Nonstandard Models

- First-order theories (without finite models) have unintended, non-isomorphic, models. Some are of a different cardinality than the intended model. Others are merely of a different order-type. Either way, the fact that nothing that we can say (in a first-order language) pins down the subject of our mathematical theories (even up to isomorphism) raises questions about the determinacy of basic terms, like ‘uncountable’ and ‘finite’.

Completeness Theorem

- Let us fix on some standard (classical) first-order proof relation, ⊢, and let |= be the standard Tarkian consequence relation (for first-order languages). Then we have:

 - **Soundness Theorem**: If Γ is a set of sentences, and δ is a sentence, then (Γ ⊢ δ) → (Γ |= δ).

 - **Completeness Theorem**: If Γ is a set of sentences, and δ is a sentence, then (Γ |= δ) → (Γ ⊢ δ).

- The proof of Soundness is straightforward. One verifies that each instance of the axiom schemas is valid (i.e., true in all models), and that the inference rule(s) preserve validity.

 - **Note**: Proof of Soundness also amounts to a proof of the consistency of the proof system. If it were inconsistent, then, by Soundness, we would have Ø |= δ and Ø |= ~δ. But, by the definition of |=, ~δ is true in all models if/ if δ is true in none.

- The proof of Completeness is more subtle. The first point is that Completeness means that if Con(Γ & ~δ) then ∃ M |= (Γ & ~δ). (Γ ⊢ δ) means that ~Con(Γ & ~δ) and (Γ |= δ) means that there is no model of (Γ & ~δ). So, if Con(Γ & ~δ), then there is a model of (Γ & ~δ). Thus, to prove Completeness it suffices to prove: Con(Σ) → ∃ M |= δ, for δ ∈ Σ.

 - **Note**: The proof of Completeness will actually show more than this. It will show that if Σ is consistent, then Σ has a countable model. This will generate a puzzle.

- Let us begin with a consistent theory, Σ. Add countably-many constants to the language, c₁, c₂,...,cₙ, and amend the formal system’s properties correspondingly. The constants are called witnesses. Clearly, Σ in the supplemented language, call it Σ⁺, remains consistent.
Note: For simplicity, we assume that the language has only one binary predicate, \(P \). But the technique described generalizes to any predicates of arbitrary arity.

Next, let us enumerate the formulas in the enriched language with some free variable, \(x \), \(\varphi_1(x), \varphi_2(x), \ldots, \varphi_n(x), \ldots \), and define \(\Phi_n \) to be the formula, \([(\exists x)\varphi_n(x) \rightarrow \varphi(c_{n^*})] \). The constant \(c_{n^*} \) is the first constant from our enumeration that fails to occur inside any prior \(\varphi \) or \(\Phi \).

We now want to add each \(\Phi_n \) to our theory, \(\Sigma \). The idea is to make sure that whenever our theory proves that there is an \(x \) such that \(\varphi \), it proves this of some \(c \). So, we define:

- \(\Sigma^0 = \Sigma \)
- \(\Sigma^{n+1} = \Sigma^n \cup \{ \Phi_n \} \) (i.e., \(\Sigma^n \cup \{ [(\exists x)\varphi_n(x) \rightarrow \varphi_n(c_{n^*})] \} \))
- \(\Sigma^* = \bigcup \Sigma^n \)

It is clear that each \(\Sigma^n \) is consistent since each new witness acts like a free variable. But any proof is finite, contained in some \(\Sigma^n \). So, if each \(\Sigma^n \) is consistent, then \(\Sigma^* \) must be too.

