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Abstract

Markov Chain Monte Carlo techniques remain
the gold standard for approximate Bayesian in-
ference, but their practical issues — includ-
ing onerous runtime and sensitivity to tuning
parameters — often lead researchers to use
faster but typically less accurate determinis-
tic approximations. Here we couple the fast
but biased deterministic approximation offered
by expectation propagation with elliptical slice
sampling, a state-of-the-art MCMC method.
We extend our hybrid deterministic-MCMC
method to include recycled samples and ana-
lytical slices, and we rigorously prove the va-
lidity of each enhancement. Taken together,
we show that these advances provide an or-
der of magnitude gain in efficiency beyond ex-
isting state-of-the-art sampling techniques in
Bayesian classification and multivariate gaus-
sian quadrature problems.

1 INTRODUCTION

Exact posterior inference in Bayesian models is rarely
tractable, a fact which has prompted vast amounts of re-
search into efficient approximate inference techniques.
Deterministic methods such as the Laplace approxima-
tion, Variational Bayes, and Expectation Propagation of-
fer fast and analytical posterior approximations, but in-
troduce potentially significant bias due to their restricted
form which can not capture important characteristics of
the true posterior. Markov Chain Monte Carlo (MCMC)
methods represent the target posterior with samples,
which while asymptotically exact, can be slow, require
substantial tuning, and perform poorly when variables
are highly correlated.

Conceptually, these two techniques can be combined to

great benefit: if a deterministic approximation can cover
the true posterior mass accurately, then a subsequent
MCMC sampler should be much faster and be less sus-
ceptible to inefficiency due to correlation (as the deter-
ministic approximation would have captured this corre-
lation). To do so, however, is practically quite diffi-
cult. First, both the Laplace and Variational Bayesian
approximations fit local mass of a posterior (in Varia-
tional Bayes this is sometimes called the exclusive prop-
erty of optimizing the Kullback-Liebler divergence from
the approximation to the true posterior [Minka, 2005]).
While excellent in many situations, this property is in-
appropriate for initializing an MCMC sampler, since it
will be very difficult for that sampler to explore other ar-
eas of posterior mass (e.g., other modes). Expectation
Propagation (EP, [Minka, 2001]), on the other hand, is
typically derived as an inclusive approximation that, at
least approximately, attempts to match the global suffi-
cient statistics of the true posterior (most often the first
and second moments, producing a Gaussian approxima-
tion). Such a choice is superior for an MCMC sampler.

Secondly, we require a sensible choice of MCMC sam-
pler so as to leverage a deterministic approximation like
EP. Given an unnormalized target distribution p∗(x), we
can write:

p∗(x) = p̂(x)
p∗(x)

p̂(x)
≡ p̂(x)L̂(x),

which allows us to treat the true posterior as the product
of an effective prior p̂ and likelihood L̂. We then have
freedom to choose p̂, which we will set to be the de-
terministic (Gaussian) posterior approximation from EP.
Amongst all MCMC methods, Elliptical Slice Sampling
(ESS, [Murray et al., 2010]) handles the above reformu-
lations seamlessly. ESS has become an important and
generic method for posterior inference with models that
have a strong Gaussian prior. It inherits the attractive
properties of slice sampling generally [Neal, 2003], and
notably lacks tuning parameters that are often highly bur-



densome in other state-of-the-art methods like Hamilto-
nian Monte Carlo (HMC; Neal [2011]). The critical ob-
servation is that, if EP provides a quality posterior ap-
proximation p̂ ≈ p∗, the likelihood term L̂ will typically
be weak, which puts ESS in the regime where it is most
efficient.

What results is a new MCMC sampler that combines
EP and ESS, is faster than state-of-the-art samplers like
HMC, and is able to explore the parameter space effi-
ciently even in the presence of strong dependency among
variables. Specifically, our contributions include:

1. In Section 2, we propose Expectation Propagation
based Elliptical Slice Sampling (EPESS) where we
justify the use of EP as the “prior” for ESS.

2. In Section 3, we investigate a method to improve
the overall run time of ESS by sampling multiple
points each iteration. It reduces the average number
of shrinkage steps giving it a computational advan-
tage. We call it Recycled ESS and integrate it with
EPESS to further increase its efficiency.

