
Incompleteness Undecidability & Undefinability

● Here are some philosophical questions with mathematical answers:

○ (1) Is there a (recursive) algorithm for deciding whether an arbitrary sentence in
the language of first-order arithmetic is true?

○ (2) Is there an algorithm for deciding whether an arbitrary sentence in the
language of first-order arithmetic is a theorem of Peano or Robinson Arithmetic?

○ (3) Is there an algorithm for deciding whether an arbitrary sentence in the
language of first-order arithmetic is a theorem of pure (first-order) logic?

○ (4) Is there a complete (even if not recursive) recursively axiomatizable theory in
the language of first-order arithmetic?

○ (5) Is there a recursively axiomatizable sub-theory of Peano Arithmetic that
proves the consistency of Peano Arithmetic (even if it leaves other questions
undecided)?

○ (6) Is there a formula of arithmetic that defines arithmetic truth in the standard
model, N (even if it does not represent it)?

○ (7) Is the (non-recursively enumerable) set of truths in the language of first-order
arithmetic categorical?  If not, is it ω-categorical (i.e., categorical in models of
cardinality ω)?

● Questions (1) -- (7) turn out to be linked.  Their philosophical interest depends partly on
the following philosophical thesis, of which we will make frequent, but inessential, use.

○ Church-Turing Thesis:A function is (intuitively) computable if/f it is recursive.

■ Church: “[T]he notion of an effectively calculable function of positive
integers should be identified with that of recursive function (quoted in
Epstein & Carnielli, 223).”

○ Note: Since a function is recursive if/f it is Turing computable, the Church-Turing
Thesis also implies that a function is computable if/f it is Turing computable.

Robinson Arithmetic (Q)
● Q is the following finitely-axiomatized first-order theory.  It is of interest because it is

among the weakest theories for which recursiveness is equivalent to representability.  A
function is recursive just in case it is representable (in a sense to be explained) in Q.
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● (Q1) (∀x)(∀y)[(x’ = y’) → (x=y)]

○ If the successors of two numbers are equal, then the numbers are equal.

● (Q2) (∀x)~[0 = x’]

○ Zero is not the successor of any number.

● (Q3) (∀x)[(~[x = 0]) → ((∃y)(x=y’)]

○ Every number other than zero is the successor of a number.

○ Note: (Q1) and (Q2) already imply that Q has only infinite models.

● (Q4) (∀x)[(x + 0) = x]

○ Any number plus zero is equal to that number.

● (Q5) (∀x)(∀y)[(x + y’) = (x + y)’]

○ The sum of a number and the successor of a number is equal to the
successor of the sum of the two numbers.

● (Q6) (∀x)[(x * 0) = 0]

○ Any number times zero is zero.

● (Q7) (∀x)(∀y)(x * y’) = [(x * y) + x]

○ The product of some number and the successor of a number is equal to the
product of the two numbers plus the first number.

● Note: We will write n to abbreviate the formal numeral 0’’’...’ (n primes)

Basic Arithmetic in Q
● Q is great with particulars.  It is Σ1-complete (i.e., Q can prove all true Σ1 sentences).

● Recall: A Σ 1 formula is of the form (∃1x)(∃2x)....(∃nx)∆0, where ∆0 is a formula with
only bounded quantifiers.  Similarly, a Π1 formula is of the form (∀1x)(∀2x)....(∀nx)∆0.
Hence, the negation of a Σ1 formula is Π1, while the negation of  a Π1 formula is Σ1.

● Note: A theory can be Σ 1-complete but not Σ1-sound! (That is, it could prove all true Σ1

sentences as well as some false Σ1 sentence.)  We will construct just such a theory when
we supplement Peano Arithmetic with the negation of its own consistency sentence.
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● Theorem 1: For all natural numbers, i and j:

○ (a) If i = j, then Q |-- i = j

○ (b) If i ≠ j, then Q |-- i ≠ j

● Theorem 2: For all natural numbers, i, j, and k, such that i + j = k:

○ (a) Q |-- (i + j) = k

○ (b) Q |-- (∀x) [((i + j) = x) → (x = k)]

● Theorem 2.1: For any natural numbers, i and j:

■ Q |-- (i + j) = (j + i)

● Theorem 3: For all natural numbers i, j, and k, such that i x j = k:

○ (a) Q |-- (i * j) = k

○ (b) Q |-- (∀x)[((i * j) = x) → x = k]

● Theorem 3.1: For all natural numbers i and j:

■ Q |-- (i * j) = (j * i)

○ Caveat: Just because Q proves that addition and multiplication are commutative
for its numerals (by Theorems 2.1 and 3.1), it does not follow that Q proves that
these operations are commutative for all natural numbers (i.e., universal
generalizations).  Indeed, we will see that Q proves neither of these general laws.

