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Abstract

In this paper we propose a new test statistic that considers multiple
structural breaks to analyse the non-stationarity of a panel data set. The
methodology is based on the common factor analysis in an attempt to
allow for some sort of dependence across the individuals. Thus allowing
for multiple structural breaks in the ”Panel Analysis of Non-stationarity in
Idiosyncratic and Common components” (PANIC) methodology increases
the degree of heterogeneity when assessing the stochastic properties of the
panel data set.
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1 Introduction
Nowadays, the increasing application of the panel data techniques to the deter-
mination of time series’ stochastic properties has led to the development of a
wide range of new proposals in the econometric literature. The short time pe-
riod’s coverage that o¤er most of the available macroeconomic time series may
be thought as the main reason behind this exploding phenomenon. This lack of
information, in terms of time observations, implies a loss in the power of unit
root, stationarity and cointegration tests. The combination of the information
in the time and cross-section dimensions to compose a panel data set of individ-
uals, i.e. countries or regions, onto which perform the analysis of the stochastic
properties has revealed as a promising way to increase the power of these tests.
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Thus, a gain in power is expected when performing a statistical inference –unit
root, stationarity or cointegration test– using a panel data set made up of in-
dividuals that share, at …rst, some similarities. Breitung and Meyer (1994),
Im, Pesaran and Shin (1997), Maddala and Wu (1999) and Levin, Lin and Chu
(2002), on the unit root tests, and Pedroni (1995) and Phillips and Moon (1999),
on the cointegration analysis, are some of the most relevant papers. Compre-
hensive surveys of the …eld can be found in Banerjee (1999), Baltagi (2001) and
Baltagi and Kao (2001).
Although the deterministic component should not be of interest when analysing

the order of integration of the time series, its misspeci…cation can drive to
misleading conclusions. Thus, a stationary time series that evolves around a
breaking-trend model might be characterized as a non-stationary process if the
order of integration analysis fails to consider the structural breaks –see Perron
(1989) for the univariate time series framework and Carrion-i-Silvestre, del Bar-
rio and López-Bazo (2001) for the panel data framework. Our proposal focus on
the presence of multiple structural breaks a¤ecting the panel data set, so that
taking into account the presence of these structural breaks overcomes the inter-
ferences that can cause the misspeci…cation error in the stochastic properties of
the panel. In this paper we analyse the presence of multiple structural breaks
when testing for the unit root hypothesis in a panel data framework. Some of
the recent proposals in the panel data based unit root and stationarity tests have
addressed this question by developing suitable tests –see Im, Lee and Tieslau
(2002) for the LM test and Carrion-i-Silvestre et al. (2001) for the DF with one
structural break, and Carrion-i-Silvestre et al. (2002) for the KPSS tests with
multiple structural breaks. However, our approach overcomes the criticism that
has raised the assumption of cross-section independence in which most of the
panel data based tests rely, and models the cross-section dependence in terms
of the common factors as in Bai and Ng (2001, 2004). Brie‡y speaking, the idea
is to establish a distinction between comovements and idiosyncratic shocks that
may be a¤ecting the individual time series. Filtering out the comovements will
reduce the noise in the system, so that, the analysis will focus on those shocks
that are speci…c for each individual. Moreover, note that the cross-section in-
dependence is more likely to be ful…lled when using these idiosyncratic shocks
than when using the raw data.
The rest of the paper is organized as follows. Section 2 describes the model

and the two deterministic speci…cations that are considered along the paper.
These models arise because of the di¤erent e¤ects that the structural breaks
may cause on the deterministic part of the model. Section 4 presents di¤erent
pooled tests, while in Section ?? we analyse the …nite sample performance.
Finally, Section 6 concludes. All proofs are presented in the Appendix.
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2 Panel unit root test with multiple structural
breaks

Let us de…ne the panel data model given by:

Xi;t = Di;t + Ft¼i + ei;t; (1)

(I ¡ L)F 0t = C (L)ut; (2)

(1¡ ½iL) ei;t = Hi (L) "i;t; (3)

t = 1; : : : ; T , i = 1; : : : ; N , where C (L) =
P1
j=0CjL

j andHi (L) =
P1
j=0Hi;jL

j .
Di;t denotes the deterministic part of the model, Ft is a (l£ 1)-vector that ac-
counts for the common factors that are present in the panel and ei;t is the
idiosyncratic disturbance term. Our analysis is based on the same set of as-
sumptions in Bai and Ng (2004). LetM <1 be a generic positive number, not
depending on T and N :

Assumption A: (i) for non-random ¼i, k¼ik ·M ; for random ¼i, E k¼ik4 ·
M , (ii) 1

N

PN
i=1 ¼i¼

0
i
p! §¦, a (l £ l) positive matrix.

Assumption B: (i) ut » iid (0;§u), E kutk4 · M , and (ii) V ar (¢F 0t) =P1
j=0Cj§uC

0
j > 0, (iii)

P1
j=0 j kCjk < M ; and (iv) C (1) has rank l1, 0 · l1 · l.

Assumption C: (i) for each i, "i;t » iid (0;§"), E j"i;tj8 ·M ,
P1
j=0 j jHi;j j <

M , !2i = Hi (1)
2
¾2i > 0; (ii) E ("i;t"j;t) = ¿ i;j with

PN
i=1 j¿ i;j j · M for all j;

(iii) E
¯̄̄
1p
N

PN
i=1 ["i;s"i;t ¡E ("i;s"i;t)]

¯̄̄4
·M , for every (t; s).

Assumption D: The errors "i;t, ut, and the loadings ¼i are three mutually
independent groups.
Assumption E: E kF0k ·M , and for every i = 1; : : : ; N , E jei;0j ·M .

Assumption A ensures that the factor loadings are identi…able. Assumption
B establishes the conditions on the short and long-run variance of ¢Ft –i.e.
positive de…nite short-run variance and long-run variance that can be of reduced
rank in order to accomodate linear combinations of I (1) factors to be stationay.
Assumption C(i) allows for some weak serial correlation in (1¡ ½iL) ei;t, whereas
C(ii) and C(iii) allow for weak cross-section correlation. Finally, Assumption E
de…nes the initial condition on ei;t.
This model expresses the stochastic process Xi;t as the sum of up to three

di¤erent components, so that we can focus on each of these components to char-
acterize Xi;t in terms of its stochastic properties. Note that the non-stationarity
of Xi;t can be due to the non-stationarity of either Ft or ei;t, so that we have
two potential sources of non-stationarity with di¤erent economic interpreta-
tions. Thus, the matrix Ft collects the common e¤ects that are present across
the cross-section dimension and, therefore, the non-stationarity of Ft will mean
that all individuals in the panel are common non-stationary. These e¤ects a¤ect
the individuals with di¤erent magnitude (¼i). However, even if Xi;t is driven
by a common non-stationary component (Ft), the idiosyncratic e¤ect may be
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ei;t » I (0). This will mean that the stochastic shocks that only a¤ect each in-
dividual are stationary. Hence, the non-stationarity analysis can be performed
through the application of unit root tests on Ft and ei;t.
Regarding the deterministic component, the speci…cation that is adopted in

the model is quite general to allow for the presence of multiple structural breaks.
Speci…cally, we formulate:

Di;t = ¹i + ¯it+
miX
k=1

µi;kDUi;k;t +
miX
k=1

°i;kDT
¤
i;k;t; (4)

that is, we allow for mi structural breaks a¤ecting the mean of the time series.
The dummy variables are de…ned as DUi;k;t = 1 and DT ¤i;k;t =

³
t¡ T ib;k

´
for

t > T ib;k and 0 elsewhere, where T
i
b;k denotes the k-th date of the break for

the i-th individual, k = 1; : : : ;mi, mi ¸ 1. In fact, equation (4) nests two
di¤erent speci…cations depending on the e¤ect of the structural breaks on the
deterministic components. On the one hand, we can introduce the constraint
¯i = °i;k = 0, 8i; k, in (4) to analyse the stochastic properties of panel data sets
formed by non-trended variables –for instance, the PPP hypothesis ought to
be tested using this speci…cation. Hereafter, the constrained model is denoted
as Model 1. Formally speaking, Model 1 implies the following deterministic
speci…cation:

Di;t = ¹i +
miX
k=1

µi;kDUi;k;t;

which includes individual e¤ects and individual shifting e¤ects. On the other
hand, we will denote the unconstrained model given by (4) as Model 2, a speci-
…cation that is suitable for trended variables that may be a¤ected by structural
breaks that shift both the individual and the speci…c time trend –for instance,
the analysis of the unit root hypothesis in GDP should be based on this speci-
…cation.
Notice that both models assume that the structural breaks are idiosyncratic

for the individuals, since (i) they can be positioned at di¤erent dates for each
individual, (ii) they may have di¤erent magnitude and (iii) each individual may
have di¤erent number of structural breaks. Therefore, our speci…cation takes
into account a high degree of individual’s heterogeneity. Once the model have
been de…ned in a general way, now we are going to address the unit root null
hypothesis testing through the consideration of two situations: …rst, we assume
that there are no common factors, ¼i = 0 8i in (1) and, second, we allow for
the presence of such common factors, ¼i 6= 0 in (1), i = 1; : : : ; N . For ease
of exposition, at …rst we take the date of the breaks as known. Once the limit
distributions are derived, we introduce the discussion about the procedures that
can be applied in order to estimate them.

