). That is, Xit = Xi,t−1 + vit and
Ft = Ft−1 + ηt. As shown in Bai and Carrion-i-Silvestre (2005), there
is no loss of generality for testing purpose by assuming (∆X ′

it,∆F
′
t) =

(v′
it,η

′
t) is uncorrelated with ∆eit. This implies that the product

∆Xit∆eit will be a sequence of zero mean random variables. As
long as ∆eit and ∆Xit have weak serial correlations, the product



146 Theory: Non-Stationary Data

∆Xit∆eit is also serially correlated but only weakly. So we can assume
T−1/2∑T

t=1 ∆Xit∆eit to be Op(1). Similarly, T−1/2∑T
t=1 ∆Ft∆eit is

also Op(1).
Again as in Bai and Ng (2004), differencing in the intercept only

case leads to

∆Yit = ∆X ′
itβi + λ′

i∆Ft + ∆eit.

In the absence of correlation between ∆Xit and ∆Ft, we can first esti-
mate βi by least squares, treating λiFt + ∆eit as the regression error.
The lack of correlation between ∆Xit and the error λi∆Ft + ∆eit makes
it possible to obtain

√
T consistent estimation of βi. We can then

estimate Λ and F by the method of principal components treating
∆Xitβi + ∆eit as the idiosyncratic errors. But when ∆Xit and ∆Ft
are correlated, the two step procedure will be inconsistent; we must
estimate the unknown quantities simultaneously. This can be achieved
by the iteration procedure outline in Result N, with Ft replaced by
ft = ∆Ft.

Let z̃i = yi − xiβ̃i − f̃ λ̃i, and define ẽit =
∑t

s=2 z̃is. The MSB statis-
tic is again computed as

MSB i =
T−2∑T

t=2 ẽ
2
it

σ̃2
i

,

where σ̃2
i is an estimator for the long-run variance of eit − ρeit−1. The

estimator is obtained from the residuals ε̃it = ẽit − ρ̂iẽit−1 by the Newey
and West (1987) procedure.

For the linear trend case, we difference and demean the data as in
PANIC, and ft = ∆Ft − ∆F .

Result O: Testing Panel Cointegration. Under the null hypoth-
esis that ρi = 1:

O.1. For the intercept only case,

MSB i
d−→
∫ 1

0
Wi(r)2dr,

where Wi is a Brownian motion.
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O.2. For the linear trend case

MSB i
d−→
∫ 1

0
Bi(r)2dr,

where Bi is Brownian bridge.

It is important to highlight that the limiting distributions do
not depend on Xit and Ft. Thus the limiting distributions are inde-
pendent over i provided that eit are cross-sectionally independent.
As a result, a valid pooled test statistic for panel cointegration can
be constructed. One way of pooling is based on standardization.
Let Ui =

∫ 1
0 Wi(r)2 and Vi =

∫ 1
0 Bi(r)

2dr. Using EUi = 1/2, var(Ui),
E(Vi) = 1/6, and var(Vi) = 1/45, we have, for the intercept only case,√

3N−1/2∑N
i=1(MSBi − 1/2) d−→N(0,1), and for the linear trend case,√

45N−1/2∑N
i=1(MSBi − 1/6) d−→N(0,1). Pooling based on p-values

can also be easily constructed.
An LM type test for panel cointegration that also permits structural

breaks is considered by Westerlund and Edgerton (2007).



8
How Precise are the Factor Estimates?

The key to being able to use the principal component estimates as
though they were the observed factors is that the factor space can be
estimated precisely as N and T tend to infinity. In essence, if the prin-
cipal components can estimate the space spanned by the true factors
as N and T increase, and the sample principal components precisely
estimate the population principal components as N gets large, the sam-
ple principal components will consistently estimate the space spanned
by the factors. In simulations, we found that when the errors are iid
over i and t, min[N,T ] can be as small as 30 and the number of fac-
tors can be estimated with almost perfect certainty, suggesting that
the factor space can indeed be estimated with high precision even with
rather small samples. Figure 8.1 illustrates this for stationary and non-
stationary factors.