3. We extend our method to Analytic Elliptical Slice
Sampling in Section 4. As the name suggests, we
can analytically find the region corresponding to
a slice and sample uniformly from it. In addi-
tion to decorrelating samples, it offers the compu-
tational advantage of avoiding expensive shrinkage
steps. It is applicable to only a few target distribu-
tions and we illustrate it, in the context of EPESS,
for linear Truncated Multivariate Gaussian (TMG)
quadrature.

4. We offer empirical evaluation of EPESS (Sec-
tion 5), which show an order of magnitude improve-
ment over the state-of-the art MCMC methods for
TMG and probit models.

2 EXPECTATION PROPAGATION AND
ELLIPTICAL SLICE SAMPLING

In this section we introduce our combined EP and ESS
sampling method. We begin with background of the two
building blocks of this method, to place them in context
of current literature.

2.1 ELLIPTICAL SLICE SAMPLING

There are many problems where dependency between la-
tent variables is induced through a Gaussian prior, for ex-
ample in Gaussian Processes. Elliptical Slice Sampling
(ESS, [Murray et al., 2010]) is specifically designed for

efficiently sampling from such distributions and is con-
sidered state-of-the-art on these problems. ESS consid-
ers posteriors of the form

p∗(x) =
1

Z
N (x; 0,Σ)L(x) (1)

where L is a likelihood function,N (0,Σ) is a multivari-
ate Gaussian prior and Z is the normalizing constant.

ESS is a variant of slice sampling [Neal, 2003] that takes
advantage of the Gaussian prior to improve mixing time
and eliminate parameter tuning. At the beginning of each
iteration of ESS two random variables are sampled. The
first is the slice height y which is uniformly distributed
over [0,L(x)], where x is the current sample. The second
variable ν is sampled from the prior N (x; 0,Σ) and, to-
gether with the current sample x, defines an ellipse:

x′(θ) = x cos(θ) + ν sin(θ). (2)

Next, a one-dimensional angle bracket [θmin, θmax] of
length 2π is proposed containing the point θ = 0 (cor-
responding to the current point x). The bracket is then
shrunk toward θ = 0 until a point is found within the
bracket that satisfies L(x′(θ)) > y. This point is ac-
cepted as the next point in the Markov chain.

ESS is known to work well when the prior aligns with
the posterior and the likelihood is weak [Murray et al.,
2010, Section 2.5]. However, when this is not the case
then ESS can perform poorly, as we demonstrate below.

Figure 1 illustrates the problem when the prior and the
posterior do not align: here we have aN (0, I) prior with
an observed Bernoulli likelihood L(x) = 1(x ∈ A) for
some rectangle A. The posterior is a truncated Gaus-
sian within A. In this example we have placed A away
from the origin, with the result that that most of the pos-
terior density lies vertically on the left boundary of the
box. Accordingly, a good sampler should be able to make
large vertical moves to effectively explore the posterior
mass.

ν

x

A

Figure 1: ESS ellipse shown in dashed red.

As the likelihood rectangle A moves further right, the
posterior moves away from the prior. As a result most
of the points proposed on the ellipse will not lie in A, so
more shrinkage steps will be necessary until a point is
accepted, leading to an inefficient algorithm. Moving A



further to the right also makes the ellipse more eccentric
which prevents vertical movement, resulting in further
inefficiency.

The other pathology afflicting ESS is that of strong likeli-
hoods. This happens when L(x) is extremely large in re-
gions of non-negligible posterior density. Once the sam-
pler is in such a region, only with low probability will
it be able to accept points proposed outside the region,
hence it will get stuck. This will occur, for instance,
when the prior underestimates the variance of the pos-
terior and L(x) becomes large in the tails. We refer the
reader to an extended explanation of this effect in [Nishi-
hara et al., 2014]. Indeed, this motivates our choice of
EP as a prior, since Variational Bayes and Laplace ap-
proximations are known to often underestimate posterior
variance whereas EP does not [Minka, 2005].

We address both these problems by choosing an EP prior
(Section 2.2) for ESS. How to incorporate EP into ESS
is explained in Section 2.3.

2.2 EXPECTATION PROPAGATION

Expectation Propagation (EP) is a method for finding a
Gaussian approximation q to a given distribution p∗ by it-
eratively matching local moments and then updating the
global approximation via a so-called ‘tilted’ distribution
[Minka, 2001]. At termination the distribution q will op-
timize a global objective that approximates the Kullback-
Liebler divergence KL(p∗||q) [Wainwright and Jordan,
2008]. The resulting Gaussian approximation is an inclu-
sive estimate of p∗ that approximately matches its zeroth,
first, and second moments.