4



2.1 Individuals are assumed to be independent across i

From a theoretical point of view, it is of interest to consider the simpli…ed
situation in which ¼i = 0 8i in (1) and fei;tg is a stochastic process independent
across i = 1; : : : ; N . In order to test the null hypothesis that Xi;t » I (1),
8i, i = 1; : : : ; N , we suggest to compute the square of the modi…ed Sargan-
Bhargava (MSB) test statistic de…ned in Stock (1999):

MSBi (¸i) =
T¡2

PT
t=1

~X2
i;t¡1

~¾2i
; (5)

where ~Xi;t = Xi;t ¡ ~Di;t and ~¾2i is the long-run variance of ¢ ~Xi;t. We have
made explicit the dependency of the test on the structural breaks through the
consideration of ¸i in the notation, where ¸i = (¸i;1; : : : ; ¸i;mi)

0, ¸i;k = T ib;k=T ,
k = 1; : : : ;mi, is the so-called vector of break fraction parameters. The limit
distribution of (5) for the two di¤erent models considered in the paper is given
in the following Theorem.

Theorem 1 Let Xi;t, i = 1; : : : ; N , t = 1; : : : ; T , be the stochastic process
generated by (1) with ¼i = 0 8i and ½i = 1 in (3). As T; T ib;k ! 1 in a way
that ¸i;k = T ib;k=T remains constant, 8i; k; i = 1; : : : ; N , k = 1; : : : ;mi, then
the test in (5) converges to:

(1) Model 1: MSBi (¸i))
Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)2

R 1
0
V ¹i;k (b)

2
db

(2) Model 2: MSBi (¸i))
Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)2

R 1
0
V ¿i;k (b)

2 db

where ) denotes weak convergence of the associated measure of probability,
V ¹i;k (b) =Wi;k (b)¡

R 1
0
Wi;k (s) ds; and V ¿i;k (b) =Wi;k (b)¡(4¡ 6b)

R 1
0
Wi;k (s) ds

¡ (¡6 + 12b) R 1
0
sWi;k (s) ds, with Wi;k (b) the standard Brownian motion, and

¸i;0 = 0 and ¸i;mi+1 = 1.

Theorem 1 shows that the limit distribution of theMSBi (¸i) test is function
of Brownian motions and two nuisance parameters –i.e. the break fraction
parameters (¸i) and the number of structural breaks (mi). Moreover and as
shown in the Appendix, when there is only one structural break, mi = 1, the
limit distribution of the test is symmetric around ¸i = 0:5. Finally, note that
for mi = 0 the limit distributions in Theorem 1 coincide with the ones given in
Stock (1999). Besides, although the situation in which N = 1 can be understood
as a special case, this is of great interest provided that it generalises the proposal
in Perron (1997) and Lumsdaine and Papell (1997) through the consideration
of multiple structural breaks in the non-stationarity analysis. Thus, our can be
applied to test the null hypothesis of unit root on a single time series allowing for
the presence of multiple structural breaks both under the null and alternative
hypotheses.
As mentioned above, Theorem 1 indicates that the limit distribution of the

MSB test depends both on the number of structural breaks (mi) and their loca-
tion (¸i). This gives rise to two possible situations. First, practitioners should be
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willing to assume that the number and dates of the structural breaks are known.
For instance, the German reuni…cation and the Euro currency’s birth are two
events for which the exogenous nature of the structural breaks can be assumed.
However, this situation is rarely found in practice, so that the computation of
the MSB will require the application of a consistent estimation procedure to
determine the number of structural breaks and the respective vector of break
fraction parameters. This de…nes the second situation of interest.
Let us now focus on the …rst situation in which both the number and the

position of the structural breaks are known. The MSB test can be computed and
compared to the critical values drawn from the limit distributions in Theorem 1.
However, we believe that the availability of the assossiated p-value could be more
informative when performing the statistical inference. Provided that the MSB
test has a non-standard limit distribution, the p-values have to be approximated
by simulations. MacKinnon (1994), Adda and Gonzalo (1996), Hansen (1997),
and Bai and Ng (2003) computed asymptotic p-values for test statistic with
non-standard distribution. Here we follow MacKinnon (1994) and estimate a
set of response surfaces to approximate the p-values of the MSB test. However,
we generalise the previous proposals and estimate response surfaces for the p-
values that take into account the sample size. The estimation is made assuming
a probit model for the p-value (pi) as a function of powers of the quantile (qi),

the sample size and the break fraction parameters, log
³

pi
1¡pi

´
= g (qi; T; ¸i). We

have essayed di¤erent functional forms using the Newey-West robust covariance
estimator to analyse the individual signi…cance of the parameters. In concrete,
for the situation in which mi = 0 the response surface is given by:

log

µ
pi

1¡ pi

¶
=

1X
j=0

³
³0j + ³1jqi + ³2jq

¡1=2
i + ³3jq

¡1=3
i + ³4jq

¡1=4
i

´µ 1
T

¶j
+ ui;

(6)

where, for each sample size (T ), 1,000 quantiles, i = 1; : : : ; 1000, has been com-
puted from the empirical distribution to estimate the model. We have conducted
a Monte Carlo experiment to obtain the empirical distribution of the MSB test
for T ={30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 125, 150, 175, 200,
225, 250, 300, 350, 400, 450, 500, 2000} using 50,000 replications. The p-values
response surfaces are collected in Panel A of Table 1. Similar response surfaces
are presented in Panel A of Table 2 for mi = 1. Note that (6) does not produce
a direct estimate of pi. The estimate of pi is obtained from

p̂i =
exp fĝ (qi; T; ¸i)g

1 + exp fĝ (qi; T; ¸i)g :

Let us now focus on the procedures that are based on the endogenous de-
termination of the breaking points. The proposal described in Bai and Perron
(1998) is very convenient for the speci…cation in Model 2, provided that both the
number and dates of the breaks can be consistently estimated under the null hy-
pothesis taking the …rst di¤erence of yt. Therefore, the problem reduces to the
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Table 1: Response surfaces for the p-values estimation for m = 0

Panel A Panel B
Model 1 Model 2 Model 1 Model 2

³̂00 19.6465 51.4380 10.7071 20.6574
³̂10 3.8634 12.9479 1.0586 3.7891
³̂20 -13.0719 -24.3411 -8.9767 -13.5487
³̂30 76.9588 168.6843 46.7634 80.4365
³̂40 -81.4440 -189.8098 -47.6969 -85.3760
³̂01 178.3351 968.0575 -41.0104
³̂11 29.6877 123.1754 9.5077 41.7794
³̂21 -191.4098 -586.9201 -31.2927 -130.8045
³̂31 1098.9950 3963.1880 63.8206 587.8564
³̂41 -1093.0750 -4307.8610 -484.0637
Panel A corresponds to Theorem 1 and
Panel B corresponds to Theorem 2. The

functional form is given by log
³

pi
1¡pi

´
=P1

j=0

³
³0j + ³1jqi + ³2jq

¡1=2
i + ³3jq

¡1=3
i + ³4jq

¡1=4
i

´ ¡
1
T

¢j
+

ui. The ¹R2 of all these estimations were 0.99. The
included parameters were signi…cant at the 5% level -
we used the Newey-West robust estimator to compute
the s.e.

identifycation of level shifts on ¢yt, a stationary variable, on which the dynamic
optimization algorithm in Bai and Perron (1998) can be applied. Notwithstand-
ing, for the Model 1 we have to follow a di¤erent approach given that taking the
…rst di¤erence of yt will imply dating impulse outliers –additive outliers (AO)–
and this situation is not covered in Bai and Perron (1998). The standard way
to deal with AO outliers requires the estimation of a fully parametrised ARMA
model on which the outlier detection analysis is performed using a t statistic in
an iterative fashion –see Tsay (1986) and Chen and Liu (1993), among others.
This iterative approach was followed in Franses and Haldrup (1994) to allow for
AO outliers in the ADF test. However, two main drawbacks can be highlighted.
First, it requires to control the dynamic structure –i.e. estimation of a fully
parametrised ARMA model– and, second, the t statistic that is used to detect
the presence of outliers relies on the distributional assumptions about the error
term.
Instead, we could estimate the shift dates using the proposals in Perron and

Vogelsang (1992) and Vogelsang (1998). Brie‡y speaking, Perron and Vogelsang
(1992) date the breaking points in the additive speci…cation through the min-
imisation of the signi…cance test of the dummy parameters. On the other hand,
Vogelsang (1998) uses the supPST test which does not rely on the dynamic of
the system and, hence, serial-correlation parameters does not have to be esti-
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Table 2: Response surfaces for the p-values estimation for m = 1

Panel A Panel B
Model 1 Model 2 Model 2

³̂00 35.490 111.3526 29.997
³̂10 13.715 2.593527 7.791
³̂20 -19.677 -38.27770 -17.269
³̂30 129.744 299.7168 110.703
³̂40 -142.760 -356.3048 -120.846
³̂01 1029.652 6.959164 592.798
³̂11 3.955 -16.29266 -12.452
³̂21 -571.744 9.835470 -411.448
³̂31 3928.595 235.5653 2625.848
³̂41 -4326.511 -591.7060 -2787.674
'̂10 10.181 374.3920 9.407
'̂20 -33.434 18898.49 -33.580
'̂30 46.504 -44424.27 48.346
'̂40 -23.252 28018.83 -24.173
'̂11 73.704 -5029.990 39.579
'̂21 -213.648 12255.89 -132.099
'̂31 279.888 -8638.537 185.039
'̂41 -139.944 28817.84 -92.519
#̂1 -96.699 -69590.05 -76.999
#̂2 555.555 444.876
#̂3 -917.712 -735.753
#̂4 458.856 367.876

Panel A corresponds to Theorem 1 and
Panel B corresponds to Theorem 2. The

functional form is given by log
³

pi
1¡pi

´
=P1

j=0

³
³0j + ³1jqi + ³2jq

¡1=2
i + ³3jq

¡1=3
i + ³4jq

¡1=4
i

´ ¡
1
T

¢j
+P1

j=0

¡
'1j¸i + '2j¸

2
i + '3j¸

3
i

¢ ¡
1
T

¢j
+
P3

j=1 #jqi¸
j
i +ui.