Can it be possible that increasing N does not improve the preci-
sion of the factor estimates? Boivin and Ng (2006) argued that this is
possible if the additional data are uninformative about the factor struc-
ture. This can arise if the idiosyncratic error variances are large, or if
the factor loadings of the additional data are small. More generally,
our theory for approximate factor models permits heteroskedasticity,
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Fig. 8.1 Actual and estimated stationary and nonstationary common factors with stationary
idiosyncratic errors (N = 30,T = 30).

some cross-section and some serial correlation in the errors. Errors in
which such effects are strong would be incompatible with Assump-
tion E. When the importance of the idiosyncratic error is magnified,
it will become more difficult to separate out the common from the
idiosyncratic component in the data, and data with these characteris-
tics cannot be ruled out in practice.

Efficiency issues surrounding the principal components estimator
are best understood in terms of OLS versus GLS. It is well known
that when the errors are spherical and other conditions of the Guass–
Markov theorem are met, OLS is the most efficient amongst the class of
linear unbiased estimators. However, when the errors are non-spherical,
a GLS estimator that exploits information in the structure of the error
variance is more efficient. In the present context, the principal com-
ponents estimator is based on an unweighted objective function that
minimizes the sum of squared residuals. No consideration is given as to
whether a particular observation has errors that may be correlated over
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t or i. Inefficient estimates can also be thought of as a consequence of
not exploiting the moments implied by the idiosyncratic errors. How-
ever, unlike in simple regressions when feasible FGLS is usually possi-
ble, a weighted principal components estimator that weights the errors
inversely by Ω is not possible. This is because the estimate of Ω, or
the sample covariance of ẽ, cannot be full rank if ẽ are the errors asso-
ciated with data generated by r ≥ 1 factors. Indeed, Ω̃ has a rank of
min[T,N ] − r making Ω̃ non-invertible. To remedy this problem, sev-
eral suggestions have been made to estimate weighted principal com-
ponents by solving the problem

min
F1,...,FT ,Λ

T∑
t=1

(Xt − ΛFt)′Ω̂(Xt − ΛFt),

giving Λ̃ as the eigenvectors of Ω̂−1/2Σ̂XΩ̂−1/2′. The methods differ
in the choice of Ω̂. Jones (2001) and Boivin and Ng (2006) use the
diagonal of Ω̃ obtained from the unweighted estimation, while Forni
et al. (2005) set Ω̂ = Σ̂ − Σ̂

C̃
, where Σ̂

C̃
is the covariance matrix of the

unweighted estimated common component C̃it. Boivin and Ng (2006)
also considered a priori rules that set the off-diagonal elements of Ω̂ to
be either zeros or ones depending on whether the error of a series is
deemed correlated with other errors. However, none of these methods
are optimal in any formal sense.

Let eigzr be the rth largest eigenvalue of the population covariance
matrix of the N variables, z. Recall that in theory, eigxr should diverge
as N increases while eigxr+1 should be bounded. Theory also says that
eigxr/eig

e
1 should diverge since the numerator increases with N and the

denominator is bounded. With weak loadings, correlated or large errors,
eigxr will not be “too different” from eigxr+1. Heaton and Solo (2006)
interpret eigxr/eig

x
r+1 as an indicator of signal to noise. The eigenvalue

conditions, while conceptually simple, are not easily translated into
practical use because with one set of observational data, we cannot
assess how the eigenvalues increase with N .

To better understand the precision of the factor estimates under
more general conditions, we consider a monte carlo experiment. The
data are generated according to the dynamic factor model. For i =
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1, . . . ,N and t = 1, . . . ,T ,

xit = λ′
i(L)ft + σieit,

where σ2
i is set so that for a pre-specified R2

i ∼ U [R2
L,R

2
U ],

var(λi(L)′ft)
var(eit)

= R2
i

1−R2
i

on average. In the simulations, we fix R2
U to 0.8.

The factor loadings λi(L) = λi0 + λi1L + · · · + λiL
s are generated with

λij ∼ N(0,1) for j = 0, . . . ,s. When s = 0, we have r = q = 1 static fac-
tor. When s > 0, we have r = q(s + 1) static factors but q = 1 dynamic
factor. The single common factor ft and the idiosyncratic errors evolve
according to

(1 − ρfL)ft = ut, ut ∼ N(0,1)

(1 − ρeL)eit = εit, E(εtε′t) = Ω.

