
The Consistency of the Continuum Hypothesis1

● Gödel’s Theorems supply concrete examples of statements that are not provable from
standard axioms, namely their Gödel and consistency sentences.  Moreover, by the
MRDP Theorem, if G is some Π1 Gödel sentence of PA, for example, then the claim that a
corresponding diophantine equation has no solutions in the integers is undecidable in PA.

● However, some deny that these count as ‘ordinary’ mathematical claims of ‘intrinsic
mathematical interest’.  Even if that were so (which is doubtful in the MRDP case), we
think we know – or can find out – their truth-values. The fact that ZF neither proves
Con(ZF) nor ~Con(ZF) [given that Con(ZF)] just shows that ZF – and any consistent
recursively axiomatizable extension of it – is weak.  We still know that ZF is consistent!

● There are other claims that are independent of standard mathematics, ZFC, whose
intrinsic interest is universally conceded but whose truth-values are not known, and not
readily knowable, even by everyday, non-philosophical, standards.  The Continuum
Hypothesis (CH) is the most celebrated of these. CH says that, for any uncountable
subset of the real numbers, there is a bijection between it and the set of real numbers.

● Note: |R| = 2ℵ
0.  Hence, if every set has a well-order, CH says that 2ℵ

0 = ℵ1.  The
so-called Generalized Continuum Hypothesis (GCH) then says that 2ℵ

α = ℵα + 1.

● The conjecture that every set has a well-order is actually equivalent to the Axiom of
Choice (AC).  Recall that AC says that if t is a disjointed set not containing the empty set,
∅, then there is a subset of ∪t whose intersection with each member of t is a singleton.

● Although AC has become a mainstay of mathematics, this should not be confused with
consensus among those (few!) who concern themselves with foundational questions.  It
would, thus, be desirable if AC could be proved relatively consistent with ZF, i.e., if
Con(ZF) → Con(ZFC).  Even better, we would like to prove that ZF |- AC.  But while we
can prove Con(ZF) → Con(ZFC), we can also prove that Con(ZF) → Con(ZF + ~AC).
So, AC is independent of ZF [if Con(ZF)] as CH is independent of ZFC [if Con(ZF)].

● Note: One upshot of the this is that belief in ZFC + CH and ZFC + ~CH (or, indeed, ZF +
~AC + CH and ZF + ~AC + CH) is no more ‘risky’ than belief in ZF as far as the danger
of believing a contradiction goes.  This contrasts with belief in ZF(C) + Large Cardinals.

● These varied facts have related proofs.  So, we focus on the proof that Con(ZFC) →
Con(ZFC + CH) and that Con(ZFC) → Con(ZF + ~CH). Let us begin with the first.

The Constructible Universe

● The Soundness Theorem says that if ~Con(T), then there is no model, M, such that M |=
φ, for every φ ∈ Τ, or, equivalently, that if ∃M : M |= φ, for each φ ∈ Τ, then Con(T).

1 Thanks to Tim Button for helpful comments.
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● Problem: Gödel’s Second Incompleteness Theorem guarantees that ZFC |- Con(ZFC) only
if ~Con(ZFC).  Thus, hopefully (!), ZFC ⊬ ⌜∃M : M |= φ, for each φ ∈ ZFC + CH⌝.

● What Gödel’s theorem allows is that, for any finite subset of axioms of ZFC + CH, {α1 ,
α2, α3 ,...αn}, ZFC |- ⌜∃M : M |= α1 , α2, α3 ,...αn,⌝ .  (Recall the Reflection Principle.)  But
this must not be confused with the claim that ZFC |- ⌜For any finite subset of ZFC + CH,
{α1 , α2, α3 ,...αn,}, ∃M : M |= τ⌝, which contravenes Gödel’s theorem by Compactness.

○ Theorem 1: Suppose that ZFC ⊆ P and ZFC ⊆ Q and that for any finite {α1 , α2,
α3 ,...αn} ⊆ P, Q |- ⌜∃M : M |= α1 , α2, α3 ,...αn⌝. Then Con(Q) → Con(P).

