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Chapter 1

A Review of Classical Physics

Classical physics dominated physics up to the year of 1900. Quantum me-
chanics, developed during the first 30 years of the twentieth century, became
the most successful and most useful theory of physics. Despite of the im-
portance of quantum mechanics to the understanding of the microscopic
world, classical physics is still the basics of our understanding of the macro-
scopic world. Furthermore, to make an intuitive understanding of quantum
mechanics, concepts in classical physics are still essential.

1.1 Classical Mechanics

The publication of Mathematical Principle of Natural Philosophy by Isaac
Newton in 1686 marked the beginning of modern science. In this monu-
mental monograph, among other items, Newton formulated the three laws
of mechanics and the law of universal gravity, then explained the Kepler’s
laws of the motions of planets and moons in the solar system. For several
hundreds of years, Newton’s mechanics was synonymous to physical science.
According to Albert Einstein,

In accordance with Newton’s system, physical reality is char-
acterized by concepts of space, time, the material points and
force (interaction between material points). Physical events are
to be thought of as movements according to the law of material
points in space. The material point is the only representative of
reality so far as it is subject to change. The concept of material
points is obviously due to observable bodies; one conceived of
the material point in the analogy of movable bodies by omitting
characteristics of extension, form, spatial locality, and all their
‘inner’ qualities., retaining only inertia, translation, and addi-
tional concept of force. ... . All happening was to be conceived
of as purely mechanical, that is, merely as motions of material
points according to the Newton’s laws of motion.

1.1.1 Newton’s second law of mechanics

The core of classical mechanics is Newton’s second law. A material point is
characterized by an intrinsic value of mass m, a measure of its inertia. At
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Fig. 1.1. Newton’s Prin-

cipia. In 1686, Isaac New-

ton published his monumen-

tal monograph, Mathematical

Principles of Natural Philoso-

phy. He defined three laws of

mechanics, the law of gravita-

tion, and explained the motion

of planets and satellites of the

planets among a large number

of other subjects. Newton de-

scribed the material world as

composes of material points,

each has a well-defined geomet-

rical location and well-defined

speed at any given time.

any well-defined time instant t, a material point has a well-defined position,
represented a vector r = (x, y, z) in three-dimensional space, and a well-
defined velocity v as the time derivative of r ,

v =
dr

dt
. (1.1)

And there is a force F acting on that material point. Newton’s second law
states that at any time, the rate of change of its velocity is proportional to
the force acting on it and inversely proportional to its mass:

F = m
dv

dt
. (1.2)

According to Newton’s laws, the physical world is deterministic: At any
time, of the positions and the velocities of the material points and the laws
of force are known, the system will evolve precisely according to the second
law of mechanics, Eq. 1.2.

By defining a momentum as the product of the mass and the velocity of
the material point,

p = mv, (1.3)

Newton’s second law can be written in a more compact form,

F =
dp

dt
. (1.4)

Because mass m is an invariable property of a material point, the validity
of Eq. 1.4 is obvious.
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1.1.2 Conservative Systems and the Energy Integral

In all the problems we treat in this book, the force can be expressed as a
gradient of a scalar function of the coordinates, the potential V (r),

F = −∇V (r). (1.5)

A necessary and sufficient condition for a conservative system is that the
curl of force field is zero,

∇× F = 0. (1.6)

Newton’s second law is then

dp

dt
+∇V (r) = 0. (1.7)

By multiplying both sides of Eq. 1.7 with dr, and integrate from r1 to
r2, notice that

dr =
dr

dt
dt =

1

m
p dt, (1.8)

we have ∫ r2

r1

[
1

m
p
dp

dt
dt+ dV (r)

]
=

[
1

2m
p2 + V (r)

]r2
r1

. (1.9)

The following identity is obtained:[
1

2m
p2 + V (r)

]
r=r1

=

[
1

2m
p2 + V (r)

]
r=r2

. (1.10)

The expression in the square bracket is independent of position and time.
It is the total energy E of the system, which is a constant, only depends on
the initial condition:

p2

2m
+ V (r) = E. (1.11)

The first term is called the kinetic energy of the system,

T =
p2

2m
. (1.12)

Equation 1.11 can be written in a conceptually simpler form, such that the
total energy is the sum of kinetic energy and potential energy,

T + V = E. (1.13)

In the following subsections, we will discuss two cases in detail, both are
related to the understanding of quantum mechanics.
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1.1.3 The pendulum

The pendulum, shown in Fig. 1.2, is a classical prototype of the harmonic
oscillator in quantum mechanics. A material particle with mass m is hung
with a flexible string of length L. A gravitational force mg is acting on the
particle. A component of the gravitational force F drives the particle to
its equilibrium position b. Based on elementary geometry, the component
force F can be estimated as follows. The triangle marked light green is
similar to the triangle marked yellow. The sides are proportional:

F

mg
= − x

L
. (1.14)

The negative sign means that the direction of F and x are opposite. If dis-

placement x is much smaller than length L, the arc b̂c is practically identical
to the horizontal line x. To resolve this problem according to Newton’s law,
we apply the energy integral, Eq. 1.11 in the previous subsection. The
potential energy function, by definition, is

V (x) = −
∫ x

0

F dx =

∫ x

0

mg

L
xdx =

mg

2L
x2. (1.15)

The momentum is a scalar,

p = m
dx

dt
. (1.16)

There, the energy integral is

p2

2m
+
mg

2L
x2 = E. (1.17)

Fig. 1.2. The pendulum. In 1602,

by watching the motion of a chandelier

hanging in a cathedral, Galileo Galilee

started to study the motions of pen-

dulum. He discovered that the pen-

dulum has a constant period, inde-

pendent of the amplitude and the an-

gle. The period only depends on the

length L of the string, but indepen-

dent of the weight m. In 1657, Christi-

aan Huygens invented a mechanism to

sustain the vibration of the pendulum.

The mechanical clock was born. It re-

mained to be the most accurate clock

up to early twentieth century.
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Using Eq. 1.16, it can be written in a convenient form(
dx

dt

)2

+
g

L
x2 =

2

m
E. (1.18)

When the particle moves to the extreme positions, x = a or x = −a, the
kinetic energy is zero. The potential energy equals the total energy. Using
the amplitude parameter a, Eq. 1.18 can be written as(

dx

dt

)2

=
g

L

(
a2 − x2

)
. (1.19)

By taking a square root, the equation becomes directly integrable:∫
dx√
a2 − x2

=

√
g

L

∫
dt. (1.20)

Defining an angular frequency

ω ≡
√
g

L
, (1.21)

the integration gives

arcsin
x

a
= ωt+ φ, (1.22)

where the constant of integration φ is a phase angle. In other words,

x = a sin(ωt+ φ). (1.23)

The pendulum makes a simple harmonic oscillation. Because the period
of a sine function is 2π, the period of the pendulum is

τ =
2π

ω
= 2π

√
L

g
, (1.24)

and the frequency is

f =
ω

2π
=

1

2π

√
g

L
. (1.25)

Using angular frequency as a parameter, the energy integral, Eq. 1.17, can
be written in a more general form,

T + V =
1

2m
p2 +

m

2
ω2x2 = E. (1.26)

Figure 1.3 shows the simple harmonic oscillation of a pendulum, and
the process of energy conversion. At t = 0, the material particle is at its
right-most position, x = a, The potential energy is at its maximum, equals



6 A Review of Classical Physics

Fig. 1.3. Energy conversion of a simple harmonic oscillator. At time 0, the
pendulum is at one of its extreme positions. the potential energy is at a maximum, and
the kinetic energy is zero. At a quarter of a period τ , potential energy converts into
kinetic energy. The process goes on.

the entire total energy. The kinetic energy is zero. In a quarter of a period,
t = τ/4, the particle moves to the equilibrium position x = 0. At that time,
the kinetic energy reaches its maximum, but the potential energy reaches its
minimum. Because of inertia, the material particle continuous its motion
to the left side, x < 0. After another quarter period, the particle reaches its
left most position and stops. The potential energy again reaches its max-
imum, whereas the kinetic energy becomes zero. In the third quarter of a
period, the particle moves in the positive direction, and regains speed. After
passing the equilibrium position x = 0, the particle moves continuously to
its original position, x = a, where the kinetic energy becomes zero and the
potential energy reaches its maximum, that is, the total energy E. Thus
the particle completes a full period τ .

1.1.4 The Kepler problem

A central problem in Newtonian mechanics is the Kepler problem, where
a planet is attracted by the Sun. The greatest achievement of Isaac New-
ton was the interpretation of Kepler’s laws using his laws of mechanics and
universal gravitation. It is also a central problem in quantum mechan-
ics as a model of the hydrogen atom. The greatest achievement of Erwin
Schrödinger is the explanation of the Rydberg formula using quantum me-
chanics, see Sections 1.4 and 3.5. The Kepler problem is schematically
shown in Fig. 1.4(A), in both rectangular coordinate system and polar co-
ordinate system. The potential function is,

V (r) =
K

r
, (1.27)
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Fig. 1.4. The Kepler Problem. (A), in Cartesian coordinate system. (B), in
polar coordinate system. A planet of mass m is attracted by the Sun according to
Newton’s inverse-square law of gravitation. The eccentricity vector e always points to
the perihelion, where the planet is closest to the Sun. Thus e is a constant of motion.

where K is a constant. According to Eq. 1.3, the force is

F = −K
r2

r

r
. (1.28)

The direction of the force is towards the Sun, marked as O, and the magni-
tude is inversely proportional to the distance of the Sun and the planet r.
Newton’s equation is

dp

dt
= −K

r2
r

r
. (1.29)

Following Eq. 1.11, we can write down the energy integral,

1

2m
p2 +

K

r
= E, (1.30)

where m is he mass of the planet. Because the potential energy V only
depends on r, it is natural to use polar coordinates. By definition,

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ.

(1.31)

Using Eq. 1.31, after a simple but lengthy algebraic manipulation, the quan-
tity p2 in Eq. 1.31 becomes

p2 = m2

[(
dx

dt

)2

+

(
dx

dt

)2

+

(
dx

dt

)2
]

= m2

[(
dr

dt

)2

+ r2
(
dθ

dt

)2

+ r2 sin2 θ

(
dφ

dt

)2
]
.

(1.32)
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Defining three momentum variables in polar coordinates,

pr = m
dr

dt
, (1.33)

pθ = mr2
dθ

dt
, (1.34)

and

pφ = mr2 sin2 θ
dφ

dt
, (1.35)

the energy integral, Eq. 1.31 becomes

p2r
2m

+
p2θ

2mr2
+

p2φ

2mr2 sin2 θ
+
K

r
= E. (1.36)

Because the potential energy only depends on r, the momenta pθ and pφ
are constant. The problem can be resolved analytically.

The most elegant treatment of that problem is by the Hamilton-Jacobi
method, which was the basis of the first 1926 paper of Erwin Schrödinger
and the phase-integral approach of Richard Feynman, the topic of Chapter
12. An elementary treatment, based on vector algebra, is also interesting.
It was the basis of an algebraic solution to the hydrogen atom problem by
Wolfgang Pauli, to be presented in Chapter 11. It relies on a vector constant
of motion, the eccentricity vector e,1 see Fig 1.4(B).

As a consequence of the inverse square law of gravity, the eccentricity
vector e is invariant. Here is a proof.

Without losing generality, we assume the planet moves in the xy-plane.
The angular momentum, a vector in the z-direction, can be written as

L = r× p = mr× dr

dt
. (1.37)

As a consequence of Eq. 1.29, the angular momentum is a constant,

dL

dt
= m

dr

dt
× dr

dt
+ r×

(
−K
r2

r

r

)
= 0. (1.38)

Consider the time evolution of a vector p × L. Because L is a constant,
only the time evolution of p has to be counted. Using Eq. 1.29, as well as
the following identities,

a× (b× c) = b(a · c)− c(a · b) (1.39)

and

r · dr
dt

= r
dr

dt
, (1.40)

1In some literature, it was also called the Laplace vector or the Runge-Lenz vector.
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we obtain
d

dt
(p× L) = −K

r2
r

r
×
(
mr× dr

dt

)
=
mK

r3

[
r

(
r · dr

dt

)
− r2

dr

dt

]
= mK

[
1

r

dr

dt
− r

r2
dr

dt

]
= mK

d

dt

[r
r

]
.

(1.41)

Therefore, the eccentricity vector

e ≡ p× L

mK
− r

r
(1.42)

is a constant. It points to the position of minimum distance r, called by
astronomers as perihelion, the closest point to the Sun.

Using the constant vector e, the trajectory of Kepler motion can be
obtained. Denoting the magnitude of the eccentricity vector as e, and taking
the aphelion point as the origin with θ = 0, we have

r · e = −er cos θ. (1.43)

On the other hand, from Eq. 1.42,

r · e =
r · (p× L)

mK
− r =

L · (r× p)

mK
− r =

L2

mK
− r, (1.44)

where L is the magnitude of angular momentum. The solution is

r =
L2

mK

1

1− e cos θ
. (1.45)

Comparing with Fig 1.4, we have the semilatus rectum

p =
L2

mK
, (1.46)

the standard formula of the ellipse is obtained

r =
p

1− e cos θ
, (1.47)

which explains the origin of the term eccentricity vector.
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1.2 Vibration of strings and membranes

The images and properties of wavefunctions in quantum mechanics are very
similar to the acoustic waves in everyday tangible world. The mathematics
is almost identical. Therefore, the vibrations of strings and membranes are
instructive for an intuitive understanding of wavefunctions.

In quantum mechanics, the concepts of superposition and orthogonality
are essential. Those concepts are intuitive and obvious in terms of acous-
tic waves. By familiarizing with the examples in acoustic waves, similar
concepts in quantum mechanics can be easily understood.

1.2.1 Vibrations of Strings

The phenomena we are discussing here are related to any string instruments,
for example, guitar, violin, cello, and piano. By doing experiments on those
string instruments, one can make direct observations.

Figure 1.5 shows a derivation of the wave equation. Consider a small
section of a string, between x and x+Δx. The lateral displacement u(x, t)
is a function of x and time t. A tension T is applied on both sides. As
shown in Fig. 1.5, the lateral force acting on the small section is

F = T
∂u

∂x
(x+Δx)− T

∂u

∂x
(x) ≈ T

∂2u

∂x2
Δx. (1.48)

The mass of the small section is ρΔx. According to Newton’s law,

F = ρΔx
∂2u

∂t2
. (1.49)

Combining Eqs. 1.48 and 1.49, we obtain

∂2u

∂t2
=
T

ρ

∂2u

∂x2
. (1.50)

By denoting v =
√
T/ρ, Eq. 1.50 is brought to a standard form,

∂2u

∂t2
= v2

∂2u

∂x2
. (1.51)

Fig. 1.5. Derivation of the wave equation. The lateral displacement u(x, t) is a
function of x and time t. A tension T is applied on both sides of the small section Δx.
The wave equation is a consequence of Newton’s law.
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Here we show that v is the velocity of sound. On a string of infinite
length, the general solution of the wave equation Eq. 1.51 was obtained by
French mathematician and physicist Jean le Rond d’Alembert in 1747,

u(x, t) = F (x− vt) +G(x+ vt), (1.52)

where F (x) and G(x) are two independent, arbitrary functions. The solu-
tion can be proved by direct substitution. On one hand,

∂u(x, t)

∂t
= v F ′(x− vt)− v G′(x+ vt), (1.53)

thus
∂2u(x, t)

∂t2
= v2 F ′′(x− vt) + v2G′′(x+ vt). (1.54)

On the other hand,

∂2u(x, t)

∂x2
= F ′′(x− vt) +G′′(x+ vt). (1.55)

Therefore, the d’Alembert solution satisfies the wave equation, Eq. 1.50. It
is a combination of a wave F (x−vt) propagating in +x direction at velocity
v, and a wave G(x+ vt) propagating in −x direction at velocity −v.

