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Abstract

In this paper, we consider testing distributional assumptions based on residual em-
pirical distribution functions. The method is stated for general distributions, but at-
tention is centered on multivariate normal and multivariate t-distributions, as they are
widely used, especially in financial time series models such as GARCH. Using the fact
that joint distribution carries the same amount of information as the marginal together
with conditional distributions, we first transform the multivariate data into univariate
independent data based on the marginal and conditional cumulative distribution func-
tions. We then apply the Khmaladze’s martingale transformation (K-transformation)
to the empirical process in the presence of estimated parameters. The K-transformation
purges the effect of parameter estimation, allowing a distribution free test statistic to
be constructed. We show that the K-transformation takes a very simple form for test-
ing multivariate normal and multivariate t distributions. For example, when testing
normality, we show that K-transformation for multivariate data coincides with that
of univariate data. For multivariate t, the transformation depends on the dimension
of the data but in a very simple way. We also extend the test to serially correlated
observations, including multivariate GARCH models. Finally, we present a practical
application of our test procedure on a real multivariate financial time series data set.
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1 Introduction

This paper considers the problem of testing multivariate distributions with a focus on the

multivariate normal distribution and the multivariate t distribution. This focus is largely

motivated by our empirical analysis, which in turns stems from recent developments in

the statistical analysis of financial data. When modelling conditional volatility for financial

variables as in generalized conditional heteroskedasticity (GARCH), the two most frequently

used distributions are multivariate normal and multivariate t, see Tsay (2002). Quite often,

it is not clear which distribution provides a better description of the financial variables.

Both distributions under GARCH can generate heavy tails and time varying volatility. Both

can do a good job in terms of predicting the future conditioning variance. However, when

computing the value at risk (VaR) of a portfolio, there could be a huge difference. Normality

assumption is likely to underreport the value at risk when the data do not fit the assumption.

Therefore, it is useful to know which distribution provides a better characterization for the

portfolio’s return distribution.

Many tests exist in the literature for multivariate normality, although tests on multi-

variate t are relatively scant. For multivariate normality, Mecklin and Mundfrom (2004)

provided a thorough survey. They classified the tests into four groups: graphic approaches,

skewness and kurtosis approaches (e.g. Mardia (1970)), goodness-of-fit approaches (e.g. chi-

square test, Kolmogorov and Simirnov test) and finally consistency approaches (e.g. Epps

and Pulley (1983), Baringhaus and Henze(1988), Henze and Zirker (1990)). The literature

is huge and we have to omit many important contributions; but readers are referred to the

comprehensive survey article by Mecklin and Mundfrom (2004). Each procedure has its own

advantages and disadvantages. For example, the skewness and kurtosis test is easy to use

and performs well against asymmetry. The well known Jarque-Bera (1981,1987) normality

test in the econometrics literature is based on symmetry and kurtosis. The chi-square test is

widely used for distributional assumptions and has intuitive appeal. When the dimension is

high, however, the number of cells required may be large and the number of observations in

each cell will be small. The Kolmogorov test is difficult to apply in the presence of estimated

parameters, particularly for multivariate data, where the number of estimated parameters is

large. When the estimated parameters are ignored, the inference will be invalid. And iid is

the usual assumption in most of the existing tests.

In this paper, we propose an alternative procedure. This procedure combines the Kol-

mogorov test and the K-transformation in Khmaladze (1981). The K-transformation aims

2



to purge the effect of parameter estimation, yielding a distribution-free test. The procedure

is particularly suited for testing multivariate normality and multivariate t. These two classes

of distributions enjoy similar properties. Both the marginal distributions and the conditional

distributions are in the same family of distributions, enabling simple computation. One ap-

pealing property of the proposed procedure is its applicability to time series observations

with time-varying means and time-varying covariance matrices. Our monte carlo simula-

tion shows the procedure is easy to implement and has good finite size and power. We use

asymptotic critical values, and no specialized tables or simulations are needed.

The paper is organized as follows. In section 2, we start out by outlining the idea of

the procedure. The outline is applicable for any multivariate distribution. In section 3, we

specialize the general principle to multivariate normality. Section 4 considers time series

data such as vector autoregressive models and GARCH processes. In Section 5, we further

elaborate the procedure for multivariate t distributions. Section 6 provides monte carlo

simulations to assess the finite sample performance of the procedure. Section 7 applies the

procedure to a real financial data set by testing the joint conditional distribution of IBM

stock’s return and the S&P 500 index. And section 8 concludes.

2 Description of the method

2.1 Preliminary

To introduce the idea, we first consider a bivariate distribution. Suppose the joint density

function of (X, Y ) is given by

fXY (x, y)

From

fXY (x, y) = fX(x)fY |X(y|x)

where fX is the marginal density function of X and fY |X is the conditional density function

of Y conditional on X. It is clear that the knowledge of the joint distribution is equivalent

to the knowledge of both marginal and conditional distributions. Similarly, from the joint

cdf FXY (x, y), one can obtain the marginal cdf FX(x) and the conditional cdf FY |X(y|x),

and vice versa. As a result, instead of directly testing specifications on the joint distribution

FXY (x, y), we test specifications on both the marginal distribution FX(x) and the conditional

distribution FY |X(y, x).
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One key step is to use the integral transformation to obtain uniformly distributed ran-

dom variables. This transformation allows us to handle nonidentically distributed random

variables as well as joint dependence and serial dependence. While X and Y are dependent,

a key insight is that FX(X) and FY |X(Y |X) are two independent uniform random variables.

This can be seen from the following argument.

For an arbitrary random variable Z , if its cdf FZ(z) is continuous, then FZ(Z) is U(0, 1)

random variable. Now the conditional distribution of Y conditional on X = x is FY |X(y|x),

it follows that the conditional distribution of FY |X(Y |X) (conditional on X = x) is U(0, 1).

Since this conditional distribution does not depend on x, the unconditional distribution of

FY |X(Y |X) is also U(0, 1) and is independent of X. Thus, FY |X(Y |X) is also independent

of any functions of X, in particular, of FX(X).

The above argument shows that we can turn the multivariate hypothesis testing into

testing univariate uniform random variables. This is possible because knowing the joint cdf

implies knowing the marginal cdf and the conditional cdf and vice versa. Using these cdf’s

we can transform the random variables into uniform random variables. What is the most

interesting and useful is that these uniform random variables are also iid. This allows for

constructing empirical processes that has a Brownian bridge and its limiting process. We

will discuss this further below.

Extending this argument to general multivariate distributions is straightforward. Suppose

we want to test the joint distribution of Y = (Y1, ..., Ym) is

F (y1, ..., ym).

From this joint distribution, one can obtain the marginal distribution F (y1) and the con-

ditional distributions F (y2|y1), F (y3|y1, y2), ..., F (ym|y1, ..., ym−1). Conversely, from these

marginal and conditional distributions, we can also obtain the joint distribution. Thus test-

ing the random vector Y having a joint cdf F (y1, ..., ym) is equivalent to testing

F (Y1), F (Y2|Y1), F (Y3|Y1, Y2), ..., F (Ym|Y1, ..., Ym−1)

are m iid U(0, 1) random variables.