The ¹R2 of all these estimations were 0.99. The included
parameters were signi…cant at the 5% level - we used the
Newey-West robust estimator to compute the s.e.
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mated. However, these proposals do not provide a good approximation. On the
one hand, Perron and Vogelsang (1992) show that the date of the break is not
identi…ed under the null alternative of unit root. On the other hand, the test in
Vogelsang (1998) is not consistent when yt » I (1) since it has the same limiting
distribution under the null and the alternative hypothesis. Therefore, this test
should not be used to estimate the location of the level shift. To overcome these
limitations we propose the use of the procedure de…ned in Carrion-i-Silvestre
(2003), which consists on the identi…cation of AO’s in the …rst di¤erenced time
series without having to specify a fully parametrised model as required in the
existing proposals.
Finally, for further purposes it would be useful to derive the mean and

variance of the limit distribution of MSB for Models 1 and 2. Speci…cally,
these two moments are used to de…ne one of the pooled tests in Section 4. They
are presented in the following Proposition.

Proposition 1 Let MSBi (¸i) = ~¾¡2i T
¡2PT

t=1
~X2
i;t¡1 be the test statistic with

limit distribution given in Theorem 1. Moreover, let »i = E (MSBi (¸i)) and
&2i = V (MSBi (¸i)) be the mean and variance of MSBi (¸i) respectively. Then,
as T; T ib;k ! 1 in a way that ¸i;k = T ib;k=T remains constant, 8i; k; i =
1; : : : ; N, k = 1; : : : ;mi,

(1) Model 1: »i =
1
6

Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)2 and

&2i =
1
45

Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)4 ;

(2) Model 2: »i =
1
15

Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)2 and

&2i =
11
6300

Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)4 ;

where ¸i;0 = 0 and ¸i;mi+1 = 1.

Note that these moments are function of the break fraction parameters.
Besides, when there are no structural breaks they coincide with the mean and
the variance of the limit distribution in Stock (1999). These results agree with
the limit distributions in Theorem 1.

2.2 Allowing for common factors

Let us now weaken the framework that has been considered in the previous
section taking into account the presence of common factors in the panel data.
Obviously, the main di¢culty comes from the fact that the factors and the
idiosyncratic components are unobserved so that, the …rst step of the analysis
lies in getting a consistent estimate of both components. Following Bai and Ng
(2001, 2004), in order to estimate these unobserved common factors we apply
the principal components technique to the di¤erenced-detrended model which,
expressed in matrix notation, is given by:

Mi ¢Xi = Mi ¢F¼i +Mi ¢ei

xi = f¼i + zi; (7)
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where ¢Xi = (¢Xi;2;¢Xi;3; : : : ;¢Xi;T )
0 and ¢ei = (¢ei;2;¢ei;3; : : : ;¢ei;T )

0

are two ((T ¡ 1)£ 1)-vectors for the i-th individual, ¢F = [¢F1 ¢F2 : : : ¢Fl]
is a ((T ¡ 1)£ l)-matrix being ¢Fj = (¢Fj;2;¢Fj;3; : : : ;¢Fj;T )0, j = 1; : : : ; l,
a ((T ¡ 1)£ 1)-vector, and ¼i = (¼i;1; : : : ; ¼i;l)0 is the (l £ 1)-vector of loading
parameters for the i-th individual, i = 1; : : : ; N . On the other hand, we de…ne
Mi = IT¡1 ¡ ai (a0iai)¡1 a0i, with ai;t =

h
D
³
T ib;1

´
t
; : : : ;D

³
T ib;mi

´
t

i
for Model

1, being D
³
T ib;k

´
t
= 1 for t = T ib;k + 1 and 0 elsewhere, k = 1; : : : ;mi, and

ai;t =
h
D
³
T ib;1

´
t
; : : : ;D

³
T ib;mi

´
t
;DUi;1;t; : : : ;DUi;mi;t

i
for Model 2. Mi is

the usual idempotent matrix of projection into the space spanned by ai;t. The
estimated factors f̂1;t; : : : ; f̂l;t are the l eigenvectors that corresponds to the l
largest eigenvalues of the (T ¡ 1£ T ¡ 1) matrix xx0, being x = [x1; : : : ; xN ].
The matrix of estimated weights, ¦̂ = (¼̂1; : : : ; ¼̂N)

0, is given by ¦̂ = x0f̂t.
As a result, we can obtain an estimate of zi from ẑi = xi ¡ f̂ ¼̂i, that,

after computing its cumulated sum, produces a consistent estimation of the
idiosyncratic disturbance term, ~ei;t =

Pt
j=1 ẑi;j =

Pt
j=1 (Mi¢êi)j . Now,

the null hypothesis of unit root in the idiosyncratic stochastic element, i.e.
ei;t » I (1), can be tested through the computation of the MSB test using ~ei;t:

MSBi (¸i) =
T¡2

PT
t=1 ~e

2
i;t¡1

~¾2i
; (8)

where ~¾2i is an estimation of the long-run variance of f¢~ei;tg. The following
Theorem gives the asymptotic distribution of (8).

Theorem 2 Let fXi;tgN;Ti=1;t=1 the stochastic process generated by (1) with ¼i 6=
0 8i. If ½i = 1 in (3), and T; T ib;k ! 1 in a way that ¸i;k = T ib;k=T remains
constant, 8i; k; i = 1; : : : ;N , k = 1; : : : ;mi, then the test in (8) converges to:

(1) Model 1: MSBi (¸i))
R 1
0 W

2
i (r) dr

(2) Model 2: MSBi (¸i))
Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)2

R 1
0 V

2
i;k (b) db;

where Wi (r) is the standard Brownian motion, Vi;k (b) =Wi;k (b)¡ bWi;k (1) is
a Brownian bridge, and ¸i;0 = 0 and ¸i;mi+1 = 1.

Theorem 2 shows that the limiting distribution of the MSB test for Model
1 does not depend on the presence of the structural breaks, since the e¤ect of
the impulse dummy is asymptotically negligible. This result is also found in
Im et al. (2002) for the LM panel data based unit root test. However, this is
not true for the model that allow for structural breaks a¤ecting the time trend.
Thus, the asymptotic distribution of the test for Model 2 depends on the set
of nuisance parameters de…ned by the break fraction parameters. Moreover,
the asymptotic distribution of the MSB test for mi = 1 is symmetric around
¸i = 0:5 for Model 2, a feature that has also been highlighted in the previous
section. The response surfaces for the p-values estimation are collected in Panel
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B of Tables 1 and 2 for mi = 0 and mi = 1 respectively. The mean and variance
of the limit distribution of MSB for Models 1 and 2 are presented in the following
Proposition.

Proposition 2 Let MSBi (¸i) = ~¾¡2i T
¡2PT

t=1 ~e
2
i;t¡1 be the test statistic with

limit distribution given in Theorem 2. Moreover, let »i = E (MSBi (¸i)) and
&2i = V (MSBi (¸i)) be the mean and variance of MSBi (¸i) respectively. Then,
as T; T ib;k ! 1 in a way that ¸i;k = T ib;k=T remains constant, 8i; k; i =
1; : : : ; N, k = 1; : : : ;mi,

(1) Model 1: »i =
1
2 and &

2
i =

1
3 ;

(2) Model 2: »i =
1
6

Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)2 and

&2i =
1
45

Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)4 ;

where ¸i;0 = 0 and ¸i;mi+1 = 1.

See Levin and Lin (1992) for the proof of statement 1 and the Appendix for
the proof of the statement 2 of Proposition 2.

3 A simpli…ed test statistic
In this Section we propose a simpli…ed test that exploits the fact that the limiting
distributions in Theorems 1 and 2 are weigthed sums of independent functionals
of Brownian motions. We follow Busetti and Harvey (2001) and compute the
MSB test as a weighted sum of partial sum processes so that we get rid of the
break fraction parameters in the limit distributions. This simpli…cation reduces
the amount of computation e¤ort that has to be made to provide practitioners
with suitable sets of p-values for large mi. However, this approach is primarily
addressed for panels with large T provided that the approximation is for the
limit distribution. First of all, let us focus on the situation where there are not
common factors, that is, ¼i = 0 8i, i = 1; : : : ; N . The weighted MSB test,
MSB¤i (¸i), is given by:

MSB¤i (¸i) =

Pmi+1
k=1

µ³
T ib;k ¡ T ib;k¡1

´¡2PT ib;k
t=T ib;k¡1

~X2
i;t¡1

¶
~¾2i

; (9)

i = 1; : : : ; N , with T ib;0 = 0 and T ib;mi+1
= T . Now the computation of the

test distinguishes among mi + 1 subperiods which are rescaled by the square
of the corresponding number of observations. The limit distribution of the
MSB¤i (¸i) test for the models without common factors is presented in the
following Corollary.