● Proof: Part (b) of Theorem 2 & 3 follow from logic (of identity), given the other
theorems.  The other theorems are each of the form α = β or α ≠ β, where α and β are
(perhaps complex) numerical terms.  If such a term, θ, refers to n in the standard
interpretation, N, then Q |-- θ = n.  Consequently, if i = j, and α = β says so on N, then
Q |-- α = β ←→ i = j, and Q |-- i = j, as i is the same numeral as j.  Likewise, if i ≠ j, and
α ≠ β says so on N, then, by the logic of identity, Q |-- i ≠ j, and again Q |-- α ≠ β.

● Note: These (meta)theorems suffice to significantly constrain models of Q.  That part of
any model which interprets Q’s numerals must look just like the standard model, N.

● Upshot: Any non-standard model of Q must look just like the standard model, N, but with
some additional elements “tacked onto the end” (and additional values for  ’, +, and *).
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Representability
● We have really been showing that addition and multiplication are representable in Q.

■ Caveat: The proof of this uses Induction, which Q itself does not have!

○ Definition 1: A total function f: N^n → N is representable in theory, T, if/f there is
a formula, Φ, in which x1, x2,...xn, xn+1 occur free, such that when q1, q2,...qn, k are
natural numbers with f(q1, q2,...qn) = k, we have:

■ (a) T |-- Φ(q1, q2,...qn, k)

■ (b) T |-- (∀x)[Φ((q1, q2,...qn, x) → (x = k)]

○ In this case, the formula, Φ, is said to represent function, f, in theory, T.

■ Note: Part (b) reflects the fact that f is a function, giving a unique output.

● Example:  By Theorem 2, (x1 + x2) = x3 represents the plus
function in Q, while, by Theorem 3, (x1 * x2) = x3 represents times.

● Example: The zero, successor, and projections functions --i.e., the
basic primitive recursive functions -- are representable in Q.

○ Theorem 4 (Representability Theorem): Every total recursive function is
representable in any theory, T, which extends Q (where T extends Q when Q⊆T).

■ Note: Q explicitly represents ’, + and *, but implicitly represents far more.

■ In fact, despite being so weak, Q is optimal, in the following sense:

○ Theorem 5: If T is any consistent theory with a recursive set of axioms, then every
total function representable in T is itself recursive.

■ Proof: Suppose that f: N^n → N is a total function represented in T by Φ.
Then ∀q1q2...qn, k ∈ N, T |-- Φ(q1q2...qn, k) if/f f(q1q2...qn) = k, and the
theorems of T are algorithmically enumerable.  This gives an algorithm for
computing f.  Given q1q2...qn,, wait for a theorem of the form Φ(q1q2...qn,
k).  (Since T is consistent, there will be exactly one of this form.)  By the
Church-Turing Thesis, f is therefore recursive.

○ Theorem 6 (Equivalence): A total function is representable in Q if/f it is recursive.

■ Proof: From Theorems 4 and 5 (assuming that Q is consistent).
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Godel Numbering
● A formula in the language of arithmetic is a finite string of symbols.  So, we can pair

those symbols, and strings of them, with natural numbers, called their Godel numbers.

● There are many ways to do this.  But the pairing must satisfy the following conditions.

○ (a) Different strings of symbols are assigned to different Godel numbers

○ (b) There is a (recursive) algorithm such that, given a natural number, it decides
whether the number codes a string of basic symbols, and, if it does, what string it
codes.

○ (c) There is a (recursive) algorithm such that, given a string of basic symbols, it
decides what the Godel number of that string is.

● Here is one pairing, β, that will do the trick:

Symbol:   (   )   &   v   →   ←→   ~   ∀   ∃ 0 ‘     +     *     =     xi

Number:  1  2   3   4    5       6       7    8  9 10   11   12   13   14    i+15

● This generates, corresponding to each string of symbols, α1α2α3α4…, a
string of Godel numbers, given by the above pairing, β(α1)β(α2)β(α3)...

