
Nonstandard Models

● First-order theories (without finite models) have unintended, non-isomorphic, models.
Some are of a different cardinality than the intended model.  Others are merely of a
different order-type.  Either way, the fact that nothing that we can say (in a first-order
language) pins down the subject of our mathematical theories (even up to isomorphism)
raises questions about the determinacy of basic terms, like ‘uncountable’ and ‘finite’.

Completeness Theorem

● Let us fix on some standard (classical) first-order proof relation, ⊢, and let |= be the
standard Tarkian consequence relation (for first-order languages).  Then we have:

○ Soundness Theorem: If Γ is a set of sentences, and δ is a sentence, then (Γ ⊢ δ) →
(Γ |= δ).

○ Completeness Theorem: If Γ is a set of sentences, and δ is a sentence, then (Γ |=
δ) → (Γ ⊢ δ).

● The proof of Soundness is straightforward.  One verifies that each instance of the axiom
schemas is valid (i.e., true in all models), and that the inference rule(s) preserve validity.

○ Note: Proof of Soundness also amounts to a proof of the consistency of the proof
system.  If it were inconsistent, then, by Soundness, we would have Ø |= δ and Ø
|= ~δ.  But, by the definition of |=, ~δ is true in all models if/f δ is true in none.

● The proof of Completeness is more subtle.  The first point is that Completeness means
that if Con(Γ & ~δ) then ∃M |= (Γ & ~δ).   (Γ ⊢ δ) means that ~Con(Γ & ~δ) and (Γ |= δ)
means that there is no model of (Γ & ~δ).  So, if Con(Γ & ~δ), then there is a model of (Γ
& ~δ).  Thus, to prove Completeness it suffices to prove: Con(Σ) → ∃M |= δ, for δ ∈
Σ.

● Note: The proof of Completeness will actually show more than this.  It will show
that if Σ is consistent, then Σ has a countable model. This will generate a puzzle.

● Let us begin with a consistent theory, Σ.  Add countably-many constants to the language,
c1, c2,...cn, and amend the formal system’s properties correspondingly.  The constants are
called witnesses.  Clearly, Σ in the supplemented language, call it Σ+, remains consistent.
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○ Note: For simplicity, we assume that the language has only one binary predicate,
P.  But the technique described generalizes to any predicates of arbitrary arity.

● Next, let us enumerate the formulas in the enriched language with some free variable, x,
φ1(x), φ2(x)...φn(x)..., and define Φn to be the formula, [(∃x)φn(x) → φ(cn*)].  The
constant cn* is the first constant from our enumeration that fails to occur inside any prior
φ or Φ.

● We now want to add each Φn to our theory, Σ+.  The idea is to make sure that whenever
our theory proves that there is an x such that φ, it proves this of some c.  So, we define:

● Σ0 = Σ+

● Σn+1 = Σn∪{Φn}  (i.e., Σn∪ {[(∃x)φn(x) → φn(cn*)]})
● Σ∞ = ⋃Σn

● It is clear that each Σn is consistent since each new witness acts like a free variable.  But
any proof is finite, contained in some Σn.  So, if each Σn is consistent, then Σ∞ must be too.

● Lindenbaum’s Lemma: Every consistent theory has a complete and consistent extension in
the same language.  We proceed as in the propositional case.  Let φ1, φ2...φn… be an
enumeration of all of the sentences in the language of consistent theory, Σ∞.  Then define:

○ Σ0 = Σ∞

○ Σn+1 = Σn∪ {φn}, if this is consistent, and let Σn+1 = Σn if not.
○ Σ* = ⋃Σn (n ∈ ℕ)

Then Σ* is a complete consistent extension of Σ∞ (in Σ∞’s language) with the features:

○ Σ* ⊢ δ or Σ* ⊢ ~δ (because Σ* is complete)
○ Σ* ⊢ ~δ if/f Σ* ⊬ δ (because Σ* is also consistent)
○ Σ* ⊢ (δ & α) if/f Σ* ⊢ δ and Σ* ⊢ α
○ Σ* ⊢ (∃x)φn(x) if/f Σ* ⊢ φn(cn*)

● We can now define a model, M = <U, R>, of Σ* by conflating names and their referents.