Corollary 1 Let Xi;t, i = 1; : : : ; N , t = 1; : : : ; T , be the stochastic process
generated by (1) with ¼i = 0 8i and ½i = 1 8i in (3). As T; T ib;k !1 in a way

11



that ¸i;k = T ib;k=T remains constant, 8i; k; i = 1; : : : ; N , k = 1; : : : ;mi, then
the test in (9) converges to:

(1) Model 1: MSB¤i (¸i))
Pmi+1
k=1

R 1
0
V ¹i;k (b)

2 db

(2) Model 2: MSB¤i (¸i))
Pmi+1
k=1

R 1
0
V ¿i;k (b)

2 db

where ) denotes weak convergence of the associated measure of probability,
V ¹i;k (b) =Wi;k (b)¡

R 1
0 Wi;k (s) ds; and V ¿i;k (b) =Wi;k (b)¡(4¡ 6b)

R 1
0 Wi;k (s) ds

¡ (¡6 + 12b) R 1
0
sWi;k (s) ds, with Wi;k (b) the standard Brownian motion.

The proof follows from Theorem 1 and, hence, is omitted. Similar develop-
ments can be made for the speci…cation in Model 2 with common factors. For
this model, the MSB¤i (¸i) test should be computed as:

MSB¤i (¸i) =

Pmi+1
k=1

µ³
T ib;k ¡ T ib;k¡1

´¡2PT ib;k
t=T ib;k¡1

~e2i;t¡1

¶
~¾2i

(10)

with the limiting distribution given in the following Corollary.

Corollary 2 Let fXi;tgN;Ti=1;t=1 the stochastic process generated by (1) with ¼i 6=
0 8i. If ½i = 1 8i in (3), and T; T ib;k !1 in a way that ¸i;k = T ib;k=T remains
constant, 8i; k; i = 1; : : : ;N , k = 1; : : : ;mi, then the test in (10) converges to:

MSB¤i (¸i))
mi+1X
k=1

Z 1

0

V 2i;k (b) db;

where Vi;k (b) =Wi;k (b)¡ bWi;k (1) is a Brownian bridge.

The proof follows from Theorem 2 and, hence, is omitted. Note that the
de…nition of the weighted MSB test makes free the limit distribution of the
break fraction parameters, although it still depends on the number of structural
breaks –in fact, they belong to the family of Cramér-von Mises distributions with
(mi + 1)-degrees of freedom. The asymptotic p-values of the limit distributions
in Corollaries 1 and 2 can be computed from the response surfaces in Table 3
–Panel A for the limit distributions in Corollary 1 and Panel B for the one in
Corollary 2. They are computed using the methodology described above using
up to mi = 15 structural breaks with T = 2; 000 to approach the steps and
50,000 replications.
It can be shown that the response surfaces in Table 3 provides a good approx-

imation of the critical values for the Cramér-von Misses distribution computed
in Canova and Hansen (1995) and Nyblom and Harvey (2000). For instance,
for the Cramér-von Misses distribution with two degrees of freedom de…ned by
demeaned Brownian motions, these authors set the 95% quantile as 0.749 - see
the second row of Table 1 in Canova and Hansen (1995). Using this quantile
(q̂i = 0:749) with mi = 1 in the response surface for the Model 2 –Panel B of
Table 3 –we obtain p̂i = 0:94965.

12



Table 3: Response surfaces for the p-values estimation for the simpli…ed test
statistics

Panel A Panel B
Model 1 Model 2 Model 2

³̂00 31.087
³̂01 7.288 34.762 3.789
³̂02 -1.826 -15.523 -27.683
³̂03 2.174 73.602 154.984
³̂04 -62.667 -156.524
³̂10 9.934 -22.413 -9.316
³̂11 2.489 0.301
³̂12 -18.193 -6.255
³̂13 88.838 -16.629
³̂14 -81.857 22.627 24.046
³̂20 2.597 4.862 2.872
³̂21 -0.135 -0.037
³̂22 -6.817 -8.695 -6.145
³̂23 28.813 40.734 26.669
³̂24 -24.517 -36.618 -23.212
³̂30 -0.041 -0.098 0.001
³̂31 0.001 0.007
³̂32 -0.114 -0.184 -0.219
³̂33 0.151 0.272 0.559
³̂34 -0.349

Panel A corresponds to Corollary 1 and
Panel B corresponds to Corollary 2. The

functional form is given by log
³

pi
1¡pi

´
=P3

j=0

³
³0j + ³1jqi + ³2jq

¡1=2
i + ³3jq

¡1=3
i + ³4jq

¡1=4
i

´
mj
i+

ui. The ¹R2 of all these estimations were 0.99. The
included parameters were signi…cant at the 5% level -
we used the Newey-West robust estimator to compute
the s.e.
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The performance of the simpli…ed test in …nite samples might not show good
properties. The statements in Corollaries 1 and 2 are valid as T ! 1, which
prevent the use of the P-value functions that have been estimated above in …nite
samples. The value of T for which the asymptotic results are of appliance is
something to be addressed in the Monte Carlo analysis, but we should mention
in advance that the simpli…ed test shows an empirical size distortion even for
T = 300. Thus, we would like to make available a test statistic that can be
applied in …nite samples, allowing for multiple structural breaks, and for which
the computation of suitable p-values (or critical values) would not represent a
high cost. The point here is the computation of these …nite sample p-values.
Note that the limiting distributions in Corollaries 1 and 2 do not depend

on the break fraction parameters, but just on the number of breaks. This is
because as T; T ib;k !1 in a way that ¸i;k = T ib;k=T remains constant, 8i; k; i =
1; : : : ; N , k = 1; : : : ;mi, then the limiting distributions can be expressed as the
sum of mi independent functionals of Brownian motions. When applying this
strategy to the …nite sample framework we …nd that it is impossible to get rid of
the number of observations that are involved in each regime. Thus, we should
compute the …nite moments using …nite values for T . One possible solution
consist on the use of an approximate …nite sample distribution. Thus, we can
de…ne by T iapprox = T= (mi + 1) the …nite sample size for the i-th individual and
approximate the …nite sample distribution using T iapprox. This simpli…cation is
specially appealing provided that this …nite sample distribution will converge to
the limiting distribution as in Corollaries 1 and 2 T !1. Table ?? presents the
estimates for the P-value functions that can be used to obtain the corresponding
…nite sample p-values for up to mi = 15 structural breaks.

4 Pooling the individual tests
The results contained in Propositions 1 and 2 de…ne the …rst way of pooling the
individual information, which gives rise to the following test statistic:

Z =
p
N
MSB (¸)¡ ¹»

¹&
» N (0; 1) ;

where MSB (¸) = N¡1PN
i=1MSBi (¸i), with ¹» = N¡1PN

i=1 »i and ¹&
2 =

N¡1PN
i=1 &

2
i computed using the statements in Propositions 1 and 2. The

standard normal distribution is obtained from the application of the Lindberg-
Lévy Central Limit Theorem (CLT). As mentioned in Bai and Ng (2001), this
way of pooling can drive to unsatisfactory results, speci…cally when the asymp-
totic distribution of the individual tests is skewed, as this is the case. Instead,
they suggest to follow the proposal in Maddala and Wu (1999) and Choi (2001)
that pool the p-values associated to the individual tests - henceforth, we denote
these p-values as pi, i = 1; : : : ; N . Under the assumption of cross-section inde-
pendence, ¡2 ln pi » Â22, a results that was used in Maddala and Wu (1999) to
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de…ne the Fisher-type test statistic:

P = ¡2
NX
i=1

ln pi » Â22N :

Notice that this statement does not require N !1 to be satis…ed, so this test
statistic is of appliance for panels with small cross-section dimension. Besides,
Choi (2001) proposes the following test when N !1:

Pm =
¡2PN

i=1 ln pi ¡ 2Np
4N

» N (0; 1) ;

where the standard normal limit distribution is obtained from the application
of the Lindberg-Lévy CLT. As a result, the Pm test is suitable for those panels
with large N . This speci…cation was chosen in Bai and Ng (2004) to test the null
hypothesis of non-stationary panel using the DF test. While the main advantage
of the p-values pooling strategy comes from the fact that the de…nition of the
test can be adapted to the cross-section dimension, its main drawback relies
on the availability of the p-values. They are provided by the response surfaces
estimated in Section 2.

5 Finite sample performance
We analyse the performance of the panel data unit root test in two di¤erent
situations. First we consider the case in which there are no common factors, that
is, we study the properties of the test assuming that the individuals are cross-
section independent. After that, we will focus on those panels where the cross-
section dependence is driven by the presence of up to three common factors. In
all these simulations we assume that the date of the breaks are known. Three
values for the number of individuals N = f20; 40; 100g have been considered,
with a sample size equal to T = 100. The number of replications is r = 5; 000.
The DGP is given by equations (1) to (3) with ¹i » U [0; 1], ¯i » U [0:2; 0:5],

µi;k » U [¡10;¡3] and °i;k » U [0:3; 0:9], where U [¢] denotes the Uniform distri-
bution. We have allowed one structural break randomly positioned according to
¸i » U [0:15; 0:85]. Under the null hypothesis ei;t » I (1) have been generated
as a random walk without drift de…ned by the cumulated sum of iid N (0; 1)
processes. The common factors are de…ned following the AR(1) model:

Fj = ®Fj¡1 + ¾Fut;

where ® = f0:5; 0:8; 0:9; 0:95g and ¾2F = f0:5; 1; 10g, j = 1; : : : ; l, with the
factor loadings given by ¼j » N (1; 1). The simulations have speci…ed l = 1 and
l = 3 common factors. The number of common factors are …xed using the panel
BIC information criterion in Bai and Ng (2002) with lmax = 6 as the maximum
number of factors.
Table 4 reports the sample size of the three di¤erent statistics when there

are no common factors. The test based on the standarisation present a size

15



Table 4: Empirical size. Known breaks and no common factors
Model 1

Simpli…ed test
N Z Pm P Z Pm P
20 0.540 0.051 0.042 0.475 0.058 0.048
40 0.860 0.051 0.045 0.808 0.059 0.053
100 0.997 0.044 0.040 0.993 0.058 0.053

Model 2
Simpli…ed test

N Z Pm P Z Pm P
20 0.132 0.066 0.058 0.150 0.061 0.050
40 0.271 0.073 0.062 0.265 0.059 0.051
100 0.568 0.075 0.066 0.548 0.053 0.051

distortion that increses with the number of individuals. This is in accordance
with Bai and Ng (2004), where it is mentioned that pooling in this way can
lead to unsatisfactory results specially when the asymptotic distribution of the
individual tests is skewed, as this is the case. On the contrary, the tests based
on the combination of the individual p-values show have an empirical size close
to the nominal one. Note that this is also true for the simpli…ed test, which
indicates the usefulness of our proposal in applied research.
The picture changes when we analyse the panel data set that allows for

common factors. For Model 1 all three test statistics show good performance in
terms of empirical size. The exception is the P test, which in some situations
presents empirical size distortions that lead to under reject the null hypothesis
–see Table 5. For Model 2 the Pm test is the one with the most stable empirical
size, provided that the Z and P tests under reject the null hypothesis. This is
also true for all the version of the simpli…ed tests –see Table 6.