● We can now assign the overall string α1α2α3α4… the Godel number:

○ (p1^β(α1))(p2^β(α2))(p3^β(α3))..., where p1p2p3...pk are the first k primes.

■ Note: This will generally be a very big number!  But, given it, we can
check after finitely-many steps that it is the Godel number of the string.

■ Note: We use here the Fundamental Theorem of Arithmetic, that every
natural number has a unique decomposition into powers of primes.

● If Ψ is a string of symbols, then we will write γ(Ψ) for the Godel number of Ψ.

● It remains to code arbitrary formal proofs, F.  If the following is such a proof,

○ Φ1

○ Φ2

○ Φ3
○ …

○ Φk
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then we can code it with the function, Γ(F)=(2^(γ(Φ1)))(3^(γ(Φ2)))...(pk^(γ(Φk))).

● Upshot: We can now describe facts about our theory, Q, in terms of Godel numbers.  For
instance, the second of our initial questions, (2), can now be phrased: is there an
algorithm for deciding whether a given number is the Godel number of a theorem of Q?

The Diagonal Lemma
● Theorem 6: If Φ is a formula in which at most x and y occur free, then for all natural

numbers n and k:

○ Φ(n, k), ∀y[Φ(n, y) → (y = k)] | -- ∀y[Φ(n, y) ←→ (y = k)]

■ Note: This is a theorem of first-order logic.

● Clarification: Variables like x and y are doing double-duty, as
meta-variables in our meta-language, and as variables in Q.

● Theorem 7: If f: N → N is a total function represented in theory, T, by formula, Φ, then,
for all natural numbers n and k, if f(n) = k,

○ T |-- ∀y[Φ(n, y) ←→ y = k]

○ Proof: Suppose that f(n) = k.  Then, by the Definition 1, we have that T proves
both of the antecedents of Theorem 6.

● Notation: If Φ is a formula with Godel number, n, then ⌜Φ⌝ is the term, n.

○ Note: ⌜Φ⌝ is not γ(Φ). γ(Φ) is a natural number, while ⌜Φ⌝ is the numeral in the
language of arithmetic which, in the standard interpretation, N, refers to γ(Φ).

○ Example: If Φ is the formula (∃x)[y = 0’’ * x], then, given our numbering, γ(Φ) =
(2^9)(3^16)(5^15)(7^14)(11^1)(13^10)(17^11)(19^11)(23^13)(29^16)(31^2).  On
the other hand, ⌜Φ⌝ is the term 0 followed by γ(Φ) occurrences of the symbol ’.

■ We can think of ⌜Φ⌝ as the name of Φ in the language of arithmetic, since,
given a Godel numbering, it is uniquely determined by Φ.

● Definition 2 (Diagonalization): If Φ is a formula in which at most some variable, x,
occurs free, then the diagonalization of Φ, written DΦ, is the (closed) sentence:

○ (∃x)(x = ⌜Φ⌝  & Φ)

■ Example: If Φ is (∃y)[x = (2 * y)] & ~(∃y)[(x = (4 * y)], and m is γ(Φ),
then DΦ is (∃x)(x = m & (∃y)[x = (2 * y)] & ~(∃y)[(x = (4 * y)]).
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● Note: If x is free in Φ, then the diagonalization of Φ “says” that
γ(Φ) has the property, Φ, and (∃x)(x = ⌜Φ⌝  & Φ) --||-- Φ(⌜Φ⌝).

■ Note: The diagonalization of a formula need not be true (under the
standard interpretation), though it might be (and is in Example above).

● Theorem 8: If Φ is a formula in which some variable, x, occurs free, and n is a natural
number:

○ |-- [(∃x)(x = n & Φ) ←→ Φ(n)]

○ Note: This is a logical truth.

● Theorem 9: If Φ is a formula in which at most some variable, x, occurs free:

○ |-- [DΦ ← → Φ(⌜Φ⌝)]

○ Proof: Immediate from Theorem 8.

● Theorem 10: There is a (primitive) recursive function, *, such that, for all strings α and β
of basic symbols, if m = γ(α) and n = γ(β), then m*n = γ(αβ).

● Theorem 11: There is a (primitive) recursive function, diag(x), with the following
property.  If n is the Godel number of a formula Φ in which at most some variable, x,
occurs free, then diag(n) is the Godel number of the diagonalization of Φ, DΦ.