○ Proof: Q proves the Soundness Theorem for first-order logic.  So, for any finite
{α1 , α2, α3 ,...αn,} ⊆ P, Q |- Con(α1 , α2, α3 ,...αn,) since Q |- ⌜∃M : M |= α1 , α2, α3

,...αn,⌝.  So, suppose that ~Con(P).  By Compactness, there is a finite {α1 , α2, α3

,...αn,} ⊆ P such that α1 , α2, α3 ,...αn, |- (φ & ~φ).  Moreover, as an extension of
ZFC, Q is certainly Σ1 complete.  Thus, Q proves the Σ1 sentence ⌜α1 , α2, α3 ,...αn, |-
(φ & ~φ)⌝.  But, again, as Q proves Soundness, Q |- ⌜∀M [M |= α1 , α2, α3 ,...αn →
M |= (φ & ~φ)]⌝.  Because Q |- ⌜∃M : M |= α1 , α2, α3 ,...αn⌝, Q |- ⌜∃M : M |= (φ
& ~φ)⌝.  This contradicts the ZFC-provable fact that no model satisfies φ & ~φ.

● What kind of model would make CH
true?  A model that is thin.  We want to
add the minimum number of subsets at
each stage of the cumulative
construction.  But our model will contain
all ordinals (see below).  So, it will not
really be a model, because it will not be a
set.  We will define a class model, L, in
analogy with the cumulative hierarchy, V.

● A way to execute this idea is to add only
subsets that are definable at each stage.

● Problem: Since L is not a (set) model, we cannot define satisfaction in L.  So, what do we
mean in claiming that a sentence is ‘true in L’?

● Answer: We mean that the sentence with its quantifiers restricted to L is provable in ZFC.

● Definition 1: If L is a language and M a model for it, then S ⊆ M (the domain of M) is
definable over M just in case there is a formula φ(x1, x2,...xn) of L and m1, m2,...mn∈ M
such that: S = {m ∈ M : M |= φ(m, m1,...mn)}.

○ Example: If a1, a2 ∈ M, then {a1, a2} is definable in M by ‘z = x v z = y’.
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● Definition 2: If L is a language and M a model for L, then the definable powerset over M,
written Def(M), is {X ⊆ M : X is definable over M}.

○ Intuition: These are the sets that someone ‘living in M’ could name.

● We can now characterize the class model, L, Gödel’s Constructible Universe, as follows.

○ L0 = Ø
○ Lo+1 = Def(Lα)
○ Lu = ∪Lα : α < u, for limit, u.

○ Note: This is a class function from On → V with the feature that α < β → Lo⊂ Lβ.
Gödel also gave a second definition of L that avoids talk of definability (which
requires Gödel numbering to formulate in the language of ∈) in favor of eight
‘fundamental operations’ under which any (standard – ‘∈’ means ∈) transitive
model is closed.  Part of the inspiration for L was Russell’s ramified type theory.

○ Notation: We will write L(x) to mean that ∃α(α ∈ On & x ∈ Lα).

● Transitivity: Each Lo is a transitive set and L is a transitive class.  Recall
that M is transitive just in case, when x ∈ M and y ∈ x, then y ∈ M (i.e.,
x ⊆ M) .  If M is not transitive, then it might contain, say, the set of real
numbers, without containing any real numbers!  From the perspective of
such a model M, the set of real numbers would just be the empty set, Ø.

● Every subset of a finite set is definable.  So, Ln = Vn for all n ∈ ω.  But Lω+1 ≠ Vω+1 since
Lω is countable so Lω+1 is too.  (Indeed, Lα is countable whenever α is.)  But Vω+1 is not.
However, it might be that V = L.  The L function adds more subsets to Lω at later stages.

