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Estimating covariance matrices is an important part of portfolio selection,
risk management, and asset pricing. This paper reviews the recent develop-
ment in estimating high dimensional covariance matrices, where the number
of variables can be greater than the number of observations. The limitations
of the sample covariance matrix are discussed. Several new approaches are
presented, including the shrinkage method, the observable and latent factor
method, the Bayesian approach, and the random matrix theory approach. For
each method, the construction of covariance matrices is given. The relation-
ships among these methods are discussed.
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1. INTRODUCTION

Estimating covariance matrices is an important part of portfolio selec-
tion, risk management, and asset pricing. The sample covariance matrix
is often used for these purposes, but the sample covariance matrix has a
number of undesirable properties when the dimension of the matrix is large.

*Financial support from the NSF (grants SES-0551275 and SES-0962410 ) is acknowl-
edged.

199

1529-7373/2011

All rights of reproduction in any form reserved.



200 JUSHAN BAI AND SHUZHONG SHI

First, when the number of assets (N) is larger than the number of obser-
vations (T ), the sample covariance matrix is not of full rank, so its inverse
will not exist. Second, even if the sample covariance matrix is invertible,
the expected value of its inverse is a biased estimator for the theoretical
inverse. Third, the sample covariance can be volatile in the sense that the
constructed weights for the mean-variance efficient portfolios may give rise
to high turnover rates over time. Also, the out-of-sample portfolio risks
usually far exceed the desired risks. In this paper, we review some of the
new methodologies that overcome these deficiencies. These new methods
are classified into four categories (not necessarily mutually exclusive). They
include

(i) The shrinkage method. The shrinkage estimator is a linear combi-
nation of the sample estimator and another estimator. The latter can be
the covariance matrix implied by the CAPM theory. How to determine the
optimal shrinkage will be discussed.

(ii) Factor models. We consider covariance matrices implied by the large
dimensional factor models, either observable or latent factor models. For
the latter, we discuss the principal components method and the maximum
likelihood method.

(iii) Bayesian and empirical Bayes estimators. These estimators are
related to the shrinkage estimator. They provide alternative interpretations
for the shrinkage method.

(iv) The method based on random matrix theory. This method aims to
attenuate the randomness of the sample covariance S using the theory of
random matrices of high dimension.

In portfolio selection, the inverse matrix is needed. Bruce-force inversion
of a large dimensional matrix can be difficult and inaccurate. However,
taking into account the structure of the proposed estimators, inversion can
be easily performed. We also discuss the merit of each estimator in terms
of the easiness of finding the inverse.

The emphasis is on issues arising from a high cross-sectional dimension.
The methods are suitable under the assumption that the number of vari-
ables (assets) goes to infinity in contrast to the usual assumption that the
number of observations goes to infinity. The large N asymptotics provides
a good approximation for emerging markets financial data, where the time
series dimension is small. Even as time goes by, the large N relative to T
environment is likely to persist as a result of emergence of new firms, merg-
ers and acquisitions. At any point in time, the number of firms with a long
history may be small. To include as many firms as possible, we must be
content with data sets having short time spans. Also, it may be desirable
to use more recent data. In any case, the methods presented below also
work well under large T.
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2. THE SAMPLE COVARIANCE

Let Xt = (X1t, X2t, ..., XNt)
′ be an N × 1 vector of random variables.

For example, Xit can be the return for asset i in period t, t = 1, 2, ..., T . In
the following, N is referred to as the number of variables, or the number
of series, and T is referred to as the number of observations, or the sample
size. Suppose E(Xt) = µ and E[(Xt − µ)(Xt − µ)′] = Σ. We assume Σ
has a full rank N . The sample mean and sample covariance are defined
respectively as

X̄ =
1

T

T∑
t=1

Xt and S =
1

T − 1

T∑
t=1

(Xt − X̄)(Xt − X̄)′.