A special case of the d’Alembert solution is the sinusoidal wave. If the
frequency is f , the variation of displacement with time is

u(x, t) ∼ sin(2πft+ φ), (1.56)

where φ is the phase. The factor 2π occurs frequently. It is convenient to
introduce an angular frequency to eliminate it:

ω ≡ 2πf. (1.57)

Equation 1.56 is simplified to

u(x, t) ∼ sin(ωt+ φ). (1.58)

Just as there are two d’Alembert solutions moving into two opposite
directions, there could have two sinusoidal waves moving into opposite di-
rections: A wave moving in +x direction is,

u(x, t) = a sin(kx− ωt+ φ), (1.59)

and a wave moving in −x direction is,

u(x, t) = a sin(kx+ ωt+ φ), (1.60)

where k is the wave number, which has a dimension of L−1:

k =
ω

v
. (1.61)
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Fig. 1.6. Running waves. (A) A running wave in positive x direction, Eq. 1.59. (B)
A running wave in negative x direction, Eq. 1.60. Phase of wave is marked by colors;
for example, red as positive, blue as negative. Intensity indicates amplitude. A complete
period in length scale λ is a wavelength, which contains a positive half-wavelength marked
red, and a negative half-wavelength marked blue.

Figure 1.6 shows the waves propagating in +x direction and in −x direction.
The phases are marked by color. For example, red indicates positive, and
blue indicates negative. The intensity of color indicates amplitude. The
length of a complete period is a wavelength, with a symbol λ. By definition,

λ =
v

f
=

2πv

ω
=

2π

k
. (1.62)

Principle of superposition and interference

The wave equation is linear. If a wave f1(x, t) is a solution of a wave
equation, Eq. 1.51, and another wave f2(x, t) is also a solution, then any
linear superposition of the two waves

f(x, t) = c1 f1(x, t) + c2 f2(x, t), (1.63)

is also a solution of the same wave equation, where c1 and c2 are arbitrary
constants. This statement can readily verified by inserting the expression
of the new wave into Eq. 1.51.

The superposition of waves gives rise to the interference of waves. Con-
sider two sinusoidal waves of the same amplitude but difference phase,

u1(x, t) = a sin(kx− ωt+ φ1), (1.64)

and

u2(x, t) = a sin(kx− ωt+ φ2), (1.65)
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The sum is

u(x, t) = u1(x, t) + u2(x, t),

= a sin(kx− ωt+ φ1) + a sin(kx− ωt+ φ2)

= 2a sin

(
kx− ωt+

φ1 + φ2
2

)
cos

(
φ1 − φ2

2

)
.

(1.66)

The result depends on the phase difference. If the phase difference is an
integer multiple of 2π, there is a positive interference. The amplitude is
doubled, thus the power it quadrupled. If the phase difference is an odd
integer multiple of π, there is a negative interference. The amplitude is zero.
The power vanishes.

The interference phenomenon is unique to waves. By combining two
beams of particles, the energy of the composite beam is the simple addition
of the individual beams. For waves, depending on the relative phase, the
energy of the composite beam could be much greater than the simple sum,
or can be mutually cancelled, see Section 1.3.2.

The principle of superposition is valid for all linear differential equations,
including Schrödinger’s equation. Superposition in acoustic phenomena is
easily visualized, which is helpful for the understanding of superposition in
quantum mechanics.

Standing wave and the Helmholtz equation

To describe the vibration of a string with both ends fixed at a fixed fre-
quency, the standard way is to write the displacement u(x, t) as a product
of a function of x and a sinusoidal function of time,

u(x, t) = u(x) sin(ωt+ φ). (1.67)

Insert Eq. 1.67 into Eq. 1.51, we find a differential equation for u(x):

d2u(x)

dt2
= −ω

2

v2
u(x). (1.68)

Using the wave vector k defined in Eq. 1.61, Eq. 1.68 becomes

d2u(x)

dx2
= −k2u(x), (1.69)

which is called a Helmholtz Equation.

Eigenvalues and eigenfunctions

On string instruments, the strings are clamped at both ends, see Fig. 1.7.
Let the ends be x = 0 and x = L. The values of displacement u(x) must be
zero at both ends. The condition limits the values of k and ω in Eqs. 1.68
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Fig. 1.7. Overtones on a string. The experiment was performed on the string of
note E1 on a grand piano. By lightly touching various points on the string and strike it,
the overtones of the basic frequency of the string are excited. See Table 1.1 and Fig. 1.8.

and 1.69, and also limits the waveform u(x). The allowed values for k
and ω under the boundary conditions are called eigenvalues, and the al-
lowed waveforms are called eigenfunctions. The collection of eigenvalues
and eigenfunctions are called vibration modes of the system.

First, at x = 0, the string is fixed. A solution of the Helmholtz equation,
Eq. 1.69, that is zero at x = 0 should be

u(x) = a sin kx. (1.70)

At x = L, the string is also fixed. That boundary condition, u(x) = 0 at
x = L, requires the eigenfunctions to be:

u(x) = a sin
(nπ
L
x
)
, n = 1, 2, 3, ... . (1.71)

The wavevector eigenvalues are

kn =
nπ

L
, n = 1, 2, 3, ... . (1.72)

Accordingly, the frequency eigenvalues are

fn =
ωn

2π
=
vkn
2π

=
nv

2L
, n = 1, 2, 3, ... . (1.73)

Table 1.1: Vibration modes on a string

Length (mm) 1370 685 456 343 274

Wave vector (m−1) 2.29 4.57 6.88 9.17 11.46

Frequency (Hz) 41.2 82.4 123.6 164.8 206.0

Note name E1 E2 B2 E3 G#3
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Fig. 1.8. Overtones on a string. By lightly touching various points on a string and
strike it with the hammer, the overtones are excited.

The n-th standing-wave solution is

un(x, t) = an sin
(nπ
L
x
)
sin

(nv
2L
t+ φ

)
. (1.74)

Nodes and overtones

Table 1.1 shows the vibration modes of an E1 string on a grand piano with
overtones. The total length of the string is 1370 mm. By lightly touching the
middle point of the string at 685 mm, the first overtone E2 with frequency
82.4 Hz is excited. By lightly touching the point of one fifth of the string
at 274 mm, the fifth overtone G#3 with frequency 206 Hz is excited. The
points with no displacement are called a node, and the collection of the
nodal points are called a nodal pattern.

Orthogonality of eigenfunctions

An important fact of the eigenfunctions is, for vibration modes of different
eigenfrequencies, the eigenfunctions are orthogonal :∫ L

0

un(x)um(x) dx = 0, n �= m. (1.75)

From Eq. 1.74, it is obvious that unless m = n, the integral is zero.

Another interesting fact worth noting is, for vibration modes of different
eigenfrequencies, the number of nodes are different. In fact, the number of
nodes for the five vibration modes are 0, 1, 2, 3, and 4, respectively.
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1.2.2 Vibration of membranes: the timpani

The vibration modes on a circular membrane show more resemblance to
the quantum states in atoms. An example is the timpani, a key percussion
instrument in a symphonic orchestra, see Fig. 1.9 (A). A membrane, called a
head, is stretched across the opening of a bowl. The tension of the membrane
can be adjusted by a number of screws, called tension rods. During playing,
the tension, and consequently the frequency, can be temporarily adjusted
by a pedal. The typical diameter is 50 to 80 cm. In the 19th century, there
were a number of studies on its mechanism, and was described in detail in
Lord Rayleigh’s classical treatise Theory of Sound.

The wave equation of a membrane is similar to that for a string. In
Cartesian coordinates, a similar argument would lead to

∂2u

∂t2
=
T

ρ

[
∂2u

∂x2
+
∂2u

∂y2

]
= v2

[
∂2u

∂x2
+
∂2u

∂y2

]
. (1.76)

Here the tension T is the force per unit length, and the density ρ is mass
per unit area fixed frequency, following the same procedure as the one-
dimensional case, using

u = u(x, y) sin(ωt+ φ), (1.77)

we find the Helmholtz equation

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2
= −k2u(x, y), (1.78)

Following Eq. 1.61,

k =
ω

v
. (1.79)

Fig. 1.9. Vibration of a circular membrane. (A), timpani, a leading percussion
instrument in an orchestra. For example, in the first movement of Beethoven’s violin
concerto and the second movement of his ninth symphony, the timpani takes a prominent
role. (B) polar coordinates for the analysis of the circular membrane.
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Fig. 1.10. Bessel functions. Values of first three Bessel functions, up to x = 12.

Apparently, polar coordinates r and θ suit better, see Fig. 1.9 (B). The
Helmholtz equation in polar coordinates is

∂2u(r, θ)

∂r2
+

1

r

∂u(r, θ)

∂r
+

1

r2
∂2u(r, θ)

∂θ2
= −k2u(r, θ). (1.80)

The standard method of solving Eq. 1.80 is through separation of vari-
ables. By assuming a solution of u(r, θ) as a product of a function only of r
and a function only of θ,

u(r, θ) = R(r)Θ(θ), (1.81)

insert into Eq. 1.80, after a few simple algebraic moves, we obtain

r2

R(r)

[
d2R(r)

dr2
+

1

r

dR(r)

dr
+ k2R(r)

]
= − 1

Θ(θ)

d2Θ(θ)

dθ2
. (1.82)

The left-hand side of the equation only depends on r. The right-hand side
of the equation only depends on θ. Therefore, both sides must be a constant
K. From the right-hand side of the equation,

d2Θ(θ)

dθ2
+KΘ(θ) = 0. (1.83)

The solution can be a sine function, a cosine function, or exponential func-
tion. The boundary condition that the function must be cyclic,

Θ(2π) = Θ(0), (1.84)

requires that the function Θ(θ) must be either

Θ(θ) = cos(nθ), n = 0, 1, 2, 3, ... , (1.85)
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Table 1.2: Zeros of Bessel functions

Index J0(x) J1(x) J2(x)

1 x01 = 2.4048 x11 = 3.8317 x21 = 5.1356
2 x02 = 5.5201 x12 = 7.0156 x22 = 8.4172

3 x03 = 8.6537 x13 = 10.174 x23 = 11.620

or
Θ(θ) = sin(nθ), n = 1, 2, 3, ... . (1.86)

Therefore, the constant in Eq. 1.83 is K = n2. The differential equation for
the function with r is then

d2R(r)

dr2
+

1

r

dR(r)

dr
+

[
k2 − n2

r2

]
R(r) = 0. (1.87)

This is the well-known Bessel equation, and the solutions are the Bessel
functions,

R(r) = Jn(kr). (1.88)

Mathematical details of the Bessel functions are presented in Appendix
A. Figure 1.10 shows the first three Bessel functions. Table 1.2 shows the
first three zeros of the first three Bessel functions.

The solution of Eq. 1.87 must satisfy the boundary condition that at
the rim of the timpani, where the membrane is fixed. At r = a, R(r)
must be zero. This condition fixes the frequency eigenvalues. The vibration
pattern of the membrane at a given frequency eigenvalue must conform to
the corresponding eigenfunction. Denote the m-th zero of the n-th Bessel
function be xnm, the allowed wave vectors must be

knma = xnm. (1.89)

The frequency eigenvalues are

fnm =
vknm
2π

=
vxnm
2πa

, (1.90)

and the eigenfunctions of the vibration modes are either

u(g)nm(r, θ) = Jn

(xnmr
a

)
cos(nθ), n = 0, 1, 2, 3, ... , (1.91)

or
u(u)nm(r, θ) = Jn

(xnmr
a

)
sin(nθ), n = 1, 2, 3, ... . (1.92)

Here the notation (g) indicates that the eigenfunction is symmetric, and (u)
indicates that the eigenfunction is antisymmetric. A notation we will use
throughout the book.
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Fig. 1.11. Eigenfunctions of the vibration modes. Different color indicates polar-
ity, and the density indicates the magnitude. The places with no or very little vibration
are called nodes. The nodal pattern can be visualized by spreading powers on the mem-
brane, which is called the Chladni pattern according to its discoverer. See Fig. 3.7.

Figure 1.11 shows graphical representations of the eigenfunctions. Dif-
ferent colors indicate different phases, and the density indicates the magni-
tude. The places with no vibration are indicated by white space, located
between regions with different phases of vibration. Similar to the case of
a string, those places are called nodes. The collection of nodes is called a
nodal pattern. As shown, the geometry of the nodal patterns determines the
nature of the vibration mode, or the nature of the eigenfunctions. In the
parentheses in Fig. 1.11, the first digit n is the order of Bessel function, and
the multiplier in sine and cosine functions. The second index ism, the index
of zeros of the Bessel function. The letter g indicates a symmetric angular
function, associated with cosine. The letter u indicates an antisymmetric
angular function, associated with sine. With a timpani of about 660 mm in
diameter, the fundamental frequency is 82 Hz.

As shown, the frequencies of the higher vibration modes of a timpani
are not integer multipliers of the frequency, as in the case of a string, see
Table 1.1. Therefore, for a timpani with a bare membrane, the overtones
are inharmonic. To make the overtones at least approximately harmonic,
different types of perturbations are implemented.

The vibration patterns, or the eigenfunctions, can be visualized by spread-
ing powers on the membrane. While the membrane vibrates, only at places
with no vibration, that is, the nodes, the powder stays. The nodal pattern
of a vibrating membrane can be visualized. That method was invented by
German physicist Ernst Chladni in late 18th century and called Chladni
patterns. The patterns in Fig. 1.12 were acquired by a group at Northern
Illinois University lead by Thomas D. Rossing in the 1980s.



20 A Review of Classical Physics

Fig. 1.12. Nodes in eigenfunctions revealed by Chladni patterns. By spreading
powders on the head of a timpani, during vibration, the powders concentrate at the
nodes. The pattern was discovered by German physicist Ernst Chladni, and thus named
Chladni pattern. The vibration eigenfunctions are than visualized.

Orthogonality of eigenfunctions

An interesting fact is that the eigenfunctions of different frequency eigen-
values are orthogonal. Two functions f1(r, θ) and f1(r, θ) on an area r < a
are orthogonal means that the following integral is zero,∫ a

0

rdr

∫ 2π

0

dθf1(r, θ) f2(r, θ) = 0. (1.93)

The factor r occurs because the elemental area is dr × rdθ, see Fig. 1.9.
Let us look at the eigenfunctions of Eqs. 1.91 and 1.92. For eigenfunc-

tions with different n, or different orders of the Bessel function, the integral
is zero because of the integration on the angle θ. For eigenfunctions of the
same n, denoting

f1(r) = Jn(κ1r) (1.94)

and
f2(r) = Jn(κ2r). (1.95)

Both eigenfunctions satisfy the boundary conditions at r = a:

f1(a) = Jn(κ1a) = 0, (1.96)

and
f2(a) = Jn(κ2a) = 0. (1.97)

The eigenfunctions f1(r) and f2(r) should satisfy the Bessel equations,

d

dr

(
r
df1(r)

dr

)
− n2

r2
f1(r) + κ21rf1(r) = 0, (1.98)
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and
d

dr

(
r
df2(r)

dr

)
− n2

r2
f2(r) + κ22rf2(r) = 0. (1.99)

Multiply Eq. 1.98 by f2(r), multiply Eq. 1.99 by f1(r), subtract one
from another, then integrate it over (0, a), we obtain

(κ21 − κ22)

∫ a

0

f1(r)f2(r)rdr = r

(
f1(r)

df2(r)

dr
− f2(r)

df1(r)

dr

)∣∣∣∣a
0

. (1.100)

Because of Eqs. 1.96 and 1.97, the right-hand side is zero. Consequently, if
κ1 �= κ2, the integral must be zero. The two eigenfunctions are orthogonal.
In quantum mechanics, such scenario is quite frequent.

