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Abstract

The exponentially large sample space of gen-
eral binary probabilistic models renders in-
tractable standard operations such as exact
marginalization, inference, and normalization.
Typically, researchers deal with these distri-
butions via deterministic approximations, the
class of belief propagation methods being a
prominent example. Comparatively, Markov
Chain Monte Carlo methods have been signif-
icantly less used in this domain. In this work,
we introduce an auxiliary variable MCMC
scheme that samples from an annular aug-
mented space, translating to a great circle
path around the hypercube of the binary sam-
ple space. This annular augmentation sam-
pler explores the sample space more effec-
tively than coordinate-wise samplers and has
no tunable parameters, leading to substantial
performance gains in estimating quantities of
interest in large binary models. We extend
the method to incorporate into the sampler
any existing mean-field approximation (such
as from belief propagation), leading to further
performance improvements. Empirically, we
consider a range of large Ising models and an
application to risk factors for heart disease.

1 INTRODUCTION

Binary probabilistic models are a fundamental and
widely used framework for encoding dependence
between discrete variables, with applications from
physics (Wang and Landau, 2001) and computer vi-
sion (Nowozin and Lampert, 2011) to natural language
processing (Johnson et al., 2007). The exponential
nature of these distributions — a d-dimensional bi-
nary model has sample space of size 2¢ — renders
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intractable key operations like exact marginalization
and exact inference. Indeed these operations are for-
mally hard: calculating the partition function is in gen-
eral #P-complete (Chandrasekaran et al., 2008). This
intractability has prompted extensive research into ap-
proximation techniques, with deterministic approxima-
tion methods such as belief propagation (Murphy et al.,
1999; Wainwright and Jordan, 2008) and its variants
(Murphy, 2012) enjoying substantial impact. Weighted
model counting is another promising approach that has
received increasing attention (Chavira and Darwiche,
2008; Chakraborty et al., 2014). However, Markov
Chain Monte Carlo (MCMC) methods have been rela-
tively unexplored, and in many settings basic Metropo-
lis Hastings (MH) is still the default choice of sampler
for binary probabilistic models (Zhang et al., 2012).

This scarcity of MCMC methods contrasts with the
literature on continuous probabilistic models, where
MCMC methods like Hamiltonian Monte Carlo (HMC),
(Neal, 2011) and slice sampling (Neal, 2003) have en-
joyed substantial success. Whether explicitly or im-
plicitly stated, the key idea for many of these state-of-
the-art continuous samplers is to utilize a two-operator
construction: at each iteration of the algorithm, first a
subset of the full sample space is chosen, and second
a new point is sampled from that subspace. Consider
HMC, which samples a point from the Hamiltonian
flow (the subset) induced by a particular sample of the
momentum variable. This two-operator construction
is enabled by an auxiliary variable augmentation (e.g.
the momentum variable in HMC) that separates each
MCMC operator. Recently this two-operator concept
for HMC has been modified to sample binary distribu-
tions (Zhang et al., 2012; Pakman and Paninski, 2013),
and its improved performance over MH and Gibbs sam-
pling has been demonstrated, giving promise to the
notion of auxiliary augmentations for binary samplers.

Another continuous example of this two-operator for-
mulation, which inspires our present work, is Elliptical
Slice Sampling (ESS), (Murray et al., 2010): auxiliary
variables are introduced into a latent Gaussian model
such that an elliptical contour (the subset) is defined
by the first sampling operator, and then the second
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operator draws the next sample point from that ellipse.