Now suppose we have a random sample of size n on the random vector Y , denoted by

(with some a abuse of notation) Y1, Y2, ..., Yn such that Yi = (Yi1, ..., Yim). Then

F (Yi1), F (Yi2|Yi1), F (Yi3|Yi1, Yi2), ..., F (Yim|Yi1, ..., Yi,m−1) i = 1, 2, ..., n
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form nm number of iid U(0, 1) random variables. Now define an empirical process

Vnm(r) =
1√
nm

n∑
i=1

m∑

k=1

[I(Uik ≤ r)− r]

where Uik = F (Yik|Yi1, ..., Yi,k−1). Then as n →∞, it is well known that

Vnm ⇒ B(r)

where B(r) is a Brownian bridge on [0,1], a zero mean Gaussian process with covariance

function EB(r)B(s) = r∧ s− rs. From this weak convergence, one can easily construct test

statistic such that

S = max
r

Vnm(r)

then by the continuous mapping theorem

S
d−→ max

0≤r≤1
B(r).

2.2 When parameters are estimated

The preceding argument assumes that the distribution is fully specified. In practice, however,

the joint distribution is only specified up to a vector of unknown parameters. In general,

Let θ be the underlying parameter vector so that we may write Y ∼ F (y1, ..., ym; θ). For

example, for a normal distribution, we have Y ∼ N(µ, Σ). Here θ consists of µ and the non-

redundant elements of Σ. Both the marginal and conditional distributions depend on θ. In

the bivariate case Y = (Y1, Y2), the marginal distribution Y1 can be written as FY1(y1; h1(θ))

and the conditional distribution as FY2|Y1(y2|y1; h2(θ)), where h1 and h2 are two functions.

Let θ̂ be the MLE of θ. It is clear that h1(θ̂) and h2(θ̂) are MLE of h1(θ) and h2(θ),

respectively. We mention that MLE is not necessary. Any root-n consistent estimator for

θ is sufficient. This is an advantage of the method proposed, as MLE can be difficult to

compute for some distributions. In addition, direct estimators for τ1 = h1(θ) and τ2 = h2(θ)

instead of the plug-in estimators can also be used. The point is that the parameters of the

marginal and conditional distributions can be obtained in various ways.

Now introduce

Uik = F (Yik|Yi1, ..., Yi,k−1; hk(θ))

and

Ûik = F (Yik|Yi1, ..., Yi,k−1; hk(θ̂))
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Analogous to the definition of Vnm(r), we define

V̂nm(r) =
1√
nm

n∑
i=1

m∑

k=1

[I(Ûik ≤ r)− r] (1)

Owing to the estimation of the parameters, the limit process of V̂nm(r) is no longer a Brow-

nian bridge; an extra term will be present in the limit process. In general, we have the

representation,

V̂nm(r) = Vnm(r) + ḡ(r)′
√

mn(θ̂ − θ) + op(1)

where ḡ(r) is a vector of deterministic functions (depends on the actual distribution F ).

Clearly, the limiting process of V̂nm, unlike that of Vnm, is not distribution-free and depends

on the distribution of
√

mn(θ̂ − θ). As a consequence, a test directly based on V̂nm(r) is

difficult to use. This is a well known problem for the Kolmogorov test.

Khmaladze (1988) proposed a transformation method (K-transformation thereafter) that

can remove the effect of extra term. The idea of this transformation is to project the process

V̂nm(r) onto ḡ(r) and then use the projection residuals. The projection residuals no longer

contain the extra term. Because the limiting process Vnm(r) is a Brownian bridge, which

can be represented as W (r)− rW (1), where W (r) is a standard Brownian motion on [0, 1],

the K-transformation will also need to eliminate the drift term rW (1). Therefore, instead

of projecting V̂nm(r) on ḡ(r) alone, the K-transformation projects it on g(r) = (r, ḡ(r)′)′.

Furthermore, because W (r) is a (continuous-time) random walk, it is more efficient to project

dV̂nm(r) (the counterpart of the difference operator in discrete time) onto the derivative of

g, ġ(r). The corresponding residuals are the (continuous-time) generalized least squares

residuals. We state the K-transformation

Ŵmn(r) = V̂mn(r)−
∫ r

0

[
ġ(s)′C−1(s)

∫ 1

s

ġ(τ)dV̂mn(τ)
]
ds (2)

where C(s) =
∫ 1

s
ġ(r)ġ′(r)dr and ġ is the derivative g.

The transformation has an intuitive interpretation. Note that on the interval [s, 1], the

least squares estimator when regressing dVnm(r) on ġ(r) is given by

( ∫ 1

s

ġ(τ)ġ′(τ)dτ
)−1

∫ 1

s

ġ(τ)dV̂mn(τ)

This is analogous to the discrete-time least squares formula. Denoting this estimated co-

efficient by β(s), the predicted value for the differential dV̂nm(s) will be the regressor ġ(s)

multiplied by the estimated regression coefficient β(s), that is, ġ(s)′β(s). The predicted
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value for V̂nm(r) is simply the integration of the predicted value for the differential dV̂nm(s),

integrated over the interval [0, r], i.e.,
∫ r

0
ġ(s)′β(s)ds. This expression is exactly the second

term on the right hand side of (2). Finally the projection residual is the difference between

V̂nm(r) and its predicted value. This difference gives the right-hand side of (2). Bai (2003)

shows that the K-transformation is in fact calculating the continuous-time counterpart of

the recursive residuals in Brown, Durbin and Evans (1976). It is well known that sum of

recursive residuals leads to a Brownian motion process. Here the same result holds. That is

Ŵnm(r) ⇒ W (r).

where W (r) is a standard Brownian motion on [0,1]. Now define the test statistic

Snm = max
r
|Ŵnm(r)|

the continuous mapping theorem implies

Snm
d−→ max

r
|W (r)|.

Therefore, employing the K-transformation, we are able to obtain distribution-free test statis-

tic again. The limiting distribution is the extreme value of a standard Brownian motion

instead of Brownian bridge.

The asymptotic critical values can be obtained analytically, and can also be obtained via

simulation easily. For convenience, we provide the percentiles of the distribution in Table

1 via simulation. From the table, we see that the critical values at 1significance are 2.787,

2.214, and 1.940, respectively.

We will show subsequently that the K-transformation for testing multivariate normality

is very simple. Regardless the value of m or the dimension of θ, the K-transformation takes

the same form. In fact we will show that under the assumption of Yi ∼ N(µ, Σ), then

V̂nm(r) = Vnm(r)− φ(Φ−1(r))anm − φ(Φ−1(r))Φ−1(r)bnm + op(1) (3)

where anm and bnm are random quantities that do not depend on r; φ(x) and Φ(x) are the

density and cdf of N(0, 1). The K-transformation does not need to known anm and bnm. In

fact, the transformation implicitly estimates these quantities. A very useful fact to be shown

later is that the dimension of g is fixed when testing normality. More specifically,

g(r) = (r, φ(Φ−1(r)), φ(Φ−1(r))Φ−1(r))′
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which is a 3 × 1 vector. This is the same g as that for testing univariate normality, see

Bai (2003). This shows that K-transformation is extremely simple for testing multivariate

normality.

