


Quantum mechanics is the centerpiece of modern physics. It
is the foundation of modern technologies benefiting everyday life
of everybody. For many decades, learning introductory quan-
tum mechanics was hampered by unintelligible paradoxes. How-
ever, the advanced quantum physics, quantum field theory, is free
from paradoxes. This is because in quantum field theory, both
electrons and radiation are treated as continuous fields, while
in some introductory quantum mechanics textbooks, electrons
are treated as fictitious material points. The split-personality of
electrons and radiation is the origin of paradoxes.

Starting from the modern all-fields view that both electrons
and radiation are continuous fields, this introductory quantum
mechanics textbook is logically consistent and covers all essen-
tial applications with no paradoxes. It is designed for freshman
and sophomore students majoring in physics, chemistry, solid
state electronics, materials science, and molecular biology. The
minimal mathematical prerequisite is the high-school advanced-
placement calculus or equivalent. It also provides a conceptual
bridge to quantum field theory. To improve intuitiveness, two-
colored graphs are used to show wavefunctions.

This textbook can be used for a one-semester course or a two-
semester course. For students already learned classical physics
and partial differential equations but not interested in advanced
topics, Chapters 2 through 7 fits a one-semester course. A more
complete course takes two semesters.
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ning tunneling microscopy. He authored Introduction to Scan-
ning Tunneling Microscopy (Oxford University Press 1993, 2007,
2021), a standard reference book in nanoscience. In 2007, he
joined the Department of Applied Physics and Applied Mathe-
matics of Columbia University. For twelve consecutive years, he
teaches a graduate-level course Physics of Solar Energy, explain-
ing the quantum physics of solar cells and photosynthesis.



Preface

Quantum mechanics is the centerpiece of modern physics. It underlies much
of modern science and technology, including transistors and integrated cir-
cuits, light-emitting diodes, solar cells, lasers, all of chemistry, and molecu-
lar biology. Ideally, all students majoring in science and engineering should
learn quantum mechanics in their freshman or sophomore years. However,
teaching and learning quantum mechanics have always been difficult mainly
due to the unintelligible paradoxes and controversies. Even grand masters
of physics found them annoying. Richard Feynman famously said, “I think
I can safely say that nobody understands quantum mechanics”.

In the second half of the 20th century, quantum electrodynamics, the
relativistic quantum field theory of radiation and matter, was established.
It predicted the values of physical quantities such as the anomalous mag-
netic dipole moment of the electron to better than one part in a trillion.
Remarkably, that advanced quantum theory is free from paradoxes and con-
troversies. Leading quantum field theorists including Steven Weinberg and
Frank Wilczek commented that the source of paradoxes in elementary quan-
tum mechanics is the relics of classical physics. Quantum field theory has
a unified view that both radiation and matter are continuous fields while
photons and electrons are quanta of these fields. However, in elementary
quantum mechanics, radiation and matter were often treated differently.
Radiation was described by Maxwell’s equations, where both coordinates r
and time t are field parameters. Neverthelesss, the electron was described
as a material point with a trajectory r(t); where the coordinates r were
treated as dynamic variables. Such a split personality is incompatible with
special relativity, where r and t should be on the same footing. In quantum
field theory, the electron is described by a Dirac spinor, a function of r and
t, same as electromagnetic fields. Because Schrödinger’s wavefunction is a
nonrelativistic approximation of Dirac’s spinor, it should also be treated as
a physical field, with both r and t are field parameters.

The above arguments were elaborated by Art Hobson in a series of arti-
cles published in American Journal of Physics and The Physics Teacher.1

Those papers summarize the views of leading quantum field theorists, and
propose a better way to teach elementary quantum mechanics by treating
electrons not as material points, but as quanta of the continuous wavefunc-
tion. The paradoxes and controversies are eliminated.

During the early 21st century, using the scanning tunneling microscope,
atomic and molecular wavefunctions are observed and mapped down to sub-

1A. Hobson, “Electrons as field quanta: A better way to teach quantum physics in
introductory general physics courses”, Am. J. Phys, 73 630 (2005); “Teaching Quantum
Physics Without Paradoxes”, The Physics Teacher, 45, 96 (2007); “There are no particles,
there are only fields”, Am. J. Phys, 82 211 (2013).
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picometer resolution with negligible disturbance. Even the nodal structures
inside the molecular wavefunctions are observed and mapped. Those ex-
periments proved that wavefunctions are physical fields as designated by
quantum field theory. No point-like electrons were observed.2

Motivated by the experimental discovery and the need of my students
to learn quantum mechanics without paradoxes, I tried to teach quan-
tum mechanics based on the all-field concept for several years. This book
manuscript is based on the lecture notes. My teaching experience indicated
that the all-field concept has additional benefits. The difficult mathemati-
cal prerequisites, such as Hilbert space, Lagrangian–Hamiltonian mechanics,
and probability theory, can be avoided. Furthermore, by teaching partial
differential equations during the early lectures in classical physics, espe-
cially acoustics and electromagnetics, the mathematical prerequisite can be
as low as high-school advanced-placement calculus. Therefore, it can be
a freshman-sophomore course for students with less mathematical train-
ing. Nevertheless, it provides many topics in quantum mechanics sufficient
for applications in condensed-matter physics, materials science, solid-state
electronics, all branches of chemistry, and molecular biology. A conceptual
bridge to quantum field theory is also established.

To improve intuitiveness, two-color graphics is extensively used to rep-
resent wavefunctions. According to the Wigner theorem, if the Hamiltonian
is time-reversal invariant, all wavefunctions are real. By displaying wave-
functions with two colors, for example, red or blue as positive or negative,
intuitiveness is greatly improved. Color graphics also improves the under-
standing of many other physical concepts.

Following is a brief summary of the Chapters.

Chapter 1, A Review of Classical Physics. In Section 1.1, Newtonian me-
chanics is presented for an easy transition to quantum mechanics. Neverthe-
less, the näıveté of the material-points concept is emphasized to avoid mis-
understandings. Section 1.2 presents wave phenomena, including standing
waves, eigenvalues, eigenfunctions, nodal structures, orthogonality, and su-
perposition. For students with no exposure to partial differential equations,
this section is a teaching-by-example introduction. Section 1.3 presents
Maxwell’s theory that light as an electromagnetic wave. The concept of po-
larization is presented in detail to prepare for a correct explanation of the
electron spin. In some textbooks, spin is presented as a property of an single
electron designated as a material point, that causes gross misunderstand-
ings. In fact, electron spin is equivalent to polarization of light. Finally,
starting with a simple proof of the Euler formula eix = cosx + i sinx, the
powerfulness of complex numbers in treating wave phenomena is presented
with examples in planar geometry and electromagnetism.