Lindenbaum’s Lemma: Every consistent theory has a complete and consistent extension in the same language. We proceed as in the propositional case. Let \(\varphi_1, \varphi_2, \ldots, \varphi_n, \ldots \) be an enumeration of all of the sentences in the language of consistent theory, \(\Sigma^\infty \). Then define:

- \(\Sigma_0 = \Sigma^\infty \)
- \(\Sigma_{n+1} = \Sigma_n \cup \{ \varphi_n \} \), if this is consistent, and let \(\Sigma_{n+1} = \Sigma_n \) if not.
- \(\Sigma^* = \bigcup \Sigma_n \) (\(n \in \mathbb{N} \))

Then \(\Sigma^* \) is a complete consistent extension of \(\Sigma^\infty \) (in \(\Sigma^\infty \)'s language) with the features:

- \(\Sigma^* \vdash \delta \) or \(\Sigma^* \vdash \neg \delta \) (because \(\Sigma^* \) is complete)
- \(\Sigma^* \vdash \neg \delta \) if \(f/\Sigma^* \vdash \delta \) (because \(\Sigma^* \) is also consistent)
- \(\Sigma^* \vdash (\delta \& \alpha) \) if \(f/\Sigma^* \vdash \delta \) and \(\Sigma^* \vdash \alpha \)
- \(\Sigma^* \vdash (\exists x)\varphi_n(x) \) if \(f/\Sigma^* \vdash \varphi_n(c_{n^*}) \)

We can now define a model, \(M = \langle U, R \rangle \), of \(\Sigma^* \) by conflating names and their referents.

- \(U = \{ c_1, c_2, \ldots, c_{n^*}, \ldots \} \)

Note: Technically, we identify the elements of \(U \) with equivalence classes. \(c_j \sim c_k \lrarr T \vdash c_j = c_k \). Thus, \([c_j] \) is the class of \(c_k \)'s, \([c_j] = \{ c_k : T \vdash c_j = c_k \} \).
- \(R = \{<c_j, c_k>\} \) such that \(\Sigma^* \vdash P(c_j, c_k) \)

- As \(\Sigma \subseteq \Sigma^* \), \(M \models \delta \), for \(\delta \in \Sigma \), this completes the proof.

Löwenheim–Skolem Theorem

- So, if \(\Sigma \) is a (syntactically) consistent set of sentences, then it has a **countable** model. This might strike you as perplexing. What if the \(\Sigma \) is (first-order) ZF, which proves Cantor’s Theorem, along with the existence of (a set-theoretic surrogate of) \(\mathbb{N} \) and \(P(\mathbb{N}) \)?

 - **Cantor’s Theorem**: For any set, \(X \), there is no one-to-one correspondence between \(X \) and \(P(X) \).

 - **Proof**: Suppose, for **reductio**, that \(f: X \rightarrow P(X) \) is such a correspondence. Define a subset of \(X \), \(Y \in P(X) \), as follows: \(Y = \{x \in X : x \notin f(x)\} \). Now suppose that there is an \(x \) with \(f(x) = Y \). Then, if \(x \in Y \), \(x \notin f(x) = Y \), which is a contradiction. On the other hand, if \(x \notin Y = f(x) \), then \(x \in Y \), which is also a contradiction. Therefore, the assumption that \(f \) is a one-to-one correspondence between \(X \) and \(P(X) \) is false.

- The standard view is that Cantor’s Theorem shows that cardinality of the powerset of \(X \) is strictly greater than that of \(X \). Hence, the cardinality of the powerset of \(\mathbb{N} \) is **uncountable**.

 - **Skolem**: “By virtue of the [Zermelo] axioms we can prove the existence of higher [uncountable] cardinalities….How can it be, then, that the entire domain…can already be enumerated by means of the finite positive integers [1922, 295]?”

 - **Note**: The standard view is not beyond question. Dummett maintains that “The argument does not show that \([P(\mathbb{N})]\) form[s] a non-denumerable totality unless we assume…that \([P(\mathbb{N})]\) form[s] a **determinate totality** comprising all that we shall ever recognize as a real number: the alternative is to regard the concept of real number as an **indefinitely extensible** one [1993, 27].” This interpretation, however, is objectionably psychologistic. The claim appears to be that we form a ‘definite conception’ of subsets of \(X \) by pairing them with members of \(X \). Then we use that pairing – i.e., that conception – to literally **create** a new subset of \(X \).