○ U = {c1, c2,...cn,...}

■ Note: Technically, we identify the elements of U with equivalence classes.
cj ~ ck ←→ T ⊢ cj = ck.  Thus, [cj] is the class of cks, [cj] = {ck : T ⊢ cj = ck}.
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○ R = {<cj, ck>} such that Σ* ⊢ P(cj, ck)

● As Σ ⊆ Σ*, M |= δ, for δ ∈ Σ, this completes the proof.

Löwenheim–Skolem Theorem

● So, if Σ is a (syntactically) consistent set of sentences, then it has a countable model.
This might strike you as perplexing.  What if the Σ is (first-order) ZF, which proves
Cantor’s Theorem, along with the existence of (a set-theoretic surrogate of) ℕ and P(ℕ)?

○ Cantor’s Theorem: For any set, X, there is no one-to-one correspondence between
X and P(X).

○ Proof: Suppose, for reductio, that f: X → P(X) is such a correspondence.  Define a
subset of X, Y∈ P(X), as follows. Y = {x∈ X : x ∉ f(x)}.  Now suppose that
there is an x with f(x) = Y.  Then, if x∈ Y, x ∉ f(x) = Y, which is a contradiction.
On the other hand, if x ∉ Y = f(x), then x∈ Y, which is also a contradiction.
Therefore, the assumption that f is a one-to-one correspondence between X and
P(X) is false.

● The standard view is that Cantor’s Theorem shows that cardinality of the powerset of X is
strictly greater than that of X.  Hence, the cardinality of the powerset of ℕ is uncountable.

○ Skolem: “By virtue of the [Zermelo] axioms we can prove the existence of higher
[uncountable] cardinalities….How can it be, then, that the entire domain…can
already be enumerated by means of the finite positive integers [1922, 295]?”

○ Note: The standard view is not beyond question.  Dummett maintains that “The
argument does not show that [P(ℕ)] form[s] a non-denumerable totality unless we
assume…that [P(ℕ)] form[s] a determinate totality comprising all that we shall
ever recognize as a real number: the alternative is to regard the concept of real
number as an indefinitely extensible one [1993, 27].” This interpretation,
however, is objectionably psychologistic.  The claim appears to be that we form a
‘definite conception’ of subsets of X by pairing them with members of X.  Then
we use that pairing – i.e., that conception – to literally create a new subset of X.

● The incongruence of the Completeness Theorem and Cantor’s Theorem can be extended.
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○ Löwenheim-Skolem Theorem: If a set of sentences, Σ (in a countable language)
has a model (where ‘=’ means identity), it has a model of any infinite cardinality.

● The ‘downwards’ implication of this can be refined using Mostowski Collapse:

■ Transitive Submodel Theorem: If N is a transitive model of infinite
cardinality κ, and λ < κ, then there is at transitive submodel of N, M, such
that the cardinality of dom(M) is λ, and, for any δ, N |= δ if/f M |= δ.

● A model, M, is transitive when x ∈ dom(M) → x ⊆ dom(M), and
a submodel of N when dom(M) ⊆ dom(N) and M and N agree on
their interpretation of constants, predicates, and function symbols.

○ Note: The assumption that there is a transitive model of Σ is
stronger than the assumption that there is just a model of Σ!

● Skolem’s ‘paradox’ relies on the assumption of (classical) first-order logic.  If we help
ourselves to second-order ZF and its standard (non-Henkin) semantics, then the
discrepancies above evaporate.  But if the theorems are taken to preclude explaining the
determinacy of ‘uncountable’, then nothing is gained by resorting to second-order logic.
The problem just becomes to explain the determinacy of the second-order quantifiers.

Compactness Theorem

● Theories may have ‘untended’ models of the intended cardinality as well.  (Indeed, ZF is
not κ-categorical, it is not the case that all models of ZF of cardinality κ are isomorphic.)

○ Compactness Theorem: If every finite subset of Σ has a model, then Σ does too.