Table 1: The distribution of X = supr |W (r)|
P (X ≤ x) x P (X ≤ x) x P (X ≤ x) x P (X ≤ x) x P (X ≤ x) x
1.00 ∞ 0.80 1.625 0.60 1.260 0.40 1.011 0.20 0.799
0.99 2.787 0.79 1.602 0.59 1.245 0.39 0.999 0.19 0.787
0.98 2.551 0.78 1.578 0.58 1.231 0.38 0.988 0.18 0.776
0.97 2.407 0.77 1.556 0.57 1.218 0.37 0.978 0.17 0.765
0.96 2.303 0.76 1.534 0.56 1.205 0.36 0.967 0.16 0.754
0.95 2.214 0.75 1.514 0.55 1.192 0.35 0.956 0.15 0.742
0.94 2.146 0.74 1.494 0.54 1.178 0.34 0.945 0.14 0.730
0.93 2.083 0.73 1.476 0.53 1.165 0.33 0.935 0.13 0.718
0.92 2.028 0.72 1.457 0.52 1.153 0.32 0.924 0.12 0.705
0.91 1.982 0.71 1.440 0.51 1.140 0.31 0.914 0.11 0.692
0.90 1.940 0.70 1.421 0.50 1.129 0.30 0.904 0.10 0.679
0.89 1.898 0.69 1.403 0.49 1.116 0.29 0.893 0.09 0.664
0.88 1.860 0.68 1.386 0.48 1.104 0.28 0.882 0.08 0.650
0.87 1.825 0.67 1.368 0.47 1.093 0.27 0.872 0.07 0.634
0.86 1.790 0.66 1.352 0.46 1.080 0.26 0.861 0.06 0.617
0.85 1.759 0.65 1.336 0.45 1.069 0.25 0.851 0.05 0.600
0.84 1.730 0.64 1.320 0.44 1.057 0.24 0.841 0.04 0.578
0.83 1.703 0.63 1.305 0.43 1.045 0.23 0.830 0.03 0.556
0.82 1.676 0.62 1.290 0.42 1.034 0.22 0.819 0.02 0.527
0.81 1.651 0.61 1.275 0.41 1.022 0.21 0.809 0.01 0.487

3 Testing multivariate normality

For ease of exposition, we focus on the bivariate normality. Extension to the multivariate

normality is straightforward. Let Y = (Y1, Y2) be a bivariate normal vector such that

Y ∼ N(µ, Σ)

where

µ =

[
µ1

µ2

]
, and Σ =

[
σ2

1 σ12

σ21 σ2
2

]

It follows that

Y1 ∼ N(µ1, σ
2
1)
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and the conditional distribution of Y2 is

Y2|Y1 ∼ N(µ2|1, σ2
2|1)

where

µ2|1 = µ2 + σ21σ
−2
1 (Y1 − µ1)

and

σ2
2|1 = σ2

2 − σ2
12σ

−2
1 .

Therefore, the marginal cdf of Y1

F1(y1; θ) = Φ
(y1 − µ1

σ1

)

and the conditional cdf of Y2 conditional on Y1 = y1 is

F2|1(y2|Y1; θ) = Φ
(y2 − µ2|1

σ2|1

)

As argued in the previous section, replacing y1 and y2 by Y1 and Y2, respectively, the following

two random variables

U1 = Φ
(Y1 − µ1

σ1

)
and U2 = Φ

(Y2 − µ2|1
σ2|1

)

are independent U(0, 1).

Now suppose Y1, ..., Yn are iid with the same distribution as Y . Analogous to the above

Ui1 = Φ
(Yi1 − µ1

σ1

)
and Ui2 = Φ

(Yi2 − µ2|1,i

σ2|1

)
i = 1, 2, ..., n

form 2n iid U(0, 1) random variables, where µ2|1,i = µ2 +σ21σ
−2
1 (Yi1−µ1), which depends on

Yi1. These uniform random variables are unobservable because the parameters are unknown.

Let µ̂ = 1
n

∑n
i=1 Yi and Σ̂ = 1

n

∑n
i=1(Yi − µ̂)(Yi − µ̂)′ be the MLE of (µ, Σ). Replacing the

unknown parameters by their estimators, we obtain

Ûi1 = Φ
(Yi1 − µ̂1

σ̂1

)
and Ûi2 = Φ

(Yi2 − µ̂2|1,i

σ̂2|1

)

where µ̂2|1,i is equal to µ2|1,i with unknown parameters replaced by their estimators. And

σ̂2|1 is similarly defined. Thus define

V̂2n(r) =
1√
2n

n∑
i=1

[
I(Ûi1 ≤ r)− r + I(Û2i ≤ r)− r

]
(4)
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V̂2n(r) is an easily computable process. For example, for each given r, it is equal to the

number of Ûi1 less than or equal to r plus the corresponding number of Ûi2 minus 2r then

divided by
√

2n.

The following theorem gives the representation of V̂2n(r).

Theorem 3.1 Under assumption of normality,

V̂2n(r) = V2n(r)− φ(Φ−1(r)) an − φ(Φ−1(r))Φ−1(r) bn + op(1) (5)

where φ(·) and Φ(·) are the pdf and cdf of a standard univariate normal r.v., and

an = 1√
2

[
( 1

σ1
)
√

n(µ̂1 − µ1) + n−1/2
n∑

i=1

( 1
σ2|1

)(µ̂2|1,i − µ2|1,i)
]

bn = 1√
2

[
( 1

2σ2
1
)
√

n(σ̂2
1 − σ2

1) + ( 1
2σ2

2|1
)
√

n(σ̂2
2|1 − σ2

2|1)
]

From this asymptotic representation, we see that the limiting process of V̂2n(r) will be

a Brownian bridge plus extra terms. These extra terms make the Kolmogorov-Smirnov test

difficult to use. The actual expression of an and bn would become very important when

using Kolmogorov-Smirnov test. For the K-transformation, the actual expressions of an and

bn are irrelevant, all needed is that they are stochastically bounded. In our case, they are

each Op(1). The K-transformation only needs deterministic quantities that are functions of

r, any variable that is not a function r will be flushed into an and bn. The K-transformation

implicitly estimates an and bn and then forms a prediction of V̂2n(r) based on the predictor

g(r). The K-transformation then uses the prediction residuals so that terms involving g will

be eliminated.

With respect to testing normality, a striking feature is that the g function is very simple.

This function is identical to that for testing univariate normality, see Bai (2003). This

remains true for general multivariate normality other than bivariate normality. The only

changes are the expressions of an and bn. As pointed out earlier, the expressions of an and

bn are immaterial with respect to the K-transformation. This fact makes this procedure very

appealing. Let

g(r) = (r, φ(Φ−1(r)), φ(Φ−1(r))Φ−1(r))′

and its derivative

ġ(r) = (1,−Φ−1(r), 1− Φ−1(r)2)
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From these we obtain the transformed process

Ŵ2n(r) = V̂2n(r)−
∫ r

0

[
ġ(s)′C−1(s)

∫ 1

s

ġ(τ)dV̂2n(τ)
]
ds

where C(s) =
∫ 1

s
ġ(r)ġ′(r)dr. Now let

Sn = max
0≤r≤1

|Ŵ2n(r)|

we have

Corollary 3.2 Under the assumption of Theorem 1

Sn
d−→ max

0≤r≤1
|W (r)|

The asymptotic critical values of this test statistic can be found in table 1.