2C. J. Chen, Introduction to Scanning Tunneling Microscopy, Third Edition, Oxford
University Press 2021. Chapter 8, Imaging Wavefunctions.
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Chapter 2, Wave and Quantum. From the beginning, the correct con-
cept in quantum field theory that electron is a continuous physical field,
like electromagnetic fields, is emphasized. The terms electron and photon
mean that energy, mass, and electrical charge are quantized when inter-
acting with other fields. There are no material points. The chapter starts
with Einstein’s theory of quantization of light: when light is generated or
converted into other forms, energy is quantized. In free space, light is an
electromagnetic wave, not a spray of geometrical points. Similarly, accord-
ing to quantum field theory, electron is always a field, not a material point.
Accordingly, Compton effect is presented in terms of waves. Finally, black-
body radiation is presected in details, including Einstein’s 1916 derivation,
that shows the true mesaning of quantization.

Chapter 3, The Static Schrödinger Equation. A simple and intuitive
derivation of Schrödinger’s equation is presented based on the de Broglie
postulate and the classical energy integral. Solutions of the harmonic oscil-
lator and the hydrogen atom are presented in real variables. The solutions of
the harmonic oscillator are presented using creation and annihilation opera-
tors in real variables. It is intuitive and very simple. Quantization of bosons
in the occupation-number representation, or the Fock space, is presented to
provide a bridge to quantum field theory.

Chapter 4, Many-Electron Systems. Many-electron wavefunctions and
the Slater determinants are introduced based on Pauli exclusion principle
and the electron spin. The Hartree-Fock method and the density func-
tional theory are presented. Quantization of fermions, formulated by the
anti-commutative creation and annihilation operators in the Fock space,
is presented. It is intuitive, and the mathematics is simple. It provides
another bridge to quantum field theory.

Chapter 5, The Chemical Bond. Four types of chemical bonds are de-
scribed: the van der Waals bond, the covalent bond, the ionic bond, and
the hydrogen bond. A perturbation theory of the covalent bond is described
in detail. As an example, the hydrogen molecular ion is treated in detail
analytically. The homonucleus diatomic molecules are presented.

Chapter 6, The Dynamic Schrödinger Equation. By presenting the wave-
function as a two-component real field, the dynamic Schrödinger equation
is derived from de Broglie’s postulate and the classical energy integral. The
two-component real wavefunction is invariant under an SO(2) group, which
is equivalent to SU(1). The complex wavefunction is introduced with a proof
of gauge invariance. The operator algebra initially presented in Chapter 3
for the harmonic oscillator is extended to complex wavefunctions. The ap-
plications to angular momentum and Pauli’s derivation of energy levels of
hydrogen atom are presented. Finally, the wavepacket as a macroscopic
particle and the Ehrenfest theorem are presented.

Chapter 7, Perturbation Theories. Both static and dynamic perturba-
tion theories are presented through examples. The interaction of radiation
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fields with atomic systems are presented. The golden rule is derived.
Chapter 8, Physics of Semiconductors. The concept of band theory of

solids is presented in terms of a tight-bonding model. Three types of band
structures are presented. Semiconductors with impurities and the working
principles of p-n junctions are explained. The principles of transistors, light-
emitting diodes, and solar cells are explained.

Chapter 9, Quantum Theory of Light. Using the creation operators
and annihilation operators introduced in Chapter 3 and Chapter 4, basic
concepts in quantum field theory especially quantum electrodynamics are
presented. In the interaction picture, Einstein’s three coefficients are derived
and explained.

Chapter 10, Dirac Equation and Pauli Equation. Starting from the rel-
ativistic energy-momentum equation and the de Broglie postulate, Dirac
equation is presented as a physical field. The elementary solution in free
space and the existence of positron is presented. The non-relativistic ap-
proximation, the Pauli equation is presented. The meaning of spin as an
analogy to polarization of light is explained. The Stern-Gerlach experiment
is explained in analogy to the experiments of polarization of light.

This textbook can be used for a one-semester course or a two-semester
course. For students already learned classical physics and partial differential
equations but not interested in advanced issues, Chapters 2 through 7 fits
a one-semester course. A more complete course takes two semesters.

C. Julian Chen

Department of Applied Physics and Applied Mathematics

Columbia University in the City of New York
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Chapter 3

The Static Schrödinger Equation

The year 1905 was Albert Einstein’s annum mirabilis when he published
four papers on Annalen der Physik that literally started the modern physics.
Similarly, the year 1926 was Erwin Schrödinger’s annum mirabilis with six
papers published on the same journal Annalen der Physik that defined non-
relativistic quantum mechanics. Thus commented Paul Dirac in 1929: “The
underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known”.
Those papers, belonging to the defining publications of modern science, are
still worth reading. Here is a brief summary of the important ones:

The first paper, Quantization as an Eigenvalue Problem, Part I, re-
ceived by Annalen der Physik on January 27, 1926, defined a wavefunction
ψ, which is “everywhere real, single-valued, finite, and continuously differ-
entiable up to the second order”. A differential equation of ψ is presented
as a variation of the Hamilton-Jacobi equation. By applying that equation
to the hydrogen atom, the Rydberg formula was explained.

The second paper, Quantization as an Eigenvalue Problem, Part II, pre-
sented a parallelism of the relation of quantum mechanics and classical
mechanics with the relation of wave optics and geometrical optics. He em-
phasized that the wave nature of electrons is fundamental, and the particle
view is a macroscopic approximation. He also presented an even simpler
way to introduce the differential equation of the wavefunction based on de

Fig. 3.1. Austrian banknote with a portrait of Schrödinger. It is a rare honor
for a scientist to have a portrait printed on a banknote. Note the large value.
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Broglie wave. Three further problems were treated: the harmonic oscillator,
rigid rotor and non-rigid rotor, all related to molecular physics.

The dynamic Schrödinger’s equation was introduced in the sixth paper,
received by Annalen der Physik on June 23, 1926. By treating radiation as
classical electromagnetic waves, its effect to atomic systems was resolved as
a perturbation. Tunneling at an atomic scale is also resolved.

We will introduce Schrödinger’s equations in three stages. In this Chap-
ter, the static Schrödinger’s equation for a single electron is introduced.
In Chapter 4, the many-electron version is introduced. In Chapter 6, the
dynamic Schrödinger’s equation is introduced.

3.1 The static Schrödinger equation

The static Schrödinger equation can be derived by applying the de Broglie
postulate to the classical energy integral, Eq. 1.11,

p2

2me
+ V (r) = E. (3.1)

According to de Broglie, the electron is a field. A bound electron is similar
to a standing wave ψ(r), satisfying the Helmhotz equation, Eq. 1.120,

∇2ψ(r) + k2ψ(r) = 0. (3.2)

The wave vector is then

k2 = −∇2ψ(r)

ψ(r)
. (3.3)

According to the de Broglie’s relation, Eq. 2.24,

p = �k. (3.4)

Combining Eq. 3.3 and Eq. 3.4, one finds

p2 = −�
2∇2ψ(r)

ψ(r)
. (3.5)

Insert Eq. 3.5 into Eq. 3.1, multiply both sides by ψ(r), a differential equa-
tion for wavefunction ψ(r) is obtained,

− �
2

2me
∇2ψ(r) + V (r)ψ(r) = Eψ(r). (3.6)

This is the the static Schrödinger equation.
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3.2 Wavefunctions in a potential well

To illustrate the meanings of the Schrödinger equation and wavefunctions,
the problems of electrons in a potential well is analyzed. The similarity to
sound waves is explained. The Dirac notations are introduced.

