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Abstract
Policy gradients methods are perhaps the most widely used class of reinforcement learning

algorithms. These methods apply to complex, poorly understood, control problems by performing
stochastic gradient descent over a parameterized class of polices. Unfortunately, even for simple
control problems solvable by classical techniques, policy gradient algorithms face non-convex
optimization problems and are widely understood to converge only to local minima. This work
identifies structural properties – shared by finite MDPs and several classic control problems –
which guarantee that policy gradient objective function has no suboptimal local minima despite
being non-convex. When these assumptions are relaxed, our work gives conditions under which
any local minimum is near-optimal, where the error bound depends on a notion of the expressive
capacity of the policy class.

1 Introduction
Many recent successes in reinforcement learning are driven by a class of algorithms called policy
gradient methods. These methods search over a parameterized class of polices by performing stochastic
gradient descent on a cost function capturing the cumulative expected cost incurred. Specifically,
they aim to optimize over a smooth, and often stochastic, class of parametrized policies {πθ}θ∈Rd .
For discounted or episodic problems, they treat the scalar cost function `(θ) =

∫
Jπθ (s)dρ(s), which

averages the total cost-to-go function Jπθ over a random initial state distribution ρ. Policy gradient
methods perform stochastic gradient descent on `(·), following the iteration

θk+1 = θk − αk (∇`(θk) + noise) .

Unfortunately, even for simple control problems solvable by classical methods, the total cost ` is a
non-convex function of θ. Typical of results concerning the black-box optimization of non-convex
functions, policy gradient methods are widely understood to converge asymptotically to a stationary
point or a local minimum. Important theory guarantees this under technical conditions [4, 36, 57]
and it is widely repeated in textbooks and surveys [21, 43, 56].

The reinforcement learning literature seems to provide almost no guarantees into the quality of
the points to which policy gradient methods converge. Although these methods can be applied to a
very broad class of problems, it is not clear whether they adequately address even simple and classical
dynamic programming problems. Inspired by this disconnect, important recent work of Fazel et al.
[16], showed that policy gradient on the space of linear policies for deterministic linear quadratic
control problem converges to the global optimum, despite the non-convexity of the objective. The
authors provided an intricate analysis in this case, leveraging a variety of closed form expressions
available for linear-quadratic problems. Separate from the RL literature, Kunnumkal and Topaloglu
[32] propose a stochastic approximation method for setting base-stock levels in inventory control.
Surprisingly, despite non-convexity of the objective, an intricate analysis quite different that from
Fazel et al. [16] establishes convergence to the global optimum.
∗http://www.columbia.edu/~jb3618/
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Our work aims to construct a simple and more general understanding of the global convergence
properties of policy gradient methods. As a consequence of our general framework, we can show that
for several classic dynamic programming problems, policy gradient methods performed with respect
to natural structured policy classes faces no suboptimal local minima. More precisely, despite its
non-convexity, any stationary point1 of the policy gradient cost function is a global optimum. The
examples we treat include:

Example 1. Softmax policies applied in finite state and action MDPs: Here, with n
states and k actions, θ ∈ Rkn. The policy πθ associates each state s with a probability distribution
(πθ(s, 1), . . . , πθ(s, k)) over actions, with πθ(s, i) = eθsi/

∑k
j=1 e

θsj . This set of policies contains all
possible stochastic policies and its closure contains all possible policies.

Example 2. Linear policies applied in linear quadratic control: Here, actions at ∈ Rk and
states st ∈ Rn are vectors, states evolve according to st+1 = Ast+Bat+wt where wt is i.i.d Gaussian
noise2, and the goal is to minimize the cumulative discounted cost E

∑∞
t=0 γ

t(aTt Rat + sTt Kst) for
positive definite matrices R and K. It is known that a linear policy of the form πθ(s) = θs for
θ ∈ Rk×n, is optimal for this problem. We assume (A,B) are controllable, in which case the set of
stable linear policies Θstable := {θ ∈ Rk×n : maxx:‖x‖2=1 ‖(A+Bθ)x‖2 < 1 is nonempty.

Example 3. Threshold policies applied in an optimal stopping problem: One classic
optimal stopping problem is an asset selling problem, where at every time t, an agent observes i.i.d
offers yt ∈ R and chooses a stopping time τ with the goal of maximizing E[γτyτ ]. We consider a
somewhat richer contextual variant of this problem. In each round, the agent passively observes
contextual information, xt which evolves according to an uncontrolled Markov chain with finite state
space. The context reflects variables like the weather or economic indicators, which are not influenced
by the offers but inform the likelihood of receiving high offers. Conditioned on the context xt, yt
is drawn i.i.d from some bounded distribution qxt(·). The agent’s objective is to solve supτ E[γτyτ ]
where the supremum is taken over stopping times adapted to the observations {(xt, yt)}. There are
standard ways to cast such a stopping problem as an MDP with a particular state-space. (See [5] or
Appendix E.2.) The optimal policy in this setting has a threshold for each context x, and accepts an
offer in that context if and only if it exceeds the threshold. To accommodate cases where the set of
possible offers is discrete, while still using smooth policies, we consider randomized policies that map
a state to a probability of accepting the offer, πθ(x, y) ∈ [0, 1]. For a vector θ = (θx0 , θx1 )x∈X we set
πθ(x, y) = f(θx0 + θx1y) where f(z) ≡ 1/(1 + e−z) is the logistic function. While this policy is similar
to the one in Example 1, it leverages the structure of the problem and hence has only d := 2|X |
parameters even if the set of possible offers is infinite.

Example 4. Base-stock policies applied in finite horizon inventory control: The example
we treat is known as a multi-period newsvendor problem with backlogged demands. The state of
a seller’s inventory evolves according to st+1 = st + at − wt where at is the quantity of inventory
ordered from a supplier and wt ∈ [0, wmax] is the random demand at time t. Negative values of st
indicate backlogged demand that must be filled in later periods. We allow for continuous inventory
and order levels. Here we consider a finite horizon objective of minimizing E

∑H−1
t=1 (cat + bmax{st +

at −wt, 0}+ pmax{−st + at −wt, 0}), where c is per-unit ordering cost, b is a per-unit holding cost,
and p is a per-unit cost for backlogged demand. Only non-negative orders at ≥ 0 are feasible. For
a finite horizon problem, we consider the class of time-inhomogenous base-stock policies, which are
known to contain the optimal policy. Here θ = (θ1, . . . , θH−1) is a vector, and at time t such a policy
orders inventory at = max{0, θt − st}. That is, it orders enough inventory to reach a target level θt,
whenever feasible.

1Any point with ∇f(x) = 0 is a stationary point of the function f
2The work of Fazel et al. [16] considers LQ control with a random initial state but does not consider noisy dynamics.

Their objective is the total undiscounted cost-to-go over an infinite horizon. With noisy dynamics, this objective is
infinite under all policies. We introduce discounting to keep the total cost-to-go finite.
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(a) Finite state-action MDP
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(b) Contextual optimal stopping
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(c) Newsvendor problem

Figure 1: Global convergence of gradient descent on `(·) for Examples 1, 3 and 4.

For each of these examples, simple experiments show that gradient descent with backtracking line
search performed on `(θ) converges rapidly to the global minimum. Sample plots for three of the
problems are shown in Figure 1. For linear quadratic control we refer readers to Figure 1 in [16]. We
have shared code here for reproducibility and full experiment details are also given in Appendix F.

Our work aims to understand this phenomenon. Why does gradient descent on a non-convex
function reach the global minimum? These examples share important structural properties. Consider
a linear quadratic control problem. Starting with a linear policy and performing a policy iteration
step yields another linear policy. That is, the policy class is closed under policy improvement. In
addition, although the cost-to-go function is a nasty non-convex function of the policy, the policy
iteration update involves just solving a quadratic minimization problem. In fact, for each of the first
three examples, the policy class is closed under policy improvement and the policy-iteration objective
(i.e. the Q-function) is smooth and convex in the chosen action. Similar ideas, apply to the fourth
example, but as shown in Theorem 2, weaker conditions are needed to ensure convergence for some
finite-horizon problems. Given this insight, strikingly simple proofs show that any stationary point
of the cost function `(θ) is a global minimum.

In our view, these canonical control problems provide an important benchmark and sanity check
for policy gradient methods. At the same time, one hopes that the insights developed from considering
these problems extend to more complex scenarios. To spur progress in this direction, we take a
first step in Section 5 where we relax the assumption that the policy class is closed under policy
improvement. Our theory gives conditions under which any stationary point of `(·) is nearly optimal,
where the error bound depends on a notion of the expressive capacity of the policy class.

Beyond RL, this work connects to a large body of work on first-order methods in non-convex
optimization. Under broad conditions, these methods are guaranteed to converge asymptotically to
stationary points of the objective function under a variety of noise models [9, 10]. The ubiquity of
non-convex optimization problems in machine learning and especially deep learning has sparked a slew
of recent work [1, 14, 24, 34] giving rates of convergence and ensuring convergence to approximate
local minima rather than saddle points. A complementary line of research studies the optimization
landscape of specific problems to essentially ensure that local minima are global, [11, 18, 19, 28, 55].
Taken together, these results show interesting non-convex optimization problems can be efficiently
solved using gradient descent. Our work contributes to the second line of research, offering insight
into the optimization landscape of `(·) for classic dynamic programming problems.