Although EP has few theoretical guarantees [Dehaene
and Barthelmé, 2015], it is known to be accurate for
many models including truncated multivariate gaussian
[Cunningham et al., 2011], probit and logistic regression
[Nickisch and Rasmussen, 2008], log-Gaussian Cox pro-
cesses [Ko and Seeger, 2015], and more [Minka, 2001].
It is also known to have superior performance compared
to the Laplace approximation and Variational Bayes in
terms of approximating marginal distributions accurately
[Kuss and Rasmussen, 2005, Cseke and Heskes, 2011,
Deisenroth and Mohamed, 2012].

2.3 ELLIPTICAL SLICE SAMPLING WITH
EXPECTATION PROPAGATION

As outlined in Section 1, we incorporate a posterior ap-
proximation p̂ as a proposal distribution for ESS. We do
so by defining:

p∗(x) = p̂(x)
p∗(x)

p̂(x)
= p̂(x)L̂(x) (3)

where p∗ is the posterior distribution of interest from
Equation (1), p̂ is our new prior and L̂ is our new like-
lihood. As explained in Section 2.1, for ESS to work
well, p̂ should have two desirable properties: (i) It should
approximate the posterior p∗. The most obvious candi-
dates for p̂ includes Laplace, Variational Bayes and EP
approximations, (ii) It should ensure that the new like-
lihood L̂ = p∗/p̂ is weak, in the sense as described in
Section 2.1. Using either Laplace or Variational Bayes
may result in large values of L̂ in the tails due to vari-
ance underestimation, which could cause the sampler to
get stuck. The more inclusive nature of the EP estimate,
on the other hand, makes it a sensible choice to obtain a
Gaussian posterior approximation p̂.

To demonstrate the power of this approach we return to
the problematic example given in Figure 1. Using the EP
approximation we can shift our prior to align with the
posterior density on the left side of the likelihood rect-
angeA. The ellipses become short and vertical, allowing
ESS to mix efficiently. This is illustrated in Figure 2.
To demonstrate the difference in the sampling behavior
between EPESS and ESS, Figure 2.3 plots 400 samples
from both EPESS and ESS. EPESS is clearly superior
and manages to explore the entire distribution whereas
ESS moves consistently less.

x

ν

Figure 2: The EP approximation is in teal and an EPESS
elliptical slice is in dashed red.

The idea of Equation (3) is not unique to this paper.
Nishihara et al. [2014] use a similar construction where
the Gaussian approximation is learned from samples. Al-
though this has the advantage of not relying on EP to do
moment matching, it requires parallelism and expensive
moment calculations. EPESS will be simpler and more
efficient when an accurate EP approximation is available.
Braun and Bonfrer [2011] also have a similar method
where they use the Laplace approximation, which as dis-
cussed, is a poor choice. We remark that using Power EP
approximations is also a viable choice for a prior, a point
that we will return to in Section 6.
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Figure 3: EPESS vs ESS: 400 samples of EPESS and
ESS for a 2-d Gaussian N (0, I) truncated in a rectangu-
lar box {50 ≤ x ≤ 51,−1 ≤ y ≤ 1}. EPESS explores
the parameter space effectively whereas ESS does not.

3 RECYCLED ELLIPTICAL SLICE
SAMPLING

In this section we show how to sample J > 1 points
at every ESS iteration without a significant increase in
computational complexity. This idea is inspired by the
work of Nishimura and Dunson [2015] on HMC. In that
work an HMC algorithm is devised which “recycles” the
intermediate points as valid samples from the target dis-
tribution. We borrow the phrase “recycling” from them
and call our method Recycled Elliptical Slice Sampling.

Recall that in every ESS iteration, we propose points
along an ellipse within an angle bracket, which is iter-
atively shrunk, until a point is accepted. In Recycled
ESS, we don’t stop after accepting the first point but
continue to propose points starting from the last angle
bracket used. This procedure is continued until J points
are accepted. One of the J points is randomly selected to
propagate the Markov chain.