3.2.1 One-dimensional potential well

Consider first a one-dimensional potential well of length L. Within the well,
the potential is zero. Schrödinger’s equation is

− �
2

2me

d2ψ(x)

dx2
= Eψ(x). (3.7)

Assuming the wall is infinitely high. The boundary conditions are: at the
boundaries, x = 0 and x = L, the wavefunction must be zero.

Introduce a wave vector k defined as

k =

√
2meE

�
, (3.8)

the Schrödinger’s equation Eq. 3.7 becomes

d2ψ(x)

dx2
= −k2ψ(x). (3.9)

The general solution of Eq. 3.9 is

ψ(x) = C sin(kx+ φ), (3.10)

where C is a normalization constant, and φ is a phase angle. Because at
x = 0, the wavefunction must be zero, one should have φ = 0:

ψ(x) = C sin(kx). (3.11)

The boundary condition at the other end, ψ(L) = 0, requires that

k =
nπ

L
, (3.12)

Fig. 3.2. Wavefunctions in a one-dimensional potential well. The wavefunctions
are labeled by quantum number n, similar to the sound waves in a bugle. See Fig. 1.17.
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Fig. 3.3. Energy levels in a one-dimensional potential well. The wavefunctions
are labeled by quantum number n. The wavefunctions are similar to the vibration of
string, see Fig. 1.10. The energy eigenvalue is proportional to n2.

where n = 1, 2, 3, . . . is an integer. The wavefunctions are

ψn(x) = C sin
(nπx
L

)
. (3.13)

The constant C will be determined shortly. Figure 3.2 shows the wavefunc-
tions. It is similar to the sound waves in a bugle, see Fig. 1.17.

In classical mechanics, as in Eq. 3.1, energy can take any value. In
quantum mechanics, because of condition Eq. 3.12, energy is quantized : it
can only take discrete values determined by Eqs. 3.8 and 3.12:

En = n2E1 =
n2π2

�
2

2meL2
, (3.14)

Those allowed values of energy are called the energy eigenvalues, adapted
from German, the proper values of energy.

Because the Schrödinger equation is linear to the wavefunction, the con-
stant C does not affect the determination of energy eigenvalues. According
to Schrödinger, the square of the wavefunction is proportional to the charge
density distribution of the electron as a field in space:

ρ(x) = −eψ2(x). (3.15)

Because the total charge of an electron over the space equals to one elemen-
tary charge −e, the integral over the entire space must equal to 1. In the
current situation, the electron is confined in a well of width L,∫ L

0

ψ2(x)dx = 1. (3.16)
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The average value of the square of sine function over any number of half
periods is 1/2. Therefore, for all quantum numbers, the constant is

C =

√
2

L
. (3.17)

The wavefunctions are

ψn(x) =

√
2

L
sin

nπx

L
. (3.18)

It is straightforward to show that eigenstates with different quantum
numbers n are orthogonal. In fact, using Eq. 3.18,∫ L

0

dx ψn(x)ψm(x) = δnm, (3.19)

which is zero when n �= m, and is 1 when n = m.
Furthermore, the set of wavefunctions is complete. Any function f(x) in

the interval [0, L] can be expanded as a sum of those wavefunctions,

f(x) =
∞∑

n=1

bnψn(x), (3.20)

with coefficients

bn =

∫ L

0

f(x)ψn(x) dx. (3.21)

This is a special case of the Fourier theorem, the proof can be found in any
mathematics textbook with Fourier series. Nonetheless, if Eq. 3.20 is true,
it is easy to prove that the expression of the coefficients, Eq. 3.21, is correct.
In fact, because of the orthonormal relation Eq. 3.19,∫ L

0

ψn(x)dx

∞∑
m=1

bmψm(x) =

∞∑
m=1

δnmbm = bn. (3.22)

3.2.2 The Dirac notation

The notations of wavefunctions, Eq. 3.18, and the integrals, Eqs. 3.16 and
3.19, occurs very often in quantum mechanics. In the third edition of Prin-
ciples of Quantum Mechanics, Dirac introduced the bra and ket notations,
that greatly simplifies mathematical notations in quantum mechanics. In
the real formulation of quantum mechanics, bra and ket are equivalent. A
wavefunction can be denoted either as a bra or as a ket. For the case of
electrons in a one-dimensional potential well, it is either

〈n| =
√

2

L
sin

nπx

L
, (3.23)
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or

|n〉 =
√

2

L
sin

nπx

L
. (3.24)

A complete bracket represents an integral of two wavefunctions,

〈n|m〉 =
∫ L

0

dx ψn(x)ψm(x). (3.25)

Obviously, the real Dirac notation is symmetric, or commutative,

〈n|m〉 = 〈m|n〉. (3.26)

The orthogonal and normalizing condition in Dirac notation is

〈n|m〉 = δnm, (3.27)

and the completeness of the wavefunctions means that any function |f〉 in
the same interval [0, L] can be expanded as a sum of the wavefunctions,

|f〉 =
∞∑

n=1

〈n|f〉|n〉. (3.28)

A linear operation on a wavefunction is represented by an operator. To
differentiate it from an ordinary constant, a hat is added, such as ô. Mul-
tiplying the wavefunction with the coordinate, for example x to a one-
dimensional wavefunction, is an linear operation. We denote it as x̂. A
differential operator is defined as

δ̂|f〉 ≡ d

dx
f(x). (3.29)

If for all wavefunctions f and g, two operators α and β satisfying the fol-
lowing relation,

〈α̂f |g〉 = 〈f |β̂g〉, (3.30)

then we say the operator α is an adjoint operator of β, denoted as

α̂† = β̂, or β̂† = α̂. (3.31)

The operator x̂ is obviously self-adjoint,

x̂ = x̂†. (3.32)

However, the differential operator is not. In fact, because∫ ∞

−∞

[
df(x)

dx
g(x) + f(x)

dg(x)

dx

]
dx =

∫ ∞

−∞

d

dx
[f(x)g(x)] dx = 0, (3.33)
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one has
δ̂ = −δ̂†. (3.34)

The Schrödinger equation, Eq. 3.6, can be written as

Ĥ|ψ〉 = E|ψ〉 (3.35)

by defining an energy operator or a Hamiltonian,

Ĥ ≡ − �
2

2me
∇2 + V (r). (3.36)

The energy operator is self-adjoint. The proof is left as an exercise.

3.3 The harmonic oscillator

In quantum mechanics, the harmonic oscillator is of fundamental impor-
tance. It describes the oscillation of molecules and solids near its equilib-
rium point. The electromagnetic wave can be decomposed into a number
of simple harmonic oscillators. Using the quantization procedure presented
here, the electromagnetic waves can be quantized. It is the basis of quantum
electrodynamics, the complete theory of radiation and matter.