Φ      →      (∃x)(x = ⌜Φ⌝  & Φ)

↓ ↓

has Godel                   has Godel
number n                    number m

n                →             m
diag

● Note: It is intuitively clear that the function, diag(x) is recursive since all we have
to do to calculate it is check if n is the Godel number of a formula, and, if it is,
add the code for “(∃x)(x = n &” in front and add the code for “)” in the back.

● Theorem 12 (Diagonal Lemma): If diag is representable in a theory, T, then, for each
formula, Φ, in which at most some variable, y, occurs free, there is a sentence, GΦ, such
that:
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○ T |-- [GΦ ←→ Φ(⌜GΦ⌝)]

■ Proof Sketch: Let Θ represent the function, diag, in theory T, with at most
x and y free.  Let ψ be a formula with at most y free, and take Ω to be the
formula (∃y)(Θ & ψ), where at most x may occur free.  Finally, identify
GΘ with the diagonalization of Ω, DΩ, to get T |-- [GΦ ←→ Φ(⌜GΦ⌝)].

● Example: If Φ is the formal analog of “is even”, then GΦ is a
sentence which is true just in case the Godel number of GΦ is even.

● Example: If Φ is the formal analog of “codes a sentence which is
provable”, then GΦ is a sentence which is true just in case the
Godel number of GΦ codes a sentence which is, indeed, provable.

■ Note: The Diagonal Lemma means that every predicate in T has a fixed
point -- roughly, a point where you get the same thing out that you put in.

● Upshot: Every theory extending Q has the capacity for self-reference.

Undecidable Theories
● Definition 3: A set, A, is representable in theory, T, if/f its characteristic function is

(where the characteristic function, fA, of set, A, is fA(n) = 1 when n∈A and 0 otherwise.)

● Theorem 13: Every recursive set is representable in any theory, T, which extends Q.

○ Proof: Immediate from the Representability Theorem.

● Theorem 14: If T is a theory extending Q, and A is a set of natural numbers which is
representable in T, then there is a formula, 𝛿A, in which at most x occurs free, such that,
for each natural number, n:

○ (a) If n∈A, then T |-- 𝛿A(n)

○ (b) If n∉A, then T |-- ~𝛿A(n)

○ Proof: Let ΦA represent the characteristic function, fA, of A in T.  Then ∀n,k∈N,
if fA(n) = k, T |--  ΦA(n, k), and T |-- ∀y[ΦA(n, y) → y=k].  Define 𝛿A(x) =
ΦA(x, 1).  If n∈A, then fA(n) = 1, so T |-- ΦA(n, 1) and, hence, T |-- 𝛿A(n).
Conversely, if n∉A, then fA(n) = 0, and, thus, T |--∀y[ΦA(n, y) → y=0].  But
since T extends Q, T |= 1 ≠ 0. Hence, by logic in T, T |-- ~ΦA(n, 1), and,
therefore, T |-- 𝛿A(n).

○ In fact, the other direction holds as well.
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● Theorem 15: If T extends Q, then the following conditions on a set, A, of natural numbers
are equivalent:

○ (a) The set, A, is representable in T.

○ (b) There is a formula, 𝛿A, in which at most some variable, x, occurs free, such
that, for each natural number, n, if n∈A, then T |-- 𝛿A(n), and, if n∉A, then T |--
~𝛿A(n).

● Theorem 16 (Undecidability of Extensions of Q): If T is a consistent theory extending Q,
then the set of Godel numbers of the theorems of T, GN(T), is not representable in T.

○ Proof: Assume for reductio that GN(T) is representable in T.  Then by Theorem
15, there is a formula, 𝛿(x), whose only free variable is x, such that, for any n∈N,

■ If n ∈ GN(T), then T |-- 𝛿(n)

■ If n ∉ GN(T), then T|-- ~𝛿(n)

○ Moreover, since GN(T) is the set of Godel numbers of theorems of T, for each Φ,

■ If T |-- Φ, then γ(Φ) ∈ GN(T)

■ If ~(T |-- Φ), then γ(Φ) ∉ GN(T)

○ Hence, if T |-- Φ, then T |--  𝛿(⌜Φ⌝), and if ~(T |-- Φ), then T |-- ~𝛿(⌜Φ⌝).  So,
applying the Diagonal Lemma to  ~𝛿, we are ensured a sentence, G~𝛿 such that:

■ T |-- (G~𝛿 ←→  ~𝛿(⌜G~𝛿⌝).