Challenges with policy gradient methods and the scope of this work. There are many
reasons why practitioners may find simple policy gradient methods, like the classic REINFORCE
algorithm reviewed in Appendix A, offer poor performance. In an effort to clarify the scope of our
contribution, and its place in the literature, let us briefly review some of these challenges.

1. Non-convexity of the loss function: Policy gradient methods apply (stochastic) gradient descent
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on a non-convex loss function. Such methods are usually expected to converge toward a stationary
point of the objective function. Unfortunately, a general non-convex function could have many
stationary points that are far from optimal.

2. Unnatural policy parameterization: It is possible for parameters that are far apart in Euclidean
distance to describe nearly identical polices. Precisely, this happens when the Jacobian matrix of
the policy πθ(· | s) vanishes or becomes ill conditioned. Researchers have addressed this challenge
through natural gradient algorithms [2, 26], which perform steepest descent in a different metric.
The issue can also be alleviated with regularized policy gradient algorithms [50, 52].

3. Insufficient exploration: Although policy gradients are often applied with stochastic policies,
convergence with this kind of naive random exploration can require a number of iterations that
scales exponentially with the number of states in the MDP. Kakade and Langford [25] provide a
striking example. Combining efficient exploration methods with policy gradients algorithms is
challenging, but is an active area of research [see e.g. 40, 44].

4. Large variance of stochastic gradients: The variance of estimated policy gradients generally
increases with the problem’s effective time horizon, usually expressed in terms of a discount factor
or the average length of an episode. Considerable research is aimed at alleviating this problem
through the use of actor-critic methods [31, 36, 57] and appropriate baselines [37, 51].

We emphasize that this paper is focused on the first challenge and on understanding the risks posed by
spurious local minima. Such an investigation is relevant to many strategies for searching locally over
the policy space, including policy gradient methods, natural gradient methods [26] , finite difference
methods [47], random search [35], and evolutionary strategies[49]. For concreteness, one can mostly
have in mind the idealized policy gradient iteration θk+1 = θk − αk∇`(θk). As in the REINFORCE
algorithm in Appendix A, we imagine applying policy gradient algorithms in simulation, where an
appropriate restart distribution ρ provides sufficient exploration.

A natural direction for future work would be to analyze the rate of convergence of specific
algorithms that follow noisy gradient steps on `(·). Fazel et al. [16] give an impressive analysis of
several exact gradient-based algorithms for deterministic linear quadratic control, along with an
extension to zeroth order optimization for approximate gradients. We leave this for future work.

2 Problem formulation
Consider a Markov decision process (MDP), which is a six-tupleM := (S,A, g, P, γ, ρ). In some of
our examples, the state space S is a convex subset of Rn, but to ease notation we present some of
the notations below assuming S is countable, trusting readers can substitute sums for integrals when
needed. The initial state distribution ρ is a probability distribution supported on the entire state
space. For each s ∈ S, the set of feasible actions is A(s) ⊂ Rk. When action a is executed in state
state s, the agent incurs some immediate cost and transitions to a new state. The instantaneous cost
function g(s, a) specifies the expected cost incurred and the transition kernel specifies probability
P (s′ | s, a) of transitioning to state s′ in the next period. We assume expected costs are non-negative
for all feasible state-action pairs. A policy π is a mapping from states to feasible actions. For
each π, the cost-to-go function Jπ(s) = Eπ [

∑∞
t=0 γ

tg(st, π(st)) | s0 = s] encodes the expected total
discounted cost incurred when applying policy π from initial state s. Here the expectation is taken
over the sequence of states (s0, s1, s2 . . .) visited under π, since the function g already integrates over
any randomness in instantaneous costs. The state-action cost-to-go function

Qπ(s, a) = g(s, a) + γ
∑
s′∈S

P (s′ | s, a)Jπ(s′)

4



measures the cumulative expected cost of taking action a in state s and applying π thereafter. We
let J∗(s) = infπ Jπ(s) denote the optimal cost-to-go function. For every problem we consider, J∗ is
the unique solution to the Bellman equation J = TJ , where the Bellman operator T associates each
function J : S → R with another function TJ : S → R defined as

TJ(s) = min
a∈A(s)

[
g(s, a) + γ

∑
s′∈S

P (s′ | s, a)J(s′)
]
.

Similarly, define TπJ(s) = g(s, π(s)) + γ
∑
s′∈S P (s′ | s, π(s))J(s′). We assume throughout that A(s)

is convex. In some settings, like linear quadratic control problems, this is natural in all problem
formulations. In others, like MDPs with a finite set of actions, the action set is convexified by
randomization. In particular, when there are k deterministic actions {1, . . . , k} feasible in each state,
we will take A(s) = ∆k−1 to be the k − 1 dimensional probability simplex. Cost and transition
functions are naturally extended to functions on the simplex defined by g(s, a) =

∑k
i=1 g(s, i)ai and

P (s′ | s, a) =
∑k
i=1 P (s′|s, i)ai. Policy gradient methods search over a parameterized class of policies

Π = {πθ(·) : θ ∈ Rd}. When considering softmax policies for finite state and action MDPs as in
Example 1, we take Π to consist of the closure of this set, in which case it contains all stationary
policies. We assume throughout that πθ(s) is differentiable as a function of θ. We overload notation,
writing Jθ(s) := Jπθ(s) and Qθ(s, a) := Qπθ(s, a) for each θ ∈ Rd. Although classical dynamic
programming methods seek a policy that minimizes the expected cost incurred from every initial state,
for policy gradient methods it is more natural to study a scalar loss function `(θ) =

∑
s∈S Jθ(s)ρ(s)

under which states are weighted by their initial probabilities under ρ. The discounted state-occupancy
measure under ρ and πθ is defined as ηθ(s) = (1− γ)

∑∞
t=0 γ

tPπθ (st = s | s0 ∼ ρ) where the subscript
indicates that transition probabilities are evaluated under the Markov chain that results from applying
πθ. We often consider the weighted 1-norm, ‖J‖1,ηθ =

∑
s |J(s)|ηθ(s).

3 General results
The introduction described in words some special structural properties shared by our motivating
examples. This section states formal assumptions capturing that intuition and culminates in a
strikingly simple proof that such conditions ensure that `(·) has no suboptimal stationary points.

Assumption 1 (Closure under policy improvement). For any π ∈ Π, there is π+ ∈ Π such that for
every s ∈ S, π+(s) = arg mina∈A(s)Qπ(s, a).

Assumption 2 (Convexity of policy improvement steps). For every π ∈ Π and s ∈ S, Qπ(s, a) is a
convex function of a ∈ A(s).

Next, we assume the policy class Π is convex, ensuring that a soft policy-iteration update from the
policy π to the (1− α)π + απ+ is feasible. In addition to this somewhat stringent assumption on the
policy class, we need a mild regularity property of the parametrization. To make this assumption more
transparent, let’s look at Examples 1 and 2 with softmax and linear policies respectively. Consider
any two policies πθ and πθ′ . The goal is to find a direction u in the parameter space such that the
directional derivative of πθ along u points in the direction of πθ′ . Since the map θ 7→ πθ is one-to-one3

and convexity ensures (1 − α)πθ + απθ′ ∈ Π, we can pick θα such that πθα = (1 − α)πθ + απθ′ .
Varying α ∈ [0, 1] traces out a line segment in policy space and a smooth curve in parameter space.
Then the desired direction u satisfies u = limα→0

θα−θ
α . In the case of linear quadratic control, the

direction can be expressed simply as u = θ′ − θ. For softmax policies, the existence of u follows
from an inverse function theorem, which ensures the differentiable map θ 7→ πθ(s) has differentiable
inverse. There, the direction u = (us)s∈S is a concatenation of |S| vectors of length k = |A|. Each

3Softmax policies are one-to-one with a common parameterization that fixes a single component of θ per state.
Otherwise, we can follow the argument above, with an appropriate rule for selecting θα when multiple exist.
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us solves the linear system [∂πθ(s)
∂θ ]us = πθ′(s) − πθ(s) where ∂πθ(s)

∂θ is the Jacobian matrix. This
parallels the construction of natural gradient directions [26].

Assumption 3 (Convexity of the policy class). Assume Π is convex. Moreover, for any policy π ∈ Π
and any θ ∈ Rd, there exists u ∈ Rd such that for every s ∈ S, d

dαπθ+αu(s)|α=0 = π(s)− πθ(s).

Finally, the policy gradient theorem [36, 57] requires that certain limits and integrals can be
interchanged. In specific applications, this is often easy to justify. Here we state some general, though
potentially stringent, regularity conditions that allows us to simply apply a general policy gradient
theorem due to [53], stated for directional derivatives in Lemma 1. For specific applications like
linear quadratic control, the interchange of limits and expectations can be easily verified and we
don’t need this assumption.