The sample covariance S is a natural estimator for the population covari-
ance Σ. The estimator has a number of advantages: simple to construct,
unbiased, and intuitively appealing as it is the sample analogue of the the-
oretical central moment. Unbiasedness means its expected value is equal
to the true covariance matrix, that is, E(S) = Σ. However, the sample
covariance matrix has a number of disadvantages. When the number of
observations (T ) is less than the number of variables (N), the rank of S
is at most T , so it is not invertible, even though the underlying true co-
variance matrix is invertible. Even when T is comparable to or larger than
N , the sample covariance S has a significant amount of sampling error,
and its inverse is a poor estimator for Σ−1. For example, under normality
assumption, the expected value of the inverse

E(S−1) =
T

T −N − 2
Σ−1.

While S is unbiased for Σ, S−1 is highly biased for Σ−1 if N is close to T .
In particular, for N = T/2 + 2, we have E(S−1) = 2Σ−1. It is possible,
however, to directly estimate the inverse of Σ−1, as in Fan et al. (2008).

These undesirable properties of S have led to many alternative and im-
proved estimators. In the sections to follow, we review recent advances in
this area. All these estimators can be viewed as some kind of shrinkage
estimators, differing in the targets to which the sample covariance matrix
is shrunk. The target matrices are considered to have some structures as-
sociated with some statistical or economic theory. For example, the capital
asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) implies
a simple factor structure. In general, a structured matrix has much fewer
parameters to estimate than the unstructured matrix Σ, and therefore can
be easily estimated with little estimation error. But a structured matrix
can be highly biased if the underlying theory governing the structure is in-
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correct. The shrinkage estimator seeks an optimal trade-off between biases
and estimating variability.

For any matrix A, n × n, we define its norm as ‖A‖ = (
∑
i

∑
j a

2
ij)

1/2.
This is the standard Euclidean norm when A is viewed as an element in
the n2 dimensional Euclidean space.

3. SHRINKAGE ESTIMATOR

In this section, we consider shrinkage estimators in the context of asset
returns, particularly the estimator proposed by Ledoit and Wolf (2003).
For asset returns, there exists a natural target toward which the covariance
matrix can be shrunk. Sharpe (1963)’s single index model postulates

Xit = αi + βiX0t + εit

where Xit is the stock i’s return, X0t is the market return, and εit is
idiosyncratic return for stock i in period t and is uncorrelated with the
market return. This implies the covariance matrix

Φ = ββ′σ2
00 + Ωε

where β = (β1, ..., βN )′ is N × 1, and σ2
00 is the variance of the market

portfolio. An estimator for Φ is

Φ̂ = BB′σ̂2
00 + Ω̂ε

where B = (b1, ..., bN )′ and bi is the least squares estimator for βi, and
Ω̂ε = diag(σ̂2

1,ε, ..., σ̂
2
N,ε), and each σ̂2

i,ε is based on the OLS residuals. More
specifically,

bi = (

T∑
t=1

X2
0t)
−1

T∑
t=1

X0tXit, (i = 1, 2, ..., N),

σ̂2
i =

1

T − 1

T∑
t=1

ε̂2it

where ε̂it is the regression residual

ε̂it = Xit − biX0t.

Finally, σ̂2
00 is the sample variance of the market returns.

One shrinkage estimator proposed by Ledoit and Wolf (2003) is

Σ̂(α) = αΦ̂ + (1− α)S
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a linear combination of Φ̂ and S, where Φ̂ is defined earlier. This estimator
shrinks S toward the covariance matrix implies by the CAPM model. To
derive the optimal shrinkage intensity α, they considered the following
mean squared error criterion

L(α) = E‖Σ̂(α)− Σ)‖2.

Solving from the first order condition, the optimal solution for α that min-
imizes the mean squared error loss is

α∗ =

∑N
i=1

∑N
j=1[var(sij)− cov(φ̂ij , sij)]∑N

i=1

∑N
j=1[var(φ̂ij − sij) + (φij − σij)2]

where sij is the (i, j)th element in S, and all other entries are similarly
defined. The value of α∗ must be estimated. A consistent estimator α̂∗ for
α∗ is derived in Ledoit and Wolf (2003), the details are omitted. The final
estimator for Σ is given by

Σ̂ = α̂∗Φ̂ + (1− α̂∗)S.