As we shrink the angle bracket [θmin, θmax] towards
θ = 0 (corresponding to the current point), the proba-
bility of the next proposal point being accepted tends to
increase. Hence the number of shrinkage steps required
to accept latter points is typically smaller than that for
first accepted point. Since the number of likelihood func-
tion evaluations is proportional to the number of shrink-
age steps, Recycled ESS is able to sample more points
with only a small increase in computational complexity,
leading to improved run times per sample. This approach
is formalized in Algorithm 1, where ESS inner loop
function is the regular ESS inner loop and can be found

Algorithm 1: Recycled ESS

Input : Log-likelihood function (logL) , initial point
x
(1)
1 ∈ Rd, prior N (0,Σ), number of iterations
N , number of recycled points J

Output: Samples from Markov Chain
((x

(1)
1 , ...,x

(1)
J ), ..., (x

(N)
1 , ...,x

(N)
J ))

1 for i = 1 to N do
2 u ∼ Uniform [0, 1]

3 log y ← logL(x
(i−1)
1 ) + log u

4 ν ∼ N (0,Σ)
5 θmax ∼ Uniform [0, 2π]
6 θmin ← θmax − 2π
7 for j = 1 to J do
8 (x̂

(i)
j , θmin, θmax)← ESS inner loop

9 (logL, log y,ν,x
(i−1)
1 , θmin, θmax )

10 end
11 (x

(i)
1 , ...,x

(i)
J )← rand perm(x̂

(i)
1 , ..., x̂

(i)
J )

12 end
13 return ((x

(1)
1 , ...,x

(1)
J ), ..., (x

(N)
1 , ...,x

(N)
J ))

in Figure 2 of [Murray et al., 2010].

It is clear from Algorithm 1 that we treat each sample x(i)j

as an element in a large Markov chain with state space
(x

(i)
1 , ...,x

(i)
J ). We prove in Theorem 3.2 that each ele-

ment x(i)j has its stationary marginal distribution as p∗. In
order to do so, we first show in Lemma 3.1 that the tran-
sition operator of accepting the jth point is reversible.

Lemma 3.1. Let Tj correspond to the transition opera-
tor from x

(i−1)
1 → x̂

(i)
j . Then Tj is invariant to p∗.

A detailed proof is given in the appendix. Theorem 3.2
easily follows:

Theorem 3.2. Each element in the Recycled ESS Markov
chain has marginal stationary distribution p∗.

Proof. The sequence of points {x(i)
1 } follow a Markov

Chain. At each step the transition operator is uniformly
sampled from the set {Tj : j = 1, ..., J}, with each Tj
being invariant to p∗ (Lemma 3.1). Therefore we have
that x

(i)
1

dist.−−−→ x* where x* ∼ p∗. Also, at any fixed
iteration i, we have that all points in {x(i)

j : j = 1, ..., J}
are identically distributed. This follows from the random
permutations:

p(x
(i)
j |(x̂

(i)
1 , ..., x̂

(i)
J )) = Uniform(x̂

(i)
1 , ..., x̂

(i)
J )

= p(x
(i)
k |(x̂

(i)
1 , ..., x̂

(i)
J )).

Integrating over p(x̂(i)
1 , ..., x̂

(i)
J ) gives us that p(x(i)

j ) =



p(x
(i)
1 ) for any i, j. Since we have that x

(i)
1

dist.−−−→ x*, it

follows that for all j: x
(i)
j

dist.−−−→ x*.

The downside of Recycled ESS is that the latter accepted
points (corresponding to j ≈ J) are sampled from a very
small angle bracket and so are highly correlated. On the
other hand these points only require a small number of
function evaluations. Overall the effect of recycling is a
small increase in the effective number of samples, with a
small increase in computational complexity. Whether or
not this is beneficial is investigated empirically in Sec-
tion 5.

4 ANALYTIC ELLIPTICAL SLICE
SAMPLING

Consider the ellipse

E = {x′ : x′(θ) = x cos(θ) + ν sin(θ)}

as in an ESS iteration as defined by Equation (2). Let
S(y; E) be the slice corresponding to the acceptable
points in E for a given slice height y:

S(y; E) = {x′ ∈ E : L(x′) > y}.

If we can analytically characterize S(y; E) then we only
need to sample a point uniformly from the slice to prop-
agate the Markov Chain [Neal, 2003]. This has three
advantages: (i) We eliminate expensive slice shrinkage
steps which reduces the computational cost of our sam-
pler; (ii) In standard slice sampling algorithms, shrink-
age steps bias the next sample to be close to the current
sample thereby introducing correlations. Since we uni-
formly sample over S(y; E), the resulting samples are
less correlated as we are not biased towards the current
point; (iii) We can easily incorporate the recycling idea
here resulting in an extremely efficient algorithm, which
we refer to as Analytic Elliptical Slice Sampling.