From Eqs. 1.26 and 3.6, the Schrödinger equation for a one-dimensional
harmonic oscillator is(

− �
2

2m

d2

dx2
+
m

2
ω2x2

)
ψ(x) = Eψ(x). (3.37)

By introducing a dimensionless coordinate q defined as

q ≡
√
mω

�
x, (3.38)

the Schrödinger equation Eq. 3.37 is simplified to

1

2

(
− d2

dq2
+ q2

)
�ωψ(q) = Eψ(q). (3.39)

3.3.1 Creation operator and annihilation operator

As we have presented in previous sections, the basic concept in quantum
mechanics is the wavefunction, and it is governed by a partial differential
equation, the Schrödinger equation. In some cases, the process of obtaining
solutions of partial differential equations can be greatly simplified with dif-
ferential operators using algebraic methods. This is especially true for the
case of the harmonic oscillator.
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In order to find an algebraic solution of the harmonic oscillator, a pair
of operators are introduced: an annihilation operator,

â =
1√
2

(
q +

d

dq

)
, (3.40)

and a creation operator

â† =
1√
2

(
q − d

dq

)
. (3.41)

From Eqs. 3.32 and 3.34, the creation operator is the adjoint of the annihi-
lation operator. The meanings of these terms well be clarified soon. Those
operators greatly simplify the solution of the harmonic oscillator problem,
and are the basis of quantum field theory.

By acting on any function f(q), a simple algebra shows that the two
operators satisfy a commutation relation. One one hand, we have

ââ†f(q) =
1√
2

(
q +

d

dq

)
1√
2

(
q − d

dq

)
f(q)

=
1

2

(
q2 − d2

dq2
+

d

dq
q − q

d

dq

)
f(q)

=
1

2

(
q2 − d2

dq2
+ 1

)
f(q).

(3.42)

On the other hand, we have

â†âf(q) =
1√
2

(
q − d

dq

)
1√
2

(
q +

d

dq

)
f(q)

=
1

2

(
q2 − d2

dq2
− d

dq
q + q

d

dq

)
f(q)

=
1

2

(
q2 − d2

dq2
− 1

)
f(q).

(3.43)

Here, the obvious identity is applied:

d

dq
(q f(q)) = q

d

dq
f(q) +

dq

dq
f(q) = q

d

dq
f(q) + f(q). (3.44)

Combining Eqs. 3.42 and 3.43, we find the commutation relation

[â, â†] ≡ ââ† − â†â = 1. (3.45)

Through a simple algebra, the Schrödinger equation Eq. 3.39 becomes(
â†â+

1

2

)
�ωψ(q) = Eψ(q). (3.46)

The verification is left as a Problem.
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3.3.2 Algebraic solution of the Schrödinger equation

In this Section, we show how to utilize Eq. 3.45 to solve the Schrödinger
equation Eq. 3.46. Denoting the wavefunction with Dirac notation |n〉 (see
Section 3.2.2), it is sufficient to solve the following algebraic equation,

â†â|n〉 = un|n〉. (3.47)

Here the eigenstates are labeled by a number n with eigenvalue un. By
comparing Eq. 3.46 with Eq. 3.47, the energy eigenvalues are

En =

(
un +

1

2

)
�ω. (3.48)

As a consequence of Eq. 3.45, if |n〉 is an eigenstate with eigenvalue un,
then â|n〉 is also an eigenstate,

â†â â|n〉 = (ââ† − 1)â|n〉 = (un − 1) â|n〉 (3.49)

with eigenvalue un − 1. Because 〈n|â†â|n〉 = 〈ân|ân〉 must not be negative,
there must be an eigenstate |0〉 with a minimum eigenvalue 0,

â†â|0〉 = 0. (3.50)

On the other hand, also as a consequence of Eq. 3.45, if |n〉 is an eigenstate
with eigenvalue un, then â

†|n〉 is also an eigenstate

â†ââ†|n〉 = â†(â†â+ 1)|n〉 = (un + 1)â†|n〉 (3.51)

with eigenvalue un +1. Starting with the lowest eigenstate |0〉, by applying
â† many times, we have

â†â
(
â†

)n |0〉 = n
(
â†

)n |0〉. (3.52)

Because the eigenvalue of the zeroth eigenstate |0〉 of the operator â†â is
zero, and each time a creation operator â† is applied, the eigenvalue is added
by 1, the eigenvalues of the operator â†â equals to an integer, the number
of times the creation operator applied. Therefore, except for a numerical
constant, it is the n-th eigenstate of the operator â†â:

|n〉 = Cn

(
â†

)n |0〉. (3.53)

The operator â†â is deservedly called the particle number operator,

N̂ ≡ â†â, (3.54)

because its eigenvalue is the number of energy quanta,

N̂ |n〉 = n|n〉. (3.55)
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The normalization constant Cn can be determined as follows. The
zeroth-order state is by definition normalized,

〈0|0〉 = 1. (3.56)

By applying â† many times, we have

〈0| (â)n (
â†

)n |0〉 = n!. (3.57)

Therefore, Cn = (n!)−1/2, and

|n〉 = 1√
n!

(
â†

)n |0〉. (3.58)

Following Eq. 3.48, the energy eigenvalues of the harmonic oscillator is

En =

(
n+

1

2

)
�ω. (3.59)

The energy level of the harmonic oscillator is thus quantized, with energy
quanta �ω. The operator â† adds an energy quanta to the oscillator, thus
named a creation operator ; the operator â removes an energy quanta from
the oscillator, thus named an annihilation operator.

3.3.3 Explicit expressions of wavefunctions

The above algebraic solution provides the simplest approach to find explicit
expressions of the wavefunctions. First, from Eqs. 3.50 and 3.40, the zeroth-

Table 3.1: Wavefunctions of the harmonic oscillator

State Energy wavefunction

|0〉 1

2
�ω

1√√
π
e−q2/2

|1〉 3

2
�ω

1√
2
√
π
2qe−q2/2

|2〉 5

2
�ω

1√
2
√
π

(
2q2 − 1

)
e−q2/2

|3〉 7

2
�ω

1√
3
√
π

(
2q3 − 3q

)
e−q2/2

|4〉 9

2
�ω

1√
24
√
π

(
4q4 − 12q2 + 3

)
e−q2/2

|5〉 11

2
�ω

1√
60
√
π

(
4q5 − 20q3 + 15q

)
e−q2/2
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order wavefunction |0〉 = ψ0(q) should satisfy(
q +

d

dq

)
ψ0(q) = 0. (3.60)

The solution is

ψ0(q) = C0 exp

(
−q

2

2

)
. (3.61)

The normalization constant C0 can be determined directly by∫ ∞

−∞
ψ2
0(q)dq = C2

0

∫ ∞

−∞
exp(−q2)dq = C2

0

√
π = 1, (3.62)

which gives
C0 = π−1/4. (3.63)

All wavefunctions of the harmonic oscillator |n〉 = ψn(q) can be obtained
from Eqs. 3.41 and 3.58 using Eqs. 3.61 and 3.63:

ψn(q) =
1√

2nn!
√
π

(
q − d

dq

)n

exp

(
−q

2

2

)
. (3.64)

The first few wavefunctions are listed in Table 3.1, and graphically dis-
played in Fig. 3.4. The solid curve, a parabola, represents the potential

Fig. 3.4. Energy levels and wavefunctions of a harmonic oscillator. The solid
curve is the potential energy. The wavefunctions of the first five eigenstates are shown.
The red shade indicates positive phase, and blue shade indicates negative phase. The
y-position of the energy eigenvalue is the baseline for the wavefunction.
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energy as a function of the normalized coordinate q. The horizontal lines
represent the energy levels of the eigenstates. For the region inside the
potential curve, energy level E is greater than the potential energy. The
wavefunction resembles a sinusoidal wave. Outside the potential curve, the
energy level is lower than the potential curve. The wavefunction resembles
an exponential function decaying into the barrier. The lowest eigenstate
has an energy value of 1

2�ω. The wavefunction has no node. The energy
eigenvalue increases by �ω each step, while a new node is added. Those
nodal structures make the wavefunctions orthogonal to each other.