In a separate study, Ledoit and Wold (2004) considered an estimator
that shrinks the sample variance S toward the identity matrix, and show
the resulting matrix possesses a well behaved conditional number (the ra-
tio of the maximum eigenvalue to the smallest eigenvalue). For portfolio
selection, shrinking toward the market index model is intuitively appealing.

4. OBSERVABLE FACTOR MODELS

The CAPM model is a single factor model. When the market portfolio is
proxied by the valued-weighted or equal-weighted index, the model becomes
an observable factor model. This single index model can be easily extended
to multiple factors:

Xit = µi + βi1Z1t + · · ·βikZkt + εit (1)

i = 1, 2, ..., N ; t = 1, ..., T

where Zt = (Z1t, ..., Zkt)
′ is an observable vector. Chen, Roll, and Ross

(1986) used macroeconomic variables as factors, for example, inflation, out-
put growth gap, interest rate, risk premia, and term premia. The factors
by Fama and French (1993) are portfolios based on firm characteristics.
Lettau and Ludvigson (2001) use cointegration residuals (from a regression
of consumption on income and wealth) as observable factors. Also see Gao
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and Huang (2008). The BARRA’s risk model includes a host number of
industrial dummy variables, as well as other observable factors. Campbell,
Lo, and MacKinlay (1997) provide a more extensive review on the topic.

Under model (1), the covariance matrix will be

Σ = βΩZβ
′ + Ωε (2)

where β is an N × k matrix consisting of the coefficients βij and ΩZ is
a k × k covariance matrix for the vector Zt, and Ωε is diagonal and is
the variance matrix of ε. The covariance matrix Σ depends on unknown
coefficients, but they can be easily estimated by the least squares method
equation by equation. Finally, analogous to the market model, we have

Σ̂ = β̂Ω̂Z β̂
′ + Ω̂ε

where Ω̂Z is the sample covariance matrix of Z1, ..., ZT , and Ω̂ε is an esti-
mate of Ω, consisting of the residual variances. The theoretical properties
of the estimator is studied by Fan et al. (2008). One advantage of observ-
able factor models is that the model requires much fewer parameters than
the latent factor models to be discussed below.

5. LATENT FACTOR MODELS

Factor models have both theoretical and empirical appeals. The single
index model of Sharpe (1994) and Lintner (1965) is derived from an equi-
librium consideration. The arbitrage pricing theory of Ross (1976) assumes
asset returns have a factor structure so that risk premia can be expressed
as a linear function of factor loadings. In addition to finance, factor mod-
els have been widely used in economics because factor models provide an
efficient way to aggregate and synthesize information for large data sets.
Bai and Ng (2008) provide more detailed discussion on the models’ use in
economics.

The previous section assumes observable factors, an ideal but not neces-
sarily feasible assumption. Latent factor models relax this assumption and
can be expressed as:

Xit = µi + λ′ift + εit

where both the factors ft (r × 1) and factor loadings λi (r × 1) are unob-
servable. Here r represents the number of factors, which is also unknown.
In vector form

Xt = µ+ Λft + εt
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where X = (Xi1, ..., XiN )′ and Λ = (λ1, ..., λN )′; µ and εt are similarly
defined. The implied covariance matrix is

Σ = ΛΩfΛ′ + Ωε

with Ωf = var(ft) and Ωε = var(εt). Because both λi and ft are unob-
servable and they enter the model in a multiplicative way, they cannot be
identified separately without restrictions. This follows from the sample fact
that α′ift = α′iAA

−1ft for an arbitrary invertible matrix. So normalization
is made such that Ωf = I, implying Σ = ΛΛ′ + Ωε. If Ωε is non-diagonal
but its maximum eigenvalue is bounded, then the model is known as an
approximate factor model, see Chamberlain and Rothschild (1983). Here
we assume Ωε is diagonal. The model may be estimated by the maximum
likelihood method, e.g., Lawley and Maxwell (1971) and Anderson (1984).
The properties of the maximum likelihood estimator, under large N , is
studied by Bai and Li (2010).