- The incongruence of the **Completeness Theorem** and Cantor’s Theorem can be extended.
Löwenheim-Skolem Theorem: If a set of sentences, Σ (in a countable language) has a model (where ‘$=$’ means identity), it has a model of any infinite cardinality.

- The ‘downwards’ implication of this can be refined using Mostowski Collapse:

 Transitive Submodel Theorem: If N is a transitive model of infinite cardinality κ, and $\lambda < \kappa$, then there is a transitive submodel of N, M, such that the cardinality of $\text{dom}(M)$ is λ, and, for any δ, $N \models \delta$ if and only if $M \models \delta$.

- A model, M, is transitive when $x \in \text{dom}(M) \rightarrow x \subseteq \text{dom}(M)$, and a submodel of N when $\text{dom}(M) \subseteq \text{dom}(N)$ and M and N agree on their interpretation of constants, predicates, and function symbols.

 Note: The assumption that there is a transitive model of Σ is stronger than the assumption that there is just a model of Σ!

- Skolem’s ‘paradox’ relies on the assumption of (classical) first-order logic. If we help ourselves to second-order ZF and its standard (non-Henkin) semantics, then the discrepancies above evaporate. But if the theorems are taken to preclude explaining the determinacy of ‘uncountable’, then nothing is gained by resorting to second-order logic. The problem just becomes to explain the determinacy of the second-order quantifiers.

Compactness Theorem

- Theories may have ‘untended’ models of the intended cardinality as well. (Indeed, ZF is not κ-categorical, it is not the case that all models of ZF of cardinality κ are isomorphic.)

 Compactness Theorem: If every finite subset of Σ has a model, then Σ does too.

 Proof: If $\sim \text{Con}(\Sigma)$, then there is a formula, δ, such that $\Sigma \vdash (\delta \& \sim \delta)$, i.e., some $n \in \mathbb{N}$, and a sequence of formulae, $\theta_1, \theta_2, \ldots, \theta_n$, such that θ_n is $(\delta \& \sim \delta)$, and each θ_i is a logical axiom, an element of Σ, or such that θ_i follows from previous θs by a rule of inference. As this list is finite, the number of formulas in it that are also members of Σ is. So, $\sim \text{Con}(\Sigma) \rightarrow \sim \text{Con}(\Sigma_{\text{Fin}})$, for some finite subset of Σ, Σ_{Fin}. Equivalently, if $\text{Con}(\Sigma_{\text{Fin}})$, for every finite subset of Σ, Σ_{Fin}, then $\text{Con}(\Sigma)$. Now suppose that every finite subset of Σ, Σ_{Fin}, has a model. Then, by Soundness, every Σ_{Fin} is consistent. As this implies that $\text{Con}(\Sigma)$, $\exists M \models \Sigma$, by Completeness.

Illustration: Consider the following theory in language $\mathcal{L} = \{<\}$.

• (i) \((\forall x)(\neg (x < x))\)
• (ii) \((\forall x)(\forall y)(\neg ((x < y) \land (y < x)))\)
• (iii) \((\forall x)(\forall y)(\forall z)([(x < y) \land (y < x)] \rightarrow (x < z))\)
• (iv) \((\forall x)(\forall y)(x < y) \lor (y < x) \lor (x = z))\)
• (v) \((\exists x)(\forall y)(\neg (y < x))\)
• (vi) \((\forall x)(\exists y)(x < y) \land (\forall z)(\neg (x < z) \land (z < y))\)
• (vii) \((\forall x)((\exists y)(y < x) \rightarrow (\exists z)(z < x) \land (\forall w)(\neg (w < x) \land (z < w))))\)

• It turns out that sentences, (i) – (vii), completely axiomatize the structure, \(\mathcal{N} = (\mathbb{N}, <)\). For any sentence, \(\delta\), and any model of the sentences, (i) – (vii), \(M, \mathcal{N} |= \delta\) just in case \(M |= \delta\). It follows that the sentences, (i) – (vii), prove \(\delta\) just in case \(\mathcal{N}\) itself is a model of \(\delta\).