3.4 The hydrogen atom

Hydrogen atom is a central subject of quantum mechanics. The accurate
interpretation of the Rydberg formula marked a groundbreaking triumph.
Many predictions of relativistic quantum electrodynamics are verified by
measurements on the hydrogen atom. The hydrogen wavefunctions are the
foundation for the understanding of complex atoms and atomic systems.
There are only two real-world systems that the Schrödinger equation has
analytic solutions: the hydrogen atom, and the hydrogen molecular ion, H+

2 ,
which is the basis to understand the chemical bond, and how condensed
matter is formed. The ground-state wavefunction of hydrogen atom is also
the starting point of the treatment of H+

2 .
In Gaussian unit system, the potential energy function V (r) is the at-

tractive force from the positively charged proton, see Eq. 1.182,

V (r) = −e
2

r
. (3.65)

Because the electron mass me is much smaller than the proton mass, to a
good approximation, the Schrödinger equation Eq. 3.6 is

− �
2

2me
∇2ψ − e2

r
ψ = Eψ. (3.66)

Fig. 3.5. Hydrogen atom in

spherical polar coordinates. The

center of the coordinate system is the

positively charged proton. The force

and potential energy V only depends

on radius r. Therefore, it is natu-

ral to use spherical polar coordinates,

with radius r, polar angle θ, and az-

imuth φ.
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The potential only depends on r. It is natural to solve the equation in polar
coordinates, similar to the problem of basketball in Section 1.4. In spherical
polar coordinates, Eq. 3.66 becomes

− �
2

2me

[
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
− 1

r2
L2ψ

]
− e2

r
ψ = Eψ. (3.67)

where the angular momentum operator L2 is defined as

L2ψ ≡ − 1

sin2 θ

[
∂2ψ

∂φ2
+ sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)]
. (3.68)

The solutions of Eq. 3.68 are spherical harmonics, see Sections 1.4.2.

3.4.1 The ground state

First, we study the ground state, where the wavefunction ψ only depends
on r. The Schrödinger equation Eq. 3.67 becomes

− �
2

2me

1

r2
d

dr

(
r2
dψ

dr

)
− e2

r
ψ = Eψ, (3.69)

Intuitively, since the electron is being attracted by the positively charged
proton, the wavefunction should concentrate near the proton, and decays
with distance r. Therefore, to resolve Schrödinger’s equation Eq. 3.69, we
use the following trial function

ψ = Ce−r/a, (3.70)

where a is a parameter to be determined, and C is a normalization constant.
Insert Eq. 3.70 into Eq. 3.69, eliminate the common factor ψ, we obtain

�
2

mear
− �

2

2mea2
− e2

r
= E. (3.71)

The solution should be valid for all values of r. The two terms with common
factor 1/r must cancel each other. It implies

a =
�
2

mee2
. (3.72)

Therefore, the trial function Eq. 3.70 is a valid solution of Eq. 3.69, and
the decay length is a, given by Eq. 3.72. The rest of Eq. 3.71 provides an
expression of the energy eigenvalue

E = − �
2

2mea2
= −mee

4

2�2
. (3.73)
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Fig. 3.6. Wavefunction of ground-state hydrogen atom. (A) The density plot of
the wavefunction. (B) the amplitude profile of the wavefunction.

The parameter a in Eq. 3.72 is the Bohr radius,

a0 ≡ �
2

mee2
≈ 52.9 pm. (3.74)

The absolute value of the energy eigenvalue in Eq. 3.73 is the Rydberg con-
stant, which agrees well with experimental findings,

Ry ≡ |E0| = mee
4

2�2
=

e2

2a0
≈ 13.6 eV. (3.75)

In order to determine the normalization constant C, we note that ac-
cording to Schrödinger, the square of the wavefunction is proportional to
the charge density distribution of an electron as a field in space,

ρ = −eψ2, (3.76)

requiring that the integration of ψ2 over the entire space is 1,∫ ∞

0

4πψ2r2dr =

∫ ∞

0

4πC2e−2r/a0r2dr = 1, (3.77)

which yields

C =
1√
πa30

. (3.78)

The ground-state wavefunction of hydrogen atom is then

|1s〉 ≡ ψ1s =
1√
πa30

e−r/a0 . (3.79)

The subscript 1s indicates that it is the state of lowest energy and spherically
symmetric. A density plot and an amplitude contour of the ground-state
wavefunction of hydrogen atom are shown in Fig. 3.6. Wavefunction is the
form of existence of the electron. The ground state represents an electron at
rest. There is no point charge, and no motion at all. The electrical charge
density of the electron is spread out in space around the proton, with the
highest charge density in the immediate vicinity of the proton.
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3.4.2 Energy eigenvalues of excited States

Following the mathematics in Section 1.4, by writing the wavefunction as a
product of a radial function R(r) and a spherical harmonics,

ψ(r) = R(r)Y (θ, φ), (3.80)

the differential equation for the radial function R(r) is

− �
2

2me

[
1

r2
d

dr

(
r2
dR(r)

dr

)
− l(l + 1)R(r)

r2

]
+
e2

r
R(r) = ER(r), (3.81)

where l is the azimuthal quantum number, a parameter of the spherical
harmonics, see Section 1.4.2. To resolve Eq. 3.81, by intuition, we use the
following trial function

R(r) = C rbe−r/a, (3.82)

where the parameters a and b are to be determined by Eq. 3.81, and C
is a normalization constant. Insert Eq. 3.82 into Eq. 3.81, eliminate the
common factor R(r), we obtain an algebraic equation

− �
2

2me

[
b(b+ 1)

r2
− l(l + 1)

r2
+

2(b+ 1)

ar
− 1

a2

]
+
e2

r
= E. (3.83)

To cancel the two terms with 1/r2, a sufficient condition is

b = l. (3.84)

To cancel the two terms with 1/r, one must have

a = (b+ 1)
�
2

mee2
= (b+ 1)a0. (3.85)

The remaining terms in Eq. 3.83 determine the energy eigenvalue

E = − �
2

2mea2
= − Ry

(b+ 1)2
. (3.86)

In all those formulas, (b+ 1) occurs. Define an integer index n,

n = b+ 1, (3.87)

which is called the principle quantum number. The wavefunction is

ψ = Crn−1e−r/na0 Ylm(θ, φ). (3.88)

The energy eigenvalue only depends on the principle quantum number n,
perfectly explains the experimentally discovered Rydberg formula,

En = −Ry

n2
. (3.89)