An alternative and simpler estimation method is that of the principal
components. The principal components estimator of Σ makes use of the
matrix spectral decomposition:

S =

N∑
i=1

b2ihih
′
i

where b2i is the ith largest eigenvalue of S and hi is the corresponding
eigenvector. The above decomposition can be easily computed via the
singular value decomposition. The estimator for Λ is defined as

Λ̂ = (b1h1, ..., brhr)

and the estimator of Ωε is defined as

Ω̂ε = diag(S − Λ̂Λ̂′)

This gives

Σ̂ = Λ̂Λ̂′ + Ω̂ε. (3)

Connor and Korajczyk (1986, 1988) and Stock and Watson (2002), Bai
and Ng (2002, 2011), and Bai (2003) studied the theoretical properties of
the principal components estimators. Comparison between the principal
components method and the maximum likelihood method, in terms of rel-
ative efficiency, is given in Bai and Li (2010). An application of latent
factor models to testing the arbitrage pricing theory (APT) is performed
by Lehmann and Modest (1988). Also using a latent factor framework,
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Harvey, Solnik, and Zhou (1988) study the determinants of expected inter-
national asset returns.

The principal components method can also be applied to the sample
correlation matrix. Let D be the N × N diagonal matrix formed by the
diagonal elements of S. That is, D = diag(S11, ..., SNN ). Define C =
D−1/2SD−1/2, so that C is the sample correlation matrix. By the spectral
decomposition, C can be written as

C = τ1ξ1ξ
′
1 + · · · τkξkξ′k + · · ·+ τNξNξ

′
N

where τ1 ≥ τ2 ≥ · · · ≥ τN are the eigenvalues of C and {ξk} are the
corresponding eigenvectors. Consider the “reduced” correlation matrix

C =

r∑
i=1

τiξiξ
′
i + diag

(
IN −

r∑
i=1

τiξiξ
′
i

)
This is analogous to (3), except that the sample correlation matrix C is
used instead of the sample covariance matrix S. Note that C is a correlation
matrix because it is positive definite and the diagonal elements are all 1.
Finally, the covariance matrix estimator is defined as

Σ̂c = D1/2CD1/2. (4)

This estimator takes into account heteroskedasticity over the cross section.
If heteroskedasticity is heavy, this estimator will perform better than the
principal components estimator directly applied to the sample covariance
matrix. This estimator is more closely examined in Bai (2010). Also, see
Jones (2001).

In practice, the number of factors r is unknown and has to be estimated.
Bai and Ng (2002) propose information criteria to estimate r and establish
consistency. Bai (2003, 2004) shows the Λ and (f1, f2, ..., fT ), up to a
rotation, can be consistently estimated and derives the rates of convergence
and the limiting distributions.

Factor models in which ft and εit are GARCH processes can also be
considered. Related issues can be found in Bollerslev (1987), Engle (2002),
Engle and Kroner (1995), Engle et al. (1990), and Engle and Sheppard
(2001), Ledoit et al. (2003), and Tsay (2002). A generalized dynamic
factor model is studied by Forni et al. (2000).

Bayesian estimation of factor models is considered by Chib et al. (2002),
Han (2003), Nardari and Scruggs (2003). They also allow the disturbances
to have stochastic volatility. The Bayesian analysis to be discussed in the
next section does not impose a factor structure, but can incorporate a
factor structure as prior information.
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It is also feasible to shrink the sample covariance S towards the principle
component estimator, as in Bengtsson and Holst (2003), along the line of
Ledoit and Wolf (2003).

It is possible to impose many restrictions on the factor loading matrix Λ.
One particular class of restrictions corresponds to a structure with global
(market wide) and regional (industrial and sectoral) factors. In this case,
the loading matrix Λ is of the form (assuming three regions, for example):

Λ =

G1 Γ1 0 0
G2 0 Γ2 0
G3 0 0 Γ3


where Gi and Γi are all block matrices. Swartz (2006) provides an empirical
application of this model and Wang (2008) considers identification and
estimation of the model.