Here we leverage this central idea of auxiliary aug-
mentation to create a two-operator MCMC sampler for
binary distributions. At each iteration, we first choose a
subset of 2d points (< 2%, the size of the sample space)
defined over an annulus in the auxiliary variable space
(or alternatively, a great circle around the hypercube
corresponding to the sample space), and in the second
operator we sample over that annulus. Critically, this
augmentation strategy leads to an overrelaxed sam-
pler, allowing long range exploration of the sample
space (flipping multiple dimensions of the binary vec-
tor), unlike more basic coordinate-by-coordinate MH
strategies, which require geometrically many iterations
to flip many dimensions of the binary vector. We also
extend this auxiliary formulation to exploit available
deterministic approximations to improve the quality of
the sampler. We evaluate our sampler on a synthetic
problem (2D Ising models) and a real world problem of
modeling heart disease risk factors; which significantly
outperforms MH and HMC techniques for binary dis-
tributions. Overall, our contributions include:

e a novel annular augmentation that maps a contin-
uous path in the auxiliary space to the discrete
sample space of binary distributions (Section 2.1);

e an extension of this augmentation to incorporate
deterministic posterior approximations such as
mean-field belief propagation (Section 2.1);

e a Rao-Blackwellized Gibbs sampler that exploits
this annular augmentation to achieve the desired
MCMC sampler, a sampler which is both free of
tuning parameters and straightforward to imple-
ment with generic code (Section 2.3);

e and experimental results demonstrating the per-
formance improvements achieved by annular aug-
mentation sampling (Section 3).

We conclude by discussing some extensions to annular
augmentation, and future directions for the class of
augmented binary MCMC techniques (Section 4).

2 ANNULAR AUGMENTATION
SAMPLING

We are interested in sampling from a probability distri-
bution p(s) defined over d-dimensional binary vectors
s € {—1,+1}%. The density p(s) is given in terms of a
function f(s) as

ps) = £ 169)

where Z is the normalizing constant. As in other works
using augmentation strategies (Pakman and Paninski,
2013; Murray et al., 2010), we rewrite s as a determin-
istic function s = h(0,t) of auxiliary random variables
(0,t) (to be defined), where both the function and the
distribution of the auxiliary variables are chosen to
preserve the measure p(s) up to a normalizing con-
stant. It is perhaps most straightforward to take this
step by partitioning p into the product of a tractable
distribution p, which will implicitly characterize the
deterministic function, and the remainder L:

p(s) o L(s)p(s),

where L£(s) = f(s)/p(s) can be thought of as a likeli-
hood with respect to the prior p. We must choose p
such that it is tractable to find a p-preserving function
h from the auxiliary space (#,t) to s. Furthermore,
we would like p to capture the structure of p (else
samples will be wasted, similar to a bad importance
sampler). We now demonstrate how to do so with any
fully factorized p and annular auxiliary variables.

s = h(6,t),

2.1 Annular Augmentations

Let us ﬁgst consider the choice of a uniform prior:
p(s) = [[;=1 B(si) with p(s; = +1) = p(s; = —1) = 1/2.
We can now replace s with auxiliary variables (6,t) as

0 ~ unif(0,2m)
t; ~ unif(0,2m)
s; = h(0,t;) = sgn[cos(t; — 0)], (1)

where t = (¢4, ...,t4) € [0,27]%. This choice of distribu-
tion on (6,t) and the map s = h(6,t) maintains the
distribution p(s), but induces conditional dependence
given the auxiliary variables. Critical to this work is
the observation that, conditioned on a value of t, the
sample s can take on 2d possible values (not 2¢); which
value s takes is determined by #. Thus t defines a
subset of the sample space over which we can sample s
using 6.

Geometrically, this fact can be seen in two ways. First,
Figure 1a shows each t; as a red, green, or blue point,
where the interval ¢; £ % is shown as a similarly colored
bar; this bar defines the threshold for flipping the ith
coordinate of s (i.e., the threshold of the sgn function
in Equation 1). As 6 traverses 0 — 27, 2d bit flips
alter s’ to —s’ and back. Alternatively, a second view
of this geometric structure is to consider a great circle
path around the d-dimensional hypercube, as shown in
Figure 1b. Owing to this fundamental ring structure,
we call this auxiliary variable scheme annular augmen-
tation. We use this augmentation to create an MCMC
sampler in Section 2.2.
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(a) Annular augmentation

<]

(b) Path of annulus on hypercube

Figure 1: Diagram of the annuluar augmentation. (a) The auxiliary annulus. Each threshold ¢; defines a semicircle
where s; = +1, which is indicated by a darker shade. The value of s changes as § moves around the annulus. (b)
The implied path of the annulus on the binary hypercube. Hypercube faces are colored to match the annulus.