104 The Static Schrödinger Equation

The length scale of the wavefunction, a = na0, is a useful parameter for
further study of the hydrogen wavefunction. It is

a = na0 =
�√−2meE

. (3.90)

Similar to Eq. 3.77, the normalization constant is found to be

C =

√
22n+1

π(2n+ 2)! (na0)2n+3
. (3.91)

In Fig. 3.7, we show some interesting cases. Following Section 1.4.2, for
m = l, the spherical harmonics up to a normalization constant is

Y g
ll (θ, φ) ∝ sinl θ cos lφ, (3.92)

and
Y u
ll (θ, φ) ∝ sinl θ sin lφ. (3.93)

The wavefunctions shown in Fig. 3.7 are on the plane z = 0, where sin θ = 1.
Using Eqs. 3.84 and 3.87, l = n− 1. The explicit expressions are

ψg ∝ rn−1e−r/na0 cos(n− 1)φ, (3.94)

and
ψu ∝ rn−1e−r/na0 sin(n− 1)φ, (3.95)

Fig. 3.7. Wavefunctions of excited-states of hydrogen atom. Wavefunctions in
Eqs. 3.94 and 3.95, standing waves on the horizontal plane z = 0. For each principle
quantum number, there is an even wavefunction symmetric regarding the x-axis, and an
wavefunction antisymmetric regarding the x-axis. The energy level, Eq. 3.89, depends
only on the principle quantum number n, explains the Rydberg formula.
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where the subscript g and u indicates even and odd with respect to x-axis.
Those wavefunctions represent standing waves on the z = 0 plane. As
remarked by Schrödinger, the energy-level quantization in hydrogen atom
resembles the nodes of a vibrating string in Section 1.2.1. Especially, it
is similar to the resonance frequencies in a basketball in Section 1.4. The
electron forms standing waves around the proton. Similar to the vibrating
string and the basketball, different patterns of standing waves with different
number of nodes are formed, resulting in different energy levels.

3.4.3 Wavefunctions

In the previous Subsection, following an elementary mathematical proce-
dure, special solutions of Eq. 3.81 are derived. Due to a high degree of
degeneracy, all energy eigenvalues are obtained. Especially, for the cases
of l = n − 1 and m = l, wavefunctions are shown in Figs 3.6 and 3.7.
Nevertheless, Eq. 3.81 does have other useful solutions, here we find them.

Inspired by the special solutions, a dimensionless variable ρ is introduced
by scaling the radius r using the length a = na0 in Eq. 3.90,

ρ =
r

a
. (3.96)

Equation 3.81 becomes

1

ρ2
d

dρ

(
ρ2
dR(ρ)

dρ

)
+

[
−1− l(l + 1)

ρ2
+

2n

ρ

]
R(ρ) = 0. (3.97)

In the process of the algebra, Eq. 3.74 is applied to obtain

2mea e
2

�2
=

a

a0
= n. (3.98)

Analogous to Eqs. 3.82 and 3.84, we make a substitution

R(ρ) = ρl e−ρ F (ρ). (3.99)

Insert Eq. 3.99 to Eq. 3.97, the differential equation for F (ρ) is obtained:

ρ
d2F (ρ)

dρ2
+ 2(l + 1− ρ)

dF (ρ)

dρ
+ 2(n− l − 1)F (ρ) = 0. (3.100)

It is the differential equation for associate Laguerre polynomials, well known
for mathematicians for two centuries. The general formula is fairly cumber-
some. In condensed-matter physics, chemistry and molecular biology, only
a few more cases are needed. Here is a complete list.

F (r) = 1− 1

2

r

a0
, n = 2, l = 0; (3.101)
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F (r) = 1− 2

3

r

a0
+

2

27

(
r

a0

)2

, n = 3, l = 0; (3.102)

F (r) = 1− 1

6

r

a0
, n = 3, l = 1. (3.103)

Those expressions can be verified by directly inserting those polynomials
F (r) into Eq. 3.100. It is left as an exercise.

By combining the radial functions in Eq. 3.99, using Eqs. 3.101 through
3.103 and the spherical harmonics in Table 1.4, we found the first nine
wavefunctions of the hydrogen atom, listed in Table 3.2, and in Fig. 3.8. In
Table 1.4, the first column shows the chemist’s name of the wavefunction.
The second column is in Dirac notation. The expression of the wavefunction,
column 3, is in Cartesian coordinates with Bohr radius a0 as unit. The last
column is the average size of the wavefunction, also in unit of a0.

Fig. 3.8. Hydrogen wavefunctions. The phase, either positive or negative, is colored
as red or blue. The amplitude of the wavefunction is shown by the intensity of color,
with several equal-amplitude contours to guide the eyes. All graphs are sized following
the Scale at the bottom of the Figure. As shown in the last column of Table 3.2, the
sizes of wavefunctions with different principle quantum number n vary dramatically.
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Table 3.2: Wavefunctions of the hydrogen atom

Name State Wavefunction r̄ (a0)

1s |1s0〉 1√
π
e−r 1.5

2s |2s0〉 1

2
√
2π

(1− 1

2
r) e−r/2 6

2px |2p1u〉 1

4
√
2π

x e−r/2 5

2py |2p1g〉 1

4
√
2π

y e−r/2 5

2pz |2p0〉 1

4
√
2π

z e−r/2 5

3s |3s0〉 1

3
√
3π

(1− 2

3
r +

2

27
r2) e−r/3 13.5

3px |3p1u〉 2

27
√
6π

(1− 1

6
r)x e−r/3 12.5

3py |3p1g〉 2

27
√
6π

(1− 1

6
r)y e−r/3 12.5

3pz |3p0〉 2

27
√
6π

(1− 1

6
r)z e−r/3 12.5

3dz2 |3d0〉 2

27
√
6π

(z2 − 1

3
r2) e−r/3 10.5

3dxz |3d1u〉 2

27
√
6π

xz e−r/3 10.5

3dyz |3d1g〉 2

27
√
6π

yz e−r/3 10.5

3dxy |3d2u〉 2

27
√
6π

xy e−r/3 10.5

3dx2−y2 |3d2g〉 4

27
√
6π

(x2 − y2) e−r/3 10.5

3.4.4 Nomenclature of atomic states

The wavefunctions of the hydrogen atom are the foundation of the nomen-
clature of electron states in many-electron atoms, see Table 3.3.

The principle quantum number n identifies the shells, labeled by K, L,
M , etc. The azimuthal quantum number l identifies the subshells. The
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Table 3.3: Nomenclature of atomic states

n Shell Maximum l Subshell Maximum
electrons electrons

1 K 2 0 1s 2

2 L 8 0 2s 2
1 2p 6

3 M 18 0 3s 2
1 3p 6

2 3d 10

labels, s, p, d etc., have its origin in atomic spectrum. The spectral lines
starting from l = 0 states are often sharp, thus named s. The spectral lines
starting from l = 1 states are often intensive, thus named p, means principle.
The spectral lines starting from l = 2 are often diffuse, thus named d.
Because of spin, see Section 2.5, each wavefunction has two electrons.