6. BAYESIAN AND EMPIRICAL BAYE’S ESTIMATORS

The sample covariance S is an estimator based solely on data. In con-
trast, Bayesian methods incorporate prior information concerning Σ, be
either personal beliefs, historical experience, and or some modeling theory
that governs Σ. Under the APT theory, for example, Σ has a factor struc-
tural. Bayesian method allows us to take into account these considerations.
Statistically, every parameter under the Bayesian method is considered a
random variable. Prior information about unknown parameters is repre-
sented by distributions.

We assume the N × 1 vector Xt is normally distributed with mean µ
and Σ. Under Bayesian framework, µ and Σ are random variables, and
therefore, µ and Σ are regarded as the conditional mean and conditional
variance, respectively. We write the conditional distribution of Xt condi-
tional on µ and Σ as

Xt| (µ,Σ) ∼ N(µ,Σ).

The prior distribution for µ is usually assumed to be normally distributed,
and Σ−1 is assumed to have a Wishart distribution, say Σ−1 ∼WN ((νΩ)−1, ν).
where Ω and ν are hyperparameters, and are assumed known. From the
Wishart distribution, E(Σ−1) = Ω−1, and ν reflects the strength about the
belief. A larger ν corresponds to a stronger belief about the prior mean
Ω−1. Under these prior distributions, the posterior distribution is given by
the inverse Wishart distribution

Σ |S ∼W−1N

(
[(T − 1)S + νΩ]−1, N + T + ν

)
. (5)
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The mode of the posterior distribution, which is considered as a Bayesian
estimator for Σ, is given by

Σ̂ =
T − 1

T − 1 + ν
S +

ν

T − 1 + ν
Ω. (6)

This could be viewed as the maximum likelihood estimator based on pos-
terior distributions. Clearly, if ν → ∞, meaning the prior belief is very
strong, then the Bayesian estimator in the limit collapses to Ω. We can
also interpret the Bayesian estimator as a shrinkage estimator toward Ω.

In the preceding analysis, Ω and ν are called hyperparameters and are
assumed to be known. In a hierarchical Bayesian analysis, the hyperparam-
eters Ω and ν are themselves random variables. In this view, the posterior
distribution in (5) is really a conditional posterior and should be written
as

Σ| (S,Ω, ν).

Prior distributions on Ω and ν are also needed. Because Ω is an N × N
matrix, it contains too many free parameters, Chen (1979) suggested to
impose some structures on Ω, such as a factor structure to reduce the
number of free parameters. With a given structure, we may write Ω = Ω(θ),
with θ being a vector with a much smaller dimension. A full Bayesian
analysis would require prior distributions on θ and ν, then integrate out
with respect to θ and ν to obtain a genuine posterior distribution for Σ|S.
This is doable via Markov Chain Monte Carlo (MCMC) once the prior
distributions are specified. Alternatively, one can treat θ and ν as unknown
fixed constants, and estimate them from the marginal distributions of data
using the maximum likelihood method. Estimating hyperparameters based
on marginal distribution of the data is the essence of the empirical Bayes
procedure. In other words, the empirical Bayes method estimates the prior
distribution from the same data set X. A good introduction on the topic
is Gelman et al (1997). The actual computation of marginal distribution
of the data (conditional on θ, and ν) can be difficult. Chen used the
EM algorithm to facilitate the computation. If a factor structure on Ω is
imposed such that

Ω = ββ′ + ∆

where ∆ is a diagonal matrix, the corresponding parameter is θ = (β,∆).
The number of parameters in θ is of order N instead of N(N + 1)/2 (the
number of elements in Ω without a structure), a considerable reduction in
the number of parameters. Once θ is estimated, denoted by θ∗, the final
Bayesian estimator for Σ is defined as

Σ̂ =
T − 1

T − 1 + ν∗
S +

ν∗

T − 1 + ν∗
Ω(θ∗) (7)
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Chen (1979) referred the above estimator as that of shrinkage to a structure.
Also see Daneils and Kass (1999, 2001), Yang and Berger (1994), and
Barnard et al. (2000) for related studies.

The shrinkage estimator of Ledoit and Wolf (2003) estimates Ω directly
from a factor model. Computationally, the Ledoit and Wolf estimator is
much easier than the EM algorithm or MCMC method. But the optimal
shrinkage α∗ in Ledoit and Wolf assumes Ω cannot be the same as Σ. That
is, the target is a biased estimator for Σ. But the Bayesian method does
not require this.