Before introducing the sampler, we introduce an impor-
tant extension. In some settings we may have access
to a mean-field posterior approximation p (e.g., from
loopy belief propagation), which should in general serve
us better than the uniform p just introduced: a pos-
terior approximation should “flatten” the likelihood
L(s) = f(s)/p(s) in the spirit of (Wang and Landau,
2001) and (Fagan et al., 2016), thereby improving the
efficiency of our sampler. Our annuluar augmentation
generalizes nicely to this setting, by altering Eqn. 1 to:

s; = sgn[cos(t; — 6) — cos(mp(s; = 1))]. (2)

Figure 2a demonstrates that the proportion of the
annulus where s; = 1 becomes:

(ti +mp(si =1)) — (t; — mp(si = 1))
2w

resulting in the implied prior measure on s being pre-
cisely the mean-field approximation p. Indeed, when
p(s; = 1) = 1/2, Equation 2 reverts back to Equation 1,
so the augmentations are consistent. Geometrically
this change to Equation 1 induces stretched thresholds
around the annulus, as shown in Figure 2b. We use
the stretched annulus to good effect in Section 3.

2.2 Generic Sampler

As outlined in Section 1, to sample from p(s) we define
two MCMC operators to sample our auxiliary variables
(0,t), and then we read out the corresponding values of
s = h(6,t) as given by Equation 1 or, more generally,
Equation 2. The posterior over the auxiliary variables
(0,t) is:

p(6,8) o L(A(0, 1)), (3)

where the uniform i prior for # and t have been
absorbed into the constant of proportionality. In Oper-
ator 1, we use t to define a subspace, and in Operator

2 we sample over 6:

e Operator 1: Sample t subject to the constraint
s = h(0,t) is fixed. The simplest such operator
uniformly samples ¢; from the domain where s; is
fixed:

ti ~unif(0+ (1 — s;)7/2 — 7p(si),
0+ (1 —s)m/2 + mp(si)).

e Operator 2: Sample 0 using an MCMC transition
operator (e.g. Gibbs sampling).

First note that, in Operator 1, the density of the pro-
posed point is equal to that of the current point since
L(h(#,t)) is unchanged. Thus the sample from Op-
erator 1 is accepted with probability 1 and is a valid
MCMC step (which follows from evaluating the stan-
dard MH acceptance probability). Second, Operator 2
is also a valid MCMC transition by definition. Together,
this two-operator sampling approach leaves the target
distribution in Equation 3 invariant and is ergodic, and
thus the Markov chain will converge to the stationary
distribution p.

2.3 Operator 2: Rao-Blackwellized Gibbs

In the previous section we proposed a generic sampler
for the annular augmentation; it now remains to specify
Operator 2 to sample 6 conditioned on t. Though a
number of choices are available, a particularly effective
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(a) Interval where s; =1

(b) Stretched thresholds

Figure 2: Augmentation with mean-field prior p. (a) Equation 2 in graphical form; in blue, the implied interval
where s; = 1 along the annulus. We denote p; = p(s; = 1). (b) Stretched annuluar augmentation; cf. Figure la.

choice is Rao-Blackwellized Gibbs sampling, which we
will now explain.

Gibbs sampling in the annular augmentation is made
possible by the fact that s = h(t,0) is piecewise con-
stant over the annulus (see braces in Figure la). In
each of the intervals between threshold edges, constant
s = h(t,0) implies L(h(t,d)) is also constant. In Gibbs
sampling the probability of sampling a point within an
interval is proportional to the integral of the density
over that interval. Here it is (proportional to) the prod-
uct of the interval length and the value of £ on the
interval. Therefore we can Gibbs sample 6 by first sam-
pling an interval and then uniformly sampling a point
within it. We further improve estimates from Gibbs
sampling via Rao-Blackwellization (RB) (Douc et al.,
2011). To calculate an expectation of some function
g(s), the RB estimator is:

N

2d
Bl = DD kgl

n=1k=1

where 77 is the normalized density of the k' inter-
val between threshold edges in the n'” iteration and
sk is its corresponding value. Annular augmentation
permits an efficient implementation of RB Gibbs sam-
pling, which we show in pseudocode in Algorithm 1.
As an implementation note, the rotational invariance
of t and 6 allows us to set § = 0 at the beginning of
each iteration without loss of generality, thereby elimi-
nating 6 from Algorithm 1. Hereafter we will refer to
Gibbs sampling on the annular augmentation as Annu-
lar Augmentation Gibbs sampling (AAG) and it’s RB
version as Rao-Blackwellized Annular Augmentation
Gibbs sampling (AAG + RB).

Even though the AAG sampler may seem to involve
more work than a traditional method such as MH, both
have similar computational complexity per sample. To
see this, note that each MH iteration requires evaluating
f with a change in sign in one coordinate and a uniform

random variable for acceptance-rejection. In AAG
we require d uniform random variables to sample t,
must sort the threshold edges and perform 2d function
evaluations of f with a change in sign in one coordinate.
Although this is more expensive, using RB we get 2d
samples, hence the cost per sample is similar. For
uniform priors it is possible to avoid the cost of sorting
the threshold edges if we constrain t to lie on a lattice,
ie. t; = kyw/d where k; € {1,...,2d}.

We noted previously that the annular augmentation can
be sampled with methods other than Gibbs. Indeed, in
our experiments we will compare AAG to a similarly
defined Annular Augmentation Slice sampler (AAS)
(Neal, 2003). Suwa and Todo (2010) recently proposed
a non-reversible MCMC sampler for discrete spaces
with state-of-the-art mixing times; this Suwa-Todo
(ST) algorithm can also be used in Operator 2. In
Section 3.1, we extensively explore the benefits of using
different Operator 2 approaches on Ising models.

2.4 Choice And Effect Of The Prior p

Annular augmentation requires a distribution p which,
for optimal performance, should approximately match
the marginals of p. A natural choice is Loopy Be-
lief Propagation (LBP), a deterministic approximation
which incurs minimal computational overhead. The use
of deterministic priors to speed up samplers has been
used before in MCMC algorithms (De Freitas et al.,
2001; Fagan et al., 2016) as well as in importance sam-
pling (Liu et al., 2015). Often it makes the samplers
more efficient without significant extra computational
cost, as we will see in Section 3.

Annular augmentation explores the subset defined by
the annular thresholds t, and the behavior of the
sampler will depend significantly on the choice of
prior p. Presuming p approximately matches the true
marginals of p, it is instructive to consider two ex-
treme cases that demonstrate the quality and flexibility
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Algorithm 1: (AAG) Rao-Blackwellized Annular
Augmentation Gibbs sampling (AAG + RB)

Input

: Unnormalized density £, prior p, number of
iterations IV, function g
Output : Monte Carlo approximation I@[g]
Initialize: s € {—1,+1}%; E[g] 0
forn=1,..,N do
/* Operator 1 */
fori=1,..,d do
ti = 5(si — 1) +mp(s;) - unif(—1,41)
// Threshold value
€; < (tz — 7T]3(S7; = +1),tz + 7'(']3(87; = +1))
// Threshold edges
end
/* Operator 2 x/
q + sort_edge indices(e,eq,...,€q)
// Order of coordinate flips on annulus
¢ < length(g;eq,ea,...,€q)
// Length of ordered intervals
Initialize r™ € R?? // Interval densities
for k=1,...,2d do // Move around annulus
Sq(k) <= —Sq(k)
Sp < s
rip (k) - L(sy)
end
e el
i ~ Multinomial(r™), s < s}
Elg) < Blg] + % X550 7 - o(s7)
end

// Normalize probabilities
// Gibbs sample

of the annular augmentation: strongly non-uniform
p, where p(s; = 1) &~ 1; and uniform priors, where
p(si=1)~1/2foralli=1,..,d.