6 Conclusions
In this paper, we have proposed new procedures for testing non-stationarity of
panel data in the presence of multiple structural breaks and dynamic common
factors. In the absence of common factors, the limiting distributions are shown
to be weighted sum of independent and identically distributed Brownian motions
(demeaned or detrended). These results are of special interest for the single time
series analysis –i.e. panels withN = 1 individual– provided that they extend the
proposals in Perron (1997) and Lumsdaine and Papell (1997), among others, and
allow to test the unit root hypothesis with multiple structural changes. When
dynamic factors are present, the PANIC approach of Bai and Ng (2004) is used to
estimate the model. The limiting distributions of the test statistics are invariant
to mean breaks. For breaks in the linear trend, the limiting distributinos are
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Table 5: Empirical size for model 1 and N = 40. Known breaks with common
factors

r = 1 r = 3
¾2F ® Z Pm P Z Pm P
0.5 0 0.04 0.04 0.04 0.04 0.03 0.03
0.5 0.5 0.05 0.04 0.03 0.04 0.03 0.03
0.5 0.8 0.05 0.05 0.04 0.04 0.04 0.04
0.5 0.9 0.05 0.05 0.04 0.05 0.04 0.04
0.5 0.95 0.04 0.05 0.04 0.05 0.05 0.04
1 0 0.04 0.05 0.04 0.04 0.04 0.03
1 0.5 0.04 0.04 0.04 0.03 0.04 0.03
1 0.8 0.05 0.04 0.04 0.04 0.05 0.04
1 0.9 0.05 0.05 0.04 0.05 0.04 0.03
1 0.95 0.04 0.04 0.04 0.04 0.04 0.03
10 0 0.06 0.05 0.04 0.03 0.03 0.03
10 0.5 0.05 0.04 0.04 0.04 0.04 0.03
10 0.8 0.06 0.05 0.04 0.04 0.04 0.04
10 0.9 0.05 0.05 0.04 0.04 0.04 0.04
10 0.95 0.05 0.05 0.04 0.05 0.05 0.04

shown to be weighted sum of iid Brownian bridges. We further introduced a
simpli…ed test statistic, and showed that the limiting distribution is invariant
to both mean and trend breaks. Pooled test statistic is also studied. Response
surfaces for p-values of all test statistics are computed.
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Table 6: Empirical size for model 2 and N = 40. Known breaks with common
factors

r = 1
Simpli…ed tests

¾2F ® Z Pm P Z Pm P
0.5 0 0.02 0.05 0.04 0.01 0.03 0.03
0.5 0.5 0.02 0.06 0.06 0.02 0.04 0.03
0.5 0.8 0.03 0.07 0.06 0.02 0.04 0.03
0.5 0.9 0.03 0.06 0.05 0.02 0.03 0.03
0.5 0.95 0.02 0.06 0.06 0.01 0.04 0.03
1 0 0.03 0.08 0.07 0.02 0.05 0.05
1 0.5 0.02 0.06 0.05 0.02 0.03 0.03
1 0.8 0.04 0.05 0.04 0.02 0.03 0.03
1 0.9 0.02 0.06 0.05 0.02 0.03 0.03
1 0.95 0.02 0.06 0.05 0.02 0.03 0.03
10 0 0.03 0.06 0.06 0.02 0.04 0.03
10 0.5 0.03 0.06 0.06 0.02 0.04 0.03
10 0.8 0.02 0.06 0.05 0.02 0.03 0.03
10 0.9 0.03 0.06 0.05 0.02 0.03 0.03
10 0.95 0.03 0.07 0.06 0.01 0.04 0.03

r = 3
Simpli…ed tests

¾2F ® Z Pm P Z Pm P
0.5 0 0.02 0.05 0.04 0.02 0.02 0.02
0.5 0.5 0.02 0.04 0.04 0.01 0.02 0.02
0.5 0.8 0.03 0.05 0.05 0.02 0.03 0.02
0.5 0.9 0.03 0.05 0.05 0.01 0.03 0.03
0.5 0.95 0.03 0.06 0.05 0.02 0.04 0.03
1 0 0.01 0.04 0.03 0.01 0.02 0.02
1 0.5 0.02 0.04 0.04 0.01 0.02 0.02
1 0.8 0.02 0.05 0.04 0.02 0.03 0.03
1 0.9 0.02 0.06 0.06 0.01 0.03 0.03
1 0.95 0.02 0.05 0.05 0.01 0.04 0.03
10 0 0.02 0.05 0.04 0.01 0.02 0.02
10 0.5 0.02 0.05 0.04 0.01 0.03 0.02
10 0.8 0.03 0.06 0.05 0.02 0.02 0.02
10 0.9 0.02 0.05 0.05 0.01 0.03 0.03
10 0.95 0.03 0.08 0.07 0.02 0.05 0.05
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7 Appendix: Proof of Theorem 1

7.1 Proof of statement (1)

The model that is considered in this statement is the one for non-trended vari-
ables where ¯i = °i;k = 0, 8i; k in (4). In addition, the constraint in ¼i = 0
8i is imposed in order to avoid the presence of common factors that drive the
behaviour of the individual time series.
From this speci…cation, the estimated OLS residuals of the model are ob-

tained from ~ei = Miei, with Mi = IT ¡ ai (a0iai)¡1 a0i. Note that for mi

structural changes the deterministic part of the model given in (4) can be
expressed in terms of orthogonal regressors de…ning a block diagonal matrix.
The elements in the diagonal are given by vectors ¶k = (1; : : : ; 1)

0 of dimension³³
T ib;k ¡ T ib;k¡1

´
£ 1
´
, k = 1; : : : ;mi+1, with T ib;0 = 0 and T

i
b;mi+1

= T . Thus,

the cross-product matrix of regressors a0iai is given by

a0iai =

2666664
T ib;1 0

T ib;2 ¡ T ib;1
. . .

T ib;mi
¡ T ib;mi¡1

0 T ¡ T ib;mi

3777775 ;

Using the fact that T ib;k = ¸i;kT and de…ning the (mi £mi)-diagonal rescaling
matrix Pi = diag

¡
T¡1=2; : : : ; T¡1=2

¢
, P 0ia0iaiPi can be expressed as P 0ia0iaiPi =

diag (¸i;1; (¸i;2 ¡ ¸i;1) ; : : : ; (¸i;mi ¡ ¸i;mi¡1) ; (1¡ ¸i;mi)).
On the other hand, under the null hypothesis that ei » I (1), T¡1P 0ia0iei )³

¾i
R ¸i;1
0

Wi (s) ds; ¾i
R ¸i;2
¸i;1

Wi (s) ds; : : : ; ¾i
R ¸i;mi

¸i;mi¡1
Wi (s) ds; ¾i

R 1
¸i;mi

Wi (s) ds
´0
.

This means that for t · T ib;1

T¡1=2~ei;t ) ¾iWi (r)¡ ¾i 1
¸i;1

Z ¸i;1

0

Wi (s) ds; 0 < r < ¸i;1;

for T ib;1 < t · T ib;2

T¡1=2~ei;t ) ¾iWi (r)¡ ¾i 1

(¸i;2 ¡ ¸i;1)
Z ¸i;2

¸i;1

Wi (s) ds; ¸i;1 < r < ¸i;2;

and so on, so that, it can be established for T ib;k¡1 < t · T ib;k

T¡1=2~ei;t ) ¾iWi (r)¡ ¾i 1

(¸i;k ¡ ¸i;k¡1)
Z ¸i;k

¸i;k¡1
Wi (s) ds; ¸i;k¡1 < r < ¸i;k;

k = 1; : : : ;mi + 1, with ¸i;0 = 0 and ¸i;mi+1 = 1.
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The goal is to show that limit distribution of the test can be expressed as
a sum of a set of independent integrals of detrended Brownian motions. To
do so we rescale the Brownian motions so that we ensure that the index of
the Brownian motion in each subsample belongs to [0; 1]. Thus, notice that
in the …rst subsample 0 < r < ¸i;1 can be rescaled as 0=¸i;1 < r=¸i;1 < ¸i;1
=¸i;1, so that b1 = (r=¸i;1) 2 [0; 1]. In general, for ¸i;k¡1 < r < ¸i;k it can
be de…ned (¸i;k¡1 ¡ ¸i;k¡1) = (¸i;k ¡ ¸i;k¡1) < (r ¡ ¸i;k¡1) = (¸i;k ¡ ¸i;k¡1) <
(¸i;k ¡ ¸i;k¡1) = (¸i;k ¡ ¸i;k¡1), so that b = (r ¡ ¸i;k¡1) = (¸i;k ¡ ¸i;k¡1) 2 [0; 1]
–Lee (1996), Lee and Strazicich (2001) and Bartley, Lee and Strazicich (2002)
use similar developments when deriving the limit distribution of the KPSS test
with one structural break. Therefore, for 0 < b < 1 we have