Linear superposition of degenerate eigenfunctions

The symmetric eigenfunctions in Eq. 1.91 and 1.92 with the same order
n, as displayed in the three right-hand rows in Fig. 1.11, have the same
frequency eigenvalue. Those pairs of vibration modes are called degenerate.
This situation is also very frequent in quantum mechanics. Because the two
degenerate eigenfunctions satisfy the same Helmholtz equation, any linear
combination of the two eigenfunctions is also an eigenfunction with the
same frequency eigenvalue. Therefore, by making a linear superposition of
the eigenfunctions with the same eigenvalue, a new eigenfunction with the
same eigenvalue is constructed.

Experimentally, by lightly touching some positions on the membrane and
excite the timpani with a frequency source of 131 Hz, vibration modes with
nodal lines passing the point of finger touching are generated. Figure 1.13
shows two such vibration patterns by touching the membrane lightly at
different places. In quantum mechanics, with the presence of a weak per-
turbation to a number of degenerate wavefunctions, new wavefunctions with
the same energy eigenvalue but well-defined orientations are generated.

Fig. 1.13. Linear superposition of degenerate eigenfunctions. By lightly touch-
ing some positions on the membrane and excite it, linear superposition of degenerate
eigenfunctions with the same frequency eigenvalue can be formed.
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1.3 Light as Electromagnetic Waves

The corpuscular and wave theories of light, as two completely incompatible
theories, coexisted for more than two centuries. In 1690, Christiaan Huy-
gens published Traitr de la Lumiere (A Treatise on Light), systematically
expounded his wave theory. In 1704, Isaac Newton published a monograph
Opticks: A Treatise of the Reflexions, Refractions, Inflexions and Colours
of Light, criticized Huygens’ wave theory of light, and expounded his cor-
puscular theory of light. The centuries-old debate is still instructive for the
understanding of the modern concept of wave-particle duality.

1.3.1 Newton’s corpuscular theory of light

Besides research in mechanics represented by the epoch monograph Prin-
cipia, Isaac Newton made numerous discoveries and inventions in optics.
Besides a mathematical genius, he was also a super handy experimental-
ist. He invented and built the first working reflecting telescope by his own
hands in 1668. It remains today the prototype of most of the professional
astronomical telescopes as well as amateur telescopes.

A highly influential experimental discovery of Newton is that white light

Fig. 1.14. Newton’s optics and Huyges’ Lumiere. Left, Newton’s Opticks, pub-
lished in 1704, systematically presented the corpuscular theory of light. Right, Huygens’
Treatise on Light, published in 1690, systematically presented the wave theory of light.
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Fig. 1.15. Dispersion of prism and Newton’s explanation. (A), a schematics of
the experiments of Isaac Newton, by decomposing the sunlight into colors using a prism.
(B), Newton’s explanation of dispersion based on his corpuscular theory of light, that
the mass of red-light particles is greater than the mass of the violet-light particles, thus
the violet light bends more than the red light.

is a mixture of a number of colored light rays, each of the colored rays is
original and unchanged during propagation. In 1666, using a glass prism,
he decomposed white sunlight into a spectrum, see Fig. 1.15(A). In Opticks,
Query 29, on pages 533 – 538, he made a detailed explanation of this dis-
covery by the corpuscular theory of light, see Fig. 1.15(B).

Newton’s corpuscular theory of light is completely in line with his gen-
eral mechanical view of the physical world, as summarized by Einstein,
quoted in Section 1.1. In Newton’s own words, rays of light consist of ”very
small Bodies emitted from shining Substances”. Those material points are
structureless, dimensionless, perfectly elastic, characterized only by its ge-
ometrical location (x, y, z) and mass. Its motion is determined only by the
forces from other material points in the medium, governed by the law of
mechanics. Accordingly, in vacuum, the light particles move in a straight
line. In a uniform medium such as glass, because the force from the con-
stituent particles of glass are balanced, light also moves in a straight line.
Only at the interface between two different media, the speed changes. As
shown in Fig. 1.15(B), as the particles of light enters from vacuum to glass,
the material particles constituting glass attracts the particles of light, and
the vertical speed of the light particles is increased. Newton assumed that
the particles constituting red light are heavier than the particles constitut-
ing violet light. At the interface, red light particles gain less vertical speed
than violet light particles, thus red light bends less than violet light. He
derived Snell’s sine law of refraction from that idea mathematically. He
further presented evidence that the particles of red light are heavier than
the rest, because when red light is absorbed, it generates more heat than
for example violet light particles, characterized by Newton as smaller.

Experiments in the 19th century and on overturned Newton’s corpuscu-
lar theory of light. First, the speed of light in transparent media such as
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glass was found slower than the speed of light in vacuum. The speed of light
in vacuum was found to be the upper limit of any speed. Second, although
Einstein’s theory of photon assigns a mass to light particles, the photons
of the red light have a mass smaller than those of violet-light. Especially,
Robert Young’s double-slit experiment made a definitive proof of the wave
nature of light. According to Young, color is associated to wavelength.

1.3.2 Young’s double-slit experiment

Figure 1.16 shows a schematic of the Young double-slit experiment. From
the left side, a plane wave of light with wavelength λ falls on a screen with
to slits S1 and S2. The distance between the two slits is a. In the Figure,
the phase of light wave is marked by colors; for example, red as positive,
and blue as negative. The intensity of colors represents amplitude.

Consider a point x on the detection screen D. The distance from point
x to the first slit is

r1 =

√
L2 +

(
x− a

2

)2

. (1.101)

and to the second slit is

r2 =

√
L2 +

(
x+

a

2

)2

. (1.102)

The distance from the slits to the detection screen L is often much greater

Fig. 1.16. Young’s double-slit experiment. A plane wave of light with wavelength
λ falls on a screen with to slits S1 and S2. The distance between the two slits is a. The
two light beams propagate and produce an interference pattern on the detection screen
D. Here the phase of the wave is marked by colors: red is positive, blue is negative. The
intensity of color represents amplitude.
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that x and a. Using Newton’s binomial formula,

√
1 + u ∼= 1 +

u

2
, (1.103)

A fairly accurate formula of the difference of r2 and r1 is obtained

r2 − r1 = L

[√
1 +

1

L2

(
x+

a

2

)2

−
√
1 +

1

L2

(
x− a

2

)2
]
∼= xa

L
. (1.104)

At the point x, the wave amplitude is the sum of rays from two slits:

u(x) = a sin(kr1 − ωt) + a sin(kr2 − ωt)

= 2a sin

(
k
r1 + r2

2
− ωt

)
cos

(
k
r1 − r2

2

)
.

(1.105)

According to Eq. 1.62, λk = 2π. If r2 − r1 equals an integer multiple of
wavelength λ, the cosine factor is ±1. The light intensity reaches a maxi-
mum. If r2 − r1 equals an odd integer multiple of one half of wavelength λ,
the cosine factor is zero. The two rays interfere destructively. The distance
between two adjacent intensity minima Δx (see Fig. 1.16) is

Δx =
λL

a
. (1.106)

Young’s two-slit experiment is essential to the understanding of the wave
nature of the electron and other particles. We will repeatedly refer to that
experiment in the discussions of wave-particle duality.

1.3.3 Maxwell’s Theory of Electromagnetic Fields

Up to the middle of the nineteenth century, electromagnetic phenomena
and light have been considered as totally independent entities. In 1865, in a
monumental paper A Dynamic Theory of the Electromagnetic Field, James
Clerk Maxwell (Fig 1.17) presented a complete set of partial differential
equations explaining electromagnetic phenomena, and inferred that light is
an electromagnetic wave. In an article written for the centenary of Maxwell’s
birth entitled Maxwell’s Influence on the Development of the Conception of
Physical Reality, Einstein said thusly:

Before Maxwell, people thought of physical reality – in so
far as it represented events in nature – as material points, whose
changes consist only in motions which are subject to total differ-
ential equations. After Maxwell, they thought of physical reality
as represented by continuous fields, not mechanically explicable,
which are subject to partial differential equations. This change
in the conception of reality is the most profound and the most
fruitful that physics has experienced since Newton.
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Fig. 1.17. James Clerk Maxwell. Scot-

tish physicist (1831–1879), one of the most in-

fluential physicists along with Isaac Newton

and Albert Einstein. He developed a set of

equations describing electromagnetism, known

as the Maxwell’s equations. In 1865, based on

those equations, he predicted the existence of

electromagnetic waves and proposed that light

is an electromagnetic wave [?]. He also pio-

neered the kinetic theory of gases, and created

a science fiction character Maxwell’s demon.

Portrait courtesy of Smithsonian Museum.

Quantum mechanics represents a further extension of the conceptual
breakthrough started by Maxwell. Wavefunctions, the physical reality in
quantum mechanics, also subject to partial differential equations.

Maxwell’s equations

In SI unit system, Maxwell’s equations are

∇ ·E =
ρ

ε0
, (1.107)

∇ ·B = 0, (1.108)

∇×E = −∂B
∂t
, (1.109)

∇×B = ε0μ0
∂E

∂t
+ μ0 J. (1.110)

Electric current cannot exist in free space. For linear, uniform, isotropic
materials, the current density J is determined by the electric field intensity
E through Ohm’s law,

J = σE. (1.111)

The names, meanings, and units of the physical quantities in these equa-
tions are listed in Table 1.3. For example, the electrical field intensity E is
related to the force F acting on a charge q,

F = qE. (1.112)
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Table 1.3: Quantities in Maxwell’s Equations

Symbol Name Unit Meaning or Value
E Electric field intensity V/m

B Magnetic field intensity T (tesla) N/A·m
ρ Electric charge density C/m3

J Electric current density A/m2

ε0 Electric constant F/m 8.85× 10−12 F/m

(permittivity of free space)

μ0 Magnetic constant H/m 4π × 10−7 H/m

(permeability of free space)

σ Conductivity (Ω ·m)−1

Vector Potential and Scalar Potential

To treat the electromagnetic field in space, a convenient method is to use
the vector potential. From Eq. 1.108, it is possible to construct a vector
field A which satisfies

B = ∇×A. (1.113)

Then, Eq. 1.108 is automatically satisfied. Substituting Eq. 1.113 into
Eq. 1.109, one obtains

∇×E = − ∂

∂t
∇×A. (1.114)

For any function φ(r), ∇× [∇φ(r)] = 0. Therefore, it is always possible to
set up the vector potential A such that

E = −∂A
∂t

−∇φ, (1.115)

where φ is the electrostatic potential arising from the charges. The choice
of the vector potential is not unique. By adding a gradient of an arbitrary
function to it, values of the electric field and magnetic field do not change.
This is called the gauge invariance of the vector potential. It is possible to
define a vector potential which satisfies the condition

∇ ·A = 0. (1.116)

Equation 1.116 is called the Coulomb gauge, which is the most convenient
gauge to treat nonrelativistic problems of an atomic system and an indepen-
dent electromagnetic wave. In fact, using Eq. 1.116 and the first Maxwell
equation Eq. 1.107, one obtains

∇2φ = − ρ

ε0
, (1.117)
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which means that the scalar potential is generated by the static charges
only. It is thus convenient for treating the problems of interactions between
the radiation field and atomic systems.

By combining Eqs. 1.107, 1.111, and 1.117, we can derive an expression of
the potential energy for a generalized Coulomb’s law. Assuming the charge
density is spherically symmetric, that it only depends on r. The symmetry
implies that the scalar potential is a function of r only. Equation 1.117
becomes

1

r2
d

dr

(
r2
dφ(r)

dr

)
= −ρ(r)

ε0
, (1.118)

Because the total charge Q(r) in a sphere of radius r is

Q(r) =

∫ r

0

4πr2ρ(r)dr, (1.119)

taking a similar integration on the left-hand side of Eq. 1.118 yields∫ r

0

4πr2
1

r2
d

dr

(
r2
dφ(r)

dr

)
dr = 4πr2

dφ(r)

dr
. (1.120)

Combining Eqs. 1.118, 1.118, and 1.120, we obtain

dφ(r)

dr
=

Q(r)

4πε0r2
. (1.121)

Integrating Eq. 1.121 over r, notice that at r = ∞, φ = 0, we have

φ(r) =

∫ r

∞

Q(r)

4πε0r2
dr =

Q(r)

4πε0r
. (1.122)

Therefore, for a spherically symmetric charge density function ρ(r), the
scalar potential at a point r is the same and an electrical charge Q(r) con-
centrated at the origin.

For a hydrogen atom, with a proton of positive charge e at the origin
and an electron with a negative charge −e at r, the potential energy is

V (r) = − e2

4πε0r
. (1.123)

1.3.4 Fields as a Physical Reality

In Newtonian physics, the physical reality is material particles. The po-
sition and momentum of each particle can be observed without significant
disturbance. If the position and momentum of a particle is known at a given
time, the subsequent values are determined by Newton’s laws. Therefore,
the Newtonian physics is causal.
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Fig. 1.18. Observing and mapping magnetic field. By placing a white paper above
a magnet and sprinkle iron filings on it, the iron filings follows the lines of magnetic field
and shows a map of the magnetic field. The magnetic field is an observable physical
reality, which exists regardless of being measured or not, and only marginally disturbed
by the mapping process.

In Maxwellian physics, the physical reality is various fields, including
magnetic fields, electrical fields, etc. The observations are not the position
and momentum of individual material particles, but rather continuous fields.
The methods of observing those fields are different from those in Newtonian
physics. However, from a philosophical point of view, there is no difference.

Although not visible by naked eyes, magnetic field can be observed,
measured, and mapped by simple experiments. Figure 1.18 shows an ex-
periment easily done in a high-school classroom. By placing a piece of
white paper on top of a magnet and sprinkle iron filing over it, the lines
of magnetic field are displayed. The experiment was described in Faraday’s
laboratory notebooks, and motivated Maxwell to represent the fields with
continuous functions governed by partial differential equations. More ac-
curate measurements of magnetic fields can be performed using Hall-effect
probes, frequently used by scientists and engineers. Note that the magnetic
fields around a permanent magnet is an objective physical reality, which ex-
ists regardless of being measured or not. The iron filings and the Hall-effect
probe does not perturb the magnetic field significantly.

Similarly, the electric field can be observed, measured, and mapped by
a simple device. Although not visible by naked eyes, the experiments can
also be performed in a high-school classroom, as shown in Fig. 1.19. A
battery and a pair of electrodes create a pattern of electrical field on a
piece of conducting paper. To find the equal potential lines at a given
voltage provided by a potentiometer, a probe with a galvanometer is used.
By connecting the points with zero current together, the electrical field is
mapped. Again, the electrical field pattern is an objective reality. It exists
regardless whether a measurement is conducted or not. The probe, to find
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Fig. 1.19. Observing and mapping electric field. Using a piece of conducting
paper or a tray of salt water, the electric field can be probed and mapped by a probe and
a a galvanometer. A potentiometer defines or selects a value of potential voltage. When
the galvanometer shows no current, the spot of the same potential voltage is identified.
The entire electric field can be imaged. Similar to the magnetic field, the electric field is
an observable physical reality, which exists regardless of being measured or not, and only
marginally disturbed by the measurement process.

the points with no current literally makes no disturbance to the objective
physical reality of the electrical field.

The electromagnetic fields are governed by Maxwell’s equations, which
are first-order in time. Once the electromagnetic fields are known at a
given time, the subsequent evolution is completely determined by Maxwell’s
equations. Therefore, similar to Newtonian physics, Maxwell’s physics of
electromagnetic fields is completely causal.