7. RANDOM MATRIX THEORY APPROACH

The sample covariance matrix S as an estimator for Σ contains a consid-
erable amount of noise when T is much smaller than N . Random matrix
theory provides a way to de-noise the matrix S. The de-noised sample
covariance is used as an estimator for Σ.

We first presents some pertinent properties for the eigenvalues of the
sample correlation matrix under the assumption of independent and iden-
tically distributed (iid) random variables. Let X be a N×T random matrix
with elements being iid (for example, iid normal random variables), and
let S be the corresponding sample covariance. Again, let D = diag(S) and
C = D−1/2SD−1/2, so that C is the sample correlation matrix. Suppose
T/N → Q. Under the random matrix assumption, the eigenvalues of C
has the following density function as N,T →∞:

p(λ) =
Q

2πλ

√
(λmax − λ)(λ− λmin), λmin < λ < λmax

where λmax = (1 +
√
Q−1)2 and λmin = (1 −

√
Q−1)2 when Q > 1. For

Q < 1, the density has a point mass of 1 − Q at zero. All eigenvalues
are bounded by λmax in the limit; see Laloux et al. (1999), Plerou et al.
(1999), Z. Bai (1999), and the reference therein. For example, when Q = 1,
λmax = 4, and in this case, under random matrix assumption, most of the
eigenvalues are expected to be below 4, and the largest one should not far
exceed 4, under finite samples.

Existence of eigenvalues exceeding λmax indicates the presence of signal
rather than pure noise. For stock returns, due to strong cross-section cor-
relation, the largest eigenvalue far exceeds the upper bound λmax. In fact,
If the returns are generated by a factor model, it can be shown that the
maximum eigenvalue of the correlation matrix converges to infinity, as T
and N going to infinity. Kapetanios (2004) and Onatski (2005) use the
properties of the largest eigenvalue of a random matrix to determine the
number of factors. The method below does not require a factor model.
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Again consider the spectral decomposition (via the singular value de-
composition, say),

C =

N∑
i=1

τiξiξ
′
i

where τ1 ≥ τ2 ≥ · · · ≥ τN are the eigenvalues of C and {ξk} are the
corresponding eigenvectors. Suppose there are k eigenvalues larger than
λmax, Laloux et al. (2001) defined a cleaned correlation matrix as

C =

k∑
i=1

λiξiξ
′
i + a IN

where IN is N ×N identity matrix, and a is a constant such that the trace
of C is equal to that of C. This implies that

a =
λk+1 + · · ·λN

N

From ξ′iξi = 1 for all i, it is clear that tr(C) =
∑N
i=1 λi = tr(C) = N . The

last equality follows from the fact that the diagonal elements of C being 1.
Once given the cleaned correlation matrix, the cleaned sample covariance

is constructed as

S = D1/2 C D1/2.

It should be pointed that while C is positive definite, it is not a correlation
matrix because the diagonal elements are not necessarily being 1. Never-
theless, S is a covariance matrix, owing to its positive definiteness. One
way to make C a correlation matrix is letting the diagonal elements be 1.
This implies that C can be defined as

C =

k∑
i=1

λiξiξ
′
i + diag(a1, ..., aN )

where aj is equal to 1 minus the jth diagonal element of
∑k
i=1 λiξiξ

′
i. That

is, aj = 1 −
∑k
i=1 λiξ

2
ij . However, this definition leads to a covariance S

identical to the principal component estimator Σ̂c defined earlier, provided
that k is equal to the number of factors r. Under either definition, since∑N
i=k+1 λiξiξ

′
i is replaced by a diagonal matrix, it is clear that the de-noised

C is equivalent to shrinking the off-diagonal elements of C towards zero.
A different cleaning method is suggested by Shafiri et al. (2003). Pafka

and Kondor (2003) noted that the randomness in the sample covariance S
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is not as large as one might think. In particular, the large noise reported
by Plerou et al (1999) is primarily due to a too small T relative to N . Also,
Jagannathan and Ma (2002) show that constrained portfolio optimization
(imposing nonnegative weights) based on the sample covariance performs
reasonably well.