T¡1=2~ei;t ) ¾i

q
(¸i;k ¡ ¸i;k¡1)

µ
Wi;k (b)¡

Z 1

0

Wi;k (s) ds

¶
= ¾i

q
(¸i;k ¡ ¸i;k¡1)V ¹i;k (b) ;

where V ¹i;k (b) denotes the demeaned Brownian motion. Thus, the limit distri-
bution of the MSBi (¸i) test is given by

MSBi (¸i) ) ¸2i;1

Z 1

0

V ¹i;1 (b)
2
db+ ¢ ¢ ¢+ (¸i;k ¡ ¸i;k¡1)2

Z 1

0

V ¹i;k (b)
2
db

+ ¢ ¢ ¢+ (1¡ ¸i;mi)
2
Z 1

0

V ¹i;mi+1
(b)2 db;

with V ¹i;k (b) = Wi;k (b) ¡
R 1
0 Wi;k (s) ds, k = 1; : : : ;mi + 1, independent de-

meaned Brownian motions and provided that ~¾2i ! ¾2i - see Stock (1999). Notice
that for mi = 1 the limit distribution of the test is given by

MSBi (¸i)) ¸2i

Z 1

0

V ¹i;1 (b)
2
db+ (1¡ ¸i)2

Z 1

0

V ¹i;2 (b)
2
db (11)

which it is shown to be symmetric around ¸i = 0:5, provided that we can
interchange ¸i and (1¡ ¸i) in (11) and obtain the same asymptotic distribution.
Finally, note that the limit distribution ofMSBi (¸i) is the weighted sum of

(mi + 1) independent Cramér-von Mises distributions -see Harvey (2001). The

expectations of these Cramér-von Mises distributions are E
hR 1
0
V 2i;k (b) db

i
=

1=6 where the variance are V
hR 1
0
V 2i;k (b) db

i
= 1=45, 8k = 1; : : : ;mi + 1 –see

Levin and Lin (1992). Therefore, E [MSBi (¸i)] = (1=6)
Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)2

and V [MSBi (¸i)] = (1=45)
Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)4.

7.2 Proof of statement (2)

This statement presents the limit distribution of the test for trended variables.
As before, we assume ¼i = 0 8i. Following the steps on the previous proof, notice
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that for mi structural changes the deterministic part of the model given in (4)
can be expressed in terms of orthogonal regressors de…ning a block diagonal ma-
trix. Now, the elements in the diagonal are given by vectors ¶k = (1; : : : ; 1)

0 and

tk =
³
1; 2; : : : ;

³
T ib;k ¡ T ib;k¡1

´´0
both of dimension

³³
T ib;k ¡ T ib;k¡1

´
£ 1
´
, k =

1; : : : ;mi+1, with T ib;0 = 0 and T
i
b;mi+1

= T . Thus, the cross-product matrix of
regressors a0iai is block diagonal matrix, with the k-th block given by the (2£ 2)-
matrix a0i;kai;k with elements a

0
i;kai;k [1; 1] =

³
T ib;k ¡ T ib;k¡1

´
, a0i;kai;k [1; 2] =

a0i;kai;k [2; 1] = 1=2
³
T ib;k ¡ T ib;k¡1

´³³
T ib;k ¡ T ib;k¡1

´
+ 1
´
and a0i;kai;k [2; 2] =

1=6
³
T ib;k ¡ T ib;k¡1

´³³
T ib;k ¡ T ib;k¡1

´
+ 1
´³
2
³
T ib;k ¡ T ib;k¡1

´
+ 1
´
. If we de…ne

the rescaling diagonal matrix Pk = diag
¡
T¡1=2; T¡3=2

¢
, then

¡
P 0ka

0
i;kai;kPk

¢¡1 ! 1

¢

·
1=3 (¸i;k ¡ ¸i;k¡1)3 ¡1=2 (¸i;k ¡ ¸i;k¡1)2
¡1=2 (¸i;k ¡ ¸i;k¡1)2 (¸i;k ¡ ¸i;k¡1)

¸
;

where ¢ = (1=12) (¸i;k ¡ ¸i;k¡1)4. Hence, it can be shown that (P 0a0iaiP )¡1 =
diag

³¡
P 0a0i;1ai;1P

¢¡1
; : : : ;

¡
P 0a0i;mi

ai;miP
¢¡1´

.

On the other hand, T¡1P 0a0iei is a (2mi £ 1)-vector de…ned by stacking the
mi (2£ 1)-vectors given by264 T¡3=2

PT ib;k
t=T ib;k¡1+1

ei;t

T¡5=2
PT ib;k
t=T ib;k¡1+1

tei;t

375) "
¾i
R ¸i;k
¸i;k¡1

W (s) ds

¾i
R ¸i;k
¸i;k¡1

sW (s) ds

#
;

k = 1; : : : ;mi + 1. Therefore, for T ib;k¡1 < t · T ib;k it can be established that

T¡1=2~ei;t ) ¾iWi (r)¡ ¾i
¢

h³³
1=3 (¸i;k ¡ ¸i;k¡1)3

´
¡1=2 (¸i;k ¡ ¸i;k¡1)2 r

´Z ¸i;k

¸i;k¡1
W (s) ds

¡
³
1=2 (¸i;k ¡ ¸i;k¡1)2 ¡ (¸i;k ¡ ¸i;k¡1) r

´Z ¸i;k

¸i;k¡1
sW (s) ds

#
;

¸i;k¡1 < r < ¸i;k; k = 1; : : : ;mi + 1, with ¸i;0 = 0 and ¸i;mi+1 = 1. Rescaling
the index of the Brownian motions in a way that bk = (r ¡ ¸i;k¡1) = (¸i;k ¡ ¸i;k¡1)
so that 0 < bk < 1, is straightforward to see that

T¡1=2~ei;t ) ¾i

q
(¸i;k ¡ ¸i;k¡1)

·
Wi (bk)¡ (4¡ 6bk)

Z 1

0

Wi (sk) dsk

¡ (¡6 + 12bk)
Z 1

0

skWi (sk) dsk

¸
= ¾i

q
(¸i;k ¡ ¸i;k¡1)V ¿i;k (b) ;
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where V ¿i;k (b) denotes the detrended Brownian motion. Notice that V
¿
i;k (b) is

equivalent to the detrended Brownian motion involved in the limit distribution
of the MSB test in Stock (1999) Theorem 1.
Thus, the limit distribution of the MSBi (¸i) test

MSBi (¸i) ) ¸2i;1

Z 1

0

V ¿i;1 (b)
2
db+ ¢ ¢ ¢+ (¸i;k ¡ ¸i;k¡1)2

Z 1

0

V ¿i;k (b)
2
db

+ ¢ ¢ ¢+ (1¡ ¸i;mi)
2
Z 1

0

V ¿i;mi+1 (b)
2
db;

with V ¿i;k (b) =Wi;k (b)¡(4¡ 6b)
R 1
0
Wi;k (s) ds¡(¡6 + 12b)

R 1
0
sWi;k (s) ds, k =

1; : : : ;mi+1, independent detrended Brownian motions and provided that ~¾2i !
¾2i –see Stock (1999). Notice that, as before, for mi = 1 the limit distribution
of the test is symmetric around ¸i = 0:5.
The mean and the variance of the limit distribution is given by can be

computed from the moment generating function in Tanaka (1996), which for
our test is given by

m (') =

"
¡3

¡p
2' sin

p
2'+ 2

p
' cos

p
2'¡ 2p'¢¡p

'
¢5

#¡1=2
:

The …rst derivative of the moment generating function evaluated at ' = 0 will
provide us the …rst moment of the limit distribution:

»i = lim
'!0

dm (')

d'
=
1

15
;

whereas the variance is obtained from

&2i = lim
'!0

d2m (')

d'2
¡
µ
1

15

¶2
=

11

6300
:

Therefore, E [MSBi (¸i)] = (1=15)
Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)2 and V [MSBi (¸i)] =

(11=6300)
Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)4.