4 Serially correlated multivariate data

4.1 Vector autoregression

We can extend the preceding argument to allow observations to be serially correlated. For

concreteness, we consider a vector autoregressive models (VAR). We assume the data are

generated from a VAR(p).

Yt = A1Yt−1 + · · ·+ ApYt−p + εt

and consider testing the null hypothesis that εt are iid ∼ N(0, Σ). We assume observations

Y−p+1, ..., Y0, Y1, ...., Yn are available and the entire analysis will be conditional on the first p

observations Y−p+1, ..., Y0. Define the information set at time t as It = {Yt, It−1}, t = 1, 2, ..., n

with I0 = {Y−p+1, ..., Y0},then under the null hypothesis that εt are iid N(0, Σ),

Yt|It−1 ∼ N(µt, Σ)

where µt = A1Yt−1 + · · ·+ ApYt−p. The only difference from the previous section is that we

have a time-varying mean. Furthermore, this time-varying mean is also stochastic. In order

to obtain iid uniform random variables, we need the cdf of each of the following conditional

distributions
Yt1 | It−1

Yt2 | (Yt1, It−1)
...

Ytm | (Yt1, ..., Yt,m−1, It−1)

(6)
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So in the time series setting, the conditional information includes both contemporaneous

and past information. For example, for the conditional distribution of Yt2, the conditional

information includes Yt1 (contemporaneous information, the same t) and past information

It−1.

All these conditional distributions are normal. It is straightforward to express the condi-

tional means and conditional variances in terms of µt and Σ. Let µk|k−1,t be the conditional

mean and σ2
k|k−1,t be the conditional variance of the above kth random variable, that is,

E[Ytk |Yt1, ..., Yt,k−1, It−1] = µk|k−1,t

V ar[Ytk |Yt1, ..., Yt,k−1, It−1] = σ2
k|k−1,t

The conditional variance σ2
k|k−1,t is in fact time invariant, but we keep t here in order to

incorporate GARCH models to be considered later. Then

Utk = Φ
(Ytk − µk|k−1,t

σk|k−1,t

)

for k = 1, ..., m and t = 1, ..., n form n ·m number of iid uniform random variables. Replacing

unknown parameters by the estimated parameters (e.g., least squares estimators), we obtain

Ûtk for t = 1, ..., n and k = 1, ..., m. Then we can construct V̂nm as in (1).

Theorem 4.1 Under the assumption that εt are iid N(0, Σ), Theorem 3.1 holds with new

expressions for an and bn such that an = Op(1) and bn = Op(1).

An equivalent way to compute Utk and Ûtk is to use εtk and ε̂tk. The latter is simpler.

From

Yt = µt + εt

and because µt is in the information set It−1, Yt and εt have the same amount of information

once being conditional on It−1. Thus, taking conditional expectation on each side of the

following,

Ytk = µtk + εtk

we have

E[Ytk |Yt1, ..., Yt,k−1, It−1] = µtk + E[εtk |Yt1, ..., Yt,k−1, It−1]
= µtk + E[εtk | εt1, ..., εt,k−1, It−1]
= µtk + E[εtk | εt1, ..., εt,k−1]
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The last equality follows because εt is independent of It−1. In summary

µk|k−1,t = µtk + µε
k|k−1,t

where

µε
k|k−1,t = E[εtk | εt1, ..., εt,k−1].

It follows that

Ytk − utk|k−1 = Ytk − utk − uε
k|k−1,t = εtk − uε

k|k−1,t

Furthermore, the conditional variance of Ytk, σ2
k|k−1,t, is equal to the conditional variance of

εk|k−1,t, and thus

Utk = Φ
(Ytk − µk|k−1,t

σk|k−1,t

)
= Φ

(εtk − µε
k|k−1,t

σk|k−1,t

)

Replacing the unknown parameters by the estimated ones, we have

Ûtk = Φ
( ε̂tk − µ̂ε

k|k−1,t

σ̂k|k−1,t

)
(7)

where ε̂t is the estimated residuals.

We now summarize the procedure:

1. Estimate the parameters in VAR(p) process to obtained the residuals:

ε̂t = Y1 − Â1Yt−1 − · · · − ÂpYt−p

and compute

Σ̂ =
1

n

n∑
t=1

ε̂tε̂
′
t

2. Compute Ûtk using ε̂t and Σ̂ according to (7).

3. Construct the process V̂nm(r) and Ŵnm(r) and compute Snm.

We can see that after obtaining the residuals ε̂t, the remaining steps are identical to the

previous section, that is, we treat ε̂t as an observable variable.

For an illustration, consider the bivariate case. Note that µε
t,1|0 is simply the unconditional

mean of εt1, so it is zero; this is true whether we have bivariate or multivariate distribution.

Next the conditional mean of εt2 conditional on εt1 is µε
t,2|1 = σ12σ

−2
1 εt1. Thus

Ût1 = Φ
( ε̂t1

σ̂1

)
and Ût2 = Φ

( ε̂t2 − σ̂12σ̂
−2
1 ε̂t1

σ̂2|1

)

where σ̂2|1 = [σ̂2
2 − σ̂2

12/σ̂
2
1]

1/2.

13



4.2 Multivariate GARCH models

The preceding section assumes that εt is independent of It−1, we now relax this assumption

and consider a particular dependence process for εt, which is the multivariate GARCH, see

Bollerslev (1986) and Tsay (2002). Let us again consider the VAR(p) model

Yt = A1Yt−1 + · · ·+ ApYt−p + εt

but instead of assuming εt are iid normal, we assume

εt|It−1 ∼ N(0, Σt)

so that the conditional distribution has time varying covariance matrix. The GARCH model

assumes Σt is random but depends on the past εt with a fixed number of unknown parameters.

This implies that

Yt|It−1 ∼ N(µt, Σt)

where, as before, µt = A1Yt−1+· · ·+ApYt−p. Thus the random variables described in equation

(6) are all normally distributed. The only difference is that the conditional variances are

also time varying. Once the unknown parameters are estimated from the GARCH model, we

can again compute Ûtk easily. It is important to note that while the conditional distribution

of Yt is normal, the unconditional distribution is not normal under GARCH. In fact, the

distribution of Yt has heavy tails, and it may not even have finite variance depending on the

parameter values in the GARCH process, see Bollerslev (1987).