Assumption 4 (Regularity conditions by [53]). S ⊂ Rm is compact, and ∇aP (s′ | s, a), ∇θπθ(s),
g(s, a), ∇ag(s, a), and ρ(s) exists and are jointly continuous in θ, s, a and s′.

Lemma 1 (Policy gradients for directional derivatives). Under assumption 4, for any θ, u ∈ Rd,

d

dα
`(θ + αu)

∣∣∣∣
α=0

= (1− γ)−1
∑
s∈S

ηθ(s)
d

dα
Qθ(s, πθ+αu(s))

∣∣∣∣
α=0

. (1)

The following theorem shows that `(·) has no suboptimal stationary points by constructing a
specific descent direction. The direction is chosen to point toward the policy gradient update, and
we show the corresponding directional derivative scales with the average magnitude of the Bellman
error Jθ(s)− TJθ(s) weighted under the state occupancy distribution ηθ.

Theorem 1 (No spurious local minima). Under Assumptions 1-4, for some policy πθ, let π+ ∈ Π be
a policy iteration update defined by π+(s) ∈ arg mina∈A(s)Qθ(s, a). Take u to satisfy

d

dα
πθ+αu(s) = π+(s)− πθ(s) ∀s ∈ S. (2)

Then,
d

dα
`(θ + αu)

∣∣∣∣
α=0
≤ −(1− γ)−1‖Jθ − TJθ‖1,ηθ .

Proof. After applying the policy gradient theorem stated in Lemma 1, our goal is to bound
d
dαQθ(s, πθ+αu(s))

∣∣∣∣
α=0

. Let 〈x, y〉 = xTy denote the standard inner product. We have

d

dα
Qθ(s, πθ+αu(s))

∣∣∣∣
α=0

=
〈
∂

∂a
Qθ(s, a)

∣∣∣∣
a=πθ(s)

,
d

dα
πθ+αu(s)

∣∣∣∣
α=0

〉
Chain rule

=
〈
∂

∂a
Qθ(s, a)

∣∣∣∣
a=πθ(s)

, π+(s)− πθ(s)
〉

By (2)

≤ Qθ(s, π+(s))−Qθ(s, πθ(s)) Convexity of Qθ(s, ·)
= TJθ(s)− Jθ(s).

The final inequality follows from the first order condition for convex differentiable function f : Rn → R
which implies f(y) ≥ f(x) +∇f(x)T(y−x). We use the fact that Jθ(s) = TπθJθ(s) ≥ TJθ(s) ∀ s ∈ S
in conjunction with Lemma 1 to get,

d

dα
`(θ + αu)

∣∣∣∣
α=0
≤ −(1− γ)−1

∑
s∈S

ηθ(s) |TJθ(s)− Jθ(s)| = −(1− γ)−1‖TJθ − Jθ‖1,ηθ .
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An immediate corollary is that, under Assumptions 1-4, if ∇`(θ) = 0 then Jθ(s) = TJθ(s) almost
surely over s drawn from ρ. Textbooks on dynamic programming provide different technical conditions
under which any policy whose cost-to-go function solves Bellman’s equation must be optimal. This
holds when T is a contraction, but also in many settings where T is not a contraction [7]. This
applies immediately to Examples 1 and 3. For linear quadratic control as formulated in Example 2,
any stable linear policy πθ satisfies Jθ = TJθ if and only if it is the optimal policy.

Relaxing Assumption 1 for finite horizon problems. For finite horizon problems, we can
guarantee that there are no spurious local minima for policy gradient under a much weaker condition.
Rather than require the policy class is closed under improvement – which would imply the policy
class contains the optimal policy – it is sufficient that the policy class contain the optimal policy.
For this reason, our theory will cover as special cases a broad variety of finite horizon dynamic
programming problems for which structured policy classes are known to be optimal.

Unfortunately, we do not have space in this short paper to develop specialized notation for finite
horizon problems. We do so and give a more detailed treatment in Appendix C. We can state
our formal result without rewriting our problem formulation, by a well known trick that treats
finite-horizon time-inhomogenous MDPs as a special case of infinite horizon MDPs (see e.g. [42]).
Under the following assumption, the state space factorizes into H+1 components, thought of as stages
or time periods of the decision problem. Under any policy, any state will transition to some state in
the next stage until stage H + 1 is reached and the interaction effectively ends. This assumption
on the policy class allows us to change the policy in stage h without influencing the policy at other
stages, essentially encoding time-inhomogenous policies.

Assumption 5 (Finite horizon). Suppose the state space factors as S = S1 ∪ · · · ∪SH ∪SH+1, where
for a state s ∈ Sh with h ≤ H,

∑
s′∈Sh+1

p(s′|s, a) = 1 for all a ∈ A(s). The final subset SH+1 = {T}
contains a single costless absorbing state, with P (T |T, a) = 1 and g(T, a) = 0 for any action a. The
policy parameter θ = (θ1, . . . , θH) is the concatenation of H sub-vectors, where for any fixed s ∈ Sh,
πθ(s) depends only on θh.

Theorem 2. Under assumptions 3, 4, and 5, if Q∗(s, a) is a convex function of a ∈ A(s) for all
s ∈ S and Π contains an optimal policy, then ∇`(θ) = 0 if and only if `(θ) = infθ′∈Rd `(θ′).

4 Revisiting Examples 1-4
Softmax policies in finite state and action MDPs. Consider again Example 1. Abusing
notation, we could write a stochastic policy for a finite state and action MDP as long vector
π = [π(s, i)]s∈S,1≤i≤k where π(s, i) is the probability of choosing action i in state s. Softmax policies
are πθ(s, i) = eθsi/

∑k
j=1 e

θsj . We have Π = Closure
{
πθ : θ ∈ Rd

}
. This contains all possible policies,

so policy class is automatically closed under policy improvement (Assumption 1). In this case,
Assumption 2 holds since the Q function is linear: Qθ(s, a) =

∑k
i=1Qθ(s, i)ai for a probability vector

a ∈ ∆k=1. The policy class is clearly convex, since the probability simplex is convex. We gave a
constructive definiton of u above Assumption 3.

Linear policies in linear quadratic control. Since the work of Kleinman [30] and Hewer [22],
it has been known that, starting from any stable linear policy, policy iteration solves a sequence
of quadratic minimization problems with solutions converging to the optimal linear policy. The
conditions needed to apply each step in the proof of Theorem 1 essentially follow immediately from
this classic theory. However, like this work, we need to add an appropriate qualifier to rule out
unstable linear policies, under which the cost-to-go is infinite from every state and many expressions
are not even defined. We provide more details in Appendix E.1, and also discuss when gradient
descent on `(·) will not leave the class of stable policies.

7



Lemma 2. Consider Example 2. Choose ρ to be N(0, I). Then, for any θ ∈ Θstable, if ∇`(θ) = 0
then `(θ) = minθ′ `(θ′).

Threshold policies in optimal stopping. In Example 3, we considered a parameterized class
of soft or randomized threshold policies. We take Π to be the closure of the set of such policies,
which also contains any deterministic threshold policies. This policy class is closed under policy
improvement (Assumption 3): for any a ∈ [0, 1] denoting a probability of accepting the offer and any
πθ ∈ Π, we have

Qθ((x, y), a) = ay + (1− a)γ
∑

(x′,y′)∈S

p(x′|x)qx(y′)Jθ((x′, y′)).

For any state s = (x, y), π+(s) := arg maxa∈[0,1]Qθ(s, a) = 1 if and only if the offer y exceeds the
continuation value γ

∑
(x′,y′)∈S p(x′|x)qx(y′)Jπ((x′, y′)). This means that, starting from a threshold

policy, each step of policy iteration yields a new threshold policy, so the convergence of policy iteration
implies threshold policies are optimal for this problem. Unfortunately, while we can essentially copy
the proof of Theorem 1 line by line to establish Lemma 3 as shown below, it does not apply directly
to this problem. The challenge is that the policy class Π is not convex, so moving on a line segment
toward the policy iteration update π+ is not a feasible descent direction. However, it is still simple to
move the policy πθ closer to π+, in the sense that for small α, |πθ+αu(s)−π+(s)| < |πθ(s)−π+(s)| at
every s. The proof, given in Appendix E.2, essentially writes the formula for such a descent direction
u, and then repeats each line of Theorem 1 with this choice of u.

Lemma 3. For the optimal stopping problem formulated in Example 3, ∇`(θ) 6= 0 for any θ ∈ Rd.

Base-stock policies in finite horizon inventory control. We consider again the multi-period
newsvendor problem with backlogged demand described in Example 4. In this problem, it is known
that base-stock-policies are optimal [5, 45], but the policy gradient cost function is a non convex
function of the vector of base-stock levels [32]. The following lemma, proved in Appendix E.3, shows
that nevertheless any stationary point of the objective function is a global minimum. The result is
stated formally here in terms of the notation in Example 4. We establish this claim essentially by
modifying one line in the proof of Theorem 2. The modification addresses the fact that, because a
policy πθ only orders in some states, local changes in the base-stock levels θ only changes the actions
in those states. This property technically breaks the convexity of the policy class, but does not affect
our construction of a descent direction on `(·). Global convergence of some online gradient methods
for this problem were also established through more direct approaches in [23, 32].