8 Appendix: Proof of Theorem 2

8.1 Proof of statement (1)

Statement (1) in Theorem 1 is concerned with Model 1, that is, the model for
non-trended variables where ¯i = °i;k = 0, 8i; k in (4). The estimation of the
(di¤erenced and detrended) model produces the following result:

xi;t = f̂t¼̂i + ẑi;t: (12)
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Subtracting (12) from (7) we obtain

ẑi;t = zi;t + ft¼i ¡ f̂t¼̂i:
Following Bai and Ng (2003), we can express the model as

ẑi;t = zi;t + ftHH
¡1¼i ¡ f̂tH¡1¼i + f̂tH¡1¼i ¡ f̂t¼̂i

= zi;t +
³
ftH ¡ f̂t

´
H¡1¼i ¡ f̂t

¡
¼̂i ¡H¡1¼i

¢
= zi;t + vtH

¡1¼i ¡ f̂tdi; (13)

where vt =
³
ftH ¡ f̂t

´
and di =

¡
¼̂i ¡H¡1¼i

¢
. Let us de…ne the partial sum

process using the estimated residuals as ~ei;t =
Pt
s=2 ẑi;s =

Pt
s=2 (Mi ¢êi)s. By

Lemmas 3 and C1 in Bai and Ng (2003), T¡1=2
°°°Pt

s=2 vsH
¡1¼i

°°° = op (1) and
T¡1=2

°°°Pt
s=2 f̂sdi

°°° = op (1), so that
T¡1=2~ei;t = T¡1=2

tX
s=2

(Mi ¢ei)s + op (1) :

The partial sum process can be expressed in terms of the population residuals
as:

T¡1=2~ei;t = T¡1=2
tX

s=2

(Mi ¢ei)s + op (1) ; (14)

with

tX
s=2

(Mi ¢ei)s =
tX

s=2

(¢ei;s ¡ (Pi¢ei)s) ;

where Pi = ai (a
0
iai)

¡1
a0i. Note that

Pt
s=1¢ei;s = ei;t ¡ ei;1 and Pi¢ei is

a vector of zeros except for the
³
T ib;k + 1

´
-th positions, k = 1; : : : ;mi. The

cumulated process is equal to:

~ei;t = (ei;t ¡ ei;1)¡
³
ei;T ib;1+1 ¡ ei;T ib;1

´
DUi;1;t ¡ : : :¡

³
ei;T ib;mi

+1 ¡ ei;T ib;mi

´
DUi;mi;t:

If we assume that ei;t » I (1):

T¡1=2~ei;t = T¡1=2 (ei;t ¡ ei;1)¡ T¡1=2
³
ei;T ib;1+1 ¡ ei;T ib;1

´
DUi;1;t ¡ : : :

¡T¡1=2
³
ei;T ib;mi

+1 ¡ ei;T ib;mi

´
DUi;mi;t + op (1)

) ¾iWi (r)¡ ¾iWi (0)¡ ¾idWi (¸1) du1 ¡ : : :¡ ¾idWi (¸mi) dumi

= ¾iWi (r)¡ ¾idWi (¸1) du1 ¡ : : :¡ ¾idWi (¸mi) dumi ; (15)
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whereWi (r) denotes the standard Brownian motion and duk = 1 for r > ¸k and
0 elsewhere, with ¸k = T ib;k=T , k = 1; : : : ;mi. The limit expression of T¡1=2~ei;t
given by (15) involves two di¤erent kind of elements: (i) the Brownian motion,
Wi (r), and (ii) the di¤erence of Brownian motions, dWi (¸k), k = 1; : : : ;mi.
Following Perron (1997), the e¤ect of these di¤erences can be understood as neg-
ligible compared to Wi (r), so that, we can consider that T¡1=2~ei;t ) ¾iWi (r).
Therefore, the test statistic converges to:

MSBi (¸i))
Z 1

0

W 2
i (r) dr;

provided that ~¾2i ! ¾2i . Notice that after considering the negligible e¤ect of the
dWi (¸k) terms, k = 1; : : : ;mi, the asymptotic distribution of the test does not
depend on the break fraction parameters ¸k, that is, the test is invariant to the
presence of structural breaks a¤ecting the mean of the time series.

8.2 Proof of statement (2)

Let us now focus on the speci…cation given by Model 2, that is, the model for
trended regressors where ¯i 6= °i;k 6= 0, 8i; k in (4). As in the previous proof, the
computation of the partial sum process can be done from (13). However, we have

to assess that T¡1=2
°°°Pt

s=2 f̂sdi

°°° = op (1). Note that T¡1=2
°°°Pt

s=2 f̂sdi

°°° ·
T¡1=2

°°°Pt
s=2 f̂s

°°° kdik. From Bai and Ng (2003), kdik = op (1), and

T¡1=2
tX

s=2

f̂s = T¡1=2
tX

s=2

³
f̂s ¡Hfs +Hfs

´
= T¡1=2

tX
s=2

vs +HT
¡1=2

tX
s=2

fs

= op (1) +HT
¡1=2

tX
s=2

fs:

To determine the order in probability of T¡1=2
Pt
s=2 fs we rewrite the matrix

of deterministic elements ai in a (T £ (2mi + 1)) quasi block diagonal matrix:

ai =
£
DU1i D

¡
T ib;1

¢
DU2i D

¡
T ib;2

¢
DU3i : : : DU

mi
i D

¡
T ib;mi

¢
DUmi+1

i

¤
;

where DUki = 1 for T
i
b;k¡1 < t · T ib;k and 0 elsewhere, k = 1; : : : ;mi + 1, with

T ib;0 = 1 and T
i
b;mi+1

= T . Now the elements that de…nes the ai matrix can be
grouped in two di¤erent sets, the …rst one compounded by the DUki regressors

and the second one composed by the D
³
T ib;k

´
regressors, k = 1; : : : ;mi + 1.

Note the orthogonality property that characterize the elements of each set.

24



Moreover, this transformation makes the Pi matrix to be block diagonal. With-
out loose of generality and in order to simplify cumbersome algebraic manipula-
tions, we derive the order in probability of T¡1=2

Pt
s=2 fs assuming thatmi = 1,

although the results are valid when mi ¸ 1. Thus, when mi = 1 the Pi matrix
is given by:

Pi =
1

T¸
DU1DU10 +

(¡1 + ¸)T
1¡ T + T¸D

¡
T ib
¢
D
¡
T ib
¢0
+

1

1¡ T + T¸D
¡
T ib
¢
DU20

+
1

1¡ T + T¸DU
2D
¡
T ib
¢0 ¡ 1

1¡ T + T¸DU
2DU20: (16)

The e¤ect of Pi on ¢F can be analysed by parts. When multiplying the …rst
element of (16) by ¢F produces:

1

T¸
DU1DU10¢F =

(
1
T¸

³
FT ib ¡ F1

´
t · T ib

0 t > T ib
:

The computation of the partial sum process involves:

T¡1=2
tX

s=2

1

T¸

¡
DU1DU10

¢
s
¢Fs =

8<: T¡3=2¸¡1
³
FT ib ¡ F1

´
t t · T ib

T¡1=2
³
FT ib ¡ F1

´
t > T ib

;

which is Op(1). The same result is found for the product involving the …fth
element of (16). The second element of (16) gives:

(¡1 + ¸)T
1¡ T + T¸D

¡
T ib
¢
D
¡
T ib
¢0
¢F =

(
(¡1+¸)T
1¡T+T¸¢FT ib+1 t = T ib + 1

0 t 6= T ib + 1
;

so that the partial sum process is

T¡1=2
tX

s=2

(¡1 + ¸)T
1¡ T + T¸

³
D
¡
T ib
¢
D
¡
T ib
¢0´

s
¢Fs =

(
0 t · T ib

(¡1+¸)T1=2
1¡T+T¸ ¢FT ib+1 t > T ib

;

with Op(1) as order in probability. For the third element we have

1

1¡ T + T¸D
¡
T ib
¢
DU20¢F =

½
FT ¡ FT ib+1 t = T ib + 1

0 t 6= T ib + 1
;

so that

T¡1=2
tX

s=2

1

1¡ T + T¸
¡
D
¡
T ib
¢
DU20

¢
s
¢Fs =

8<:
0 t · T ibµ

FT¡FTi
b
+1

¶
(1¡T+T¸)T1=2 t > T ib

;
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which is also Op (1). The fourth element is

1

1¡ T + T¸DU
2D
¡
T ib
¢0
¢F =

½
0 t · T ib

1
1¡T+T¸¢FT ib+1 t > T ib

:

Thus,

T¡1=2
tX

s=2

1

1¡ T + T¸
³
DU2D

¡
T ib
¢0´

s
¢Fs =

(
0 t · T ib

¢F
Ti
b
+1(t¡T ib)

(1¡T+T¸)T1=2 t > T ib
;

which is Op (1). Finally, the …fth element

¡ 1

1¡ T + T¸DU
2DU20¢F =

(
0 t · T ib

¡ 1
1¡T+T¸

³
FT ¡ FT ib+1

´
t > T ib

;

with cumulated sum

T¡1=2
tX

s=2

¡ 1

1¡ T + T¸
¡
DU2DU20

¢
s
¢Fs =

8<:
0 t · T ib

¡
µ
FT¡FTi

b
+1

¶
(t¡T ib)

(1¡T+T¸)T1=2 t > T ib

;

which is also Op (1).Therefore, all the partial sum processes involving Pi¢F are
Op (1), a result that can be straightforwardly extended to those situations that
allow for multiple breaks. Consequently,

T¡1=2
°°°°°

tX
s=2

f̂sdi

°°°°° · T¡1=2
°°°°°

tX
s=2

f̂s

°°°°° kdik
· Op (1) op (1) ;

which means that T¡1=2
°°°Pt

s=2 f̂sdi

°°° = op (1).
As in the previous proof, the partial sum process of the estimated resid-

uals is given by (14). Now, the cumulative process are given by the previ-
ous expressions but replacing F by ei. The …rst element of the partial sum
process, which involves the …rst set of step dummy variables, converges to
T¡1=2

Pt
s=2

1
T¸

¡
DU1DU10

¢
s
¢ei;s ) (r=¸)Wi (¸i) for t · T ib

and T¡1=2
Pt
s=2

1
T¸

¡
DU1DU10

¢
s
¢ei;s ) Wi (¸i) for t > T ib . The second ele-

ment produces (¡1+¸)T
1=2

1¡T+T¸ ¢ei;T ib+1 ) dWi (¸i), an element that vanish asymp-
totically. The third element is op (1), whereas the fourth element, which in-
volves the second set of step dummy variables, 1