In the non-uniform case, each threshold is stretched to
cover nearly all of the annulus, inducing a constant s
around the annulus except for d tiny regions where only
one coordinate is flipped (with high probability). Our
sampler reduces to an MH type algorithm where only
one coordinate is flipped at a time. This is appropriate
and desired: nearly all of the density in p will be at
s = (+1,...,+1) with most of the remaining density
residing in adjacent s’ that have only one negative
signed coordinate. AAG in such a case would quickly
move to s = (+1,...,+1) guided by the LBP prior, and
then only consider flipping one coordinate at a time.

On the other hand, for uniform priors the annular aug-
mentation will do a form of overrelaxed sampling. In
overrelaxed sampling, points proposed lie on the op-
posite side of a mode or mean of a distribution (Neal,
1998) which can suppress random walks. In the annular
augmentation with uniform prior, we can observe from
Figure la that points on opposite sides of the annulus

have opposite signs, i.e. s = h(6,t) = —h(0 + 7,1t).
Annular augmentation considers all such points and
has a similar flavor as an overrelaxed sampler. This
is particularly useful for pairwise binary distributions
without bias where f(s) = [[,_; exp(Bi;sis;). In this
case E,(s) = 0 since the density is symmetric with re-
spect to signs. Here annular augmentation samplers si-
multaneously explore points of opposite signs, resulting
in an extremely accurate estimate of node marginals.

3 EXPERIMENTAL RESULTS

We evaluate our annular augmentation framework on
Ising models and a real world Boltzmann Machine (BM)
application. Ising models have historically been an im-
portant benchmark for assessing the performance of
binary samplers (Newman et al., 1999; Zhang et al.,
2012; Pakman and Paninski, 2013). We use a set-up
similar to (Zhang et al., 2012) to interpolate between
unimodal and more challenging multi-modal target dis-
tributions which allows us to compare the performance
of each sampler in different regimes and understand the
benefits of RB and the LBP prior. BMs, also known as
Markov random fields, are a fundamental paradigm in
machine learning (Ackley et al., 1985; Barber, 2012),
with it’s deep counterpart having found numerous ap-
plications (Salakhutdinov and Hinton, 2009). Inference
in fully connect BMs is extremely challenging. In our
experiments we consider the heart disease dataset (Ed-
wards and Toma, 1985) as its small size enables exact
computations which can be used to measure the error
of each sampler.

We compare against other general purpose state-of-
the-art binary samplers: Exact-HMC (Pakman and
Paninski, 2013) and Coordinate Metropolis Hastings
(CMH), a MH sampler which proposes to flip only one
coordinate, s;, per iteration. We note that for certain
classes of binary distributions, specialized samplers
have been developed, e.g. the Wolff algorithm (New-
man et al., 1999); as annular augmentation is a general
binary sampling scheme, we do not compare to such
specialized methods. To make the comparisons par-
ticularly challenging, we developed a novel method to
incorporate the LBP prior in the CMH sampler and fur-
ther improved its performance by using discrete event
simulation. We refer to this as CMH + LBP (details
in Appendix).

To distinguish the contributions of annular augmenta-
tion, RB, and the LBP pseudoprior, we show results
separately for the AAG sampler, its RB version (AAG
+ RB), and with the LBP prior (AAG + RB + LBP).
As mentioned in Section 2.3, we also provide results for
the Annular Augmentation Slice (AAS) and Suwa-Todo
(AAST) sampling counterparts. We run all samplers
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for a fixed numbers of density function (£) evaluations.
This choice is sensible since it dominates the run time
cost of each sampler, ensuring a fair comparison be-
tween different methods. All samplers were started
from the same initial point, and for the LBP approx-
imation we used Matlab code (Schmidt, 2007). We
report results for estimation of i) node marginals, ii)
pairwise marginals, and iii) the normalizing factor (par-
tition function) where the exact values were obtained
by running the junction tree algorithm (Schmidt, 2007).