The error variance matrix Ω is an identity matrix of order N when
the errors are cross-sectionally uncorrelated. Otherwise, it is a positive
definite correlation matrix such that a fraction Nc of the N2 elements
of Ω are nonzero. The parameters of the simulations are

• (N,T ) = (20,50), (50,100), (100,50), (100,100), (50,200),
(100,200);

• s = 0,1;
• ρf = 0, 0.4, 0.8;
• ρe = 0, U(0, 0.5), or U(0.4, 0.8);
• R2

L = 0.1, 0.35, 0.6;
• Nc = 0, 0.15, 0.3.

For a given s, there are 81 configurations for each sample size, giving
a total of 486 configurations. We consider 1000 replications for each
configuration. In each run, we keep track of the eigenvalues of Σxx =
x′x/NT and of Ω = e′e/(NT ). Let eigxr be average of the rth largest
eigenvalue of the matrix Σxx over 1000 replications, and let eige1 be
the corresponding largest eigenvalue of Ω. We will use EIGA,B(a,b) to
denote the ratio of the ath largest eigenvalue of the covariance matrix
of A to the bth largest eigenvalue of the covariance matrix of B. We also
keep track of FIT, which is the R2 from a regression of F̃t on Ft and a
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Table 8.1 Dependent variable: FIT.

β̂ t
β̂

β̂ t
β̂

β̂ t
β̂

β̂ t
β̂

Regressor r = 1 r = 2
Constant 0.974 21.244 1.000 66.855 0.958 15.048 0.988 37.176
C−1

NT 0.158 0.238 0.219 1.066 −0.257 −0.299 0.022 0.061
C−1

NT −4.086 −1.819 −3.030 −4.250 −3.196 −1.184 −1.499 −1.307
EIGx,x(k + 1,k) −0.116 −1.700 0.286 7.681
EIGe,x(1,1) 0.025 7.906 −0.019 −5.231
EIGx,x(k + 1,k)2 −0.952 −6.564 −1.007 −19.892
EIGe,x(1,1)2 −0.003 −10.694 −0.000 −0.214

R̄2 0.246 0.927 0.121 0.8454

constant. When F̂t is two-dimensional (as is the case when s = 1), we
regress each of the F̃t on Ft and then average the two R2.

To evaluate the precision of the factor estimates and to compactly
summarize the results, we perform a response surface analysis by
regressing FIT on the sample size, and other potential determinants
of FIT. Let CNT = min[

√
N,

√
T ] and R̄2 be importance of the com-

mon component. The estimates and the robust t statistics are reported
in Table 8.1.

Several features should be noted. First, the precision falls with the
number of factors. Second, while FIT improves with min[

√
N,

√
T ], the

effect is not statistically significant. The variation of FIT is primar-
ily explained by EIGx,x(r + 1, r), the ratio of the r + 1th to the rth
eigenvalue of Σx. Under the assumption that the factors are strong,
this ratio should tend to zero in the population as N increases. How-
ever, if the factors are weak, such as when the idiosyncratic errors are
large or correlated, or when the loadings are weak, this ratio may be
non-negligible. As suggested by Onatski (2006a) and Heaton and Solo
(2006), the larger this ratio, the less precise will be the factor estimates.
This ratio, along with the corresponding quadratic term, explain close
to 80% of the variation in FIT. Additional explanatory power is pro-
vided by EIGe,x(1,1), which also measures the size of the idiosyncratic
component. Thus the relative importance of the idiosyncratic compo-
nent is indeed an important determinant of the precision of FIT.

The above results suggest that the principal component estimator
can indeed be sensitive to the possibility of weak loadings, large error
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variances, and cross-section correlation all culminating in a large eigxr+1
that is no longer small relative to eigxr as theory assumes. Two ques-
tions arise. Is this a situation of empirical relevance, and are there
alternatives?