Lemma 4. Consider Example 4 and define for s ∈ R, h ∈ {1, . . . ,H}, and θ ∈ RH ,

Jθ((h, s)) = Eπθ

[
E
H−1∑
t=h

(cat + bmax{st + at − wt, 0}+ pmax{−st + at − wt, 0}) | sh = s

]
.

Let ρ be an initial distribution supported on {1, . . . ,H} × R such that all moments of the marginal
distribution ρ(h, ·) exist for each h. Set `(θ) = E(h,s)∼ρ [Jθ((h, s))]. Then for θ ∈ Rd, ∇`(θ) = 0 if
and only if `(θ) = minθ′∈RH `(θ′).

5 Approximation and expressive policy classes
So far, we have studied some classical dynamic programming problems that are ideally suited to
policy iteration. The key property we used is that certain structured policy classes were closed
under policy improvement, so that exact policy iteration can be performed when only considering
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that policy class. Although simple structured policy classes are common in some applications of
stochastic approximation based policy search [e.g. 27, 33, 60], they are not widely used in the RL
literature. Instead, flexible policy classes like those parameterized by a deep neural network, a Kernel
method [46], or using state aggregation [8, 17, 54] are preferred. In place of a concluding section,
we leave the readers with some preliminary but interesting progress toward understanding why, for
highly expressive policy classes, any local minimum of the policy gradient cost function might be
near-optimal. We conjecture this theory can at least be clearly instantiated in the special case of
state aggregation given in Appendix B.

Let Tπ(·) denote the Bellman operator corresponding to a policy π, defined by TπJ(s) =
g(s, π(s)) + γ

∑
s′∈S P (s′|s, π(s))J(s′). Recall the optimal Bellman operator T (·) is defined by

TJ(s) = mina∈A(s) g(s, a) + γ
∑
s′∈S P (s′|s, a)J(s′). Given an expressive policy class Π,

inf
π∈Π
‖TπJπθ − TJπθ‖1,ηθ (3)

measures the approximation error of the best approximate policy iteration update to a policy πθ ∈ Π.
If Π satisfied Assumption 1, the approximation error would be zero since TπJπθ(s) − TJπθ(s) for
every s ∈ S. Equation (3) measures the deviation from this ideal case, in a norm that weights states
by the discounted-state-occupancy distribution ηθ under the policy πθ. The first part of Theorem
3 shows that if θ is a stationary point of `(·), then the Bellman error TJπθ − Jπθ measured in this
same norm is upper bounded by the approximation error.

But when does a small Bellman error ‖TJπθ − Jπθ‖1,ηθ imply the policy is near optimal? This is
the second part of Theorem 3. We relate the Bellman error in the supremum norm to the average
Bellman error over states sampled from the initial distribution ρ. Define J = {Jπθ : θ ∈ Rd} and

Cρ = inf
J∈J

‖TJ − J‖1,ρ
‖TJ − J‖∞

. (4)

The constant Cρ measures the extent to which errors TJ(s)− J(s) at some state must be detectable
by random sampling, which depends both on the initial state distribution ρ and on properties of
the set of cost-to-go functions J . If the state space is finite, Cρ ≤ 1/(mins∈S ρ(s)) and naturally
captures the ability of the distribution ρ to uniformly explore the state space. This is similar to
constants that depend on the worst-case likelihood ratio between state occupancy measures [25].
However, those constants can equal zero for continuous state problems. It seems (4) could still be
meaningful for such problems4 since it also captures regularity properties of J . The second part of
Theorem 2 is reminiscent of results in the study of approximate policy iteration methods, pioneered
by [3, 6, 9, 38, 39], among others. The primary differences are that (1) we directly consider an
approximate policy class whereas that line of work considers the error in parametric approximations
to the Q-function and (2) we make a specific link with the stationary points of a policy gradient
method. The abstract framework of Kakade and Langford [25] is also closely related, though they do
not study the stationary points of `(·). We refer the readers to Appendix D for the proof.

Theorem 3. Suppose Assumptions 2-4 hold. Then,

∇`(θ) = 0 =⇒ ‖TJπθ − Jπθ‖1,ηθ ≤ inf
π∈Π
‖TπJπθ − TJπθ‖1,ηθ (5)

If T is a contraction with respect to ‖ · ‖∞ with modulus γ and `∗ ≡
∫
J∗(s)dρ(s), then

∇`(θ) = 0 =⇒ `(θ) ≤ `∗ + Cρ
(1− γ)2 inf

π∈Π
‖TπJπθ − TJπθ‖1,ηθ (6)

4To give some intuition, consider a quadratic function f(s) = sTKs on the unit sphere S = {s ∈ Rn : ‖s‖2 ≤ 1}.
For ρ denoting the uniform density of S, we have

∫
[0,1] |f(s)|dρ(s) ≥ (1/n)‖f‖∞.
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A Background on policy gradient methods for discounted
problems

To begin, we provide a brief review of the simplest policy gradient algorithm: the REINFORCE
algorithm for episodic tasks first proposed by [62]. What we present below is a special case of this
algorithm, tailored to infinite horizon discounted objectives. The algorithm repeatedly interacts with
an MDP with uncertain transition probabilities. Playing a policy until period H results in a trajectory
of data (s0, a0, c0, s1 . . . , sH , aH , cH , sH+1) consisting of observed states st, actions at, and rewards
ct = g(st, at). Policy gradient methods search over a family of policies {πθ : θ ∈ Rd}. REINFORCE
is restricted to stochastic policies, where πθ(a|s) is a smooth function of θ that determines the
probability of selecting action a in state s. For any θ ∈ Rd, we can define the cumulative expected
cost-to-go from state s by

Jθ(s) = Eπθ

[ ∞∑
t=0

γtct | s0 = s

]
= Eπθ

[
H∑
t=0

ct | s0 = s, H ∼ Geom(1− γ)
]
,

where H is the number of time steps the policy is executed. The second equality simply notes the well
known equivalence between optimizing an infinite horizon discounted objective and optimizing an
undiscounted objective over a random geometric time-horizon. REINFORCE with restart distribution
ρ can be thought of as performing stochastic gradient descent on the scalar loss `(θ) :=

∫
Jθ(s)dρ(s).

In particular REINFORCE follows

θk+1 = θk − αk (∇`(θk) + noise) .

As shown in the algorithm box, generating some noisy but unbiased estimate of ∇`(θ) is often simple
when employing stochastic policies. It is sometimes also feasible for deterministic policies. This is
the case when employing actor-critic methods [53] or in some special cases where differential dynamic
programming techniques can be employed (See the inventory control example in Subsection F).

Algorithm 1: REINFORCE Algorithm for infinite horizon discounted MDPs
Input :Policy class πθ parameterized by θ, discount factor γ ∈ (0, 1), restart distribution ρ(·),

step-size sequence {αk}k∈N
Initialize: θ0 randomly.
for Episodes: k = 0, 1, 2, . . . do

Sample H ∼ Geometric (1− γ) /* Episode horizon length */
Sample initial state: s0 ∼ ρ(·) /* Using restart distribution */
Play policy πθk for H + 1 periods.
Observe trajectory τ = (s0, a0, c0, . . . , sH , aH , cH , sH+1)
Compute gradient estimate of average cost using a single trajectory:

∇̂θ`(θk) = c(τ)
H∑
t=0

∇θ log(πθ(st, at)); c(τ) : total cost of trajectory

Take stochastic gradient step: θk+1 = θk − αk∇̂θ`(θk)
end
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B The example of state aggregation
State aggregation is the simplest form of value function approximation employed in reinforcement
learning and comes with strong stability properties [20, 58, 59]. It is common across several academic
communities [e.g 48, 61]. Numerous theoretical papers carefully construct classes of MDPs with
sufficient smooth dynamics, and upper bound the error from planning on a discretized state space
[e.g 41]. The following example describes state-aggregation in policy space. It satisfies all of our
assumptions other than closure under policy improvement, but we expect it can be shown to be
approximately closed under policy improvement.

Example 5 (Softmax policies with state aggregation). There are a finite number of deterministic
actions k, so we take A = ∆k−1 to be the set of probability distributions over actions. S ⊂ Rn is
a bounded convex subset of eucidean space and the dimension n is thought to be small. Reward
functions and state transitions probabilities are smooth in s. We therefore expect an effective action
in some state s will be effective in another state s′ if ‖s− s′‖ is sufficiently small. We partition the
state space S = ∪mi=1Si into m disjoint subsets. We consider a modified softmax policy πθ where
θ = (θij : 1 ≤ i ≤ m, 1 ≤ j ≤ k). If s ∈ Si lies in the ith subset of the state partition, πθ(s) plays
action j ∈ {1, . . . , k} with probability probability eθij/

∑k
`=1 e

θi` .