3.1 2D Ising Model

We consider a 2D Ising model on a square lattice of size
9 x 9 with periodic boundary conditions, where p(s) x
exp (— BE[s]). Here E[s] = =2 iy Wigsisj =22, bisi
is the energy of the system and the sum E .\ is over
all adjacent nodes on the square lattice. The strength
of interaction between node pairs (i, j) is denoted by
Wij, b; is the bias applied to each node, and f is the
inverse temperature of the system. As is often done,
we fix § =1, W;; = W for all (4,7) pairs, and apply
a scaled bias b; ~ ¢-Unif[—1,1] to each node. Each
MCMC method is run 20 times for 1000 equivalent
density function (£) evaluations.

In Figures 3, 4, and 5, we report RMSE of node
marginal and pairwise marginal estimates, each av-
eraged over 20 runs for different settings of W (referred
to as “Strength”) and c (referred to as “Bias scale”).
A higher value in heatmaps (more yellow, less red)
indicates a larger error. The values of strength and
bias scale determine the difficulty of the problem, and
demonstrate the performance of annular augmentation
across a range of settings.

In Figure 3, we fix ¢ = 0.2 and progressively increase W.
These correspond to hard cases or “frustrated systems”
with the target distribution being multimodal: increas-
ing W increases the energy barrier between modes
making the target more difficult to explore. All sam-
plers do similarly well for easy, low-strength cases (left
columns of Figure 3), but AAS, AAS + RB, AAG,
AAG + RB and AAST, AAST + RB outperform on
difficult problems (high W values, redder colors). Also
interesting to note is that, in the high strength regime,
the addition of LBP hurts performance (LBP itself, not
annular augmentation, has broken down; see Appendix,
Table 1 for numerical values).

In Figure 4, no bias is applied to any node and we
progressively increase W. This corresponds to a target
distribution with two modes: the ones and negative
ones vectors. Samplers based on annular augmentation
significantly outperform (lower error, more red) due to
the overrelaxation property. For the zero bias cases, the
LBP approximation is equal to the true node marginals:

p(s; = 1) = 0.5 which is equivalent to the uniform
prior case, hence we expect annular augmentation with
and without LBP to perform similarly. A significant
performance gain in estimating node marginals comes
from RB (Appendix, Table 9 has numerical values).
For settings in Figures 3 and 4, HMC, CMH and CMH
+ LBP samplers tend to get stuck in one mode, leading
to poor performance.

Finally in Figure 5, we fix W = 0.2 and progressively
increase ¢ making the target distribution unimodal. In
this simpler setting, HMC and CMH perform well and
are on par with AAS + RB + LBP, AAG + RB + LBP
and AAST + RB + LBP. We see this performance is
due in part to the accuracy of LBP in this setting (Ap-
pendix, Table 2), shown also by the underperformance
of annular augmentation without LBP in this case.

The annular augmented Gibbs, slice and ST methods
have similar performance in all experiments. Gibbs
always performs marginally better than slice and typ-
ically outperforms ST when RB. This suggests that
Gibbs makes better use of RB, even though its mixing
time may be slower (Suwa and Todo, 2010).

Regarding the size of these problems, note that annular
augmentation has no issue scaling to much larger sizes;
we stopped at 9x9 grids to be able to create the baseline
with junction tree within a day or so of computation.

3.2 Heart Disease Risk Factors

The heart disease dataset (Edwards and Toma, 1985)
lists six binary features (risk factors) relevant for coro-
nary heart disease in 1841 men. These factors are
modeled as a fully connected BM, which defines a prob-
ability distribution over a vector of binary variables
s=[s1,.-.,5n), 8; € {0,1}:

p(s|W,b) = Z(Vif b) exp{ZW”s sj—l—Zb sz}

1<J

A symmetric weight matrix W, with zeros only along
the diagonal, and a bias vector b parameterize the
distribution with W; ; denoting the interaction strength
between units 7, 7. Given a data set of binary vectors
D ={s;j, j =1,...,N}, our goal is to learn the
posterior over parameters (W,b). Given some prior
p(W,b) we define the joint model as