3.4.5 Degeneracy and wavefunction hybridization

The energy eigenvalues of the hydrogen atom only depends on the principle
quantum number n. For each principle quantum number, there are n2 differ-
ent wavefunctions: it is n2-fold degenerate. For n = 2, there are four states,
|2s〉, |2px〉, |2py〉, and |2pz〉. Because the Schrödinger equation is linear,
any linear superposition of wavefunctions with the same energy eigenvalue
is also a good wavefunction with the same energy eigenvalue. Especially,
an s-wavefunction can make linear superposition with p-wavefunctions, to
form hybrid wavefunctions. This concept is fundamental in chemistry, such

Fig. 3.9. Hybrid sp1 wavefunctions. The phase of the wavefunction is shown by
color, positive in red, negative in blue. The equal-value contours are also shown. The
main lobe spans a wide angle. It is difficult to show both on the same figure.
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as for carbon and silicon, especially in organic chemistry. Here we show the
concept of hybridization using the hydrogen wavefunctions.

Figure 3.9 shows two sp1 hybrid wavefunctions. (A) is with a positive
2px wavefunction,

|2sp1+〉 = 1√
2
|2s〉+ 1√

2
|2px〉, (3.104)

resulting in a wavefunction preferentially concentrated in the +x direction;
and (B) is with a negative 2px wavefunction,

|2sp1−〉 = 1√
2
|2s〉 − 1√

2
|2px〉, (3.105)

resulting in a wavefunction preferentially concentrated in the −x direction.
This happens for example in acetylene C2H2, for both the σ-bond between
the two carbon atoms, and the two C-H bonds.

Figure 3.10 shows three sp2 hybrid wavefunctions. The formulas are

|2sp2u〉 = 1√
3
|2s〉+

√
2

3
|2py〉, (3.106)

|2sp2l〉 = 1√
3
|2s〉 − 1√

2
|2px〉 − 1√

6
|2py〉, (3.107)

and

|2sp2r〉 = 1√
3
|2s〉+ 1√

2
|2px〉 − 1√

6
|2py〉, (3.108)

respectively. It is the basic structure of grapheme and carbon nanotubes.
In ethylene, C2H4, the sp1 hybrid wavefunctions are the basis of both the
σ-bond between the two carbon atoms, and the four C-H bonds.

Fig. 3.10. Hybrid sp2 wavefunctions. The three sp2 hybrid wavefunctions are
pointing to the three vertices of a regular triangle, 120◦ apart in the same plane. The
phase, positive or negative, is shown by color. The equal-value contours are also shown.
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Fig. 3.11. Hybrid sp3 wavefunctions. (A), one of the four hybrid wavefunctions. The
other three have the same shape but different orientation, pointing to the four vertices
of a regular tetrahedron. (b), a regular tetrahedron.

A prevailing hybridization is the sp3 mode, where one s-wavefunction is
linearly superposed with three p-wavefunctions to form four hybrid wave-
functions pointing to the four vertices of a tetrahedron, see Fig. 3.11. A set
of sample formula is

|t111〉 = 1

2
(|2s〉+ |2px〉+ |2py〉+ |2pz〉) ,

|t1̄11̄〉 = 1

2
(|2s〉 − |2px〉+ |2py〉 − |2pz〉) ,

|t1̄1̄1〉 = 1

2
(|2s〉 − |2px〉 − |2py〉+ |2pz〉) ,

|t11̄1̄〉 = 1

2
(|2s〉+ |2px〉 − |2py〉 − |2pz〉) .

(3.109)

It is the backbone of all alkanes, including methane, ethane, propane, bu-
tane, etc., and the crystalline structures of diamond and silicon.

In some quantum chemistry textbooks, those hybrid wavefunctions are
depicted as sharply oriented long and narrow bulbs, to emphasize the direc-
tional effect. Often, three or four such long and narrow bulbs are shown in
a single drawing. As shown here, the accurate amplitude contours of wave-
functions of sp-hybridizations span a broad angle. It is difficult to depict
three or four such hybrid wavefunctions on a single graph.

By comparing Fig. 3.4 with the vibrational modes of a string, Fig. 1.30,
a striking resemblance is found. As an objective reality, wavefunction is of
the same nature as the standing waves in classical physics.

3.5 Wavefunctions outside the atomic core

In Section 1.4, the solutions of the wave equation inside a basketball are
discussed. Similar solutions of the Schrödinger equation inside a spherical
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potential well can be obtained. We leave this as a problem. In this sec-
tion, a similar but more useful problem is discussed: the solutions of the
Schrödinger equation outside the atomic core, represented by a potential
well determined by the nucleus and the electrond inside the atomic core.
Such solutions have applications in solid-state physics to describe the wave-
functions of electronic bands in the space surrounding the atomic cores, the
of covalent bonds in chemical physics, and atomic-scale tunneling.

Outside the sphere where r > r0, the potential is zero. The Schrödinger
equation Eq. 3.6 becomes

− �
2

2me
∇2ψ(r) = Eψ(r). (3.110)

The energy E is negative, see Fig 3.12. Introducing a decay constant κ,

κ =

√−2meE

�
, (3.111)

Equation 3.110 becomes

∇2ψ(r)− κ2ψ(r) = 0. (3.112)

Following the mathematics in Section 1.4, by writing the wavefunction as a
product of a radial function R(r) and a spherical harmonics,

ψ(r) = R(r)Y (θ, φ), (3.113)

the differential equation for the radial function R(r) is

d

dr

(
r2
dR(r)

dr

)
− [

l(l + 1) + κ2r2
]
R(r) = 0, (3.114)

where the parameter l is an index of the spherical harmonics, see Section
1.4.2. Equation 3.114 is almost identical to Eq. 1.135 except that −k2 is
replaced by κ2. It is expected that the solutions are similar. By direct
insertion, one finds the solutions of Eq. 3.114 are

R(r) = kl(κr), (3.115)

where

k0(ρ) =
1

ρ
e−ρ, (3.116)

k1(ρ) =

(
1

ρ
+

1

ρ2

)
e−ρ, (3.117)

and

k2(ρ) =

(
1

ρ
+

3

ρ2
+

3

ρ3

)
e−ρ, (3.118)
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Fig. 3.12. Wavefunctions outside a spherical potential well. (A) The energy
diagram. (B) through (E), the wavefunctions are specified by the azimuthal quantum
number l and the magnetic quantum number m, determined by the wavefunctions inside
the sphere, which can be understood as the vacuum tails of the wavefunctions inside the
sphere. Wavefunctions with the same l but different m are degenerate.

for l = 0, 1, and 2, respectively. The general expression is

kl(ρ) = (−ρ)l
(

d

ρdρ

)l
e−ρ

ρ
. (3.119)

Although those functions are elementary, due to their origin, they are
called spherical modified Bessel functions, see Appendix D.

Figure 3.12(A) shows the energy diagram and wavefunctions. A wave-
function inside the sphere ψ(r) is a solution of a Schrödinger equation inside
the sphere with potential function U(r). Similar to the acoustic waves in
Section 1.4, it is a product of a radial function R(r) and a spherical harmon-
ics Y (θ, φ). The spherical harmonics is labeled by an azimuthal quantum
number l and a magnetic quantum number m.