1¡T+T¸¢ei;T ib+1
¡
t¡ T ib

¢ )
¡ r¡¸i
1¡¸i dWi (¸i), another element that vanish asymptotically. Finally, the …fth

element is T¡1=2
Pt
s=2¡ 1

1¡T+T¸
¡
DU2DU20

¢
s
¢ei;s ) r¡¸i

1¡¸i (Wi (1)¡Wi (¸i))

for t > T ib and 0 elsewhere.
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Therefore, T¡1=2~ei;t ) ¾iWi (r)¡¾i (r=¸i)Wi (¸i) for r · ¸i and T¡1=2~ei;t )
¾iWi (r)¡ ¾iWi (¸i)¡¾i r¡¸i1¡¸i (Wi (1)¡Wi (¸i)) for r > ¸i, and the MSBi (¸i)
test statistic converges to:

T¡2
PT
t=1 ~e

2
i;t¡1

~¾2i
=

T¡2
PT ib
t=1 ~e

2
i;t¡1

~¾2i
+
T¡2

PT
t=T ib+1

~e2i;t¡1
~¾2i

)
Z ¸i

0

[Wi (r)¡ (r=¸i)Wi (¸i)]
2 dr

+

Z 1

¸i

·
Wi (r)¡Wi (¸i)¡ r ¡ ¸i

1¡ ¸i (Wi (1)¡Wi (¸i))

¸2
dr;

provided that ~¾2i ! ¾2i . However, the limit distribution of MSBi (¸i) can be
expressed as the sum of two independent integrals. Let us de…ne b = r=¸i;1 so
that 0 < b < 1. Using the properties of the Brownian motions the limit distri-
bution can be written in terms of b as Wi (r)¡ (r=¸i)Wi (¸i) =

p
¸iWi;1 (b)¡

b
p
¸iWi;1 (1) =

p
¸i (Wi;1 (b)¡ bWi;1 (1)), so thatZ ¸i

0

[Wi (r)¡ (r=¸i)Wi (¸i)]
2
dr = ¸2i

Z 1

0

[Wi;1 (b)¡ bWi;1 (1)]
2
db

= ¸2i

Z 1

0

V 2i;1 (b) db;

where Vi;1 (b) denotes the demeaned Brownian motion. For the second inte-
gral, let us now de…ne b = (r ¡ ¸i) = (1¡ ¸i), so that 0 < b < 1. Now,
the limit distribution can be reexpressed in terms of b as Wi (r) ¡Wi (¸i) ¡
r¡¸i
1¡¸i (Wi (1)¡Wi (¸i)) =Wi;2 (b)¡ bWi;2 (1), which implies thatZ 1

¸i

·
Wi (r)¡Wi (¸i)¡ r ¡ ¸i

1¡ ¸i (Wi (1)¡Wi (¸i))

¸2
dr = (1¡ ¸i)2

Z 1

0

V 2i;2 (b) db;

where Vi;2 (b) denotes the demeaned Brownian motion. Therefore, the asymp-
totic distribution of the test when mi = 1 is given by

MSBi (¸i)) ¸2i

Z 1

0

V 2i;1 (b) db+ (1¡ ¸i)2
Z 1

0

V 2i;2 (b) db; (17)

where Vi;1 (b) and Vi;2 (b) are two independent Brownian bridges. Note also the
symmetry of the asymptotic distribution around ¸i = 0:5. As shown above,
we can interchange ¸i and (1¡ ¸i) in (17) and obtain the same asymptotic
distribution.
In general, for k = 1; : : : ;mi+1 we have T bi;k¡1 < t · T bi;k and the partial sum

processes converges to ~¾¡1i T
¡1=2~ei;t ) Wi (r) ¡ (r ¡ ¸i;k¡1) = (¸i;k ¡ ¸i;k¡1)

(Wi (¸i;k)¡Wi (¸i;k¡1)), with ¸i;0 = 0 and ¸i;mi+1 = 1. Let us now de-
…ne b = (r ¡ ¸i;k¡1) = (¸i;k ¡ ¸i;k¡1) so that 0 < b < 1. As before, the
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limit distribution of the partial sum processes is given by ~¾¡1i T
¡1=2~ei;t )p

¸i;k ¡ ¸i;k¡1 (Wi;k (b)¡ bWi;k (1)), and the test statisticMSBi (¸i) = ~¾¡2i T
¡2PT

t=1 ~e
2
i;t¡1

= ~¾¡2i T
¡2
·PT ib;1

t=1 ~e
2
i;t¡1 + ¢ ¢ ¢ ¢ ¢ ¢+

PT ib;k
t=T ib;k¡1+1

~e2i;t¡1+ ¢ ¢ ¢+
PT
t=T ib;mi

+1 ~e
2
i;t¡1

i
with limit distribution given by:

MSBi ) ¸2i;1

Z 1

0

V 2i;1 (b) db+ ¢ ¢ ¢+ (¸i;k ¡ ¸i;k¡1)2
Z 1

0

V 2i;k (b) db

+ ¢ ¢ ¢+ (1¡ ¸i;mi)
2
Z 1

0

V 2i;mi+1 (b) db;

where Vi;k (¢), k = 1; : : : ;mi+1, denotes the demeaned Brownian motion and
provided that ~¾2i ! ¾2i –see below the proof of the consistency of the non-
parametric long-run variance estimation. The limit distribution ofMSBi (¸i) is
the weighted sum of (mi + 1) independent Cramér-von Mises distributions. The

expectations of these Cramér-von Mises distributions are E
hR 1
0 V

2
i;k (b) db

i
=

1=6 where the variance are V
hR 1
0 V

2
i;k (b) db

i
= 1=45, 8k = 1; : : : ;mi + 1 - see

Levin and Lin (1992). Therefore, E [MSBi (¸i)] = (1=6)
Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)2

and V [MSBi (¸i)] = (1=45)
Pmi+1
k=1 (¸i;k ¡ ¸i;k¡1)4.

8.3 Proof of the consistency of the long-run variance es-
timation

Let us de…ne the AR(1) regression on the estimated idiosyncratic residuals:

~ei;t = bi~ei;t¡1 + ´i;t; (18)

which under the null hypothesis of unit root implies that
³
~bi ¡ 1

´
= Op (1=T ).

From (18) we can express the error term as:

~́i;t = ¢~ei;t +
³
1¡ ~bi

´
~ei;t¡1;

where from (13) it follows that

~́i;t = zi;t + vtH
¡1¼i ¡ f̂tdi +

³
1¡ ~bi

´
~ei;t¡1

= zi;t +wi;t;

with zi;t = (Mi¢ei)t and wi;t = vtH
¡1¼i ¡ f̂tdi +

³
1¡ ~bi

´
~ei;t¡1.

For arbitrary time series at and bt de…ne:

dNWab =
1

T

TX
t=1

atbt +
JX
j=1

K (j)

"
1

T

T¡jX
t=1

(atbt+j + at+jbt)

#
;
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with K (j) = 1 ¡ j= (J + 1). Then dNW zizi is the Newey-West estimator of
the long-run variance of zi = Mi¢ei. In order to proof the consistency of this
estimator we need to show thatdNW ~́i~́i ¡ dNW zizi = op (1) :

From ~́i;t = zi;t +wi;t we have thatdNW ~́i ~́i =
dNW zizi + 2dNW ziwi + dNWwiwi :

We next show that if J !1 and J=±NT ! 0, ±NT = min [N;T ], thendNW ziwi = op (1)

and dNWwiwi = op (1) :

First, notice that¯̄̄ dNW ziwi

¯̄̄
·
Ã
1

T

TX
t=1

z2i;t

!1=2Ã
1

T

TX
t=1

w2i;t

!1=2

+
JX
j=1

K (j)

24Ã 1
T

T¡jX
t=1

z2i;t

!1=2Ã
1

T

T¡jX
t=1

w2i;t+j

!1=2
+

Ã
1

T

T¡jX
t=1

z2i;t+j

!1=2Ã
1

T

T¡jX
t=1

w2i;t

!1=235 :
Notice that 1

T

PT
t=1 z

2
i;t = Op (1). On the other hand,

jwi;tj2 · 4 kvtk2
°°H¡1¼i

°°2 ¡ 4°°°f̂t°°°2 kdik2 + 4³1¡ ~bi´2 ~e2i;t¡1;
so that

1

T

TX
t=1

jwi;tj2 · 4 1
T

TX
t=1

kvtk2
°°H¡1¼i

°°2 ¡ 4 1
T

TX
t=1

°°°f̂t°°°2 kdik2 + 4³1¡ ~bi´2 1
T

TX
t=1

ê¤2i;t¡1:

From Lemmas 1(a) and 1(c) in Bai and Ng (2003), 1
T

PT
t=1 kvtk2 = Op

¡
±¡2NT

¢
and kdik2 = Op

¡
±¡2NT

¢
respectively, and

³
1¡ ~bi

´2
1
T

PT
t=1 ~e

2
i;t¡1 = T

³
1¡ ~bi

´2
1
T2

PT
t=1 ~e

2
i;t¡1 = Op (1=T ). Therefore, 1

T

PT
t=1 jwi;tj2 · Op

¡
±¡2NT

¢
. These in-

termediate results enable us to establish that¯̄̄ dNW ziwi

¯̄̄
· (J + 1)Op

¡
±¡1NT

¢! 0:

Moreover, since 1
T

PT
t=1 jwi;tj2 · Op

¡
±¡2NT

¢
then¯̄̄ dNWwiwi

¯̄̄
· (J + 1)Op

¡
±¡2NT

¢! 0:

Thus, we have shown that the long-run variance can be consistently estimated
through the application of the non-parametric Newey-West estimation proce-
dure, that is, we propose to use ~¾2i = dNW ~́i ~́i .
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