Again, as in Section 4.1, it is more convenient to work with disturbances. For concrete-

ness, we focus on bivariate GARCH. Let us write

Σt =

[
σ2

11,t σ12,t

σ21,t σ2
22,t

]

where the conditional variance Σt is time-varying. Throughout, we also write

σ2
1,t = σ11,t, and σ2

2,t = σ22,t

as part of conventional notation. This means that

εt1|It−1 ∼ N(0, σ2
1,t)

εt2|(εt1, It−1) ∼ N(σ12,tσ
−2
1,t εt1, σ

2
2|1,t)

14



where σ2
2|1,t = σ2

22,t − σ2
21,t/σ

2
11,t. Therefore, this means that

Ut1 = Φ
( εt1

σ1,t

)
and Ut2 = Φ

(εt2 − σ12,tσ
−2
1,t εt1

σ2|1,t

)

are iid U(0, 1). Replacing εt and {σij,t} by ε̂t and {σ̂ij,t}, obtained from a multivariate

GARCH model, we will obtain Ût1 and Ût2 for t = 1, 2..., n. Therefore, the procedure is

identical to VAR(p) in previous section. The only difference is the conditional variances are

time varying.

We next consider the modelling of Σt. Due to its symmetry, Σt contains three distinct

processes. Instead of directly modelling the three processes (σ2
1,t, σ21,t, σ

2
2,t) of Σt, Tsay (2002)

suggested a reparametrization that turns out convenient. Tsay suggested modelling the

triple:

(σ2
1,t, q21,t, σ

2
2|1,t)

where

q21,t = σ21,t/σ
2
1,t and

σ2
2|1,t = σ2

2,t − σ2
21,t/σ

2
1,t

Introduce

ηt1 = εt1, and ηt2 = εt2 − σ21,tσ
−2
1,t εt1

Clearly, σ2
2|1,t is the conditional variance of ηt2, conditional on It−1. With these reparametriza-

tions, the likelihood function takes a very simple form as shown by Tsay (2002). In addition,

Ut2 is simply Φ(ηt2/σ2|1,t). After estimating a GARCH process, it is straightforward to com-

pute these Ûtk. Further details on GARCH modelling are given in our empirical applications.

5 Testing multivariate t-distribution

The entire analysis for testing multivariate normality is readily extended to multivariate

t-distributions. A standard (univariate) t-distribution with degree of freedom ν has the

density

qν(x) = c(ν + x2)−(1+ν)/2

where c is a constant making the integral of qν(x) on the real line being 1. Let Qν(x) denote

the cdf. A random variable Y is said to have a generalized t distribution with parameters

(u, h2, ν) if

t = (Y − u)/h

15



has a standard t-distribution with ν degrees of freedom. We denote Y ∼ t(u, h2, ν). It is

clear that

P (Y ≤ y) = Qν

(y − u

h

)
(8)

so that we can easily compute probabilities of a generalized t random variable in terms of a

standard t random variable, much like the normal distribution. This is convenient because

most statistical packages such as SPLUS and MATLAB have qv(x) and Qv(x) built in. Note

that h is not the standard deviation because V ar(Y ) = ν
ν−2

h2.

A random vector X = (X1, ..., Xm) is said to have (generalized) multivariate t distribution

with parameters (u, Ω, ν, m) if its density

fX(x; u, Ω, ν, m) = C[ν + (x− u)′Ω−1(x− u)]−(ν+m)/2

where x = (x1, ..., xm)′, u = (u1, ..., um)′, and C is a normalizing constant (depending on the

parameters). We denote X ∼ t(u, Ω, ν). It is known that E(X) = u and V ar(X) = ν
ν−2

Ω.

Analogous to multivariate normality, when X has a multivariate t distribution, any

subvector of X is also multivariate t. In particular, each random variable Xi (i = 1, ..., m) is

a univariate generalized t random variable. 1Furthermore, conditional distributions are also

multivariate t. In particular, the conditional distributions Xk|(X1, ..., Xk−1) for k = 2, 3, ..., m

are all univariate generalized t; see, e.g. Zellner (1971). However, unlike the normality case,

the conditional variance is no longer a constant, but a function of the conditional variables.

Further properties on multivariate t can be found in Kotz and Nadarajah (2004).

Partition X = (X ′
1, X

′
2)
′ where X1 is p× 1, and X2 is (m− p)× 1, and let

u =

[
u1

u2

]
and Ω =

[
Ω11 Ω12

Ω21 Ω22

]
(9)

be partitioned conformably. Then both the marginal X1 and the conditional X2|X1 are

generalized multivariate t such that

X1 ∼ t(u1, Ω11, ν)

and

X2|X1 ∼ t(u2|1, Ω2|1, ν + m− p)

where

u2|1 = u2 + Ω21Ω
−1
11 [X1 − u1] (10)

1Conditional distributions associated with a standard multivariate t(where Ω is the correlation matrix)
are not necessarily standard multivariate t, but are generalized multivariate t.
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Ω2|1 = a[Ω22 − Ω21Ω
−1
11 Ω12] (11)

with

a = [ν + (X1 − u1)
′Ω−1

11 (X1 − u1)]/(ν + m− p)

Therefore, if both X1 and X2 are scalars (m = 2, p = 1), it follows immediately from (8)

P (X1 ≤ x) = Qν

(
x− u1

Ω
1/2
11

)

P (X2 ≤ x|X1) = Qν+1

(
x− u2|1

Ω
1/2
2|1

)

because ν + m− p = ν + 1. Thus

U1 = Qν

(
X1 − u1

Ω
1/2
11

)
and U2 = Qν+1

(
X2 − u2|1

Ω
1/2
2|1

)
(12)

are two independent uniform random variables.

For testing multivariate t, we focus on the case of bivariate distribution. The extension to

general multivariate case follows quite naturally. Now suppose Y1, Y2, ..., Yn form a random

sample from a bivariate t(u, Ω, ν) with parameters given in (9). Denote Yt = (Yt1, Yt2). The

previous analysis shows

Yt1 ∼ t(u1, Ω11, ν), and Yt2|Yt1 ∼ t(u2|1,t, Ω2|1,t, ν + 1)

where u2|1,t and Ω2|1,t are given in (10) and (11), respectively, with X1 replaced by Yt1. The

subscript t in u2|1,tand Ω2|1,t signify their dependence on Yt1. Therefore,

Ut1 = Qν

(
Yt1 − u1

Ω
1/2
11

)
and Ut2 = Qν+1

(
Yt2 − u2|1,t

Ω
1/2
2|1,t

)
(13)

(t = 1, 2, ..., n) form 2n iid uniform random variables.

Next consider the case that u and Ω are estimated. Because EYt = u, and E(Yt−u)(Yt−
u)′ = ν

ν−2
Ω. Let Σ be the variance, i.e., Σ = ν

ν−2
Ω. Consider the moment estimator

û =
1

n

n∑
t=1

Yt, and Σ̂ =
1

n− 1

n∑
t=1

(Yt − û)(Yt − û)′

then (û, Σ̂) is unbiased for (u, Σ). Thus

Ω̂ = [(ν − 2)/ν]Σ̂
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is unbiased for Ω. These estimators are also
√

n consistent. We assume ν is known. The

case of unknown ν requires a separate analysis, which we will omit. In the case that ν

is assumed to take on integer values, a consistently estimated ν can be treated as known

because consistency implies P (ν̂ 6= ν) = 0 in view of the discreteness of ν.