As in Recycled ESS, in Analytic ESS we sample J > 1
points from each ellipse E . We first sample J different
y values, which are evenly spaced in a Quasi Monte-
Carlo way. Corresponding to each y value, we analyt-
ically solve for S(y; E) (which has only a small amor-
tized computational cost). One point is then uniformly
sampled from each slice S(y; E). The pseudocode for
Analytic ESS is given in Algorithm 2 and in Theorem 4.1
we prove its validity.

Theorem 4.1. Each element in the Analytic ESS Markov
chain has marginal stationary distribution p∗.

Proof. The proof follows exactly the same argument as
in Theorem 3.2.

Algorithm 2: Analytic Slice Sampling

Input : Likelihood L̂, prior p̂, initial point x
(0)
1 ,

subroutine Sample Ellipse to sample an
ellipse, subroutine Characterize Slice
to analytically characterize S(·; E), number of
iterations N , number of slices per iteration J

Output: Samples from Markov Chain
((x

(1)
1 , ...,x

(1)
J ), ..., (x

(N)
1 , ...,x

(N)
J ))

1 for i = 1 to N do
2 E ← Sample Ellipse(x(i−1)

1 , p̂)
3 S(·; E)←Characterize Slice(E)
4 u ∼ Uniform [0, 1]
5 for j = 1 to J do
6 y ← (j − u)/J · L̂(x

(i−1)
1 )

7 x
(i)
j ← Uniform {x : x ∈ S(y; E)}

8 end
9 (x

(i)
1 , ...,x

(i)
J )← rand perm(x̂

(i)
1 , ..., x̂

(i)
J )

10 end
11 return ((x

(1)
1 , ...,x

(1)
J ), ..., (x

(N)
1 , ...,x

(N)
J ))

Unfortunately solving for S(y; E) in closed form is not
possible in general, although it can be done for Trun-
cated Multivariate Gaussian (TMG) quadrature as shown
below.

4.1 ANALYTIC EPESS FOR TMG

The (linear) TMG distribution is defined as:

p∗(x) =
1

Z
N (x; 0, I)

M∏
j=1

1(L>j x ≥ 0).

Using the EP approximation N (x;µ,Σ) and Equation
(3), we can rewrite the density p∗ as:

p∗(x) ∝ N (x; 0, I)

m∏
j=1

1(L>j x ≥ 0)

∝ N (x;µ,Σ)
N (x; 0, I)

N (x;µ,Σ)

m∏
j=1

1(L>j x ≥ 0)

= N (z; 0,Σ)
N (z;−µ, I)

N (z; 0,Σ)

m∏
j=1

1(L>j (z + µ) ≥ 0)

≡ N (z; 0,Σ)L̂(z)

≡ p̃(z)

where x = z + µ is a transformation with identity Jaco-
bian. We are able to apply Analytic ESS to p̃(z) and can
then recover samples for x by reversing the transforma-



tion. First we analytically characterize the slice:

S(y; E) = {θ ∈ [0, 2π) : L(z′(θ)) > y}
= ∩mj=1{θ ∈ [0, 2π) : L>j z′(θ) + L>j µ ≥ 0}

∩ {θ ∈ [0, 2π) :
N (z′(θ);−µ, I)

N (z′(θ); 0,Σ)
> y}

≡ ∩mj=1Θj ∩Θy,

where z′(θ) = z cos(θ) + ν sin(θ). The region Θj

is the part of the ellipse that lies in the halfspace de-
fined by Lj . Since it is defined by a linear inequality
of sin(θ) and cos(θ), it is easily characterized using ba-
sic trigonometry. The resulting region may be rewrit-
ten as Θj = [0, lj ] ∪ [uj , 2π] for some lj , uj ∈ (0, 2π).
Due to this nice structure, taking the intersection of all
m regions can be computed in O(m). Region Θy can
be simplified by taking logarithms on both sides of its
inequality and reduces to the form:

a0 + a1 cos θ+ a2 sin θ+ a3 cos θ sin θ+ a4 cos2 θ > 0.

The roots of this inequality can be obtained by solving a
quartic equation. This completes our analytic characteri-
zation of S(y; E).