As for the first question, the availability of a lot of data should never
be taken to mean the availability of a lot of data informative about the
factor structure. Economic reasoning can usually help screen out data
that are overly similar to other series already included. For example, it
should not come as a surprise that the idiosyncratic error of two series,
one being a finer disaggregation of another, are correlated. Boivin and
Ng (2006) found that the errors IPC and IPCD (industrial production
of consumer goods and of durable goods) are strongly correlated, and a
case can be made to include only one series. Pre-screening of the impor-
tance of the common component in each series can also go a long way
in removing the uninformative variables from the panel of data used
in subsequent estimation. Admittedly, pretesting has its consequences.
But improving the precision of the factor estimates may well justify
the cost.

What are the alternatives to the principal components estima-
tor? For static factor models, the maximum likelihood estimator via
EM (expectation and maximization) algorithm has been considered by
many authors, for example, Rubin and Thayer (1982), Lehmann and
Modest (1988), and Ghahramani and Hinton (1996). Dynamic factor
models fit into the state space framework. Under large N , a dynamic
factor model is that of a state space model with a small number of state
variables but a large number of measurement equations. Naturally, the
state space method (especially the EM algorithm combined with the
Kalman smoother) can be used to estimate the model, see Watson
and Engle (1983), Quah and Sargent (1992), and Shumway and Stoffer
(2000). A subspace algorithm is considered by Kapetanios and Mar-
cellino (2006b). Other estimators that have been considered involve re-
weighting the data matrix prior to extracting the principal components
estimator as discussed earlier. These methods are ad-hoc. Recently,
Doz et al. (2007) considered the quasi-maximum likelihood estimator
as an alternative. The estimator allows for heterogeneous errors and
serially correlated factors. Although similar in spirit to the estimator
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considered in Anderson (1984), the theory that Doz et al. (2007) devel-
oped assumes that N and T are both large. Their QMLE estimator
is based on the Kalman filter and reduces to an iteratively reweighted
principal components estimator when the data are assumed to be iid.
The weighting serves to downweigh the noisy series and goes some
way in resolving the weak loading/large error variance problem. The
advantage of the estimator is that it allows restrictions to be imposed
on the factor structure, whereas the principal components estimator is
best thought of as an unrestricted reduced form type estimator. The
limitation, however, is that QMLE is based on an approximation to
the “approximate factor model,” where the approximate model is in
fact a strict factor model that assumes the errors are cross-sectionally
uncorrelated. Therefore, information in the correlated errors is never
taken into account, just like the unweighted estimator. Although their
estimator appears to work well for a low degree of cross-section corre-
lation, it is unclear if the properties hold when the data with a high
noise to signal ratio (in the sense of eigxr/eig

x
r+1 not tending to zero)

are being analyzed. It therefore appears that no frequentist method has
yet provided a satisfactory solution to the problem of correlated errors.

Can Bayesian methods solve the problem? At the moment, Bayesian
analysis of dynamic factor models still do not allow for cross-sectionally
correlated errors. In preparing the monte carlo study, we also obtained
Bayesian factor estimates using the method discussed in Otrok and
Whiteman (1998), as well as the one described in Kim and Nelson
(2000). The Bayesian methods give posterior means very similar results
to the principal component estimates, but are tremendously more time
consuming to compute with little to no gain in precision. Thus, while
the Bayesian methods can be alternatives to the principal components
approach, they cannot (so far) be justified on precision grounds. Com-
ing up with alternatives to the principal components estimator remains
very much an important area for research.



9
Conclusion

This survey has surveyed some of the theoretical results relating to
the use of principal components as estimated factors in empirical work.
The estimator is simple to compute and can estimate well the factor
space when conditions required for consistent estimation are satisfied.
In practice, the data may be at odds with some of these conditions.
New simulation results provided in this survey show that the factor
estimates can be severely compromised when the data have a weak
factor structure in the sense that eigxr/eig

x
r+1 does not tend to zero.

This problem may not arise frequently in practice, but it also cannot be
ruled out. A user can alleviate the problem to some extent by using only
data that are truly informative about the factor structure. However,
how to deal with cross-sectionally correlated errors, which is a genuine
feature of an approximate factor model, remains an unresolved issue.
Thus, although much work has been accomplished in this research,
much more remains to be done.
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