1.3.5 Electromagnetic Waves

In this section, we study the electromagnetic waves in free space, that is,
where the electric charge ρ and current J are zero. Take the curl of Eq. 1.109,
then using Eq. 1.110, we have

∇×∇×E = − ∂

∂t
∇×B = −ε0μ0

∂2E

∂t2
. (1.124)

On the other hand, using the identity

∇×∇×E ≡ ∇(∇ ·E)−∇2E (1.125)

Equation 1.124 becomes

∇2E = ε0μ0
∂2E

∂t2
. (1.126)

Introducing

c =
1√
ε0μ0

, (1.127)
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Eq. 1.126 becomes

∇2E =
1

c2
∂2E

∂t2
, (1.128)

which is a wave equation with velocity c. Using a similar procedure, we can
show that the magnetic field intensity satisfy the same wave equation,

∇2B =
1

c2
∂2B

∂t2
. (1.129)

According to values of ε0 and μ0 coming from electromagnetic measurements
in 1860s, the velocity of electromagnetic waves should be 3.1×108 m/s. On
the other hand, experimental values of the speed of light at that time were
2.98 × 108–3.15 × 108 m/s. The difference was within experimental error.
Maxwell proposed thusly [?]:

The agreement of the results seems to show that light and mag-
netism are affections of the same substance, and that light is an
electromagnetic disturbance propagated through the field ac-
cording to electromagnetic laws.

Maxwell’s theory of electromagnetic waves was experimentally verified
by Heinrich Hertz in 1885. From recent electrical measurements, one finds
1/

√
ε0μ0 = 2.998× 108m/s, which equals the speed of light in vacuum, c.

Radiation Power and Poynting Vector

Let us study the energy balance in an electromagnetic field by considering
a unit volume with relatively uniform fields. If the current density is J and
the electric field intensity is E, the ohmic energy loss per unit time per unit
volume is J ·E. Using Eq. 1.110, the expression of energy loss becomes

J ·E =
1

μ0
E · (∇×B)− ε0E · ∂E

∂t
. (1.130)

Using the mathematical identity

E · (∇×B) = −∇ · (E×B) +B · (∇×E), (1.131)

Eq. 1.130 becomes

J ·E = −∇ ·
(

1

μ0
E×B

)
+

1

μ0
B · (∇×E)− ε0E · ∂E

∂t
. (1.132)

Using Eq. 1.109, Eq. 1.132 becomes

J ·E = −∇ ·
(

1

μ0
E×B

)
− ∂

∂t

(
ε0
2
E2 +

1

2μ0
B2

)
. (1.133)
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The right-hand side of Eq. 1.133 has a straightforward explanation. The
energy density of the electromagnetic fields is

W =
ε0
2
E2 +

1

2μ0
B2, (1.134)

and the power density of the electromagnetic field per unit area is

S =
1

μ0
E×B. (1.135)

The vector S represents the power flow of electromagnetic waves, and called
the Poynting vector after its discoverer.

According to Eqs. 1.134 and 1.135, the electromagnetic field is not only a
medium to transfer forces among material points. It is a physical reality by
itself, possessing energy density and energy flow. According to the Einstein
relation, E = mc2, the electromagnetic field also has mass density and mass
flow. As emphasized by Einstein, continuous field as a physical reality, the
Maxwellian point of view, is distinctive from the Newtonian point of view,
that only the material points represent physical reality.

1.3.6 Polarization of Light

Polarization of light is a phenomenon well known in classical physics. But
it is closely related to the basic concepts of quantum physics. A good
understanding from the classical-physics point of view will be helpful to
understand quantum mechanics.

To make a simple and clear picture, consider a sinusoidal electromagnetic
wave with angle frequency ω = 2πf propagating in the z-direction. See Fig.
1.20. In general, the electrical field intensity is

E = E0 sin(kz − ωt), (1.136)

Fig. 1.20. Electromagnetic wave. The electromagnetic wave is transverse, where
the intensity vectors E and B are perpendicular to the direction of propagation. The
electric field intensity E is perpendicular to the magnetic field intensity B. The energy
flux vector S = μ−1

0 E×B is formed from E and B by a right-hand rule.
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where
k =

ω

c
(1.137)

is the wavevector. Because the field intensities only depends on z, in space
without electrical charge, the first Maxwell equation, Eq. 1.107, becomes

∂Ez

∂z
= 0. (1.138)

In other words, the z-component of the electrical field intensity is a constant,
not a wave. The wave is transverse, which has x and y components only.
The x-polarized wave is

Ex(z, t) = Ex0 sin(kz − ωt). (1.139)

Using Eq. 1.120, we have

By(z, t) = −1

c
Ex(z, t) = −1

c
Ex0 sin(kz − ωt). (1.140)

The power density of the wave, according to Eq. 1.135, is

S =
1

cμ0
E2

x0 sin
2(kz − ωt). (1.141)

Because the average of the square of a sine function is 1/2, the average
power density is

S̄ =
1

2cμ0
E2

x0. (1.142)

The y-polarized wave is

Ey(z, t) = Ey0 sin(kz − ωt) (1.143)

and

Bx(z, t) =
1

c
Ey(z, t) =

1

c
Ey0 sin(kz − ωt). (1.144)

and the average power density is

S̄ =
1

2cμ0
E2

y0. (1.145)

Typically, for natural light, such as sunlight or from an electrical lamp,
the two polarizations are balanced. The magnitude of Ex0 and the magni-
tude of Ey0 are roughly equal. By using a lineal polarizer, for example, in
the x direction, the y-component is blocked. The light comes out from the
polarizer is lineally polarized in the x-direction.

Figures 1.21 to 1.23 show an experimental setup for the demonstration
of superposition of polarized light, as described in Chapter 1, Section 2
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Fig. 1.21. The three polarizer experiment: Step 1. If both polarizers (C) and
(D) are in x-direction, all light goes through polarizer (C) passes (D).

of Dirac’s The Principles of Quantum Mechanics, sometimes referred to as
Dirac’s three-polarizer experiment. In all three Figures, (A) is a light source.
(B) is a lens. (C) and (D) are linear polarizers, the blue sidebar indicates
the direction of polarization. (E) is a screen. All elements are mounted by
magnetic and elastic clampers to facilitate adjustment.

In Fig. 1.21, both polarizers (C) and (D) are in x-direction, all light
goes through (C) passes (D). In Fig. 1.22, polarizer (C) is in x-direction,
but polarizer (D) is in y-direction. All light goes through (C) is blocked by
polarized (D). By inserting a third polarizer (F) between (C) and (D) with a
tilting angle, as shown in Fig. 1.23, some light can pass all three polarizers.

Figure 1.24 shows an analysis of the role of the tilted polarizer. Assum-
ing that the angle is α. The insertion of polarizer (F) is equivalent to a

Fig. 1.22. The three polarizer experiment: Step 2. If polarizer (C) is in x-
direction, but polarizer (D) is in y-direction, all light goes through (C) is blocked by
polarized (D).
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Fig. 1.23. The three polarizer experiment: Step 3. By inserting a third polarizer
(F) between (C) and (D) with a tilting angle, some light can pass all three polarizers.

coordinate transformation in the (x, y)-plane. As shown in Fig. 1.24(A),
the component of original electrical field intensity, in x0-direction, to the
new x1-direction is

E1 = E0 cosα. (1.146)

The electrical field intensity on the subsequent polarizer (D) is equiva-
lent to another coordinate transformation in the (x, y)-plane. As shown
in Fig. 1.24(B), the component of the electrical field intensity in the x2-
direction is

E2 = E1 sinα = E0 sinα cosα =
1

2
sin 2α. (1.147)

Because the power is proportional to the square of the electrical field inten-
sity, the outgoing radiation power intensity S̄2 is related to the incoming
power intensity S̄0 by

S̄2 =
S̄0

4
sin2 2α. (1.148)

Fig. 1.24. The three polarizer experiment: analysis. (A) By inserting a third
polarizer with an angle α shifted from the first polarizer, it is equivalent to do a coordinate
transformation from (x0, y0) to (x1, y1). The projection of the original electrical field
intensity E0 on the transformed x1 axis is E1 = E0 cosα. (B) The projection of E1 to
the x2 axis of the final polarizer is E2 = E1 sinα.
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Therefore, if the polarization direction of the third polarizer (F) is either
in the x-direction or in the y-direction, the output radiation power is zero.
At α = (2n + 1)π/4 = (2n + 1) × 45◦, where n is an integer, the outgoing
radiation power density is at maximum. The predicted results can be easily
verified by direct experiments.

1.4 Atomic Spectra

As we have presented in Section 1.3.1, Isaac Newton discovered that by
using a prism, sunlight can be dispersed into a variety of colors. That was
the starting point of optical spectroscopy. In the 19th century, as a result of
the advances in precision machining, a more powerful and accurate device
for dispersion of light, diffraction gratings, was developed.

Figure 1.25 is a schematic of diffraction grating. A grating is made by
engraving a large number of groves on a flat piece of metal. The spacing of
two adjacent grooves d should be greater than the wavelength of the light
of interest, but not excessively greater. A beam of light is incident through
a slit on a collimating mirror to become parallel light, falls on the grating.
After diffracted by the grating, the parallel light beam is focused by a camera
mirror on a detector, typically a CCD camera. Due to interference, light
of different wavelength have different condition for maximum intensity. For
example, the condition of maximum intensity for red light is that the path
difference equals an integer multiple of the wavelength,

d(sin θi − sin θr) = mλr, (1.149)

Fig. 1.25. A schematic of diffraction grating. A beam of light from the source is
going through a thin slit, then spread on a collimating mirror to become parallel light,
falling on a diffraction grating. After diffraction, the light is focused by a camera mirror
onto a detector. Light beams of different wavelength, for example, red light and green
light, will hit on different places of the detector.
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Fig. 1.26. Absorption atomic spectra in the visible range. Absorption lines in
the spectrum of solar radiation, originally discovered by Joseph von Fraunhofer in 1814,
thus named as the Fraunhofer lines. By comparing with the emission spectra of various
elements, the origin of those absorption lines were gradually known. Of special interest
are the four strong absorption lines at 656.2 nm, 486.1 nm, 434.0 nm, and 410.0 nm,
identified as from the hydrogen atom, and renamed as Hα, Hβ, Hγ, and Hδ. Hydrogen
is by far the most abundant element in the atmosphere of the Sun.

where θi is the incident angle, θr is the angle of maximum intensity for red
light with wavelength λr, and m is an integer of the number wavelengths of
the interference path. Likewise, for green light, the condition for maximum
intensity is

d(sin θi − sin θg) = mλg, (1.150)

where θr is the maximum angle for green light with wavelength λr.
The resolution power with a grating with N grooves of order m is

λ

Δλ
= mN, (1.151)

where λ is the wavelength of the light, and Δλ is the smallest resolvable
wavelength difference. Simply speaking, the more lines on the gratings, the

Table 1.4: Wavelengths of hydrogen lines

n1 = 1 n1 = 2 n1 = 3 n1 = 4

Lyman Balmer Paschen Brackett

n2 = 2 121.6 nm

n2 = 3 102.6 nm 656.3 nm

n2 = 4 97.2 nm 486.1 nm 1875 nm

n2 = 5 94.9 nm 434.0 nm 1282 nm 4.05 μm

n2 = 6 93.8 nm 410.2 nm 1094 nm 2.62 μm

n2 = 7 93.0 nm 397.0 nm 1005 nm 2.16 μm

n2 = 8 92.6 nm 388.9 nm 955 nm 1.94 μm

n2 = ∞ 91.2 nm 364.6 nm 820 nm 1.46 μm
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finer its resolution. In late 19th century, a typical gratings has more than
10,000 lines, capable of a resolution power of 10,000 or more.

In 19th century, using the diffraction gratings, a vast field of science and
technology, atomic spectroscopy, emerged. Each atom has its characteristic
group of spectral lines. Those lines can be either observed as absorption
lines or emission lines. In 1814, German physicist Joseph von Fraunhofer
discovered a number of absorption lines in the observed spectrum of sun-
light. After years of continuing research, thousands of so-called Fraunhofer
lines were identified. Later, by using flames with known elements as the
light source, thousands of emission lines of atoms were discovered. The ab-
sorption lines and the emissions lines are correlated one by one. Over the
19th century, optical spectroscopy gradually became one of the most impor-
tant methods for chemical analysis. A number of elements were discovered
first by the observation of spectral lines of unknown origin, including Cs,
Rb, and Tl (1860-61); In (1863); Ga (1875); Tm (1870); Nd and Pr (1885);
Sm and Ho (1886). An interesting case is helium. Several strong absorption
lines were first discovered in the absorption spectrum of the Sun. In 1868,
by emission spectroscopy, helium was found as a rare element in the air.
The name, helium, was referred to its origin as from the Sun.

Fig. 1.27. Emission spectra of hydrogen. The electromagnetic wave is transverse,
where the intensity vectors E and B are perpendicular to the direction of propagation.
The electric field intensity E is perpendicular to the magnetic field intensity B. The
energy flux vector S = μ−1

0 E×B is formed from E and B by a right-hand rule.
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Of particular interest are four Fraunhofer lines, initially observed in the
spectrum of sunlight, named C, F, G and h. Later identified as from the
hydrogen atom, and renamed Hα, Hβ, Hγ, and Hδ lines. See Fig. 1.26.
Because of the high resolution of diffraction gratings, the accuracy of wave-
lengths of those lines reached six to seven significant digits. In 1885, Swiss
mathematician Johann Jakob Balmer (1825 – 1898) found an accurate em-
pirical formula for the four hydrogen lines. In 1889, Swedish physicist Jo-
hannes Robert Rydberg (1854 – 1919) extended the Balmer formula to
include hydrogen spectral lines in the infrared and ultraviolet regions. The
key of their success was to use wavenumber, the inverse of wavelength, to
represent the data. Rydberg’s formula is

1

λ
= Ry

(
1

n21
− 1

n22

)
, (1.152)

where Ry is the Rydberg constant, n1 and n2 are integers. For n1 = 1, the
ultraviolet lines in the Lyman series are represented. For n1 = 2, the visible
lines of the Balmer series are represented. See Table 1.4 and Fig. 1.27.

Towards the end of the 19th century, the Rydberg formula was well val-
idated. The Rydberg constant was the most accurately measured physical
constant. However, despite many trials, no interpretation of the Rydberg
formula was discovered until the rise of the quantum theory.
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Chapter 2

Wave and Quantum

On November 9, 1922, the Royal Swedish Academy of Sciences an-
nounced that the Nobel Prize in Physics 1921 was awarded to Albert Ein-
stein “for his services to Theoretical Physics, and especially for his discovery
of the law of the photoelectric effect.” 1

The announcement was a surprise to the public and news media, as
Einstein was already a celebrity because of his theory of relativity. In fact,
the Nobel Committee was correct: The paper about the photoelectric effect
is the most revolutionary, the most original, and also the most contraversial
of Einstein’s papers. It started the era of quantum physics, the scientific
theory having the most profound impact on human society in the 20th
century. The concept of wave-quantum duality, defined in that paper for
light, was later generalized to all particles by Louis de Briglie, then became
the conceptual basis of quantum mechanics.

2.1 Einstein’s Energy Quantum of Light

Figure 2.1 shows the title and a key paragraph of Einstein’s paper, which ex-
plained the concept of energy quantum of the electrimagnetic wave. Expect-
ing a strong opposition, the title was scrupulously worded: On a Heuristic
Viewpoint Concerning the Production and Transformation of Light. No-
tice that the word propagation is avoided. The adjective “heuristic”, rarely
used in scientific literature, is an attempt to disperse objections. The para-
graph showed on Fig. 2.1 said emphatically that the wave theory of light,
“has worked well in the representation of purely optical phenomena and will
probably never be replaced by another theory”, such as diffraction, reflec-
tion, refraction, dispersion, etc. However, the continuous wave theory may
“lead to contradictions with experience when it is applied to the phenomena
of emission and transformation of light”.