The most expensive operations in Analytic ESS are gen-
erating E and characterizing S(y; E), as sampling from
S(y; E) is relatively cheap. To see this, let d denote the
dimension of x and m the number of linear truncations.
To sample the ellipse E we must draw ν from the Gaus-
sian prior which costs O(d2). Characterizing the slice
S(y; E) involves m inner products of x and ν with the
linear truncations Lj and can be calculated in O(md).
The total computational overhead is thus O(d2 + md).
Once this is done, sampling from S(y; E) is cheap. It in-
volves sampling from an intersection of O(m) intervals
which can be done in O(d + m) (here we have factored
in the expense of storing each sample at a cost O(d)).

Since the upfront cost of characterizing the slice S(y; E)
isO(d2 +md), we can sampleO(d) points per ellipse E
without significantly increasing the total computational
complexity. This leads to a high effective sample size
relative to the computational complexity.

The Exact-HMC algorithm for TMG [Pakman and
Paninski, 2014] has an intimate relationship with Ana-
lytic ESS and inspired our analytic framework. We ex-
plain this connection in Section 5.2.

5 EXPERIMENTAL RESULTS

In this section we compare the empirical performance
of the algorithms introduced in Sections 2.3–4 to other
state-of-the-art MCMC methods. Comparisons are

shown for the Probit regression and the TMG problem,
both of which are often encountered in machine learn-
ing contexts, as well as the log-Gaussian Cox process.
We quantify the mixing of MCMC samplers by compar-
ing their effective number of samples. Effective sample
size is estimated using the method as described in [Gel-
man et al., 2014] which is implemented in the MCMC
Diagnostics Tool box for Matlab [Särkkä and Vehtari,
2014-02-34]. We compare the results in terms of effec-
tive sample size divided by the number of density func-
tion evaluations of p∗, which is the dominant computa-
tional expense of running the samplers.

5.1 PROBIT REGRESSION

Probit regression is one of the most common problems
in machine learning and is often used as a benchmark for
comparing Bayesian computation methods. A nice re-
view of the state-of-the-art algorithms for probit can be
found in [Chopin and Ridgway, 2015]. For our experi-
ments, we choose 4 data sets of moderate size from UCI
repository as listed in Table 1, with their dimension and
number of datapoints. These are the Breast Cancer [Wol-
berg et al., 1995], Ionosphere [Sigillito, 1989], Sonar
[Son] and Musk [AI Group at Arris Pharmaceutical Cor-
poration, 1994] data sets. As is standard, each dataset
is preprocessed to have zero mean and unit variance for
each regressor, a unit intercept term has been included
and the prior on each latent variable is N (0, 10).

Table 1: Datasets for probit: dimensions and number of
data points.

DATASET DIMENSION DATA POINTS

Breast Cancer 31 569
Ionosphere 31 351
Sonar 61 97
Musk 165 419

We compare EPESS and Recycled EPESS (denoted by
EPESS(J) where J is the number of recycled points per
slice) against Metropolis-Hastings with an EP proposal
(EPMH) and HMC using the No-U-Turn sampler as im-
plemented in Stan [Carpenter et al., 2015]. EPMH is con-
sidered as state-of-the-art for Probit [Chopin and Ridg-
way, 2015] . The chains were initialized at the EP mean
for all EPESS methods and the Stan implementation de-
cides on its own initialization. We use the R package of
Ridgway [2016] to find the EP approximation. Its CPU
time is negligible compared to the time to run the sam-
plers.

We run 100 chains with 20,000 samples per chain. For



EPMH we ran it until 20,000 unique samples (i.e., ac-
cepted proposed points) were collected to make it com-
parable with the other methods. The results are shown in
the top three plots of Figure 4. EPESS outperforms HMC
and EPMH by about a factor of 5 for effective sample
size relative to number of function evaluations. As com-
pared to EPMH, EPESS gives a slightly smaller effective
number of samples but takes far fewer function evalua-
tions. The number of function evaluations for Recycled
EPESS is smaller than that of EPESS, however the effec-
tive number of samples are also proportionately small as
the samples are highly correlated (this is expected: see
Section 3). Overall Recycled EPESS does not improve
the effective sample size relative to number of function
evaluations above EPESS.