 ○ Note: \(\mathcal{N} = (\mathbb{N}, <)\) is not the structure \((\mathbb{N}, <, +, \ast)\), which cannot be axiomatized! But the structure \((\mathbb{N}, <, +)\) can be, as can the real and complex number fields.

• Despite being complete, the sentences (i) – (vii) are not categorical. That is, it is not the case that all models of (i) – (vii) are isomorphic. We can prove this using Compactness.

 ○ Recall: Categoricity is the most that we can hope for. Clearly, if \((\mathbb{N}, <)\) satisfy (i) – (vii), then so does \((\mathbb{N} - \{0\}, <)\), and so on for infinitely-many other structures.

• Argument: Expand the language \(\mathcal{L}\) to include a constant, \(c\). Call the result \(\mathcal{L}^*\). Now consider the sentences (i) – (vii) in tandem with the following infinite set from \(\mathcal{L}^*\).

 ○ \(\Psi_1: (\exists x_1)(x_1 < c)\)
 ○ \(\Psi_2: (\exists x_1)(\exists x_2)((x_1 < x_2) \land (x_2 < c))\)
 ○ ...
 ○ \(\Psi_n: (\exists x_1)(\exists x_2)...(\exists x_n)((x_1 < x_2) \land (x_2 < x_3)...\land (x_n < c))\)
 ○ ...

• Let us take \(\Sigma\) to consist of (i) – (vii) in addition to all \(\Psi_i\) above, and let \(\Sigma' \subseteq \Sigma\) to be any finite subset of \(\Sigma\). Then each \(\Sigma'\) has a model of the form \((\mathbb{N}, <, n \in \mathbb{N})\), where \(n\) is the largest \(n \in \mathbb{N}\) such that \(\Psi_n \in \Sigma'\). (i) – (vii) are all true in \((\mathbb{N}, <, n \in \mathbb{N})\) because they are true in \((\mathbb{N}, <)\), and \(\Psi_n\) is true in \((\mathbb{N}, <, k \in \mathbb{N})\) so long as \(n \leq k\) (where, again, 0 \(\in \mathbb{N}\)). So, by Compactness, (i) – (vii) plus all \(\Psi_i\) must have a model, \(M\), satisfying the same sentence in \(\mathcal{L}\) as \((\mathbb{N}, <)\). But \(M\) is not isomorphic to \((\mathbb{N}, <)\) because the domain of \(M\) contains an object (denoted by \(c\)) with infinitely-many predecessors, while \(\mathbb{N}\) does not.
Note: Although any such model must be complicated (by Tennenbaum's Theorem), a similar argument shows that there is a non-standard countable model of PA (in the language $\{<, +, *\}$). We will see later that such a model could satisfy $PA + \text{‘there is a Gödel number of a proof of a contradiction in } PA\text{’}$. Alternatively, it might be a model of the (non-recursively enumerable) theory, True Arithmetic, i.e., every truth in the language of $\{\mathbb{N}, <, +, *\}$. So, Completeness is not sufficient for categoricity (but categoricity suffices for completeness). Only (first-order) theories with finite models are categorical.

- Details: Any nonstandard model consists of an initial segment that is isomorphic to the standard model, with extra objects ‘tacked on the end’.

- Upshot: Finiteness is not (first-order) definable. If it were, then we could rule out all nonstandard models by conjoining to the axioms of PA the sentence, ‘for all x, x has finitely-many predecessors!"

- Clarification: ‘Finite’ is nevertheless absolute for (standard) transitive models, unlike ‘countable’.