C Proof of Theorem 2 and formulation of finite horizon prob-
lems

In Section 3, we stated our result by treating finite-horizon time-inhomogenous MDPs as a special
case of infinite horizon MDPs. For a clearer understanding, we reformulate the finite horizon problem
with specialized notation along with restating all the assumptions we need. We then restate Theorem
2 in our new notation and give a proof.

First, let as briefly provide some details to clarify the equivalence. We assumed the state-space
factorizes as follows.

Assumption 5 (Finite horizon). Suppose the state space factors as S = S1 ∪ · · · ∪SH ∪SH+1, where
for a state s ∈ Sh with h ≤ H,

∑
s′∈Sh+1

p(s′|s, a) = 1 for all a ∈ A(s). The final subset SH+1 = {T}
contains a single costless absorbing state, with P (T |T, a) = 1 and g(T, a) = 0 for any action a. The
policy parameter θ = (θ1, . . . , θH) is the concatenation of H sub-vectors, where for any fixed s ∈ Sh,
πθ(s) depends only on θh.

To simplify the notation, assume for the moment that each set Sh is finite and ‖S1| = · = ‖SH‖ =
m. We could express any state s ∈ ∪t≤HSt as a unique pair (h, i) such that s is the i’th element of
Sh. We now rewrite the finite horizon problem in this way.

Consider a finite Markov decision process, represented asM := (S,A, g, P,H, ρ). Over H periods,
the state evolves according to a controlled stochastic dynamical system. In each period h, the
agent observes the state sh ∈ S, chooses the action ah ∈ A(s) which incurs the instantaneous
expected costs gh(sh, ah) and transition to a new state sh+1. The transition dynamics are encoded in
P = (P1, . . . , PH) where P(sh+1 = s | sh, ah) = Ph(sh, ah, s). We continue to assume that A(s) ⊂ Rk
is convex, where for finite action spaces this convexity is enforced through randomization. A policy
π = (π1, . . . , πH) is a sequence of functions, each of which is a mapping from S → A obeying the
constraint πh(s) ∈ A(s) for all s ∈ S . For any π, the associated cost-to-go from period h and state s
is defined as

Jπ(h, s) = E

[
H∑
t=h

gt(st, πt(st)) | sh = s

]
.
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We take the Q-function

Qπ(h, s, a) = gh(s, a) +
∑
s′∈S

Ph(s, a, s′)Jπ(h+ 1, s′),

to denote the expected cumulative cost of taking action a in period h, state s, and continuing to play
policy π until the end of the horizon. We set Jπ(H + 1, s) = 0 for notational convenience. Let J∗ and
Q∗ denote these cost-to-go functions under the optimal policy. The distribution ρ is a probability
distribution supported over S × {1, . . . ,H}. (This is exact analogue under Assumption 5 assuming
ρ(s) > 0 for all s, as we have throughout the paper).

We consider a parameterized family of policies, Π = {πθ : θ ∈ RdH} where the parameter
θ = (θ1, . . . , θH) is the concatenation of H vectors of length d and πθ := (π1

θ1
, . . . , πHθH ) where

πhθh : S → A is the policy applied in period h. We define the policy class as Πh = {πhθh : θh ∈ Rd} so
Π = Π1 ⊗ · · · ⊗ΠH . Policy gradient methods seek to minimize cumulative cost-to-go by minimizing
a scalar cost function,

`(θ) =
∑

h∈{1,...H}

∑
s∈S

Jθ(h, s)ρ(h, s).

The basic idea for finite horizon problems remains the same - for any suboptimal policy we want
to construct a descent direction. We make the following assumptions on the policy class and the
Q-function.

Assumption 6 (Correctness of the policy class). There is some π ∈ Π such that for every s ∈ S
and h ∈ {1, . . . ,H},

πh(s) ∈ arg max
a∈A(s)

Q∗(h, s, a).

In words, we assume that the optimal policy is contained within the policy class. As discussed in
the beginning of this section, our results do not require the policy class to be closed under policy
improvement, an assumption we needed for infinite horizon problems.

Assumption 7 (Convexity of policy improvement steps). For every s ∈ S and h ∈ {1, . . . ,H},
Q∗(h, s, a) is convex is a ∈ A(s).

Assumption 8 (Convexity of the policy class). For each h ∈ {1, . . . ,H}, Πh is convex. Moreover,
for any θh ∈ Rd and π ∈ Πh there exists some uh ∈ Rd such that

d

dα
πhθh+αuh(s)

∣∣∣∣
α=0

= πh(s)− πhθh(s).

We use the policy gradient theorem from [53] as given below.

Lemma 5 (Policy gradient theorem for directional derivatives). For any θ = (θ1, . . . θH) ∈ RdH and
u = (u1, . . . uH) ∈ RdH

d

dα
`(θ + αu)

∣∣∣∣
α=0

=
∑

h∈{1,...H}

∑
s∈S

ηθ(h, s)
d

dα
Qθ(h, s, πhθh+αuh(s))

∣∣∣∣
α=0

.

Using Lemma 5, we can show the following result. Let `∗ =
∑H
h=1

∑
s∈S J

∗(h, s)ρ(h, s) denote
the optimal average cost.

Theorem (Restatement of Theorem 2). For a finite horizon MDP and policy class Π = {πθ : θ ∈ Rd}
satisfying Assumptions 6-8, θ ∈ Rd satisfies ∇`(θ) = 0 if and only if `(θ) = `∗.
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Proof. We assume `(θ) > `∗ and construct a specific descent direction u such that

d

dα
`(θ + αu)

∣∣∣∣
α=0

< 0.

Since `(θ) > `∗, there exists some pair (h, s) with Jθ(h, s) > J∗(h, s). Let t be the last period in
which this occurs, i.e. for h > t, Jθ(h, s) = J∗(h, s) for all s ∈ S. For t = H, we have defined
Jθ(H + 1, ·) = J∗(H + 1, ·) = 0 so this is trivially satisfied. Now, we have that Qθ(t, s, a) = Q∗(t, s, a)
for every s ∈ S and a ∈ A(s), since by definition

Qθ(t, s, a) = gt(s, a) +
∑
s′∈S

P t(s, a, s′)Jθ(t+ 1, s′) = gt(s, a) +
∑
s′∈S

P t(s, a, s′)J∗(t+ 1, s′).

Let πt∗ denote an optimal policy in time period t, defined by πt∗(s) ∈ arg maxa∈A(s)Q
∗(t, s, a) for all

s ∈ S. Using Assumption 8, take ut ∈ Rd such that

d

dα
πtθt+αut(s)

∣∣∣∣
α=0

= πt∗(s)− πtθt(s). (7)

Let u = (u1, . . . , uH) where ui = 0 ∈ Rd for all i 6= t. Then, using Lemma 5, we write

d

dα
`(θ + αu)

∣∣∣∣
α=0

=
∑
s∈S

ηθ(t, s)
d

dα
Qθ(t, s, πtθt+αut(s))

∣∣∣∣
α=0

=
∑
s∈S

ηθ(t, s)
d

dα
Q∗(t, s, πtθt+αut(s))

∣∣∣∣
α=0

Repeating the argument from proof of Theorem 1, we get

d

dα
Q∗(t, s, πθt+αut(s))

∣∣∣∣
α=0

=
〈
∂

∂a
Q∗(t, s, a)

∣∣∣∣
a=πt

θt
(s)
,
d

dα
πθt+αtut(s)

∣∣∣∣
α=0

〉
Chain rule

=
〈
∂

∂a
Q∗(t, s, a)

∣∣∣∣
a=πθ(s)

, πt∗(s)− πtθt(s)
〉

By (7)

≤ Q∗(t, s, πt∗(s))−Q(t, s, πtθt(s)) Convexity of Q∗(t, s, ·)
= J∗(t, s)− Jθ(t, s)

Thus,
d

dα
`(θ + αu)

∣∣∣∣
α=0
≤ −

∑
s∈S

ηθ(t, s) [Jθ(t, s)− J∗(t, s)] < 0,

where we known Jθ(t, s)− J∗(t, s) < 0 for some s ∈ S by the construction of t.

D Proof of Theorem 3
Theorem 3. Suppose Assumptions 2-4 hold. Then,

∇`(θ) = 0 =⇒ ‖TJπθ − Jπθ‖1,ηθ ≤ inf
π∈Π
‖TπJπθ − TJπθ‖1,ηθ (5)

If T is a contraction with respect to ‖ · ‖∞ with modulus γ and `∗ ≡
∫
J∗(s)dρ(s), then

∇`(θ) = 0 =⇒ `(θ) ≤ `∗ + Cρ
(1− γ)2 inf

π∈Π
‖TπJπθ − TJπθ‖1,ηθ (6)
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Proof. Fix any θ ∈ Rd and the corresponding policy πθ ∈ Π. Consider any other policy π′ ∈ Π. We
will eventually consider an approximate policy iteration update by taking an infimum over π′. Using
Assumption 2, let u be a direction such that for all s ∈ S

d

dα
πθ+αu(s) = π′(s)− πθ(s).