■ Note: The sentence ~𝛿(⌜G~𝛿⌝) “says” that G~𝛿 is not a theorem of T.

○ However, both the assumption that T |-- G~𝛿 and ~(T |-- G~𝛿) lead to contradiction.

■ Note: Theorem 16 allows that the set of theorems of T is representable in
extensions of T.  Moreover, the assumption that T is consistent is essential.

● Definition 4: True Arithmetic, TA, is the set of all sentences, S, such that N |= S.

● Theorem 17: The set of Godel numbers of sentences of True Arithmetic, GN(TA), is not a
recursive set.

○ Proof: Immediate from Theorem 16.
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● Theorem 18 (Church-Turing Theorem): The set of theorems of first-order logic is not
recursive.

○ Proof: If it were, then the set of theorems of Q would be too, contrary to Theorem
16.  For an arbitrary Φ, check whether AxQ → Φ is a theorem of first-order logic.

Undefinability of Truth
● Definition 5: A relation R(x 1x2,...,xk) of natural numbers is definable in the standard

model, N, if/f there is a formula ϕ(x1x2,...,xk) in the language of arithmetic such that for
every n1n2,...,nk, R( n1n2,...,nk) if and only if N |=  Φ(n1,...,nk).

● Theorem 19 (Godel-Tarski Theorem). The set of Godel numbers of sentences, S, true in N
(i.e., {S: N|= S}) is not definable in arithmetic.

○ Proof. A set is definable in N if/f it is representable in TA.  But TA consistently
extends Q.  Hence, again, this set is not representable in TA, by Theorem 16.

● Upshot: Extensions of Q can define typical syntactic properties, but not semantic ones.

Axiomatizability, Enumerability, and Completeness
● Definition 6: A theory, T, is (recursively) axiomatizable if/f there is a set, S, of axioms of

T (i.e., a set S⊆T such that, for every Φ∈T, S |-- Φ) where the set of Godel numbers of S
is recursive.

○ Note: There is a big difference between a theory’s having a recursive set of
axioms and its having a recursive set of theorems.  Q has a recursive -- indeed,
finite -- set of axioms, but we have seen that its set of theorems is not recursive.

● Definition 7: A set, A, of natural numbers is recursively enumerable if/f either A=∅ or
A={f(0), f(1), f(2)...} where f is a total recursive function.

○ Note: If a set is recursive, then it is recursively enumerable.

● Theorem 20: If T is a recursively axiomatized theory, then the set of Godel numbers of
theorems of T, GN(T), is recursively enumerable.

○ Proof: Since the set of theorems of T is not empty, call the Godel number of
(∀y)(y = y), n0.  Now, define a computable function, f, as follows.  Given n ∈ N,
first check whether n is the Godel number of a proof in T.  If not, let f(n) = n0.  If
so, we can compute from n what assumptions the proof relied on.  Moreover,
since the set of axioms of T is recursive, we can check whether each of these
assumptions is a member of that set.  If it is, let f(n) be the Godel number of the
last line of the proof, and if not, let f(n) = n0. Conversely, if Φ is a theorem, then
some number, Γ(F), codes its proof, F, in T, meaning f(Γ(F)) = γ(Φ), as desired.
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○ Upshot: Though being recursive implies being recursively enumerable, the
converse implication fails.  But there is one circumstance when it does not.

● Theorem 21: If T is an axiomatizable theory which is complete (i.e., T |-- Φ or T |-- ~Φ,
for all sentences), then the set of Godel numbers of theorems of T is recursive.

○ Proof: If T is inconsistent, it is trivially recursive. So, assume that T is consistent.
By Theorem 20, there is a recursive function which enumerates its theorems.  For
any sentence, Φ, simply wait for Φ or ~Φ to appear after a finite number of steps.

● Theorem 22 (Godel’s First Incompleteness Theorem): If T is a axiomatizable extension of
Q, then either T is incomplete or inconsistent.

○ Proof: By Theorem 21, if T were complete, then it would have a recursive set of
theorems, contradicting Theorem 16.

● Theorem 23: True Arithmetic is not axiomatizable.

○ Proof: Immediate from Theorem 22.

● Theorem 24: True Arithmetic is not recursively enumerable.