Given the estimated parameters, we can construct Ût1 and Ût2 as in (13) with the unknown

parameters replaced by their estimators, for example, û2|1,t = û2+Ω̂21Ω̂
−1
11 (Yt1− û1) and Ω̂2|1,t

is similarly obtained using (11).

Let V̂2n be defined in (4) with newly constructed Ûtk (k = 1, 2; t = 1, ..., n), we have

Theorem 5.1 Under assumptions of bivariate t, we have

V̂2n(r) = V2n(r)− ḡ(r)′ξn + op(1)

where

ḡ(r) =




qν(Q
−1
ν (r))

qν(Q
−1
ν (r))Q−1

ν (r)

qν+1(Q
−1
ν+1(r))

qν+1(Q
−1
ν+1(r))Qν+1(r)




, ξn =
1√
2




√
n(û1 − u1)/Ω

1/2
11

1
2

√
n(Ω̂11 − Ω11)/Ω11

1√
n

∑n
t=1(û2|1,t − u2|1,t)/Ω

1/2
2|1,t

1√
n

1
2

∑n
t=1(Ω̂2|1,t − Ω2|1,t)/Ω2|1,t




where qv and Qv are, respectively, the density and cdf of a standard univariate t random

variable with v degrees of freedom.

The actual expression for ξn plays no role in the martingale transformation, but the

expression of ḡ(r) is important. Let g(r) = (r, ḡ(r)′)′, then g is 5 × 1 vector. Given g,

the K-transformation is straightforward. It is interesting to note that for multivariate t

distribution, the g function has higher dimension than its counterpart in the normal dis-

tribution case. For a normal distribution, the dimension of g does not depend on m,

but for multivariate t, the dimension of g is 2m + 1. The K-transformation is Ŵ2n(r) =

V̂2n(r)− ∫ r

0

[
ġ(s)′C−1(s)

∫ 1

s
ġ(τ)dV̂2n(τ)

]
ds and the test statistic is Sn = max0≤r≤1 |Ŵ2n(r)|.

An alternative strategy is to perform two separate tests. The first is to test Ut1(t =

1, ..., n) are iid uniform and the second is to test Ut2(t = 1, ..., n) are iid uniform. The first

test uses

g = (r, qν(Q
−1
ν (r)), qν(Q

−1
ν (r))Q−1

ν (r))′

in the K-transformation and the second test uses

g = (r, qν+1(Q
−1
ν+1(r)), qν+1(Q

−1
ν+1(r))Q

−1
ν+1(r))

′
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in the transformation. So in each test, the g function is 3 × 1 and has the same form, but

the second g uses the pdf and cdf of t with one more degree of freedom. Let Sn1 and Sn2

be the corresponding two test statistics. Asymptotically, Sn1 and Sn2 are independent and

have the same distribution. Let

Tn = max{Sn1, Sn2}

Let FS(s) denote the cdf of the limiting random variable of Sn1, clearly, the limiting distri-

bution of Tn has a cdf FS(s)2.

We next consider extending the iid sample to time series observations.

VAR with GARCH errors. For simplicity, we consider the bivariate case. Suppose

Yt = A1Yt−1 + · · ·+ ApYt−p + εt

Again, let It = (Yt, It−1) with I0 = (Y−p+1, ..., Y0). We test the hypothesis that

εt|It−1 ∼ t(0, Ωt, ν)

where

Ωt =

[
Ω11,t Ω12,t

Ω21,t Ω22,t

]

This is equivalent to Yt|It−1 ∼ t(ut, Ωt, ν) where ut = A1Yt−1 + · · · + ApYt−p. Instead

of constant mean and constant variance, Yt now has time-varying (conditional) mean and

variance. But these time-varying random parameters pose no new difficulty. Replacing

the time-invariant triple (û1, û2, Ω̂ij) by the time-varying triple (ût1, ût2, Ω̂ij,t), all preceding

arguments go through, except that the expression of ξn in Theorem 5 is different. But the

expression of ξn plays no role in the K-transformation.

Similar to the normal case, it is more convenient to construct the test in terms of residuals.

Let ε̂t = Yt− Â1Yt−1− · · · − ÂpYt−p. The GARCH process provides a model for Σt = ν
ν−2

Ωt,

see Tsay (2002). After obtaining Σ̂t from a GARCH, we define Ω̂t = ν−2
ν

Σ̂t. Next define

Ût1 = Qν

(
ε̂t1

Ω̂
1/2
11,t

)
and Ût2 = Qν+1

(
ε̂t2 − ̂E(εt2|εt1)

Ω̂
1/2
2|1,t

)
(14)

where
̂E(εt2|εt1) = Ω̂21,tΩ̂

−1
11,tε̂t1

Ω̂2|1,t = ât[Ω̂22,t − (Ω̂21,t)
2Ω̂−1

11,t] (15)
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with

ât = [ν + (ε̂t1)
2Ω̂−1

11,t]/(ν + 1)

The expression of ξn in VAR+GARCH model is different from that in theorem 5 because

εt has time-varying (conditional) mean and variance. We have the following corollary:

Corollary 5.2 under assumptions of bivariate t, we have

V̂2n(r) = V2n(r)− ḡ(r)′ξn + op(1)

where ḡ(r) =




qν(Q
−1
ν (r))

qν(Q
−1
ν (r))Q−1

ν (r)

qν+1(Q
−1
ν+1(r))

qν+1(Q
−1
ν+1(r))Qν+1(r)




, ξn = 1√
2n




n∑
t=1

(û1t − u1t)/Ω
1/2
11,t

1
2

n∑
t=1

(Ω̂11,t − Ω11,t)/Ω11,t

∑n
t=1(û2|1,t − u2|1,t)/Ω

1/2
2|1,t

1
2

∑n
t=1(Ω̂2|1,t − Ω2|1,t)/Ω2|1,t




The ḡ(r) function is the same as in Theorem 5.1, only ξn has a different expression. So

the K-transformation is identical to the case of iid sample.

6 Simulations

We use simulations to assess the size and power properties of the suggested test statistic.

6.1 Testing conditional normality

To see the size of our test for conditional normality, random variables Yt are generated from

bivariate normal distribution

Yt ∼ N

([ 0
0

]
,
[ 1.0 0.5

0.5 1.0

])
, t = 1, 2, ..., n

for various sample sizes. We let µ̂1, µ̂2, σ̂
2
11, σ̂

2
22, σ̂12 denote the sample means and sample

variances and covariance. We then compute Ût1 = Φ([Yt1 − µ̂1]/σ̂11) and Ût2 = Φ((Yt2 −
µ̂t,2|1)/σ̂2|1), where µ̂t,2|1 = σ̂12σ̂

−2
11 (Yt1− µ̂1) and σ̂2

2|1 = σ̂2
22− σ̂2

12/σ̂
2
11 are the estimated condi-

tional mean and conditional variance of Y2t, conditional on Yt1. Once the Ût’s are obtained,

the remaining computation becomes standard and is automated. For each sample, we com-

pute the test statistic Sn. This is done with 5000 repetitions. The critical values at 10%,

5% and 1% are 1.940, 2.214 and 2.787 respectively. The results from 5000 repetitions are

reported in Table2.
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Table 2. Size of the Test for Multivariate Normal Distribution

5000 repetitions
n 10% 5% 1%
100 0.106 0.063 0.024
200 0.108 0.063 0.020
500 0.107 0.059 0.019

From Table 2, we see that the size appears to be reasonable.