Einstein argued that in order to explain experimental observations dur-
ing production and transformation of light, energy is always transferred in

1During the selection process in 1921, the Nobel Committee for Physics decided that
none of the year’s nominations met the criteria as outlined in the will of Alfred Nobel.
According to the Nobel Foundation’s statutes, the Nobel Prize can in such a case be
reserved until the following year, and this statute was then applied. Albert Einstein
therefore received his Nobel Prize for 1921 one year later, in 1922.
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Fig. 2.1. Einstein’s paper on energy quantum of light. The title and a key para-
graph of the paper cited for the 1921 Nobel Prize in Physics, the second paper Einstein
published on Annalin der Physik in 1905. First, Einstein emplasized the correctness of
the wave theory of light. Then, he listed and discussed four experimental observation
that led to contradiuction with the wave theory of light, and proposed the concept of
light quantum. The word “heuristic” was attempted to disperse objections.

an integer mutliple of an indivisible unit he called energy quantum ε,

ε = hf, (2.1)

here h is the Planck constant, f is the frequency. Max Planck proposed
this postulation in 1900 as a mathematical trick to explain his blackbody
radiation formula, see Section ??. Einstein took it seriously as a basic law
of physics. He discussed four cases: blackbody radiation, photofluorescence,
photoelectric effect, and ionization of gases by ultraviolet light. The first
six sections are about blackbody radiation. Einstein discussed in detail on
the validity of the Planck postulation. Especially, Einstein pointed out that
by comparing the Planck formula of blackbody radiation with experimental
data, the Avogadro constant is found to be 6.17×1023/mole, consistant
with the value from other sources. In Section 7, he cited the Stokes’s rule
of photoluminescence of light that the frequencies of outgoing radiation
is always lower than the wavelengths of incoming radiation. This can be
explained naturally by assuming that the energy of higher frequency light
quanta is always higher than the energy of lower frequency light quanta.
Section 8 discussed the photoelectric effect. He made an order of magnitude
estimate that the light quanta of ultraviolet light should be greated than
the energy to eject an electron from typical metals, or the workfunction of
the metals. Section 9 is about the ionization of gases with ultraviolet light.
Experimentally, the threshold voltage to ionize a gas is about 10 V, and the
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Fig. 2.2. Lenard’s apparatus for studying photoelectric effect. A quartz
window allows the UV light from an electric arc lamp to shine on a target. The voltage
between the target and the counter electrode is controlled by an adjustable power sup-
ply. An ammeter is used to measure the electric current generated by the UV light, the
photocurrent. By gradually increasing the voltage (with the polarity as shown), the pho-
tocurrent is reduced. The voltage with which the photocurrent becomes zero is recorded
as the stopping voltage [?].

largest wavelength of light to ionize a gas is 1.9×10−5 cm. Usign Eq. 1.8,
the two thresholds are roughly equivalent.

Attention from the academic community was concentrated to Section 8,
where Einstein proposed an experimentally verifiable formula relating the
frequency of incoming light and the kinetic energy of outgoing electrons.
The formula, referred to the “law of photoelectric effect” by the Nobel Com-
mitee, was tested by Robert Millikan with a series of careful experiments
for 10 years, and found to be surprisingly accurate.

2.1.1 The photoelectric effect

The photoelectric effect was discovered accidentally by Heinrich Hertz in
1887 during experiments to generate electromagnetic waves. Since then, a
number of studies have been conducted in an attempt to understand the
phenomena. Around 1900, Phillip Lenard did a series of critical studies on
the relation of the kinetic energy of ejected electrons with the intensity and
wavelength of the impinging light [?]. His results were in direct conflict with
the wave theory of light.

Figure 2.2 shows schematically the experimental apparatus of Phillip
Lenard. The entire setup was enclosed in a vacuum chamber. An electric



44 Wave and Quantum

Table 2.1: Stopping Voltage for Photocurrent

Rod Driving Distance Photocurrent Stopping

material current (A) to target (cm) (pA) voltage (V)

Carbon 28 33.6 276 -1.07

Carbon 20 33.6 174 -1.12

Carbon 28 68 31.7 -1.10

Carbon 8 33.6 4.1 -1.06

Zinc 27 33.6 2180 -0.85

Zinc 27 87.9 319 -0.86

Source: P. Lenard, Annalen der Physik , 8, 167 (1902) [?].

arc lamp, using carbon rods or zinc rods as the electrodes, generates strong
UV light. A quartz window allows such UV light to shine on a target made
of different metals. The target and a counter electrode are connected to
an adjustable power supply. An ammeter is used to measure the electric
current generated by the UV light, the photocurrent, especially when the
voltages between the two electrodes are very small. By gradually increasing
the voltage, which tends to reflect the electrons back to the target, the
photocurrent is reduced. The voltage with which the photocurrent becomes
zero is recorded as the stopping voltage.

The stopping voltage is apparently related to the kinetic energy of the
electrons ejected from the target:

eV =
1

2
mv2. (2.2)

Understandably, the photocurrent varies with the intensity of light. By
changing the magnitude of the current that drives the arc or the distance
from the arc lamp to the target, the photocurrent could change by two
orders of magnitude: for example, from 4.1 to 276 pA. An unexpected and
dramatic effect Lenard observed was that no matter how strong or how
weak the light is, and no matter how large or how small the photocurrent
is, the stopping voltage does not change; see Table 2.1. The stopping voltage
changes only when the material for the electric arc lamp changes. However,
for a given type of arc, the stopping voltage stays unchanged.

The effect Lenard observed has no explanation in the framework of the
wave theory of light. According to the wave theory of light, the more intense
the light is, the more kinetic energy the electrons acquire.
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2.1.2 Einstein’s law of photoelectrical effect

Einstein proposed an explanation that the energy of light can only be trans-
ferred as an integer numtiple of energy quantum ε, solely depending on its
frequency f ,

ε = hf, (2.3)

where h = 6.63×10−34 J · s is the Planck constant. Einstein also proposed a
simple formula that can be tested experimentally. When a photon interacts
with an electron in the metal, it transfers the radiation energy ε to the
electron. The electron could escape from the metal by overcoming the work
function W of the metal, typically a few electron volts. If the energy of the
photon is smaller than the work function of the metal, the electron would
stay in the metal. If the energy of the photon is greater than the work
function of the metal, then the electron can escape from the metal surface
with an excess kinetic energy,

T =
1

2
mv2 = hf −W. (2.4)

Einstein took an example of near ultraviolet light, λ = 0.29μm, and
the frequency is 1.03× 1015 s−1. The energy of the photon is 6.9× 10−19J,
or 4.3 eV, in line with the workfunction of the metal W used by Lenard.
The kinetic energy of an escaping electron can be measured by an external
voltage, or electric field, to turn it back onto the target. Voltage just enough
to cancel the kinetic energy is called the stopping voltage,

e Vstop =
1

2
mv2 = hf −W, (2.5)

where e is the electron charge, 1.60 × 10−19 C. According to Einstein’s
theory of light quantum, the stopping voltage is linearly dependent on the
frequency of the radiation and independent of the intensity of light. The
slope should be a universal constant, which provides a direct method to
determine the value of the Planck constant h,

ΔVstop
Δf

=
h

e
. (2.6)

The quantities in Eq. 2.6 are well-defined. It can be verified by direct
experiments and to obtain the value of the Planck constant.

2.1.3 Millikan’s experimental verification

Einstein’s theory of photons was rejected by a number of prominent physi-
cists for many years, including Max Planck, Niels Bohr, and notably Robert
Millikan. Starting in 1905, for 10 years Millikan tried very hard to exprimen-
tally disprove Einstein’s theory. Comparing with the primitive experiments
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Fig. 2.3. Result of Millikan’s experiment on photoelectric effect. Figure 3 of
Millikan’s 1916 Physical Review paper on experiment on photoelectric effect. Six spectral
lines of a mercury lamp are used, with wavelengths in nm marked with the blue boxes.
Planck’s constant was directly obteined from the slope of the curve with frequencies of
the radiation and the stopping voltages. [?].

of Phylip Lenard, Millikan had much more resources to do precision mea-
surements to verify the Planck-Einstein relation ε = hf . Using six spectral
lines fron a powerful mercury lamp with wavelengths carefully measured,
showing in the blue boxes, Millikan’s determination of the Planck’s con-
stant was definitive and straightforward. In 1916, Millikan published a long
paper on Physical Review, entitled A Direct Photoelectric Determination of
Planck’s h [?]. The conclusion reads as follows:

1. Einstein’s photoelectric equation has been subject to very
searching tests and it appears in every case to predict exactly
the observed results.

2. Planck’s h has been photoelectrically determined with a pre-
cision of about .5 percent.

An interesting fact is that in the same paper Millikan emphatically re-
jected Einstein’s theory of photons. He said that Einstein’s photon hypothe-
sis “may well be called reckless first because an electromagnetic disturbance
which remains localized in space seems a violation of the very conception of
an electromagnetic disturbance, and second because it flies in the face of the
thoroughly established facts of interference.” Millikan wrote that Einstein’s
photoelectric equation, although accurately representing the experimental
data, “cannot in my judgment be looked upon at present as resting upon
any sort of a satisfactory theoretical foundation [?].”

Millikan’s objection was not all unreasonable. Einstein was clear in his
1905 paper that the quantization of radiation energy only occurs at its
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Fig. 2.4. Albert Einstein and Robert Millikan. Both Einstein and Millikan won a
Nobel Prize for their contributions to the photoelectric effect. Photograph taken in 1930
when Robert Millikan invited Albert Einstein to a conference in California. Original
photograph courtesy of Smithsonian Museum, slightly cleaned up by the author.

emission and conversion; in other words, only occurs upon interacting with
atomic systems. Nevertheless, there is a widesprerad misunderstanding that
light behaves like Newtonian material points during propagation in the free
space. According to such a popular point of view, a photon can be described
as a geometrical point with a well-defined trajectory in space.

The experiments of Millikan only proved that when light interactes with
atomic systems, the amount of radiation energy transfer is always an integer
multiple of the light quantum ε, determined by its frequency f . It is not a
proof that light is a spray of particles during propagation.

In the following subsection, the nature of light quantum is clarified
through the analysis of two examples, three-polaizer experiment of Paul
Dirac, and the double-slit interference experiment of Thomas Young.

2.1.4 Nature of the energy quantum of light

As emphasized by Einstein in his Nobel-Prize winning 1905 paper, energy
quantization occurs only during the emission and transformation of radia-
tion. During propagation, as a wave, light follows the Maxwell theory of
electromagnetism, never behaves like a spray of Newtonian material points,
as such a view would lead to absurdity.

Consider first the Dirac three-polarizer experiment discussed in Section
1.3.6. By passing a beam of natural light through a polarizer, the outcom-
ing light in compartment B is fully polarized, for example, in x-direction.
By placing a second polarizer in y-direction, the light is blocked. However,
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Fig. 2.5. Paradox of Dirac’s three-polarizer experiment. The concept that light
is conposed of individual material points during propagation in free space leads to ab-
surdity, as shown by the three-polarizer experiment. (1) In compartment A, the photons
of the natural light are a mixture of different polarizations. After passing polarized P1,
all photons are x-polarized. No such photons can pass the y-polaizer P2, as expected.
(2) By inserting a polarizer P3 in compartment B with a slanted direction, some of the
photons can go through. However, there is no mechanism to switch those photons’ po-
larization to y-direction. Therefore, there is no light comes out in compartment C. To
solve this paradox, one should stand by Maxwell’s theory that during propagation, light
is an electromagnetic wave, not as a spray of particles.

by placing a third polarizer with a slanted polarization angle, light can go
through. Maxwell’s theory of light provides a perfect quantitative explana-
tion to the results, see Section 1.3.6. Note that Maxwell’s theory is strictly
linear, thus the result is independent of the intensity of light.

If light is a stream of material points, when the intensity of light is weak,
a light beam is composed of widely separated individual photons. After the
first polarizer, each photon should be polarized in x-direction. As shown in
Fig. 2.5(1), no such photons can go through the y-polarizer. From a particle
point of view, this is still understandable.

By inserting a third polarizer P3 with a slanted angle between P1 and
P2, experimentally, some light goes through into compartment C. The par-
ticle view encounters difficulties in its interpretation. Because each photon
in compartment B is polarized in x-direction, with a slanted polarization
angle, some of the photons can go through. However, there is no mecha-
nism to switch the polarization of each x-polarized particle to y-direction.
Therefore, the particle view is in conflict with experimental observations.

The solution to this paradox is to stick to Einsten’s original statement,
that radiation energy is quantized only during emission and transformation.
During the process of propagating, for example, in compartment (B), light
is a wave governed by Maxwell’s theory, not a spray of particles.

Second, consider the double-slit experiment, as shown in Fig. 2.6. It is
known for many decades that even at extremely low intensity, that individ-
ual photons are observed on a sensitive light sensor such as a CCD chip,
interference still presists. If light is composed of individual particles, each
such particle can only go through one of the two slits. Interference can never
happen. To resolve this paradox, one should stand by Einstein’s original
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Fig. 2.6. Paradox of the double-slit experiment. The concept that light is
conposed of individual particles during propagation in free space leads to absurdity, as
shown by the double-slit experiment. According to the particle point of view, each photon
can only pass through one of the two slits. When the light intensity is very low, the photon
passes slit (A) and the photon passes slit (B) are unrelated. No interference pattern can
be observed. To resolve this paradox, one should stand by Einstein’s statement in his
original publication that during propagation, light as an electromagnetic wave, follows
Maxwell’s theory of light, not as a spray of particles.

statement that during propagation, light follows Maxwell’s theory of light
as an electromagnetic wave, not as a spray of particles.

In the advanced quantum theory of light, quantum electrodynamics,
outlined in Chapter 11, Einstein’s original view is represented precisely by
sophisticated mathematics. For example, in compartment B of Fig. 2.5,
light is represented by standing waves. Each of the standing waves spreads
out in the entire compartment evenly. And yet the energy of each mode of
standing wave is quantized. The quantized electromagnetic field still con-
forms to the rules of superposition as a consequence of Maxwell’s equations.
However, upon interacting with atomic systems, radiation energy can only
be transfered by an integer multiple of the light quantum.

2.2 Electron as a quantized wave

2.2.1 Experimental studies of the cathode ray

In 1897, J. J. Thomson studied the stream emitted from the cathode (nega-
tive electrode) in a vacuum tube, see Fig. 2.7. Naturally, it is called cathode
ray. Typically, the cathode is heated with a filment to red hot. The cath-
ode ray is then accelerated by a positive anode, then flows through a hole.
Although cathode ray is not perceptable by naked eye, when it hits a fluo-
rescent film inside the vacuum tube, visible light is generated.

To study the properties of the cathode ray, Thomson placed a pair of
electrodes on the way the cathode ray passes. By applying a voltage on
the pair of electrodes, the cathode ray is deflected, indicating as a stream
of negatively charged material particles. Assuming each such particle has
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Fig. 2.7. Schematics of J. J. Thomson’s experiment. In a vacuum tube, the
cathode (negative electrode), especially when heated, emits a ray of negatively charged
material towards the anode (positive electrode). By placing a pair of deflection plates in
its path, the cathode ray bends toward the positive plate. The charge-to-mass ratio of
the particles can be determined by direct measurements.

an electrical charge e and mass me, the charge-to-mass ratio e/me of the
cathode ray can be determined experimentally, see Fig. 2.7.