○ Proof: It is a complete and consistent extension of Q, so, if it were so enumerable,
then, by Theorem 21, its theorems would be recursive, contrary to Theorem 16.

Hilbert’s Program and Consistency
● Definition 7: Peano Arithmetic (PA) is Q conjoined with all instances of:

○ Induction Schema: ((Φ(0)) & ∀x[(Φ(x) → Φ(x’)]) → ∀Φ(x)

■ Note: Φ may also contain parameters.

● As an axiomatizable (albeit not finitely axiomatizable) extension of Q, Theorem 20
implies that PA is incomplete, if consistent.  But PA is much stronger than Q.

○ Although Q is good with particulars, it is bad with generalizations.  Simple
model-theoretic arguments show that it does not prove any of the following.

■ ∀x(x≠x’)
■ ∀x([(x + (y + z)] = [(x + y) +z])
■ ∀x∀y[(x + y) = (y + x)]
■ ∀x[(0 + x) = x]
■ ∀y∀z~[∃x((x’ + y) = z) & ∃x((x’ + z) = y]
■ ∀x∀y∀z[(x * (y * z)) = ((x * y) * z)]
■ ∀x∀y[(x * y) = (y * x)]
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■ ∀x∀y∀z[(x * (y + z)) = ((x * y) + (x * z)]

○ The problem is that Q has no way of saying that the things picked out by its
numerical terms are the only numbers.  This idea is regimented by Induction.
And, indeed, in PA, all of the above are provable using the Induction Schema.

■ Example: In order to construct a model of (Q1) -- (Q7) + ~∀x(x≠x’), add
an element, ω, and interpret the successor function as before but with s(ω)
= ω, interpret + as before but with n + ω = ω + n = ω, for all numbers, n
(including ω), and let n * ω = ω * n = ω when n ≠ 0, and 0 otherwise.

● Hence, while PA must be incomplete, it might still be hoped that PA, or, even better, a
“finitary” fragment of it, proves the consistency of PA.  This was Hilbert’s ambition.

● In order to make this precise, we must formalize the sentence “PA is consistent” in the
language of PA.  Since PA |-- 0 = 1 if/f PA is inconsistent, it suffices to formalize “PA
does not prove 0 = 1”.  The problem is that the set of (Godel numbers of) theorems of PA
is not representable in PA, by Theorem 16.  But there is a formula (actually, different
formulas), Prov(x), with only x free, which defines the relation of provability in PA.  So:

■ N |= Prov(⌜Φ⌝)     if and only if     PA |-- Φ

● With this predicate in hand, our question can now be phrased: whether there is an
axiomatizable theory, T, of which PA is an extension such that T |-- ~Prov(⌜0 = 1⌝).

○ Note: ~Prov(⌜0 = 1⌝) is commonly written Con(PA).

● Definition 8: If T extends Q, then the formula, Prov(x), of one free variable is a
provability predicate for T if/f, for all sentences and Ω and Ψ, the following hold:

○ (a) If T |-- Ω , then T |-- Prov(⌜Ω⌝)

■ If T proves Ω , then it is a theorem of T that T proves Ω.

○ (b) If T |-- Prov(⌜Ω → Ψ⌝) → [(Prov(⌜Ω⌝) → Prov(⌜Ψ⌝)]

■ It is a theorem of T that if the conditional Ω → Ψ, and its antecedent, Ω,
are both provable in T, then so is the consequent, Ψ.

○ (c) T |-- [Prov(⌜Ω⌝) → Prov(⌜Prov (⌜Ω⌝)⌝)]

■ It is a theorem of T that if Ω is provable in T, then the fact that Ω is
provable in T is itself provable in T.

● Note: This condition can be questioned.
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● Theorem 25 (Lob’s Theorem): If T extends Q, and Prov(x) is a provability predicate for T,
then, for each sentence, Ψ, T |-- Ψ if and only if T|-- Prov(⌜Ψ⌝) → Ψ.