For power, two different symmetric distributions from the elliptically contoured family are

considered: multivariate uniform distribution and multivariate t distribution (with df = 5).

The latter departs from normality with heavy tail. We also consider multivariate lognor-

mal and multivariate chi-square distribution (with df = 1) that depart from normality with

heavy skewness. We then proceed as if the data were generated from a bivariate normal

distribution. We perform exactly the same computation as in testing bivariate normality

with 5000 repetitions. The power of the test is shown in the following table.

Table 3. Power of the Test for Multivariate Normal Distribution

multivariate uniform multivariate t
n 10% 5% 1% 10% 5% 1%
100 1.00 1.00 1.00 0.69 0.63 0.53
200 1.00 1.00 1.00 0.90 0.87 0.78
500 1.00 1.00 1.00 1.00 1.00 1.00

multivariate lognormal multivariate χ2

n 10% 5% 1% 10% 5% 1%
100 1.00 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00 1.00

Overall, the power is satisfactory. As n increases, power gets larger, as expected.

6.2 Testing conditional t

If the null hypothesis is conditional t-distribution, for size, random variables Yt are generated

from a bivariate t-distribution with degree of freedom 5:

Yt ∼ t

((
0
0

)
,

(
1.0 0.5
0.5 1.0

)
, 5

)
, t = 1, 2, ..., n
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After estimating µ̂1, µ̂2|1,t, Ω̂11 and Ω̂2|1,t as described in section 5, we can transform Yt1

and Yt2 into two independent uniform random variables by setting Ût1 = Qν

(
Yt1−bu1

bΩ1/2
11

)
and

Ût2 = Qν+1

(
Yt2−bu2|1,t

bΩ1/2
2|1,t

)
, where û2|1,t and Ω̂

1/2
2|1,t are conditional on Yt1. Once Ût’s are obtained,

we compute the test statistic Tn in the standard way. The results from 5000 repetitions are

reported in Table 4.

Table 4. Size of the Test for Multivariate t Distribution

5000 repetitions
n 10% 5% 1%
100 0.100 0.059 0.023
200 0.097 0.057 0.026
500 0.098 0.064 0.025

To see the power, we generate the following alternative: multivariate uniform, multivari-

ate Cauchy, multivariate lognomal and multivariate χ2
(1). The results are reported in Table5.

Table 5. Power of the Test for Multivariate t Distribution
Multivariate uniform Multivariate Cauchy

n 10% 5% 1% 10% 5% 1%
100 0.99 0.99 0.96 0.87 0.81 0.64
200 1.00 1.00 1.00 1.00 0.99 0.96
500 1.00 1.00 1.00 1.00 1.00 1.00

Multivariate lognormal Multivariate χ2

n 10% 5% 1% 10% 5% 1%
100 0.90 0.85 0.73 0.83 0.74 0.50
200 0.99 0.98 0.94 0.97 0.96 0.88
500 1.00 1.00 1.00 1.00 1.00 1.00

The size and the power are satisfactory.

7 Empirical Applications

In this section, we apply the test procedure to a pair of financial time series, namely, the

monthly log returns of IBM stock and the S&P 500 index. The sample range is from January
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1926 to December 1999 with 888 observations. The returns include dividend payments and

are in percentages. Let Y1t =the returns of IBM stock and Y2t =the return of the S&P 500

index. Figure 1 shows that the two return series are concurrently correlated.

(a)IBM monthly log returns: 1/1926-12/1999

year

ib
m

1940 1960 1980 2000

-3
0

-1
0

0
10

20
30

(b)SP500 monthly log returns: 1/1926-12/1999
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50
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1940 1960 1980 2000

-2
0

0
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Figure 1: IBM and SP500 Monthly Log Returns, January 1926 to December 1999

The objective is to see which multivariate conditional distribution, conditional normal or

conditional t-distribution, provides a better characterization of this bivariate financial series.

In portfolio management, it is the conditional distribution that the managers care about the

most. For example, to update the value at risk periodically, the conditional distribution,

conditional on the given information, is the most relevant. When conditional normality is

assumed, but the actual conditional distribution has heavy tails, it would be likely to under

estimate the value at risk.

Testing bivariate conditional normality. It is well known that financial data have

heavy tail distributions. GARCH models under conditional normality may describe the

heavy tail property, see Bollerslev (1987). We test conditional normality first.
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As in Tsay (2002), we use maximum likelihood method to estimate this bivariate GARCH(1,1)

model as

Y1t = 1.364 + 0.075Y1,t−1 − 0.058Y2,t−2 + ε1t

Y2t = 0.643 + ε2t

where (ε1t, ε2t) is conditionally normal. The fitted conditional volatility model is

σ2
11,t = 3.714 + 0.113ε2

1,t−1 + 0.804σ2
11,t−1

q21,t = 0.003 + 0.992q21,t−1 − 0.004ε2,t−1

σ2
2|1,t = 1.023 + 0.021ε2

1,t−1 + 0.052η2
2,t−1 − 0.040σ2

11,t−1 + 0.937σ2
2|1,t−1

where η2t and σ2
2|1,t are defined in section (4.2). This GARCH(1,1) process allows us to

compute ε̂t1, ε̂t2, η̂t2, σ̂2
11,t, and σ̂2

2|1,t. Then we compute Ût1 = Φ(ε̂t1/σ̂11,t) and Ût2 =

Φ(η̂2t/σ̂2|1,t). Given Ûtk (k = 1, 2; t = 1, ..., n), the value of the test statistic is found to be

Sn = 4.8945. However, the critical values of the test statistic at significance levels 10%, 5%

and 1% are 1.940, 2.214 and 2.787, respectively. Panel (a) in figure 2 shows we should reject

conditional normality assumption. In this figure, the dotted curve represents the original

process V̂2n; the solid curve represents the transformed process Ŵ2n. And the horizontal

dashed and dash-dotted lines give 90% and 99% confidence bands for a standard Brownian

motion on [0, 1] , respectively. In panel (a), Ŵ2n reaches out of the 99% confidence band.

Therefore, we easily reject the conditional normality assumption. A GARCH model with

conditional normality is still likely to underestimate the tail probabilities. This may have

practical consequence if value at risk is computed using a conditional normal distribution.

We then test if the conditional t-distribution is appropriate.

Testing bivariate conditional t distribution. No additional model estimation is

needed after we have estimated parameters in the GARCH-normal distribution because the

Ωt matrix in the conditional t-distribution is equal to ν−2
ν

Σt, where Σt is the conditional

variance matrix in the normal case.