Consistency of CH

● Definition 3: If M and N are models in a language, L , such that M ⊆ N, then M is an
elementary submodel of N, written M ≼ N, just in case, for all m, m1,...mn∈ M, φ(x1,
x2,...xn) from L , M |= φ(m, m1,...mn) ←→ N |= φ(m, m1,...mn).

■ Note: M and N are elementary equivalent if they are the same as regards
what one can say in L .  But this does not mean that M and N are
isomorphic.  They may fail to be, by the Löwenheim–Skolem theorems.

● Definition 4: If ψ is a formula in the language of ZFC, and M is a transitive model, then
the relativization of ψ to a M, written ψM, is defined recursively as follows.

○ If φ is x ∈ y, then φM is φ
○ If ψ is ~φ, then ψM is ~(φM).
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○ If ψ is (φ & χ), then  ψM is (φM & χM)
○ If ψ is ∀xφ(x), then ψM is ∀x[x ∈ M) → φ(x)M]

■ Truth and Relativization: we will write M |= φ just in case φM.

■ ZFC Relativized to L: For every axiom, φ, of ZFC, ZFC |- φL.

■ Example: Pairing is: (∀z)(∀w)(∃y)(∀x)(x∈y) ←→ (x=z v x =w)).
So, PairingL is: (∀z ∈ L)(∀w ∈ L)(∃y ∈ L)(∀x ∈ L)(x∈y) ←→
(x=z v x =w)).  Since L is transitive, this means: (∀z ∈ L)(∀w ∈ L)({z,
w}∈ L).  But z ∈ L and w ∈ L just in case ∃α ∈ On, and ∃β∈ On
such that z ∈ Lα and w ∈ Lβ.  So, without loss of generality, suppose that
β ≥ α.  Then {z, w} ∈ Lβ+1.

○ The most difficult case is Replacement. Choice is true in L
because the well-order of On induces a well-order on the
Lαs, and each member of a Lα maps to a formula, and these
are well-orderable.  Moreover, this well-order exists in L.

● Definition 5: A formula φ(x1, x2,...xn, x) is absolute for M (where M is a transitive set or
class model) if/f (∀x1, x2,...xn) ∈ M [φ(x1, x2,...xn, x) ←→ φ(x1, x2,...xn, x)M].

● Absolute Formulas: Important formulas are absolute for all transitive models.  These
include those expressing that x is ∅, x ⊆ y, x is transitive, x ∈ On, x is a limit ordinal, x
is a finite ordinal, and x is ω, x is a relation, x is a function, x is the Cartesian product
(union, intersection, etc.) of y and z.  This is because these are expressible by ∆0

formulas, and ∆0 formulas are absolute.  This is provable by induction on complexity.

○ Note: The restriction to transitive models is essential. Consider a model
containing only Ø and {{Ø}}.  Then ‘Ø = {{Ø}}’ is true in that model!

○ Note: Agreement that x is an ordinal is not agreement on which ordinal x is!

● Relative Formulas.  Other key formulas are not absolute (thankfully, if we want to have
hope of proving independence results!).  These include those expressing that x is a well-
order, x is a cardinal, x is countable, y is the powerset of x, and that x is bijective with y.

● Theorem 2 (Mostowski Collapse): If M is a model and the relativization of Extensionality
to M, ExtensionalityM, holds, then there is a unique transitive model, N, the collapse, and:

○ There is a an isomorphism, f: N ≅ M

○ f(x) = x for any transitive set, x ∈ M

● Rationale: We can remove whatever gaps there were in M.  If x, y ∈ M, and y = {x, z}
but z ∉ M, then replace y by {x} to get a transitive set (which M already thinks of as y).
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● Robustness of L: If M is a transitive model, then for x ∈ M, (x ∈ L)M just in case (x ∈
L).  Although the formula expressing that x ∈ Lo is not absolute for all transitive models,
it is absolute for L.  So, (V=L)L is: (∀x ∈ L)((∃α ∈ L)[α ∈ On)L & (x ∈ Lo)L), which
is trivial. L is the smallest inner model, i.e., transitive model containing On satisfying
ZFC.