<n>}

p(w, b, D) = p(W, b) :

exp { En ,4<g W’L Js(n) ”) + Z

p(DIW,b)

p(DIW,b) =

Z(W,b)N

Bayesian learning here is hard: consider a simple MH
sampler where starting from (W, b), a symmetric pro-
posal distribution is used to propose (W', b’) which is
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Figure 3: Bias scale ¢ = 0.2 and the bias for each node is drawn as b; ~ ¢-Unif[—1, 1]. The target distribution here
is multi-modal. As we increase strength W, AAS, AAS + RB and AAG, AAG + RB increase their outperformance
over all other samplers, including those using LBP (the LBP approximate degrades for W > 0.6).
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Figure 4: No bias is applied to any node making the target distribution bimodal, with the modes becoming more
peaked as strength W is increased. All annular augmentation samplers very significantly outperform.
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Figure 5: W is fixed to 0.2 and bias scale ¢ is increased making the target distribution uni-modal. HMC and
CMH find the mode quickly, as do annular augmentation samplers that leverage LBP. That group outperforms
annular augmentation samplers with no access to LBP.
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Figure 6: Absolute error in estimating the log partition function ratio for a) real data (left) and b) fake data
simulation (right). For zero bias, LBP prior yields no additional benefit; we omit results for LBP driven samplers.

accepted with probability:

. p(W’,b) p(D|W’,b’)
o= min (1’ p(W.b) p<D|W,b)>’ @

which depends on the intractable partition function ra-
tio (Z(W,b)/Z(W', b)) N Asin Murray and Ghahra-
mani (2004), we use MCMC to approximate:

Z(W,b) Z(W,b)
ZW'. )~ Z(W',b) (5)
- <eXp { ;(W{J — Wi )sisj + Zi:(b; — bi)£z‘}>

where (-) denotes E,sjw,pb)(-). We will use different
MCMC methods to draw samples from p(s|W,b) to
compute the expectation in Equation (5), which is
then used to compute the approximate MH acceptance
probability as in Equation (4). Following Murray and
Ghahramani (2004), bias terms are taken to be zero.

We run 1000 such Markov chains, each with 100 samples
(drawn using the approx. MH scheme). To approximate
the partition function ratio in Equation (5), we use
1000 samples from 4 different samplers: i) HMC ii)
CMH iii) AAS + RB and iv) AAG + RB. For each
Markov chain, we compute the average absolute error
in approximating the log partition function ratio, i.e.

(ke (738) = )

which is then averaged over 1000 such Markov chains.
Following Murray and Ghahramani (2004), to see the
effect of increasing dimensionality we also simulate
data for 10 dimensional risk factors, using a random
‘W matrix and repeat the experiment (details are given
in the Appendix). Figure 6 plots the overall mean
and standard deviation of the approximation error for
both real and fake data. The exact partition func-
tion ratio, required for computing the error metric
above, was evaluated by enumeration. For the real

data example, both AAS + RB and AAG + RB out-
perform CMH and perform on par with HMC; while
for the higher-dimensional fake data simulation, annu-
lar augmentation outperforms both CMH and HMC.
Accordingly, across both real and simulated data, an-
nular augmentation provides optimal performance. We
note that small differences in Figure 6 can affect the
convergence of the approximate MH sampler to the cor-
rect posterior distribution; as the approximation error
for MH acceptance probabilities is proportional to the
approximation error for partition function ratio (we
plotted log of this quantity) taken to the N** power.

4 CONCLUSION

We have presented a new framework for sampling from
binary distributions. The annular augmentation sam-
pler with subsequent Rao-Blackwellization has a num-
ber of desirable properties, including overrelaxation, no
tuning parameters, and the ability to easily incorpo-
rate approximate posterior marginal information such
as that from LBP. Taken together, these advantages
lead to significant performance gains over CMH and
Exact-HMC samplers, across a range of settings.

In this work we only considered uniform sampling of
the thresholds: ¢; ~ unif(0,2n); a future direction is
to group thresholds together to flip clusters of corre-
lated coordinates in the spirit of the Wolff algorithm.
Furthermore, our inclusion of LBP in both annular
augmentation and CMH suggests a similar extension
for Exact-HMC (Pakman and Paninski, 2013).
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