○ Proof: If ~Con(Σ), then there is a formula, δ, such that Σ ⊢ (δ & ~δ), i.e., some n
∈ ℕ, and a sequence of formulae, θ1, θ2,...θn, such that θn is (δ & ~δ), and each θi

is a logical axiom, an element of Σ, or such that θi follows from previous θs by a
rule of inference.  As this list is finite, the number of formulas in it that are also
members of Σ is.  So, ~Con(Σ) → ~Con(ΣFin), for some finite subset of Σ, ΣFin.
Equivalently, if Con(ΣFin), for every finite subset of Σ, ΣFin, then Con(Σ).  Now
suppose that every finite subset of Σ, ΣFin, has a model.  Then, by Soundness,
every ΣFin is consistent.  As this implies that Con(Σ),∃M |= Σ, by Completeness.

● Illustration: Consider the following theory in language L = {<}.
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● (i) (∀x)~(x < x)
● (ii) (∀x)(∀y)(~[(x < y) & (y < x)])
● (iii) (∀x)(∀y)(∀z)([(x < y) & (y < x)] → (x < z))
● (iv) (∀x)(∀y)((x < y) v (y < x) v (x = z))
● (v) (∃x)(∀y)(~(y < x))
● (vi) (∀x)(∃y)[(x < y) & (∀z)(~(x < z) & (z < y))]
● (vii) (∀x)[(∃y)(y < x) → (∃z)[(z < x) & (∀w)~[(w < x) & (z < w)]])

● It turns out that sentences, (i) – (vii), completely axiomatize the structure, N = (ℕ, <).  For
any sentence, δ, and any model of the sentences, (i) – (vii), M, N |= δ just in case M |= δ.
It follows that the sentences, (i) – (vii), prove δ just in case N itself is a model of δ.

○ Note: N = (ℕ, <) is not the structure (ℕ, <, +, *), which cannot be axiomatized!
But the structure (ℕ, <, +) can be, as can the real and complex number fields.

● Despite being complete, the sentences (i) – (vii) are not categorical.  That is, it is not the
case that all models of (i) – (vii) are isomorphic. We can prove this using Compactness.

○ Recall: Categoricity is the most that we can hope for.  Clearly, if (ℕ, <) satisfy (i)
– (vii), then so does (ℕ - {0}, <), and so on for infinitely-many other structures.

● Argument: Expand the language L to include a constant, c.  Call the result L*.  Now
consider the sentences (i) – (vii) in tandem with the following infinite set from L*.

○ Ψ1 : (∃x1)(x1 < c)
○ Ψ2 : (∃x1)(∃x2)[(x1 < x2) & (x2 < c)]
○ …
○ Ψn : (∃x1)(∃x2)...(∃xn)[(x1 < x2) & (x2 < x3)...& (xn < c)]
○ …

● Let us take Σ to consist of (i) – (vii) in addition to all Ψi above, and let Σ’ ⊆ Σ to be any
finite subset of Σ.  Then each Σ’ has a model of the form (ℕ, <, n ∈ ℕ), where n is the
largest n ∈ ℕ such that Ψn∈ Σ’.  (i) – (vii) are all true in (ℕ, <, n ∈ ℕ) because they are
true in (ℕ, <), and Ψn is true in (ℕ, <, k ∈ ℕ) so long as n ≤ k (where, again, 0 ∈ ℕ).  So,
by Compactness, (i) – (vii) plus all Ψi must have a model, M, satisfying the same
sentence in L as (ℕ, <).  But M is not isomorphic to (ℕ, <) because the domain of M
contains an object (denoted by c) with infinitely-many predecessors, while ℕ does not.
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○ Note: Although any such model must be complicated (by Tennenbaum's
Theorem), a similar argument shows that there is a non-standard countable model
of PA (in the language {<, +, *}).  We will see later that such a model could
satisfy PA + ‘there is a Gödel number of a proof of a contradiction in PA’.
Alternatively, it might be a model of the (non-recursively enumerable) theory,
True Arithmetic, i.e., every truth in the language of {ℕ, <, +, *}.  So,
Completeness is not sufficient for categoricity (but categoricity suffices for
completeness).  Only (first-order) theories with finite models are categorical.

■ Details: Any nonstandard model consists of an initial segment that is
isomorphic to the standard model, with extra objects ‘tacked on the end’.

● Upshot: Finiteness is not (first-order) definable. If it were, then we
could rule out all nonstandard models by conjoining to the axioms
of PA the sentence, ‘for all x, x has finitely-many predecessors!

■ Clarification: ‘Finite’ is nevertheless absolute for
(standard) transitive models, unlike ‘countable’.
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