● Theorem 3 (Condensation): If M ≼ Lα, for some limit α, and N is the collapse of M, then
N ≅ Lβ, for some β ≤ α.

● Rationale: Since all transitive models agree on what is in L, anything true of elements of
an elementary submodel, M, of some Lo must be true of Lo as well.  Moreover, M can
always be collapsed to intro a transitive, N, by Mostowski Collapse, and this will believe
it is some initial segment of Lo, L. Thus, by the Robustness of L, it must actually be one.

● Theorem 4: CH is true in L (i.e., ZFC |- (CH)L).

● Proof: Since |Lℵ1| = ℵ1, it suffices to show that P(ω) ⊆ Lℵ1, i.e., that if x ⊆ ω, then x ∈ Lα,
for some α < ℵ1. So, let x ∈ M ≼ Lβ, where M may have cardinality ℵ0, by the
(downward) Löwenheim–Skolem theorem.  Let N be the transitive collapse of M.  Then x,
being transitive, collapses to itself, and, by Condensation, N = Lα, for α < ℵ1, as |Lα| = |α|.

○ Note: The levels at which new subsets of ω emerge turns out to be bounded by ℵ1.

● Upshot: Con(ZFC) → Con(ZFC + CH).  Since ‘V=L’ can be expressed in the language
of set theory, we can even show: Con(ZFC) → Con(ZFC + V = L).  So, the hypothesis
that the universe of sets actually is Gödel’s Constructible Universe is consistent if ZFC is.

Assessment of V=L

● The Axiom of Constructibility is the statement that V=L.  By the above argument, it is
consistent with ZF, if ZF is consistent.  Moreover, it turns out to have sweeping
consequences for set theory, settling all manner of important, but independent, questions.
Indeed, setting aside ‘small’ large cardinal axioms, claims equivalent to those asserting
the existence of a model or a transitive model of theories, it is ‘empirically complete’.2
(Finding additional statements independent of ZF + V=L would require finding a new
method of independence proof besides the one to which we turn presently, forcing.)

● Examples: V=L implies not only CH, but GCH, which actually implies AC (we already
saw that AC was true in L), the Diamond Principle, the negation of the Souslin
Hypothesis, the non-existence of 0#, the non-existence of a Measurable Cardinal,
Whitehead’s conjecture, and V = HOD (or that there is a definable well-ordering on V).

○ Jensen: “I personally find  [V=L] a very attractive axiom.”  [1995, 398].

2 But see Friedman [1981].
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○ Devlin: “[V=L] is...a natural axiom, closely bound up with what we mean by
"set”....[and] tends to decide problems in the ‘correct’ direction [1977, 4].”

○ Eskew: “The axiom V=L...settles ‘nearly all’ mathematical questions....[I]t can be
motivated by constructivist views that are still widely held today....[A] wealth of
powerful combinatorial principles...follow from...V=L .....[So] why hasn’t there
been...a stronger push to adopt it as a[n]...axiom for mathematics [2019]?”

● Unfortunately, most set theorists do not find V=L’s consequences to be attractive!

○ Friedman: “[S]et theorists say that V = L has implausible consequences… [They]
claim to have a direct intuition which allows them to view these as so implausible
that this provides ‘evidence’ against V = L. However, mathematicians [like me]
disclaim such direct intuition about complicated sets of reals. Many say they have
no direct intuition about all multivariate functions from N into N [2000]!”

○ Woodin: “Godel’s Axiom of Constructibility, V = L, provides a conception of the
Universe of Sets which is perfectly concise modulo only large cardinal axioms
which are strong axioms of infinity. However the axiom V = L limits the large
cardinal axioms which can hold and so the axiom is false [2010, 1, emphasis in
original].”

● Any debate over V=L would be moot if it were not just consistent with ZF(C), but a
theorem.  But, as we show presently, that is not the case either, thanks to Cohen [1966].
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