By the policy gradient theorem, we have

d

dα
`(θ + αu)

∣∣∣∣
α=0

= 1
1− γ

∑
s∈S

ηθ(s)
d

dα
Qθ(s, πθ+αu(s))

∣∣∣∣
α=0

.

Following the proof of Theorem 1, we get

d

dα
Qθ(s, πθ+αu(s))

∣∣∣∣
α=0
≤ Tπ′Jπθ (s)− Jπθ (s).

Then, using the fact that Jπθ (s) = TπθJπθ (s) ≥ TJπθ (s) ∀ s ∈ S

d

dα
`(θ + αu)

∣∣∣∣
α=0
≤ (1− γ)−1

∑
s∈S

ηθ(s)[Tπ′Jπθ (s)− Jπθ (s)]

≤ (1− γ)−1
∑
s∈S

ηθ(s)[Tπ′Jπθ (s)− TJπθ (s) + TJπθ (s)− Jπθ (s)]

≤ (1− γ)−1
(∑
s∈S

ηθ(s) |Tπ′Jπθ (s)− TJπθ (s)| −
∑
s∈S

ηθ(s) |TJπθ (s)− Jπθ (s)|
)

= (1− γ)−1
(
‖Tπ′Jπθ − TJπθ‖1,ηθ − ‖TJπθ − Jπθ‖1,ηθ

)
.

Thus, ∇`(θ) = 0 implies,
‖TJπθ − Jπθ‖1,ηθ ≤ ‖Tπ′Jπθ − Jπθ‖1,ηθ .

Taking the infimum over π′ then shows

‖TJπθ − Jπθ‖1,ηθ ≤ inf
π∈Π
‖TπJπθ − TJπθ‖1,ηθ ,

which establishes the first claim. Now, assuming T is a contraction and using the fact that J∗ = TJ∗,
we have ‖Jπθ − J∗‖∞ ≤ 1

1−γ ‖Jπθ − TJπθ‖∞. This gives,

`(θ)− `∗ ≤ ‖Jπθ − J∗‖∞ ≤
1

1− γ ‖Jπθ − TJπθ‖∞ ≤
Cρ

1− γ ‖Jπθ − TJπθ‖1,ρ

≤ Cρ
(1− γ)2 ‖Jπθ − TJπθ‖1,ηθ

≤ Cρ
(1− γ)2

(
inf
π∈Π
‖TπJπθ − TJπθ‖1,ηθ

)
.
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E Details on examples
E.1 LQ Control
We consider the following LQR problem for states st ∈ Rn and actions at ∈ Rk with the goal of
minimizing the cumulative discounted cost.

min E
∞∑
t=0

γt(aTt Rat + sTt Kst)

s.t. st+1 = Ast +Bat + wt

where wt is i.i.d Gaussian noise, R,K are positive definite matrices and γ is the discount factor. We
assume that the pair (A,B) is controllable which ensures that the optimal cumulative discounted
cost is finite. We consider the class of linear policies, πθ(s) = θs for θ ∈ Rk×n which contains the
optimal policy for this problem [5, 6, 15]. The set of stable linear policies, defined as

Θstable := {θ ∈ Rk×n : max
x:‖x‖2=1

‖(A+Bθ)x‖2 < 1,

is nonempty since we assumed the system to be controllable. Let’s go through all the assumptions. To
verify Assumption 1, we refer the readers to [7, 13, 30] which shows that the policy iteration update
which solves the quadratic minimization problem above, yields a stable linear policy, θ+ ∈ θstable.
In fact, a sequence of policy iteration steps can be shown to converge to the optimal linear policy.
Next, to verify Assumption 2, note that the Q-function is a convex quadratic function of a and can
be written as

Qθ(s, a) = aTRa+ γ(As+Ba)>L(As+Ba)

for L = K + θ>Rθ + γ(A+Bθ)>L(A+Bθ). Finally, the policy class in trivially convex. One might
imagine that the policy gradient update may lead to an unstable policy. However, starting from a
suboptimal stable policy, θ and choosing the right step-size, say via backtracking line search, one can
ensure a strict decrease in the average cost `(θ)5. Thus the gradient update, θ′ = θ −∇`(θ) remains
in the sublevel set {θ̃ : `(θ̃) < `(θ)}, which contains only stable policies.

E.2 Threshold policies in optimal stopping
In this section, we give details of the contextual optimal stopping problem along with the proof of
Lemma 3. The goal here is to maximize the expected discounted revenue earned by selling a single
asset; for this we think of `(θ) or Qθ(s, a) as functions we aim to maximize.

In each round, the agent passively observes contextual information, xt ∈ X which evolve according
to an uncontrolled Markov chain with transition kernel from x to x′ given by p(x′|x). Conditioned
on context xt, the agent receives an offer yt ∈ Y drawn i.i.d from some distribution qxt(·). Here,
X ,Y denote countable subsets in R. If the offer is accepted in round t, the process terminates and
the the decision maker accrues a reward of γtyt. We assume that the decision maker receives no
reward if they continue without accepting any offer. We interpret this setting by taking the context
xt as a model for the state of the economy useful for forecasting future offers, but the specific offer yt
is subject to idiosyncratic randomness beyond what is captured in xt.

This problem can be formalized as a Markov decision process with state-space S = (X ×Y)∪{T},
where T denotes a special absorbing state from which no further value is accrued. The action space
is {0, 1}, where action 1 corresponds to accepting the offer, in which case the decision-maker earns
the current value of the item and transitions to the terminal state T . Action 0 corresponds to

5Our results show a descent direction exists.
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rejecting the offer, the decision-maker earns no reward and transitions to a new state with transition
probability:

P(st+1 = (x′, y′) | st = (x, y)) = p(x′ | x)qx′(y′).

Recall that as shown in Section , the optimal policy in this setting has a threshold for each context
x, and accepts an offer in that context if and only if it exceeds the threshold. Mathematically, let
J∗(x, y) denote the optimal value function in state (x, y). Then, it is easy to show that the optimal
policy accepts an offer in state (x, y) if and only if

y ≥ γ
∑
x′,y′

p(x′|x)q(y|x)J∗((x′, y′)),

To accommodate cases where set of possible offers is discrete, while still using smooth policies, we
consider a parameterized class of stochastic policies, πθ : S → [0, 1] that map a state to a probability
of accepting the offer. Capturing our knowledge of the structure of the optimal policy6, one natural
parameterization defines θ = (θx0 , θx1 )x∈X to be a vector of length d := 2|X | and sets

πθ(x, y) = 1
1 + e−(θx0 +θx1 y)

which can be interpreted as a ‘soft’ threshold on y for each context x. The closure of this policy
class contains the optimal policy. Let c∗x be the optimal threshold for some state (x, ·). In the limit
where θx1 → ∞ and − (θx0/θx1 ) → c∗x, we have that πθ(x, ·) converges to the optimal policy with a
deterministic threshold c∗x.

Our next goal is to verify all the assumptions stated in Section for this problem. First note that
for a ∈ [0, 1] denoting the probability of accepting the offer and any policy πθ ∈ Π, we have

Qθ((x, y), a) = ay + (1− a)γ
∑

(x′,y′)∈S

p(x′|x)qx(y′)Jθ((x′, y′)) (8)

which is linear in a. Next, we show that the class of threshold policies is closed under policy
improvement. For any state s = (x, y), consider the policy iteration update

π+(s) ∈ arg max
a∈[0,1]

Qθ(s, a). (9)

Clearly, π+(s) = 1 if and only if the offer y exceeds the continuation value, cθ(x) defined as

cθ(x) := γ
∑

(x′,y′)∈S

p(x′|x)qx(y′)Jπ((x′, y′)).

We now come to Assumption 3 related to convexity of the policy class. Unfortunately, this
does not hold for threshold policies as can be seen from a counterexample below. Consider policies
πθ, πθ′ ∈ Π such that

πθ(x, y) =
{

1 if y ≥ cθ(x),
0 otherwise

πθ′(x, y) =
{

1 if y ≥ cθ′(x),
0 otherwise

Assuming without loss of generality that cθ′(x) > cθ(x), a convex combination of πθ and πθ′

απθ(x, y) + (1− α)πθ′(x, y) =


1 if y ≥ cθ′(x) > cθ(x),
α cθ(x) < y < cθ′(x),
0 if y ≤ cθ(x) < cθ′(x)

6That is, the threshold only depends on the context.
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does not lie in the class of threshold policies. This is the main challenge in proving a result analogous to
Theorem 1 as for any sub-optimal policy πθ, moving along a line segment towards the policy iteration
update is not a feasible direction. But note that Assumption 3 is somewhat stronger than what we
need to prove Theorem 1. Essentially, all we need is a feasible direction u in the parameter space to be
able to move policy πθ close to π+ in the sense that for small α, |πθ+αu(s)− π+(s)| < |πθ(s)− π+(s)|
for all s ∈ S. For this case, it is simple to find u. We can then show the following result.

Lemma 3. For the optimal stopping problem formulated in Example 3, ∇`(θ) 6= 0 for any θ ∈ Rd.