Before entering to the field of the deflection plates, the particles are
accelerated to a velocity in the x-direction, vx. Denote the distence of the
two deflecting electrodes as D, with a deflecting voltage V , the force acting
on each particle is

F =
eV

D
. (2.7)

Denote the length of the deflection electrodes as L, the time the particle
passes through is

t =
L

vx
. (2.8)

According to Newton’s law, Eq. 1.2, after passing the deflection plates, the
particle gains a velocity in the y-direction,

vy =
Ft

me
=

eV L

mevxD
. (2.9)

By traveling through a distance x to the fluorescent screen, the y-displacement
of the particle is detemined by

y

x
=
vy
vx

=
eV L

mev2xD
. (2.10)

The charge-to-mass ratio is then

e

me
=
v2xDy

V Lx
. (2.11)

Throught experiments, Thomson found the ratio is

e

me
≈ 1.759 × 1011 C/Kg. (2.12)
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In the 19th century, there was a controversy of whether the cathode
ray is a wave or a stream of particles. The interpretation of Thomson’s
experiment is based on Newtonian mechanics. However, soon it was found
that the electron beam is a wave, and the Young’s double-slit experiment
of interference was observed, especially in the electron microscopes.

In the 20th century, the cathode ray found a widespread application
in TV sets, computer displays, and oscilloscopes, called CRT (cathode-ray
tubes). Although CRT was largely replaced by the solid-state displays, one
application of the cathode ray is still alive and strong, that is the elec-
tron microscope. The resolution of the optical microscopes is limited by
the wavelength of the visible light, which is a fraction of a micron. The
wavelength of electron beams can be much smaller than a nanometer. Nev-
ertheless, in the interpretation of high-resolution electron microscopy, the
wave nature of electrons is indespensible.

The double-slit interference experiments for electrons were conducted
even with very weak electron beams, where from a näıve point of view the
electrons are well separated. The observed interference pattern indicates
that in free space, the electrons must be described as waves. In an advanced
formalism of quantum mechanics, the path-integral approach of Feynman,
outlined in Chapter 12, the interference effect in the double-slit experiment
is natural: For an electron to travel from point A to point B in space, all
possible paths in the entire open space must be taken into account.

2.2.2 Millikan’s oil-drop experiment

In 1923, the Nobel Committee announced that Robert Millikan won the
Nobel Prize in physics “for his work on the elementary charge of electricity
and on the photoelectric effect”. Before working on verifying Einstein’s
law of photoelectric effect, he spent five years (1908-1913) to study the
quantization of electric charge.

Figure 2.8 shows a schematics of the experimental setup. A spray gun
creates tiny oil drops from the upper chamber, then fall down to the lower
chamber through a small hole. The X-ray ionizes the air and generates free
electrons. Some of the electrons are attached to some oil drops. A power
supply provides a controllable voltage on the electrodes.

Each oil drop is subject to gravity force mg, pulling downwards, see
Fig.2.8(A); and the electrostatic force from the high-voltage electrodes on
the electrical charges in the oil drop. If electrical charge is quantized with a
minimum unit e, then the electrical force should depend on the number of
electrons in the oil drop, see Fig.2.8(B) and (C). By adjusting the voltage
V , an oil drop could stay immobile when the net force is zero

neV

D
= mg, (2.13)



52 Wave and Quantum

where n is the number of electrons in the oil drop, V is the electrical field
intensity and D is the distancd between the two electrodes.

The mass of the oil drop can be determined by turning off the voltage,
then the oil drop is subject to gravity and the viscosity force of air. Because
the viscosity force is proportional to the radius r and the mass is propor-
tional to r3, the radius of the oil drop can be detedmined by the steady
speed of free fall, and its mass can be calculated.

In 1913, Millikan published a paper on Physicsl Review, entitled On the
Elementary Electrical Charge and the Avogadro Constant. He reported that
the observed charge on the oil drop “showed a very exact multiple relation-
ship under all circumstances – a fact which demonstrated very directly the
atomic structure of the electric charge”. The value he reported is within
1% to the currently recognized value,

e = 1.603 × 10−19 C. (2.14)

Combing with the value of charge-to-mass ratio, Eq. 2.12, the mass of the
electron is

me = 9.109 × 10−31 Kg. (2.15)

Because the value of the elementary charge is the Faraday constant divided

Fig. 2.8. Schematics of Millikan’s oil-drop experiment. Using an atomizer,
drops of oil is formed in the upper chamber of the setup. Some of the oil drops fall
through a hole to the lower chamber. The air in the lower chamber can be ionzed by
X-ray to generate free electrons. The electrons can attached to the oil drops to make it
charged. (A), without attached electrons, an oil drop is pulling downwards by gravity
force mg. (B), with one attached electron, the oil drop is pulling upwards by an electric
force eV/D. (C), with two attached electrons, the oil drop is pulling upwards by an
electric force 2eV/D. The electric charge can be detemined by adjusting the voltage to
make the oil drop stationaly. The schematics is not on scale, as the radius of the oil drops
is only about a micron.
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by the Avogadro constant, Millikan’s experiment also gave the most accurate
value of Avogadro constant at that time.

Millikan’s oil-drop experiment proved that electrical charge is quantized:
the total electrical charge on any isolated subject must be an integer mul-
tiple of the elementary charge e. It does not mean that an electron is a
geometrical point. On the contrary, to reduce the total energy of the sys-
tem, the charge of a single electron is spread over the entire oil drop.

2.2.3 The de Broglie wave

Several years before the wave nature of electrons were observed experimen-
tally, French physicist Louis de Broglie extended Einstein’s postulation that
light can be both wave and quantum to all particles, including the electron,
in his 1924 Ph.D. thesis entitled Recherches sur la théorie des quanta. Here
is a heuristic argument leads to the wave property of electrons.

As shown in Eq. 1.59, a general form of a wave is

u(x, t) = a sin(kx− ωt+ φ), (2.16)

here ω = 2πf is the angular velocity, and k = ω/v is the wavevector.
According to Einstein, from Eq. 2.1, for light, the energy quantum ε is

ε = hf = h̄ω, (2.17)

where h̄ is a reduced Planck’s constant often called the Dirac constant

h̄ ≡ h

2π
= 1.054× 10−34 J · s. (2.18)

To describe a wave, a wave vector k is also required. Intuitively, de Broglie
guessed that k is related to the momentum p of the particle, and the relation

Fig. 2.9. Louis de Broglie. French

physicist (1892–1987), proposed a the-

ory of general wave-quantum duality in

his 1924 Ph.D. thesis, then won the 1929

Nobel Prize in physics. He was born to

a noble family in France and became the

7th duc de Broglie in 1960. In 1942, he

was elected as the Perpetual Secretary

of the French academy of sciences. Af-

ter the second world war, he proposed

the establishment of multi-national re-

search laboratory, leading to the estab-

lishment of European Organization for

Nuclear Research (CERN).
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can be obtained through a heuristic argument as follows. In general, the
the momentum p is defined as in Eq. 1.3,

p = mv. (2.19)

For a photon with energy ε, according to Einstein’s relation between mass
and energy, the mass is

m =
ε

c2
. (2.20)

Because the velocity of the photon is c, its momentum is

p = mc =
ε

c
. (2.21)

Using Eq. 2.17, Eq. 2.21 becomes

p =
h̄ω

c
. (2.22)

According to Eq. 1.61, the relation between angular frequency and wave
vector is through the velocity of the wave v,

k =
ω

v
. (2.23)

Because the speed of light is c, Eq. 2.22 becomes

p = h̄k. (2.24)

Equation 2.24 is the second equation correlating a particle with a wave as
de Broglie proposed for all particles, including electrons.

Therefore, as proposed by de Broglie, both light and cathode ray –
electrons – are waves. For light, as an electromagnetic wave, the energy is
quantized. The elementary unit, the energy quantum, is proportional to the
frequency. For electrons, as a wave, the electrical charge is quantized. The
unit is a unversal constant, the elementary charge e.

According to the historical records, in 1925, Einsten received a preprint
of de Broglie’s thesis. Einstein highly appreciated the idea, then immedi-
ately sent a letter to Schrödinger for his attention. In just a few months,
based on the idea of de Broglie, Schrödinger formulated his wave equa-
tion of electrons and derived the Rydberg formula for the hydrogen atom.
Quantum mechanics in its most productive form was born.



Chapter 3

The Schrödinger equation

The year 1905 was Albert Einstein’s annum mirabilis when he published
four papers on Annalen der Physik that literally started the modern physics.
Similarly, the year 1926 was Erwin Schrödinger’s annum mirabilis with five
papers published on the same journal Annalen der Physik that defined non-
relativistic quantum mechanics. Thus commented Paul Dirac in 1929: “The
underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known”.
Those papers, belonging to the defining publications of modern science, are
still worth reading. Here is a brief summary of the first two:

The first paper, Quantization as an Eigenvalue Problem, Part I, defined
a wavefunction ψ, which is “everywhere real, single-valued, finite, and con-
tinuously differentiable up to the second order”, as a offspring of the action
function S. Then, a differential equation of ψ is presented as a variation of
the Hamilton-Jacobi equation of the action function S. By applying that
equation to the hydrogen atom, the Rydberg formula was explained.

The second paper, Quantization as an Eigenvalue Problem, Part II, pre-
sented a parallelism of the relation of quantum mechanics and classical me-
chanics with the relation of wave optics and geometrical optics. He empha-
sized that the wave nature of electrons is fundamental, and the particle view
is a macroscopic approximation. He also presented an even simpler way to
introduce the differential equation of the wavefunction based on de Broglie

Fig. 3.1. Austrian banknote with a portrait of Schrödinger. It is a rare honor
for a scientist to have a portrait printed on a banknote. Note the large value.
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Fig. 3.2. First page of Schrödinger’s first paper on quantum mechanics.
The first paragraph said: “In this communication, I would first treat a simple case, the
non-relativistic and unperturbed hydrogen atoms. ... Quantization comes up naturally
similar to the nodes of a vibrating string. I believe that the new understanding can
be generalized to gain deep insight to the nature of quantum phenomena”. Schrödinger
created a wavefunction ψ as an offspring of the action S, that is “everywhere real, single-
valued, finite, and continuously differentiable up to the second order”.

duality. Three further problems were treated: the harmonic oscillator, rigid
rotor and non-rigid rotor, all related to molecular physics.

Because for applications in atomic physics, chemistry, molecular biology,
and solid-state electronics, time-independent Schrödinger’s equation with
real wavefunctions are almost always sufficient, we will not present time-
dependent phenomena until Part III of the book, Supplements.

3.1 The real Schrödinger equation

In the first two 1926 papers of Erwin Schrödinger, a time-independent wave
equation with real wavefunctions ψ was created as a variation of the equa-
tion of motion in classical mechanics Eq. 1.11 using the de Broglie relation
Eq 2.24. Two basic problems, the hydrogen atom and the harmonic oscil-
lator, were resolved. Here we follow Schrödinger’s footsteps.
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Consider one-dimensional case first. A time-independent wavefunction
ψ(x) is a standing wave, satisfying the Helmholtz equation, Eq. 1.69:

d2ψ(x)

dx2
= −k2ψ(x). (3.1)

According to Eq. 2.24, de Broglie’s relation between momentum p and wave
vector k is,

p = h̄k. (3.2)

Following Eqs. 3.1 and 3.2, the square of momentum is

p2 = − h̄2

ψ(x)

d2ψ(x)

dx2
. (3.3)

Following Eq. 1.11, for an electron with mass me moving in a potential
energy function V , a key equation in classical mechanics is

p2

2me
+ V (x) = E. (3.4)

Insert the expression of p2 in Eq. 3.3 into Eq. 3.4, multiply both sides by
ψ(x), a differential equation for wavefunction ψ(x) is obtained,

− h̄2

2me

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (3.5)

This is the one-dimensional time-independent Schrödinger equation.
It straightforward to generalize Eq. 3.5 to three-dimensional space. Sim-

ilar to Eq. 1.76, the wave equation in three-dimensional space is

∂2ψ(r)

∂t2
= v2Δψ(r), (3.6)

with the Laplace operator Δ defined as

Δ ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (3.7)

Similar to Eqs. 1.78 and 1.79, the Helmholtz equation is

Δψ(r) = −k2ψ(r). (3.8)

According to Eq. 3.2, the square of momentum is

p2 = − h̄2

ψ(r)
Δψ(r). (3.9)

The three-dimensional time-independent Schrödinger equation is then

− h̄2

2me
Δψ(r) + V (r)ψ(r) = Eψ(r). (3.10)

Equations 3.5 and 3.10 are the Schrödinger equations sufficient for almost
all practical problems in the real world, including atomic physics, chemistry,
molecular biology, and solid-state electronics.
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3.2 Electrons in a one-dimensional box

To illustrate the meanings of the Schrödinger equation and wavefunctions,
the problem of electrons in a one-dimensional box is studied. Assume the
length of the box is L. Within the box, 0 < x < L, the potential is zero.
Schrödinger’s equation is

− h̄2

2me

d2ψ(x)

dx2
= Eψ(x). (3.11)

Outside the boxe, the potential is high. No electrons can exist outside the
boxe. The situation sets up the boundary conditions for the solutions of
Eq. 3.11: at the boundaries, x = 0 and x = L, the wavefunction must be
zero.

Introduce a wave vector k defined as

k =

√
2meE

h̄
, (3.12)

the Schrödinger’s equation, Eq. 3.11 becomes

d2ψ(x)

dx2
= −k2ψ(x). (3.13)

Fig. 3.3. Wavefunctions in a one-dimensional box. The wavefunctions are labeled
by the two quantum numbers, nx and ny . For clarity, the Dirac notations are applied,
see Section 3.3. The nodal structures in the wavefunctions largely determines their char-
acteristics. Wavefunctions with different nx and/or ny are orthogonal, see Eq. ??.
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The general solution of Eq. 3.13 is

ψ(x) = C sin(kx+ φ), (3.14)

where C is a normalization constant, and φ is a phase angle. Because at
x = 0, the wavefunction must be zero, the only possible solution is with
φ = 0:

ψ(x) = C sin(kx). (3.15)

The boundary condition that the wavefunction is zero at the other end of
the box, x = L, requires that

k =
nπ

L
, (3.16)

where n is an integer.
In classical mechanics, as in Eq. 3.4, energy can take any value. In

quantum mechanics, because of condition Eq. 3.16, energy is quantized : it
can only take one of the descrete values detemined by Eqs. 3.12 and 3.16:

En =
n2h̄2π2

2meL2
, (3.17)

where n = 1, 2, 3, . . . is an integer.
Those allowed values of energy are called the energy eigenvalues, adapted

from German, the proper values of energy.
Because the Schrödinger equation is linear to the wavefunction, the con-

stant C does not affect the determination of energy eigenvalues. According
to Schrödinger, the square of the wavefunction is correlated to the charge
density of an electron in the space:

ρ = e|ψ|2. (3.18)

Because the total charge of an electron over the space equals to one ele-
mentary charge e, the integral over the entire space must equal to 1. In the
current situation, ∫ L

0

|ψ(x)|2 dx = 1. (3.19)

Because the average value of the square of sine function over any number
of half periods is 1/2, for all quantum numbers, the constant is

C =

√
2

L
. (3.20)

The wavefunctions are

ψn(x) =

√
2

L
sin

nπx

L
. (3.21)



60 The Schrödinger equation

It is straightforward to show that eigenstates with different quantum
numbers n are orthogonal. In fact, using Eq. 3.21,∫ L

0

dx ψn(x)ψm(x) = δnm, (3.22)

which is zero only when n �= m.