The conditional normality estimation provides an estimate Σ̂t. It follows that Ω̂t =

[(ν − 2)/ν]Σ̂t. The value of ν is taken to be ν = 5; this is the value that is shown to

be appropriate for financial data and is used widely in empirical analysis; See, e.g., Engle

and Gonzalez-Rivera (1991). Then we compute Ût1 = Qν(
bεt1

bΩ1/2
11,t

) and Ût2 = Qν+1

(
bηt2

bΩ1/2
2|1,t

)
,

according to (14) and (15)
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Given Ûtk (k = 1, 2; t = 1, ..., n), the value of the test statistic is found to be Sn =

1.1805. While the critical values of the test statistic at significance levels 10%, 5% and 1%

are 1.940, 2.214 and 2.787, respectively. Panel (b) of figure 2 shows that Ŵ2n, the solid curve,

stays within 90% confidence band for a standard Brownian motion on [0, 1]. Therefore, the

conditional t distribution cannot be rejected.

(a)Testing conditional normality 
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(b)Testing conditional t-distribution 
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Figure 2: Testing the bivariate distribution of monthly log returns for IBM stock and the

SP500 index fitted to a GARCH (1,1) process. The solid curve is the transformed process

Ŵ2n, and the dotted curve is the original process V̂2n. The dashed horizonal lines give the

90 percent confidence band. And the dot-dashed lines give the 99 percent confidence band.

Bivariate normality is rejected as Ŵ2n meanders outside the confidence band (a). While

bivariate t-distribution cannot be rejected as Ŵ2n stays inside the confidence band (b).

It is well known that conditional normal GARCH model can generate heavy tail distri-

butions. This test shows that the heavy tailedness generated by GARCH effect alone is not

enough. We need a heavy tail conditional distribution (like t) combined with the GARCH
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effect to capture the heavy tails of financial data.

8 Conclusion

This paper considers testing multivariate distributions, with a focus on multivariate normal

distributions and multivariate t distributions. Using Khmaladze’s martingale transformation,

we construct an asymptotically distribution free test. We show that the K-transformation

takes a very simple form for testing multivariate normal and multivariate t distribution. The

method is applicable for vector time series models, including vector autoregressive and vector

GARCH processes. We apply the method to testing multivariate conditional normality and

multivariate conditional t distribution for some financial data. The empirical results have

useful implications on computing the value at risk (VaR) of portfolio returns.
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Appendix
Proof of Theorem 3.1. According to Theorem 1 in Bai(2002),

V̂2n(r) = V2n(r)− g1(r)
′√2n(θ̂ − θ)− g2(r)

′√2n(θ̂ − θ) + op(1)

where θ = (µ1, µ2, σ1, σ21, σ2), and

g1(r) = plim
1

2n

n∑
i=1

∂Fi1

∂θ
(x|θ)

∣∣∣
x=F−1

i1 (r|θ)

g2(r) = plim
1

2n

n∑
i=1

∂Fi2

∂θ
(x|θ)

∣∣∣
x=F−1

i2 (r|θ)

and

Fi1(x|θ) = Φ
(x− µ1

σ1

)
, Fi2(x|θ) = Φ

(x− µ2|1,i

σ2|1

)
.

Note that Fi1(x) does not depend on i and F2i does. From

∂Fi1(x)

∂µ1

= − 1

σ1

φ
(x− µ1

σ1

)
,

∂Fi1(x)

∂σ1

= − 1

σ1

φ
(x− µ1

σ1

)(x− µ1

σ1

)

and evaluating the preceding derivative at x = F−1
i1 (x), or equivalently at (x − µ1)/σ1 =

Φ−1(r), we obtain immediately that

∂Fi1(x)

∂µ1

∣∣∣
x=F−1

i1 (r)
= − 1

σ1

φ(Φ−1(r)),
∂Fi1(x)

∂σ1

∣∣∣
x=F−1

i1 (r)
= − 1

σ1

φ(Φ−1(r))Φ−1(r).
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Thus

g1(r)
′√2n(θ̂ − θ) = −1

2

[
− 1

σ1

φ(Φ−1(r))
√

2n(µ̂1 − µ1)− 1

σ1

φ(Φ−1(r))Φ−1(r)
√

2n(σ̂1 − σ1)
]

Note that (σ̂1 − σ1)/σ1 = (1/2)(σ̂2
1 − σ2

1)/σ
2
1 + op(1). This leads to

g1(r)
′√2n(θ̂− θ) = − 1√

2

[
− 1

σ1

φ(Φ−1(r))
√

n(µ̂1 − µ1)− 1

2σ2
1

φ(Φ−1(r))Φ−1(r)
√

n(σ̂2
1 − σ2

1)
]
.

Next,

∂Fi2(x)

∂θ
= − 1

σ2|1
φ
(x− µ2|1,i

σ2|1

)(∂u2|1,i

∂θ

)

− 1

σ2|1
φ
(x− µ2|1,i

σ2|1

)(x− µ2|1,i

σ2|1

)(∂σ2|1
∂θ

)

Evaluate the preceding derivatives at x = F−1
i2 (r|θ), or equivalently at (x − µ2|1,i)/σ2|1 =

Φ−1(r), we obtain

∂Fi2(x)

∂θ

∣∣∣
x=F−1

i2 (r|θ)
= − 1

σ2|1
φ(Φ−1(r))

(∂u2|1,i

∂θ

)
− 1

σ2|1
φ(Φ−1(r))Φ−1(r)

(∂σ2|1
∂θ

)
.

The last expression does not depend on i. Thus

g2(r)
′√2n(θ̂ − θ) = −φ(Φ−1(r))

[ 1

σ2|1

1

2n

n∑
i=1

(∂u2|1,i

∂θ

)√
2n(θ̂ − θ)

]

−φ(Φ−1(r))Φ−1(r)
[ 1

2σ2|1

(∂σ2|1
∂θ

)√
2n(θ̂ − θ)

]

However, it is easy to show that up to an op(1) term

1

2n

n∑
i=1

(∂u2|1,i

∂θ

)√
2n(θ̂ − θ) =

1√
2n

n∑
i=1

(µ̂2|1,i − µ2|1,i).

In fact, the left hand side is a Taylor expansion of the right hand side, which is a more

compact notation. Similarly, up to an op(1) term, we can write

1

2σ2|1

(∂σ2|1
∂θ

)√
2n(θ̂ − θ) =

1

2σ2|1

√
2n(σ̂2|1 − σ2|1).

The right hand side can be further written as, up to an op(1) term

1

4σ2
2|1

√
2n(σ̂2

2|1 − σ2
2|1),
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obtained by multiplying and dividing (σ̂2|1 + σ2|1). In summary, we have

g2(r)
′√2n(θ̂ − θ) = −φ(Φ−1(r))

[ 1√
2n

n∑
i=1

(µ̂2|1,i − µ2|1,i)
]

−φ(Φ−1(r))Φ−1(r)
[ 1

2
√

2σ2
2|1

√
n(σ̂2

2|1 − σ2
2|1)

]
+ op(1).

Theorem 3.1 is obtained after combining terms with g1(r)
′√2n(θ̂ − θ).

The proofs for all other theorems and corollaries are omitted because the idea is the

same as in the proof of Theorem 3.1, only the technical details are different. The proofs are

available from the authors.
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