○ Proof: Evidently, if T |-- Ψ, then T |-- [Prov(Ψ) → Ψ].  So, let us suppose that T |--
Prov(⌜Ψ⌝) → Ψ.  Since T extends Q, diag(x) is representable in T, so letting 𝛿(x)
= [Prov(⌜Ψ⌝) → Ψ] with only x free, we get that T |-- (G𝛿 ←→  [Prov(⌜G𝛿⌝) →
Ψ]).  A calculation using properties (a) and (b) and logic in T then yields that T |--
[Prov(⌜G𝛿⌝) → Prov(⌜(Prov(⌜G𝛿⌝)⌝)] → Prov(⌜Ψ⌝), and by property (c) of
Prov(x) we know that the antecedent of this conditional must be true, giving (by
logic in T) that T |-- (Prov(⌜G𝛿⌝) → Prov(⌜Ψ⌝). And since we are assuming that
T |-- Prov(⌜Ψ⌝) → Ψ, we have (by logic in T) that T |-- (Prov(⌜G𝛿⌝) → Ψ.
Finally, since T |-- [G𝛿 ←→ (Prov(⌜G𝛿⌝) → Ψ)], we must have that T |-- G𝛿.  So,
by (a), T |-- Prov(⌜G𝛿⌝), and, using modus ponens in T, T |-- Ψ, as desired.

○ Upshot: If T proves “if T proves something, it is true”, then T already proves it!

● Theorem 26 (Godel’s Second Incompleteness Theorem): If T is a consistent extension of
Q, and Prov(x) is a provability predicate for T, then ~(T |-- ~Prov(⌜0 = 1⌝)).

○ Proof: Let T be a consistent extension of Q and Prov(x) a provability predicate for
it.  Suppose T |-- ~Prov(⌜0 = 1⌝).  By logic in T, T |-- (Prov(⌜0 = 1⌝) → 0 = 1).
So, by Lob’s Theorem, T |-- 0 = 1, contrary to the assumption that T is consistent.

○ Note: One can always choose ~Prov(x) to be a Π1 predicate, making ~Prov(⌜0 =
1⌝) a sentence of Goldbach Type.  Once chosen we have a concrete example of a
sentence that is not provable in PA, despite its being much more powerful than Q.

Nonstandard Models
● Definition 9: A theory is categorical when all its models are isomorphic, and

κ-categorical when all its models of cardinality κ are isomorphic.

● Theorem 27: True Arithmetic is not ω-categorical.

○ Proof: Add a name, c, to the language of arithmetic, and define the following set,
C, of formulas: {x ≠ n : n is any numeral in the (non-augmented) language of
arithmetic}.  Since every finite subset of the union of True Arithmetic (TA) and C
is satisfiable, TA u C is too, and in a countable model, by the Compactness and
Lowenheim-Skolem Theorems.  But no such model can be isomorphic to N.

■ Example: The theory PA + ~Con(PA), which is consistent by Godel’s
Second Incompleteness Theorem, has ω-models with a non-standard
number, greater than the finite numbers, which witnesses a proof of 0 = 1.
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● Note: This means that, even if it were granted that there is a
perfectly determinate body of arithmetic truths, it does not follow
that they pick out a determinate model (even up to isomorphism).

Questions Revisited
● We are now in a position to answer all of the questions with which we began.

○ (1) There no algorithm for deciding whether a given sentence in the language of
first-order arithmetic is true, by Theorem 17.

○ (2) There no algorithm for deciding whether a given sentence in the language of
first-order arithmetic is a theorem of of Robinson Arithmetic, by the
Undecidability of Extensions of Q.

○ (3) There is no algorithm for determining whether a given sentence in the
language of first-order arithmetic is a theorem of pure (first-order) logic, by the
Church-Turing Theorem.

○ (4) There is no complete axiomatizable arithmetic theory in the language of
first-order arithmetic, by Godel’s First Incompleteness Theorem.

○ (5) There is no axiomatizable theory of which Peano Arithmetic is an extension
that proves the consistency of Peano Arithmetic, by Godel’s Second
Incompleteness Theorem.

■ Godel: “For all formal systems for which the existence of undecidable
arithmetical propositions was [demonstrated], the assertion of the
consistency of the system in question itself belongs to the propositions
undecidable in that system…..For a system in which all finitary...forms of
proof are formalized, a finitary consistency proof, such as the formalists
seek, would thus be...impossible (quoted in Epstein & Carnielli, 214).”

○ (6) There is no formula in the language of first-order arithmetic that defines
arithmetic truth in the standard model, by the Godel-Tarski Theorem.

○ (7) The (non-recurisvely enumerable) set of truths in the language of first-order
arithmetic, True Arithmetic, is not categorical or ω-categorical, by Theorem 27.
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