3.3 The Dirac notation

The notations of wavefunctions, Eq. 3.21, and the integrals, Eqs. 3.19 and
3.22, occurs very often in quantum mechanics. In the third edition of Prin-
ciples of Quantum Mechanics, Dirac introduced the bra and ket notations,
that greatly simplifies mathematical notations in quantum mechanics. In
Part I and Part II of this book, wavefunctions are real. A wavefunction
can be denoted either by a bra or by a ket. For the case of electrons in a
two-dimensional box, it is either

〈n| =
√

2

L
sin

nπx

L
, (3.23)

or

|n〉 =
√

2

L
sin

nπx

L
. (3.24)

A complete braket represents an integral of two wavefunctions,

〈n|m〉 =
∫ L

0

dx ψn(x)ψm(x). (3.25)

The orthogonization and normalization condition in Dirac notation is simply

〈n|m〉 = δnm. (3.26)

The Schrödinger equation, Eq. ??, can be written as

Ĥ|ψ〉 = E|ψ〉 (3.27)

by defining a Hamiltonian operator or simply Hamiltonian

Ĥ ≡ − h̄2

2me

d2

dx2
. (3.28)

A hat is marked to denote that it is not an ordinary number, but an operator
that makes sense only when acting upon a wavefunction.
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3.4 Harmonic Oscillator

In quantum mechanics, the harmonic oscillator is the most prevailing prob-
lem. It describes the oscillation of molecules and solids near its equilibrium
point. The electromagnetic wave can be decomposed into a number of sim-
ple harmonic oscillators. Using the quantization procedure presented here,
the electromagnetic waves can be quantized. It is the basis of quantum
electrodynamics, the complete theory of radiation and matter.

From Eqs. 1.26 and 3.5, the Schrödinger equation for a one-dimensional
harmonic oscillator is(

− h̄2

2m

d2

dx2
+
m

2
ω2x2

)
ψ(x) = Eψ(x). (3.29)

By introducing a dimensionless coordinate q defined as

q ≡
√
mω

h̄
x, (3.30)

the Schrödinger equation Eq. 3.29 becomes

1

2

(
− d2

dq2
+ q2

)
h̄ωψ(q) = Eψ(q). (3.31)

3.4.1 Creation operator and annihilation operator

As we have presented in previous sections, the basic concept in quantum
mechanics is the wavefunction, and it is governed by a partial differential
equation, the Schrödinger equation. In some cases, the process of obtaining
solutions of partial differential equations can be greatly simplified by using
differential operators with algabraic methods. This is especially true for the
solution of the harmonic oscillator.

In order to find an algabraic solution of the harmonic oscillator, a pair
of operators are introduced: an annihilation operator,

â =
1√
2

(
q +

d

dq

)
, (3.32)

and a creation operator

â† =
1√
2

(
q − d

dq

)
. (3.33)

The meanings of these terms well be clarified soon. Those operators not only
greatly simplify the solution of the quantum-mechanical harmonic oscillator
problem, but also serve the basis of quantum field theory.
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By acting on any function of q, a simple algebra shows that the two
operators satisfy the following commutation relation,

[â, â†] ≡ ââ† − â†â = 1. (3.34)

Also by a simple algebra, the Schrödinger equation Eq. 3.31 becomes(
â†â+

1

2

)
h̄ωψ(q) = Eψ(q). (3.35)

3.4.2 Algebraic solution of the Schrödinger equation

In the following, we will show how to utilize Eq. 3.34 to solve the Schrödinger
equation Eq. 3.35. First of all, it is sufficient to resolve the following alge-
braic equation. In Dirac notation (see Section 3.3), it is

â†â|n〉 = un|n〉. (3.36)

Here the eigenstates are labeled by a number n with eigenvalue un. By
comparing Eq. 3.35 with Eq. 3.36, the energy eigenvalues are

En =

(
un +

1

2

)
h̄ω. (3.37)

As a consequence of Eq. 3.34, if |n〉 is an eigenstate with eigenvalue un,
then â|n〉 is also an eigenstate,

â†â â|n〉 = (ââ† − 1)â|n〉 = (un − 1) â|n〉 (3.38)

with eigenvalue un−1. Because 〈n|â†â|n〉 must not be negative, there must
be an eigenstate with minimum value, un = 0. For such a state,

â†â|0〉 = 0. (3.39)

On the other hand, also as a consequence of Eq. 3.34, if |n〉 is an eigenstate
with eigenvalue un, then â

†|n〉 is also an eigenstate

â†ââ†|n〉 = â†(â†â+ 1)|n〉 = (un + 1)â†|n〉 (3.40)

with eigenvalue un +1. Starting with the lowest eigenstate |0〉, by applying
â† many times, we have

â†â
(
â†
)n |0〉 = n

(
â†
)n |0〉. (3.41)

Because the engenvalue of the zeroth eigenstate |0〉 of the operator â†â
is zero, and each time a creation operator â† is applied, the eigenvalue is
added by 1, the eigenvalues of the operator â†â equals to an integer, the
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number of times the a creation operator applied. Therefore, except for a
numerical constant, it is the n-th eigenstate of the operator â†â:

|n〉 = Cn

(
â†
)n |0〉. (3.42)

The operator â†â is deservably called the particle number operator,

N̂ ≡ â†â, (3.43)

because its eigenvalue is the number of energy quanta,

N̂ |n〉 = n|n〉. (3.44)

The normalization constant Cn can be determined as follows. The
zeroth-order state is by definition normalized,

〈0|0〉 = 1. (3.45)

By applying â† many times, we have

〈0| (â)n (â†)n |0〉 = n!. (3.46)

Therefore, Cn = (n!)−1/2, and

|n〉 = 1√
n!

(
â†
)n |0〉. (3.47)

Table 3.1: Wavefunctions of the harmonic oscillator

State Energy wavefunction

|0〉 1

2
h̄ω

1√√
π
e−q2/2

|1〉 3

2
h̄ω

1√
2
√
π
2qe−q2/2

|2〉 5

2
h̄ω

1√
2
√
π

(
2q2 − 1

)
e−q2/2

|3〉 7

2
h̄ω

1√
3
√
π

(
2q3 − 3q

)
e−q2/2

|4〉 9

2
h̄ω

1√
24
√
π

(
4q4 − 12q2 + 3

)
e−q2/2

|5〉 11

2
h̄ω

1√
60
√
π

(
4q5 − 20q3 + 15q

)
e−q2/2
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Following Eq. 3.37, the energy eigenvalues of the harmonic oscillator is

En =

(
n+

1

2

)
h̄ω. (3.48)

The energy level of the harmonic oscillator is thus quantized, with energy
quanta h̄ω. The operator â† adds an energy quanta to the oscillator, thus
having the name creation operator ; the operator â removes an energy quanta
from the oscillator, thus having the name annihilation operator.

3.4.3 Explicit expressions of the wavefunctions

The above algebraic solution provides the simplest approach to find explicit
expressions of the wavefunctions. First, from Eqs. 3.39 and 3.32, the zeroth-
order wavefunction |0〉 = ψ0(q) should satisfy(

q +
d

dq

)
ψ0(q) = 0. (3.49)

The solution is

ψ0(q) = C0 exp

(
−q

2

2

)
. (3.50)

Fig. 3.4. Energy levels and wavefunctions of a harmonic oscillator. The solid
curve is the potential energy. The wavefunctions of the first five eigenstates are shown.
The red shade indicates positive phase, and blue shade indicates negative phase. The
y-position of the energy eigenvalue is the baseline for the wavefunction.
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The normalization constant C0 can be determined directly by∫ ∞

−∞
ψ2
0(q)dq = C2

0

∫ ∞

−∞
exp(−q2)dq = C2

0

√
π = 1, (3.51)

which gives

C0 = π−1/4. (3.52)

All wavefunctions of the harmonic oscillator |n〉 = ψn(q) can be obtained
from Eqs. 3.33 and 3.47 using Eqs. 3.50 and 3.52:

ψn(q) =
1√

2nn!
√
π

(
q − d

dq

)n

exp

(
−q

2

2

)
. (3.53)

The first few wavefunctions are listed in Table 3.1, and graphically dis-
played in Fig. 3.4. The solid curve, a parabola, reporesents the potential
energy as a function of the normalized coordinate q. The horizontal lines
represent the energy levels of the eigenstates. For the region inside the
potential curve, energy level E is greater than the potential energy. The
wavefunction resembles a sinusoidal wave. Outside the potential curve, the
energy level is lower than the potential curve. The wavefunction resembles
an exponantial function decaying into the barrier. The lowest eigenstate
has an energy value of 1

2 h̄ω. The wavefunction has no node. The energy
eigenvalue increases by h̄ω each step, while a new node is added. Those
nodal structures make the wavefunctions orthogonal to each other.

3.5 The Hydrogen Atom

Hydrogen atom is a central subject of quantum mechanics. The accurate
interpretation of the Rydberg formula marked a groundbreaking triumph.
Many predictions of relativistic quantum electrodynamics are verified by
measurements on the hydrogen atom. The hydrogen wavefunctions are the
foundation for the understanding of complex atoms and atomic systems.

Fig. 3.5. Hydrogen atom in

spherical polar coordinates. The

center of the coordinate system is the

positively charged proton. The force

and potential energy V only depends

on radius r. Therefore, it is natu-

ral to use spherical polar coordinates,

with radius r, polar angle θ, and az-

imuth ϕ.
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There are only two real-world systems that the Schrödinger equation has
analytic solutions: the hydrogen atom, and the hydrogen molecular ion, H+

2 ,
which is the basis to understand the chemical bond, and how condensed
matter is formed. The ground-state wavefunction of hydrogen atom is also
the starting point of the perturbation treatment of chemical bonds.

In SI unit system, the potential energy function V (r) is the Coulomb
attractive force from the positively charged proton, see Eq. 1.123,

V (r) = − e2

4πε0 r
. (3.54)

Because the electron mass me is much smaller than the proton mass, to a
good approximation, the Schrödinger equation is

− h̄2

2me

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
ψ − e2

4πε0 r
ψ = Eψ. (3.55)

The potential only depends on r. It is natural to solve the equation in polar
coordinates: radius r, polar angle θ, and azimuth ϕ, defined as

x = r sin θ cosϕ,

y = r sin θ sinϕ,

z = r cos θ.

(3.56)

See Fig. 3.5. Equation 3.55 becomes

− h̄2

2me

[
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
− 1

r2
L2ψ

]
− e2

4πε0 r
ψ = Eψ. (3.57)

where the angular momentum operator L2 is defined as

L2ψ ≡ − 1

sin2 θ

[
∂2ψ

∂ϕ2
+ sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)]
. (3.58)

The solutions of Eqs. 3.57 and 3.58 are presented in the following sections.

3.5.1 The Ground State

First, we study the ground state, where the wavefunction ψ only depends
on r. The Schrödinger equation Eq. 3.57 becomes

− h̄2

2me

1

r2
d

dr

(
r2
dψ

dr

)
− e2

4πε0 r
ψ = Eψ, (3.59)

From an intuitive point of view, since the electron is being attracted by
the positively changed proton, the wavefunction should concentrate near
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the proton, and decays with distance r. Therefore, to resolve Schrödinger’s
equation Eq. 3.59, we use the following trial function

ψ = Ce−r/a, (3.60)

where a is a parameter to be determined, and C is a normalization constant.
Insert Eq. 3.60 into Eq. 3.58, eliminate the common factor ψ, we obtain

h̄2

mear
− h̄2

2mea2
− e2

4πε0 r
= E. (3.61)

To have a valid solution for all values of r, the two terms with common
factor 1/r must cancel each other. It implies

a =
4πε0h̄

2

mee2
. (3.62)

Therefore, the trial function Eq. 3.60 is a valid solution of Eq. 3.59, and
the decay length is a, given by Eq. 3.62. The rest of Eq. 3.61 provides an
expression of the energy eigenvalue

E = − h̄2

2mea2
= − mee

4

32ε20π
2h̄2

. (3.63)

The parameter a in Eq. 3.62 equals the Bohr radius,

a0 ≡ 4πε0h̄
2

mee2
≈ 52.9 pm. (3.64)

The absolute value of the energy eigenvalue in Eq. 3.63 is the Rydberg con-
stant, which agrees well with experimental findings,

Ry ≡ mee
4

32ε20π
2h̄2

≈ 13.6 eV. (3.65)

In order to determine the normalization constant C, we note that ac-
cording to Schrödinger, the square of the wavefunction is correlated to the
charge density of that single electron in space,

ρ = e|ψ|2, (3.66)

requiring that the integration of |ψ|2 over the entire space is 1,∫ ∞

0

4π|ψ|2r2dr =
∫ ∞

0

4πC2e−2r/a0r2dr = 1, (3.67)

which yields

C =
1√
πa30

. (3.68)
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Fig. 3.6. Wavefunction of ground-state hydrogen atom. (A) amplitude plot
of the wavefunction. The decay constant is a0, Eq. 3.64. (B) the amplitude profile.
Wavefunction is the form of existence of electrons. The wavefunction of the ground state
represents an electron at rest. There is no internal structure, no motion at all.

The ground-state wavefunction of hydrogen atom is then

|1s〉 ≡ ψ1s =
1√
πa30

e−r/a0 . (3.69)

The subscript 1s indicates that it is the lowest state and is spherically
symmetric. In SI units, a0 = 0.0529 nm, and the constant C is 46.37 nm−3/2.
A density plot and an amplitude contour of the ground-state wavefunction of
hydrogen atom are shown in Fig. 3.6. Wavefunction is the form of existence
of the electron. The ground state represents an electron at rest. There is
no internal structure, and no motion at all. The electrical charge of that
electron at rest is smeared around the proton. The charge density of the
electron is higher in the immediate vicinity of the proton.

3.5.2 Spherical harmonics

To find the solutions for the excited states, the standard method of resolving
partial differential equations, separation of variables, similar to that for the
timpani in Section 1.2.2 and the square potential well in Section ??, is used.
The wavefunction is written as a product of a function of radius R(r) and
a function of angle variables, Y (θ, ϕ), called spherical harmonics :

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ). (3.70)

Insert into Eq. 3.57, we find

− h̄2

2me

1

R(r)

d

dr

(
r2
dR(r)

dr

)
− e2r

4πε0
− Er2 = − h̄2

2me

1

Y (θ, ϕ)
L2Y (θ, ϕ).

(3.71)
The left-hand side of the equation depends only on r, and the the right-hand
side of the equation of the spherical harmonics depends only on angular
variables θ and ϕ. Therefore, both sides must be a constant.
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In the following, using the differential equation for the function Y (θ, ϕ),
Eq. 3.58, we look for the explicit value of constant λ:

− 1

sin2 θ

∂2Y (θ, ϕ)

∂ϕ2
− 1

sin θ

∂

∂θ

(
sin θ

∂Y (θ, ϕ)

∂θ

)
= λY (θ, ϕ). (3.72)

The angular variables can be separated by writing Y (θ, ϕ) as a product,

Y (θ, ϕ) = Θ(θ)Φ(ϕ). (3.73)

Insert Eq. 3.73 into Eq. 3.72, we obtain

sin2 θ

Θ

[
1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λΘ

]
= − 1

Φ

d2Φ

dϕ2
. (3.74)

The left-hand side only depends on θ, and the right-hand side only depends
on ϕ. Both sides must be a constant. The function Φ(ϕ) should be a
sinusoidal function of an integer multiple of ϕ, either

Φ(ϕ) = cos mϕ (3.75)

or
Φ(ϕ) = sin mϕ, (3.76)

to satisfy the ordinary differential equation

d2Φ

dϕ2
+m2 Φ = 0. (3.77)

The non-negative integer m is called azimuthal quantum number.
The right-hand side of Eq. 3.74 is then

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
Θ+ λΘ = 0, (3.78)

To solve Eq. 3.78, we use a trail function

Θ(θ) = sinm θ. (3.79)

Insert Eq. 3.79 into Eq. 3.78, after a short algebra, we obtain

−m(m+ 1)Θ + λΘ = 0. (3.80)

Therefore, it is a good solution with

λ = m(m+ 1). (3.81)

Because λ is a parameter for Θ, a function of polar angle θ, we define a
polar quantum number l by

λ = l(l + 1). (3.82)
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For the case of l = m, the expression of Θ(θ) in Eq. 3.79 is correct. In
general, m could be smaller than l. The expressions for a general case is
complicated. However, we need only a few more cases, and the expressions
are fairly simple. Here is a complete list:

Θ10(θ) = cos θ, l = 1, m = 0; (3.83)

Θ20(θ) = 3 cos2 θ − 1, l = 2, m = 0; (3.84)

and
Θ21(θ) = cos θ sin θ, l = 2, m = 1. (3.85)

The correctness of those solutions can be verified by Eq. 3.78,

1

sin θ

d

dθ

(
sin θ

dΘlm(θ)

dθ

)
− m2

sin2 θ
Θlm(θ) + l(l + 1)Θlm(θ) = 0, (3.86)

which is left as an exercise.