5.2 TRUNCATED MULTIVARIATE GAUSSIAN

The Truncated Multivariate Gaussian (TMG) is an im-
portant distribution which commonly arise in diverse
models such as Probit/Tobit models, Neural models [Pil-
low et al., 2003], Bayesian bridge model in finance [Pol-
son et al., 2014], True-skill model for competitions [Her-
brich et al., 2006] and many others. There has been some
recent work including [Lan and Shahbaba, 2015] focus-
ing on sampling from TMG, but Exact-HMC algorithm
[Pakman and Paninski, 2014] is considered to be state-
of-the-art (see [Altmann et al., 2014] for a nice review).
We treat it as the benchmark for comparisons in our ex-
periments.

The equations of motion for Exact-HMC are the same as
that of standard ESS,

x′(t) = x cos(t) + ν sin(t),

and so it suffers from the same problems as described in
Section 2.1 and illustrated in Figure 1. The elliptical path
enables exact calculation of where the HMC particle hits
the truncations, hence the term Exact-HMC. These are
the same calculations used to find the regions Θj in An-
alytic ESS, although being an HMC method, it does not
have a slice height y with the corresponding region Θy . It
also cannot incorporate an EP prior as this would destroy
the elliptical path and render the calculations intractable.
A tuning parameter T is required and for all our exper-
iments we have fixed T to be π/2 as recommended by
Pakman and Paninski [2014]. We only show compara-
tive results for Analytic EPESS as it is faster than EPESS
since it avoids slice shrinkages. We obtain an EP ap-
proximation for TMG using the method as described in
[Cunningham et al., 2011] which is fast and scales well
for high dimensions. It runs in negligible CPU time as
compared to the running time of different sampling algo-
rithms.

We run 100 chains with 20,000 samples per chain. The
fourth plot in Figure 4 shows the results for a 2-d stan-
dard Gaussian where the truncated region is a rectangu-
lar box: {s ≤ x ≤ s+ 1,−1 ≤ y ≤ 1}. As we shift the
box to the right, we see Analytic EPESS outperforming
Exact-HMC by orders of magnitude. This trend carries
over to higher dimensions as shown in the fifth plot in
Figure 4. Results for d = 500 and d = 1000 have been
omitted as Exact-HMC with T = π/2 takes prohibitively
long to run.

5.3 LOG-GAUSSIAN COX PROCESS

We conducted experiments on a Log-Gaussian Cox Pro-
cess (LGCP) applied to the coal mining disaster dataset
as set up in the original ESS paper [Murray et al., 2010].
Although a convergent EP is available for the LGCP, it
is not accurate with the EP mean substantially deviating
from the true mean [Ko and Seeger, 2015]. Our exper-
iments showed that EPESS fared no better than ESS on
this problem, with the effective number of samples being
about the same. This demonstrates the fact that EPESS
will only perform well when EP is accurate.

6 DISCUSSION AND CONCLUSION

In this work we have shown how the ideas of ESS,
EP and recycling can be combined to yield highly effi-
cient MCMC methods. For both probit regression and
Gaussian quadrature, performance exceeds state-of-the-
art samplers by an order of magnitude. In the case of
TMG, this can be multiple orders of magnitude.

We investigated two different types of recycling: sam-
pling multiple points per slice (Recycled ESS), and sam-
pling multiple points at different slice heights from the
same ellipse (Analytic ESS). The benefit of Recycled
ESS is questionable as it seems not to improve perfor-
mance in probit, due to having highly correlated samples.
It also introduces a tuning parameter which makes the
algorithm more difficult to implement. Analytic EPESS
for TMG does not have the above-mentioned issues of
Recycled ESS. In this case recycling is of clear benefit as
can be seen in the experimental results of Section 5.2. It
is here where EPESS outperforms the state-of-the-art by
the largest margin.

The example of the Log-Gaussian Cox process shows
that EPESS will only offer an advantage over ESS when
EP is accurate. This restricts the applicability of EPESS
as a general method. Improving the accuracy of EP is
a subject of active research and any developments made
will be immediately be inherited by EPESS.

There are multiple directions of future work. Instead of
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Figure 4: Plots of empirical results. In the top three plots all values are normalized so that EPESS(1) has value 1.
In the bottom 2 plots all values are normalized so that Exact-HMC has value 1. The naming convention: EPESS(J)
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choosing the prior that minimizes α = 1 divergence,
we could choose a prior corresponding to α > 1 by re-
placing EP with Power-EP [Minka, 2004]. This might
make the likelihood even weaker in EPESS and further
improve performance.
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