Proof. Let π+ denote the policy in (9). Then π+((x, y)) = 1 if and only if y ≥ cθ(x). We construct a
direction u ∈ Rd such that moving in the direction of u brings πθ(s) closer to the action π+(s) in
every state s. Take u = (ux0 , ux1)x∈X ∈ Rd where ux1 = 1 and ux0 = −cθ(x). Set θα = θ + αu. Then,
for f(z) = 1

1+e−z , denoting the logistic function, we have

d

dα
πθ+αu((x, y))

∣∣∣∣
α=0

= f ′(θx0 + θx1y) [−cθ(x) + y] , (10)

which is strictly positive for y > cθ(x) and strictly negative for y < cθ(x) as f(z) is strictly increasing
function for z ∈ R. Using the policy gradient theorem, we get

d

dα
`(θ + αu) =

∑
s∈S

ηθ(s)
[
Qθ(s, 1) d

dα
πθ+αu(s)

∣∣
α=0 +Qθ(s, 0) d

dα
(1− πθ+αu(s))

∣∣
α=0

]
=
∑
s∈S

ηθ(s) [Qθ(s, 1)−Qθ(s, 0)] d

dα
πθ+αu(s)

∣∣
α=0

=
∑
(x,y)

ηθ((x, y)) [y − cθ(x)]2 f ′(θx0 + θx1y) > 0.

we we used the fact that Qθ(s, 1)−Qθ(s, 0) = [y − cθ(x)] from Equation (8).

E.3 Base-stock policies in finite horizon inventory control
In this section we give a detailed exposition of the multi-period newsvendor problem with backlogged
demands as described in Example 4 along with the proof of Lemma 4. Let st ∈ R denote the state of
the seller’s inventory, at be the quantity of inventory ordered and wt ≥ 0 be the random demand at
time t. Note that only positive inventory orders are allowed. So the action space for any state s ∈ S
is defined as A(s) = {a ∈ R ; a ≥ 0}. The seller’s inventory evolves as,

st+1 = st + at − wt t = 0, . . . ,H − 1,

for a problem with horizon H. For simplicity, we assume the demands wt to be independent random
variables that can take continuous values within a bounded set. Negative values of st correspond
to backlogged demand that is filled when additional inventory becomes available. Let c, b, p > 0 be
the per unit costs of ordering, holding and backlogging items respectively. We assume that p > c to
avoid degeneracies. If p < c, then it would never to optimal to order in the last period and possibly
in other periods. Let us define a convex function, r(·) : R→ R as,

r(x) = pmax(0,−x) + bmax(0, x), (11)

to represent the backlogging/holding cost in any state x. We consider the class of time-inhomogenous
base-stock policies parameterized by θ = (θ0, . . . , θH−1) for each θt > 0. At time t such a policy
orders inventory πtθt(st) = max{0, θt − st}. For s ∈ R, h ∈ {1, . . . ,H} and θ ∈ RH , define

Jθ((h, s)) = Eπθ

[
H−1∑
t=h

(cat + r(st + at − wt)) | sh = s

]
.
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The average cost of policy πθ for any initial distribution, ρ can be defined as,

`(θ) = E(h,s)∼ρ [Jθ((h, s))]

Our ultimate goal is to prove Lemma 4. For this, we first verify all the assumptions for the finite
horizon setting as stated in Section C. First we note that for this finite horizon inventory control
problem, it is well known that base-stock-policies are optimal [5, 45] thereby verifying Assumption 6.
Next, we verify the convexity of policy improvement steps by showing that Q∗(t, s, a) is convex for
all s ∈ R, a ∈ R+ and t ∈ {0, . . . ,H − 1}. For this, we note that

Q∗(t, s, a) = ca+ Ewh [r(s+ a− wt) + J∗(t+ 1, s+ a)] .

where we assume that J∗(h, x) is the optimal cost-to-go function for period h and state x ∈ S and
that J∗(H,x) = 0. Note that r(s+ a− wh) is a convex in a for any s and fixed wt and expectations
preserve convexity. A simple inductive argument [5] shows that J∗(h, x) is convex in x. Combining
these with simple properties of convex functions, it is easy to see that Q∗(t, s, a) is convex in a.

The main challenge in the proof arises from the fact that because a policy πθ only orders in some
states, local changes in the base-stock levels θ only changes the actions in those states. This property
technically breaks the convexity of the policy class as stated in Assumption 8. However, it is easy
to construct a descent direction for suboptimal policies. Let θ∗ = {θ1

∗, . . . , θ
H
∗ } be the thresholds

corresponding to the optimal policy, which are unique by the strict convexity of Q∗(t, s, ·). We show
in the following lemma that for any policy parameterized by θ ∈ RH such that `(θ) > `(θ∗), there

exists a u ∈ RH such that d
dα`(θ + αu)

∣∣∣∣
α=0

< 0.

Lemma 4. Consider Example 4 and define for s ∈ R, h ∈ {1, . . . ,H}, and θ ∈ RH ,

Jθ((h, s)) = Eπθ

[
E
H−1∑
t=h

(cat + bmax{st + at − wt, 0}+ pmax{−st + at − wt, 0}) | sh = s

]
.

Let ρ be an initial distribution supported on {1, . . . ,H} × R such that all moments of the marginal
distribution ρ(h, ·) exist for each h. Set `(θ) = E(h,s)∼ρ [Jθ((h, s))]. Then for θ ∈ Rd, ∇`(θ) = 0 if
and only if `(θ) = minθ′∈RH `(θ′).

Proof. Let t be the last period in which the threshold is not optimal: θt 6= θt∗. If no such t exists,
then we are already at the optimal policy. Else, we have that Qθ(t, s, a) = Q∗(t, s, a) for every s ∈ S
and a ∈ A(s). This follows by using the fact that we have the optimal thresholds in the subsequent
periods h ∈ {t+ 1, . . . ,H}. Note that exactly the same argument was used in the proof of Theorem
2. Take ut = θt∗ − θt and let u = (u1, . . . , uH) where ui = 0 for all i 6= t. Then,

d

dα
`(θ + αu)

∣∣∣∣
α=0

=
∑
s∈S

ηθ(t, s)
d

dα
Q∗(t, s, πtθt+αut(s))

∣∣∣∣
α=0

Now,

∑
s∈S

η(t, s) d
dα
Q∗(t, s, πtθt+αut(s))

∣∣∣∣
α=0

=
∑
s∈S

ηθ(t, s)
(
∂

∂a
Q∗(t, s, a)

∣∣∣∣
a=πt

θt
(s)

)(
d

dα
πtθt+αut(s)

∣∣∣∣
α=0

)
Note that,

d

dα
πtθt+αut(s)

∣∣∣∣
α=0

= d

dα
max

(
0, θt + α(θt∗ − θt)− s

)∣∣∣∣
α=0

=
{
θt∗ − θt if s < θt,

0 if s > θt
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This implies,

∑
s∈S

η(t, s) d
dα
Q∗(t, s, πtθt+αut(s))

∣∣∣∣
α=0

=
∑
s<θt

ηθ(t, s)
(
∂

∂a
Q∗(t, s, a)

∣∣∣∣
a=πt

θt
(s)

)(
θt∗ − θt

)
Note that Q∗(t, s, a) is a convex function of a in one dimension with a minimum at a = πt∗(s). Thus,
if θt∗ < θt, then we are ordering more than we should, in which case ∂

∂aQ
∗(t, s, a)

∣∣
a=πt

θt
(s) > 0. On the

other hand, if θt∗ > θt, then we are ordering less than we should, in which case ∂
∂aQ

∗(t, s, a)
∣∣
a=πt

θt
(s) <

0. In either case, we have

d

dα
`(θ + αu)

∣∣∣∣
α=0

=
∑
s∈S

ηθ(t, s)
d

dα
Q∗(t, s, πtθt+αut(s))

∣∣∣∣
α=0

< 0

which is a descent direction as desired.

F Details regarding numerical experiments
In this section, we provide implementation details about the numerical results shown in Figure 1 for
three classic Dynamic Programming problems, as described in Sections 4 and Appendix E.

F.1 Infinite horizon problems:
The tabular MDP and the contextual optimal stopping problem are formulated as infinite horizon
discounted problems with finite state and action space. For both, we use a discount factor of γ = 0.9
and the starting state was sampled uniformly over the finite state space. To compute the gradients
exactly, we use the classic Policy Gradient theorem Sutton et al. [57] as stated below.

Theorem 4 (Policy Gradient Sutton et al. [57]). For infinite horizon discounted MDPs, the policy
gradient is given by:

∇θ`(θ) =
∑
s∈S

ρ(s)ηθ(s)
∑
ainA

Qπθ (s, a)∇θπθ(s, a)

for policy πθ, where ρ(s) denotes the starting state distribution and ηθ(s) is the discounted state
occupancy measure as defined in Section 2.