8. INVERTING HIGH DIMENSIONAL COVARIANCE
MATRICES

Many algorithms and techniques are available for finding the inverse of a
given matrix. Our aim here is not to discuss which algorithm or technique
to use, but rather to point out some mathematical facts that simplify the
inversion, regardless of which numerical method is used.

While all the covariance matrices introduced earlier are N × N , no in-
version of a matrix exceeding the order m × m is needed, where m =
min(N,T ). For the covariance matrices based on factor models, inverting
a fixed dimensional (the number of factors) matrix is sufficient. Consider
the matrix in (2),

Σ = βΩZβ
′ + Ωε

where ΩZ is k × k and Ωε is N ×N but diagonal, its inverse is

Σ−1 = Ω−1ε − Ω−1ε β(ΩZ + β′Ω−1ε β)−1β′Ω−1ε

The matrix Ω−1ε is easy to compute since it is diagonal. In the above
formula, we only need the inverse of the k× k matrix (ΩZ + β′Ω−1ε β). For
the matrix in (3), the inversion is same, taking ΩZ as a k × k identity
matrix, and taking β to be Λ̂, then applying the above inversion formula.

Inverting the Bayesian estimator in (6) or (7) is not difficult. If N < T ,
we directly submit Σ−1 for inversion. If N >> T , the following method
is much easier. Consider (6) for notational simplicity. Define a = (T −
1)/(T − 1 + ν) and b = ν/(T − 1 + ν). Note that Ω = ββ′ + ∆, we can
write (6) as

Σ̂ = aS + bββ′ + b∆ = β̄β̄′ + b∆

where β̄ = [
√
a/(T − 1)(X−X̄),

√
bβ]. This follows from S = (X−X̄)(X−

X̄)′/(T − 1). Note that β̄ is N × (T + k) assuming β is N × k. Therefore,

Σ̂−1 = b−1∆−1 − b−2∆−1β̄[IT+k + β̄′(b∆)−1β̄]−1β̄′∆−1.

The above formula requires the inversion of a squared matrix of T + k,
which can be much smaller than N .
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Finally, inverting the de-noised matrix S̄ based on the random matrix
theory is straightforward since S̄ = D1/2C̄D1/2 with D being a diago-
nal matrix and with C̄ having a factor structure. It follows that S̄−1 =
D−1/2C̄−1D−1/2 and C̄−1 is easily computed in view of its factor structure.

9. CONCLUDING REMARKS

In this paper, we review some of the recent development in the estimation
of covariance matrices when the number of variables is large compared
to the number of observations. For example, in finance, the number of
assets can be larger than the number of observations. Several methods are
discussed, including the shrinkage method, methods based on the factor
models, the Bayesian approach, and the random-matrix theory approach.
For each method, the construction of covariance matrices is presented. The
inversion of high dimensional covariance matrices is also discussed. In
addition to applications in finance, high dimension covariance matrices may
be useful in GMM (generalized method of moments estimation). When the
number of moment conditions is large and the optimal weighting matrix
is of high dimension, the sample analog of the optimal weighting matrix
has too many free parameters. The methods presented here will be useful
in reducing the number of parameters, making the GMM estimation more
robust. Meng et al. (2011) consider GMM estimation when the optimal
weighting matrix has a factor structure. In this context, however, if the
number of moments is comparable to the number of observations, reducing
the number of moments is more important than correctly estimating the
weighting matrix. This issue is discussed in Bai and Ng (2010).

Postscript. The first version of this article was written in 2004, when
Professor Shi and I were asked to contribute an article to a book on re-
cent developments in economics research. Professor Shi also wrote a more
elegant Chinese version of this article. The book ultimately did not mate-
rialize. Sadly, Professor Shi, my co-author and advisor, died unexpectedly
in 2008. The publication of this article is one form of remembrance of
Professor Shi. The substance of the current version remains the same as
the original version except for some minor changes. In addition, I have
updated the references.

Jushan Bai
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