Table 3.2: Spherical Harmonics

Mathematical Chemist’s Formula in angular In Cartesian

notation Name variables coordinates

Y00(θ, ϕ) s
1√
4π

1√
4π

Y10(θ, ϕ) pz

√
3

4π
cos θ

√
3

4π

z

r

Y g
11(θ, ϕ) px

√
3

4π
sin θ cosϕ

√
3

4π

x

r

Y u
11(θ, ϕ) py

√
3

4π
sin θ sinϕ

√
3

4π

y

r

Y20(θ, ϕ) dz2

√
5

4π

(
3

2
cos2 θ − 1

2

) √
5

4π

(
3

2

z2

r2
− 1

2

)
Y g
21(θ, ϕ) dxz

√
15

4π
cos θ sin θ cosϕ

√
15

4π

zx

r2

Y u
21(θ, ϕ) dyz

√
15

4π
cos θ sin θ sinϕ

√
15

4π

zy

r2

Y g
22(θ, ϕ) dx2−y2

√
15

16π
sin2 θ cos 2ϕ

√
15

16π

x2 − y2

r2

Y u
22(θ, ϕ) dxy

√
15

16π
sin2 θ sin 2ϕ

√
15

4π

xy

r2
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For applications in chemistry and molecular biology, expressions of spher-
ical harmonics in Cartesian coordinates are useful. And it looks simpler.
Table 3.2 lists the first nine spherical harmonics in real variables, which rep-
resents a complete list of spherical harmonics often used in chemistry and
molecular biology. In the Table, superscript g means symmetric versus x,
and superscript u means antisymmetric versus x. In most books on math-
ematical physics and quantum mechanics, complex spherical harmonics are
listed. The index l is sometimes called the orbital quantum number, and
the index m is sometimes called magnetic quantum number, which implies
a complex exponential function. In chemistry and molecular biology, the
real spherical harmonics are commonly used. Chemists have special names
for those angular dependences, as shown in the second column, Chemist’s
names. Owing to the origin of those angular dependences, referring to Fig-
ure 3.5, the label l is called the polar quantum number, and the label m,
also non-negative, is called the azimuthal quantum number. The numerical
constant such as 1/

√
4π is to normalize the spherical harmonics,∫ π/2

−π/2

cos θ dθ

∫ 2π

0

dφ |Ylm(θ, φ)|2 = 1. (3.87)

3.5.3 Energy eigenvalues of excited States

By applying the factor l(l+ 1) in Eq. 3.86 to replace the right-hand side of
Eq. 3.71, its left-hand side becomes

− h̄2

2me

[
1

r2
d

dr

(
r2
dR(r)

dr

)
− l(l + 1)R(r)

r2

]
+

e2

4πε0r
R(r) = ER(r). (3.88)

To resolve Eq. 3.88, by intuition, we use the following trial function

R(r) = C rbe−r/a, (3.89)

where the parameters a and b are to be determined by Eq. 3.88, and C
is a normalization constant. Insert Eq. 3.89 into Eq. 3.88, eliminate the
common factor R(r), we obtain an equation

− h̄2

2me

[
b(b+ 1)

r2
− l(l + 1)

r2
+

2(b+ 1)

ar
− 1

a2

]
+

e2

4πε0 r
= E. (3.90)

To cancel the two terms with 1/r2, a sufficient condition is

b = l. (3.91)

To cancel the two terms with 1/r, one must have

a = (b+ 1)
4πε0h̄

2

mee2
= (b+ 1)a0. (3.92)
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The remaining terms in Eq. 3.90 determine the energy eigenvalue

E = − h̄2

2mea2
= − Ry

(b+ 1)2
. (3.93)

In all those formulas, (b+ 1) occurs. Define an integer label n,

n = b+ 1, (3.94)

which is the principle quantum number. The wavefunction is

ψ = Crn−1e−r/na0 Ylm(θ, ϕ). (3.95)

The energy eigenvalue only depends on the principle quantum number n,
perfectly explains the experimentally discovered Rydberg formula,

En = −Ry

n2
. (3.96)

The length scale of the wavefunction, a = na0, is a useful parameter for
further study of the hydrogen wavefunction. It is

a = na0 =
h̄√−2meE

. (3.97)

Similar to Eq. 3.67, the normalization constant is found to be

C =

√
22n+1

π(2n+ 2)! (na0)2n+3
. (3.98)

In Fig. 3.7, we show some interesting cases. Following Eq. 3.79, for
m = l, the spherical harmonics up to a normalization constant is

Y g
ll (θ, ϕ) ∝ sinl θ cos lϕ, (3.99)

and
Y u
ll (θ, ϕ) ∝ sinl θ sin lϕ. (3.100)

The wavefunctions shown in Fig. 3.7 are on the plane z = 0, where sin θ = 1.
Using Eqs. 3.91 and 3.94, l = n− 1. The explicit expressions are

ψg ∝ rn−1e−r/na0 cos(n− 1)ϕ, (3.101)

and
ψu ∝ rn−1e−r/na0 sin(n− 1)ϕ, (3.102)

where the subscript g and u indicates even and odd with respect to x-axis.
Those wavefunctions represent standing waves on the z = 0 plane. As re-
marked by Schrödinger in his first 1926 paper, the energy-level quantization
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Fig. 3.7. Wavefunctions of excited-states of hydrogen atom. Wavefunctions in
Eqs. 3.101 and 3.102, standing waves on the horizontal plane z = 0. For each principle
quantum number, there is an even wavefunction symmetric regarding the x-axis, and an
wavefunction antisymmetric regarding the x-axis. The energy level, Eq. 3.96, depends
only on the principle quantum number n, explains the Rydberg formula.

in hydrogen atom resembles the nodes of a vibrating string in Section 1.2.1.
The electron, attracted by the proton, is trapped in the proton’s electrical
field. However, an electron is fundamentally a wave. It cannot collapse
into the proton. It forms standing waves around the proton. Similar to a
vibrating string, different patterns of standing waves with different number
of nodes are formed, resulting in different energy levels.

In analogy to Newtonian mechanics, those eigenstates with fixed en-
ergy eigenvalues correspond to motions with a constant speed. According
to Newton’s first law of mechanics, a system will keep its state of motion
until an external force acting on it. In quantum mechanics, without ex-
ternal interactions, an eigenstate is stationary. Similar to Newton’s second
law, external forces such as radiation fields can cause transitions between
different eigenstates. Details will be presented in Chapters 10 and 11.

3.5.4 Wavefunctions

In the previous Subsection, following a simple mathematical procedure, spe-
cial solutions of Eq. 3.88 are derived. Due to a high degree of degeneracy,
all energy eigenvalues are obtained. Especially, for the cases of l = n−1 and
m = l, wavefunctions are shown in Figs 3.6 and 3.7. Nevertheless, Eq. 3.88
does have other useful solutions.

Inspired by the special solutions, a dimensionless variable ρ is introduced
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Table 3.3: Wavefunctions of the hydrogen atom

Name State Wavefunction r̄ (a0)

1s |1s0〉 1√
π
e−r 1.5

2s |2s0〉 1

2
√
2π

(1− 1

2
r) e−r/2 6

2px |2p1u〉 1

4
√
2π

x e−r/2 5

2py |2p1g〉 1

4
√
2π

y e−r/2 5

2pz |2p0〉 1

4
√
2π

z e−r/2 5

3s |3s0〉 1

3
√
3π

(1− 2

3
r +

2

27
r2) e−r/3 13.5

3px |3p1u〉 2

27
√
6π

(1− 1

6
r)x e−r/3 12.5

3py |3p1g〉 2

27
√
6π

(1− 1

6
r)y e−r/3 12.5

3pz |3p0〉 2

27
√
6π

(1− 1

6
r)z e−r/3 12.5

3dz2 |3d0〉 2

27
√
6π

(z2 − 1

3
r2) e−r/3 10.5

3dxz |3d1u〉 2

27
√
6π

xz e−r/3 10.5

3dyz |3d1g〉 2

27
√
6π

yz e−r/3 10.5

3dxy |3d2u〉 2

27
√
6π

xy e−r/3 10.5

3dx2−y2 |3d2g〉 4

27
√
6π

(x2 − y2) e−r/3 10.5

by scaling the radius r using the length a = na0 in Eq. 3.97,

ρ =
r

a
. (3.103)

Equation 3.88 becomes

1

ρ2
d

dρ

(
ρ2
dR(ρ)

dρ

)
+

[
−1− l(l + 1)

ρ2
+

2n

ρ

]
R(ρ) = 0. (3.104)



3.5 The Hydrogen Atom 75

Fig. 3.8. Hydrogen wavefunctions. The phase, either positive or negative, is shown
in different color. The value is indicated by intensity, but scaled slightly to facilitate
visualization. As shown in the last column of Table 3.3, the size of wavefunctions with
different principle quantum number n varies dramatically. All the figures showing here
are accurately sized according to the Scale at the bottom of the Figure.

In the process of the algebra, Eq. 3.64 is applied to obtain

mea e
2

2πε0h̄
2 =

a

a0
= n. (3.105)

Analogous to Eqs. 3.89 and 3.91, we make a substitution

R(ρ) = ρl e−ρ F (ρ). (3.106)

Insert Eq. 3.106 to Eq. 3.104, the differential equation for F (ρ) is obtained:

ρ
d2F (ρ)

dρ2
+ 2(l + 1− ρ)

dF (ρ)

dρ
+ 2(n− l − 1)F (ρ) = 0. (3.107)

It is the differential equation for associate Laguerre polynomials, well known
for mathematicians for two centuries. The general formula is fairly cumber-
some. In condensed-matter physics, chemistry and molecular biology, only
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a few more cases are needed. Here is a complete list.

F (r) = 1− 1

2

r

a0
, n = 2, l = 0; (3.108)

F (r) = 1− 2

3

r

a0
+

2

27

(
r

a0

)2

, n = 3, l = 0; (3.109)

F (r) = 1− 1

6

r

a0
, n = 3, l = 1. (3.110)

Those expressions can be verified by directly inserting those polynomials
F (r) into Eq. 3.107. It is left as an exercise.

By combining the radial functions in Eq. 3.106, using Eqs. 3.108 through
3.110 and the spherical harmonics in Table 3.2, we found the first nine
wavefunctions of the hydrogen atom, listed in Table 3.3, and in Fig. 3.8. In
Table 3.2, the first column shows the chemist’s name of the wavefunction.
The second column is in Dirac notation. The expression of the wavefunction,
column 3, is in Cartesian coordinates with Bohr radius a0 as unit. The last
column is the average size of the wavefunction, also in unit of a0.

3.5.5 Degeneracy and Wavefunction Hybridization

The energy eigenvalues of the hydrogen atom only depends on the principle
quantum number n. For each principle quantum number, there are n2 differ-
ent wavefunctions: it is n2-fold degenerate. For n = 2, there are four states,
|2s〉, |2px〉, |2py〉, and |2pz〉. Because the Schrödinger equation is linear,
any linear superposition of wavefunctions with the same energy eigenvalue
is also a good wavefunction with the same energy eigenvalue. Especially,
an s-wavefunction can make linear superposition with p-wavefunctions, to
form hybrid wavefunctions. This concept is fundamental in chemistry, such

Fig. 3.9. Hybrid sp1 wavefunctions. The phase of the wavefunction is shown by
color, positive in red, negative in blue. The equal-value contours are also shown. The
main lobe spans a wide angle. It is difficult to show both on the same figure.
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Fig. 3.10. Hybrid sp2 wavefunctions. The three sp2 hybrid wavefunctions are
pointing to the three vertices of a regular triangle, 120◦ apart in the same plane. The
phase, positive or negative, is shown by color. The equal-value contours are also shown.

as for carbon and silicon, especially in organic chemistry. Here we show the
concept of hybridization using the hydrogen wavefunctions.

Figure 3.9 shows two sp1 hybrid wavefunctions. (A) is with a positive
2px wavefunction,

|2sp1+〉 = 1√
2
|2s〉+ 1√

2
|2px〉, (3.111)

resulting in a wavefunction preferentially concentrated in the +x direction;
and (B) is with a negative 2px wavefunction,

|2sp1−〉 = 1√
2
|2s〉 − 1√

2
|2px〉, (3.112)

resulting in a wavefunction preferentially concentrated in the −x direction.
This happens for example in acetylene C2H2, for both the σ-bond between
the two carbon atoms, and the two C-H bonds.

Figure 3.10 shows three sp2 hybrid wavefunctions. The formulas are

|2sp2u〉 = 1√
3
|2s〉+

√
2

3
|2py〉, (3.113)

|2sp2l〉 = 1√
3
|2s〉 − 1√

2
|2px〉 − 1√

6
|2py〉, (3.114)

and

|2sp2r〉 = 1√
3
|2s〉+ 1√

2
|2px〉 − 1√

6
|2py〉, (3.115)

respectively. It is the basic structure of grapheme and carbon nanotubes.
In ethylene, C2H4, the sp1 hybrid wavefunctions are the basis of both the
σ-bond between the two carbon atoms, and the four C-H bonds.
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Fig. 3.11. Hybrid sp3 wavefunctions. (A), one of the four hybrid wavefunctions. The
other three have the same shape but different orientation, pointing to the four vertices
of a regular tetrahedron. (b), a regular tetrahedron.

A prevailing hybridization is the sp3 mode, where one s-wavefunction is
linearly superposed with three p-wavefunctions to form four hybrid wave-
functions pointing to the four vertices of a tetrahedron, see Fig. 3.11. A set
of sample formula is

|t111〉 = 1

2
(|2s〉+ |2px〉+ |2py〉+ |2pz〉) ,

|t1̄11̄〉 = 1

2
(|2s〉 − |2px〉+ |2py〉 − |2pz〉) ,

|t1̄1̄1〉 = 1

2
(|2s〉 − |2px〉 − |2py〉+ |2pz〉) ,

|t11̄1̄〉 = 1

2
(|2s〉+ |2px〉 − |2py〉 − |2pz〉) .

(3.116)

It is the backbone of all alkanes, including methane, ethane, propane, bu-
tane, etc., and the crystalline structures of diamond and silicon.

In some quantum chemistry textbooks, those hybrid wavefunctions are
depicted as sharply oriented long and narrow bulbs, to emphasize the direc-
tional effect. Often, three or four such long and narrow bulbs are shown in
a single drawing. As shown here, the accurate amplitude contours of wave-
functions of sp-hybridizations span a broad angle. It is difficult to depict
three or four such hybrid wavefunctions on a single graph.

By comparing Fig. 3.4 with the vibrational modes of a string, Fig. 1.8,
a striking resemblence is found. As an objective reality, wavefunction is of
the same nature as the standing waves in classical physics.