For each case, the exact Q-values for all state-action pairs for a given policy, π, can be computed
by solving the linear system of Bellman equations:

Qπ(s, a) = g(s, a) + γ
∑
s′

P (s′|s, a)
∑
a′∈A

π(s′, a′)Qπ(s′, a′)

In matrix format, the system becomes

Qπ = g + γPΠπQπ, (12)

which can be solved either analytically or iteratively to obtain the exact Q-values. Here g is the vector
of rewards, P ∈ R|S||A|×|A| is the transition matrix of the process with P((s, a), s′) = P (s′|s, a) and
Ππ ∈ R|S|×|S||A| describes the policy π as Ππ(s, (s, a)) = π(s, a). We use backtracking line search
[12], as shown in the pseudo code below, to adaptively choose step-sizes for gradient steps at any
iteration: θk+1 = θk + αk∇θ`(θk) ∀ k ∈ N.

Although, typical implementations set α to be some constant (say 1), we found that scaling α by
the inverse of the gradient norm in our implementation was immensely helpful in rapid convergence.
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Algorithm 2: Backtracking line search
Input :α = 1/‖∇θ`(θk)‖2, β : 0 < β < 1, current parameter value θk, gradient ∇θ`(θk), cost

function `(·).
Initialize: step-size t as t = α.
while `(θk − t∇θ`(θk)) > `(θk)− t

2‖∇θ`(θk)‖22 do
Update t = tβ

end
return Step-size t.

This was because in our implementations, we found the gradient norms to be small and searching
over large step-sizes allowed greater progress per iteration. As mentioned in Section 1.2, we believe
that this numerical issue of vanishing gradients is an artifact of the local geometry of the parameter
space and principled approaches, like natural gradient approaches, might alleviate this phenomenon.
As this is not the primary focus of our work, we sidestep this issue by scaling α.

The optimal policy, π∗ was computed using Policy Iteration algorithm for which the Q-values
were computed using Equation (12). We plot the optimality gap: `(πθk)− `(π∗) ∀ k ∈ N in Figure 1.
Below, we give specific details of numerical experiments run for the tabular MDP and the contextual
optimal stopping problem.

• Tabular MDP: For simulation, we take the number of states and actions per state to be
100 and 20 respectively. The probability transition matrix, P (s′|s, a) ∈ R|S||A|×|S| and reward
vector, g(s, a) ∈ R|S||A| were drawn uniformly at random. Recall that for a softmax policy, πθ,
parameterized by θ ∈ R|S||A|, we have the expression for probability of taking action i ∈ A in state
s ∈ S along with the expression for partial derivative as:

πθ(s, i) = eθsi∑
k∈A e

θsk
; d

dθs′,j
πθ(s, i) =


0 if s′ 6= s

πθ(s, i)[1− πθ(s, i)] if s′ = s, i = j

−πθ(s, i)πθ(s, j) if s′ = s, i 6= j

.

This enables a straightforward computation of ∇θπθ(s, a) which is used in the policy gradient
theorem as shown above.

• Contextual Optimal Stopping problem: For our numerical experiments, we take the number
of contexts/latent variables, |X | = 10 and the number of offers, |Y| = 50, with the associated
offer value sampled from a uniform distribution. The transition probability matrix for context
vectors, p(x′|x) ∈ R|X |×|X| as well as the emission probability matrix, q(y|x) ∈ R|X |×|Y| were
randomly generated. Recall that the policy in this case is parameterized by θ = (θx0 , θx1 )x∈X with
the probability of accepting offer y in state x along with the expression for partial derivative as

πθ(x, y) = 1
1 + e−(θx0 +θ1

xy) ; d

dθx0
πθ(x, y) = πθ(x, y)[1− πθ(x, y)]; d

dθx1
= y (πθ(x, y)[1− πθ(x, y)])

which is used in conjunction with the policy gradient theorem above.

F.2 Finite horizon undiscounted MDP: multi-period newsvendor prob-
lem

As that following the problem formulation in Section E.3, the average cost function can be written as:

`(θ) =
∑

h∈{1,...,H}

∑
s∈S

Jθ(h, s)ρ(h, s)
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where ρ is the initial distribution for the starting state and the horizon and is supported on
{1, . . . H, }×R. One way of approximating the gradients is to use the policy gradient theorem [53, 57]
which requires approximating the state-action Q-values, Qπθ (s, a). Instead, we opt for using differential
dynamic programming to compute the gradients as follows. Let w1, . . . wH be i.i.d continuous random
variables denoting the demand. We use the notation (x)+ to denote max(0, x). Then, we have
sh+1 = f(sh, ah, wh) = sh + ah − wh, where the inventory order, ah = πhθh(sh) = (θh − sh)+ and θh
are the thresholds in period h. We use a Monte Carlo approach by writing the cost function as the
expectation: `(θ) = Ew,i,s[`(θ, w, i, s)]. Starting from an initial state s, time period i, and a given
realization of random demands

`(θ, w, i, s) =
H+1∑
h=i

g(sh, ah)− r(si)

where g(sh, ah) = cah + r(sh), aH+1 = 0 and r(·) represents the holding and backlog cost as defined
in Equation (11). We can easily compute ∇`(θ) = Ew,i,s[∇`(θ, w, i, s)]. The key then is to use that,
almost surely, future states and actions are differentiable functions of θh that can be computed
through the chain rule of calculus. For our implementation, we take the start distribution to only
put weight on the first period (h=1) and not randomize over the horizon. In this special case, the
cost function becomes `(θ) = E[`(θ, w, s)] where

`(θ, w, s) =
[
H∑
h=1

g(sh, ah)|s1 = s

]
. (13)

and we compute the gradients as shown below7.

∂

∂θi
`(θ, w, s) =

H∑
h=i

∂

∂θi
g(sh, ah) = ∂ai

∂θi

[
∂

∂ai
g(si, ai) +

H∑
h=i+1

(
∂

∂sh
g(sh, ah) · ∂sh

∂ai
+ ∂

∂ah
g(sh, ah) · ∂ah

∂sh
· ∂sh
∂ai

)]
.

For inventory control with the class of threshold policies, ai = (θi − si)+ we have

∂ai
∂θi

=
{

0 if si > θi

1 if si < θi

Now, let τi be the first time after i when inventory is ordered, and set τi = ∞ if no inventory
is ordered till the end of the horizon. For every period h after i but before inventory is ordered,
increasing the order ai by dai increases the inventory on hand sh by dai. A change in ai does not
influence the inventory on-hand after the next restock. This implies,

∂sh
∂ai

=
{

0 if h > τi

1 if h ≤ τi.

Also note that given for threshold policies, ∂ah
∂sh

= −1 if inventory is ordered in period h and 0
otherwise. Putting this all together, we have that

∂

∂θi
`(θ, w) = ∂

∂ui
g(si, ai)︸ ︷︷ ︸

change in ordering cost

+
τi∧H∑
h=i+1

∂

∂sh
g(sh, ah)︸ ︷︷ ︸

change in holding cost

−1(τi <∞) ∂

∂uτi
g(sτi , aτi)︸ ︷︷ ︸

change in future ordering cost

,

7Note that we did not subtract the term r(s1) from the sum in the above definition. As s1 is the initial state and
does not depend on the thresholds, this term does not contribute to the gradient computation anyways.
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when si < θi and ∂
∂θi
`(θ, w) = 0 if si > θi. Recall that we have g(a, s) = ca + r(s), where

r(s) = pmax(0,−s) + bmax(0, s). This implies that ∂
∂ag(uas) = c and r′(s) = ∂

∂s [r(s) + ca] =
b · 1(s > 0)− p · 1(s < 0). We find

∂

∂θi
`(θ, w) =



0, θi < si
τi∑

h=i+1
r′(sh), θi > si, τi <∞

c+
H∑

h=i+1
r′(sh), θi > si, τi =∞

An efficient way to compute ∇`(θ, w, s) is to forward simulate the states and orders throughout the
episode and approximate ∂

∂θi
`(θ) ≈ 1

n
1
m

∑n
l=1
∑m
k=1

∂
∂θi
`(θ, wk, sl) where the wk denote i.i.d vectors

drawn from the demand distribution and sl are drawn i.i.d from the start state distribution ρ(s).
To track the optimality gap, we need to compute the optimal thresholds, θ∗. Given θ∗, it is easy

to estimate `(θ∗) using Monte Carlo simulations as shown in Equation (13). To get the optimal
thresholds, we essentially do approximate dynamic programming as explained briefly below. For a
detailed exposition, we refer the readers to Section 3.2 of [5].

Let J∗(h, s) andJ(h, s) denote the (optimal) cost-to-go functions from period h and state s.
Suppose we have the optimal thresholds from period h to H as {θh∗ , . . . , θH∗ }, then we can find θh∗ by
essentially minimizing a convex function in one dimension. Define

Gh(θ) = Esh
[
g(sh, πhθ (sh)) + Ewh

[
J∗(h+ 1)(sh + πhθ (sh)− wh)

] ]
which can be easily estimated using Monte-Carlo approximation for the expectations. It is easy
to show that Gh(θ) is convex in θ. We use golden-section search [29], a zeroth order technique to
approximately optimize Gh(θ) to get θh∗ .
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