Outside the sphere, the potential is zero. The wavefunctions are shown
in Fig. 3.12 (B) through (E). At the boundary r = r0, their values match
those of the wavefunctions inside the sphere. As a vacuum tail of a wave-
function inside the sphere, it decays with radius r. Nevertheless, the angular
dependence characterized by the spherical harmonics is preserved.

3.5.1 s-type wavefunction

Here we present an elementary derivation of the s-type wavefunction outside
an atomic core.

In general, the Schrödinger equation of tip wavefunction outside the
atomic core is

− �
2

2m
∇2 χν = Eν χν . (3.120)
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Consider first a spherically symmetric tip wavefunction, centered at the
nucleus of the tip atom at coordinates r0. For a point in space r, the
distance from that point to the center of the tip atom is

r = |r− r0|. (3.121)

Equation ?? becomes

− �
2

2m

1

r

d2

dr2
(rχν) = Eνχν . (3.122)

Intruducing a decay constant

κ =

√
−2mEν

�
, (3.123)

denoting u = κr and f(u) = χν/u, Eq. 3.122 becomes

d2f(u)

du2
= f(u). (3.124)

The solutions are
f(u) = eu and f(u) = e−u. (3.125)

The first solution diverges at a large distance. Therefore, the only valid
solution is

χs(r) =
Cs

κr
e−κr. (3.126)

It is the spherically symmetric wavefunction, or an s-type wavefunction.

3.5.2 p-type wavefunctions

Here we show that the p-type wavefunctions outside an atomic core is the
partial derivative of the s-type wavefunction. This is useful in the treatment
of atomic forces in Chapter 5 and tunneling rates in Chapter 7.

Because the s-type spherical harmonics is a constant, the wavefunctions
outside an atomic core up to a constant is

χs(r) =
1

κr
e−κr. (3.127)

From Eq. 3.110, if ψ(r) is a solution, then a partial derivative of ψ(r) is also
a solution,

∂

∂x

[
− �

2

2me
∇2ψ(r)

]
= − �

2

2me
∇2

[
∂ψ(r)

∂x

]
= E

[
∂ψ(r)

∂x

]
. (3.128)

Therefore, the x-partial derivative of χs(r)

∂

∂x

[
1

κr
e−κr

]
=
x

r

(
1

κr
+

1

(κr)2

)
e−κr (3.129)
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is also a valid wavefunctions outside an atomic core. According to Table 1.4,
the px type spherical harmonics, Y g

11(θ, φ), up to a constant, is

Y g
11(θ, φ) = sin θ cosφ =

x

r
, (3.130)

Equation 3.129 is the px-type wavefunctions outside an atomic core. Simi-
larly, we have up to a constant,

χpx(r) =
∂χs(r)

∂x
=

(
1

κr
+

1

(κr)2

)
e−κr sin θ cosφ, (3.131)

χpy(r) =
∂χs(r)

∂y
=

(
1

κr
+

1

(κr)2

)
e−κr sin θ sinφ, (3.132)

and

χpz(r) =
∂χs(r)

∂z
=

(
1

κr
+

1

(κr)2

)
e−κr cos θ. (3.133)

3.6 General properties of wavefunctions

In this Chapter, we presented wavefunctions as the solution of the Schrödinger
equation through three example. Here are the general properties of the
wavefunctions. Those properties are similar to those in acoustics, see Sec-
tion 1.2. For simplicity, we use Dirac notations.

3.6.1 Normalization

According to Schrödinger, the square of the wavefunction is proportional to
the charge density of the electron as a field in space

ρ(r) = −eψ2(r). (3.134)

The total charge of an electron is −e. Therefore, the wavefunction is nor-
malized over the entire space,

〈ψ|ψ〉 ≡
∫
ψ2(r) d3r = 1. (3.135)

3.6.2 Orthogonality

Wavefunctions with different energy eigenvalues are orthogonal. For two
wavefunctions with different energy eigenvalues E1 �= E2, the Schrödinger
equations are

Ĥ|ψ1〉 = E1|ψ1〉 (3.136)

and
Ĥ|ψ2〉 = E2|ψ2〉. (3.137)
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Multiply Eq. 3.136 by 〈ψ2| and multiply Eq. 3.137 by 〈ψ1|, the difference is

〈ψ1|Ĥ|ψ2〉 − 〈ψ2|Ĥ|ψ1〉 = (E2 − E1)〈ψ1|ψ2〉. (3.138)

By definition, the right-hand side of Eq. 3.138 is zero. Therefore, if E2 −
E1 �= 0, one must have

〈ψ1|ψ2〉 = 0. (3.139)

3.6.3 Completeness

If the eigenfunctions of an energy operator are

Ĥ|ψn〉 = En|ψn〉, n = 1, 2, ...∞, (3.140)

For an arbitrary function |χ〉, define a coefficient

cn = 〈χ|ψn〉, n = 1, 2, ...∞, (3.141)

then the set of eigenfunctions is complete means

|χ〉 =
∞∑

n=0

cn|ψn〉. (3.142)

For the three examples in this Chapter, the series of eigenfunctions are
complete. If this is true, then an arbitrary function can be expended into a
series of eigenfunctions from that energy operator.

3.6.4 Charge density distributions

For a single electron wavefunction, according to Schrödinger, the charge
density is proportional to the square of the wavefunction,

ρ(r) = −eψ2(r). (3.143)

If the electronic states are degenerate, a linear superposition of wavefunc-
tions of the same energy eigenvalues is also a good wavefunction for that
energy eigenvalue. The square of the new wavefunction also represents an
electron charge density. Here is an example. The 2px-state and 2py-state
are degenerate. The wavefunctions from Table 3.2 are

ψ2px =
1

4
√
2π
e−r/2 r sin θ cosφ (3.144)

and

ψ2py =
1

4
√
2π
e−r/2 r sin θ sinφ. (3.145)

The charge density distributions are

ρ2px = − e

32π
e−r r2 sin2 θ cos2 φ (3.146)
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and
ρ2py = − e

32π
e−r r2 sin2 θ sin2 φ, (3.147)

as shown in Fig. 3.13(1) and (2).
Because any linear combination of the wavefunctions Eq. 3.144 and 3.145

is also a good wavefunction, by rotating the coordinate system 45◦, the
following wavefunctions are legitimate:

ψ2p1 =
1

4
√
2π
e−r/2 r sin θ cos

(
φ− π

4

)
(3.148)

and

ψ2p2 =
1

4
√
2π
e−r/2 r sin θ sin

(
φ− π

4

)
. (3.149)

The charge density distributions are

ρ2p1 = − e

32π
e−r r2 sin2 θ cos2

(
φ− π

4

)
(3.150)

and
ρ2p2 = − e

32π
e−r r2 sin2 θ sin2

(
φ− π

4

)
, (3.151)

as shown in Fig. 3.13(3) and (4).
Therefore, the electrical charge density of individual wavefunctions de-

pends on the choice of coordinate system. Nevertheless, the sum of Eqs. 3.146
and 3.147 is coordinate-independent. In a plane z = 0, it is

ρ2p = − e

32π
e−r r2, (3.152)

and identical to the sum of Eqs. 3.150 and 3.151.
The charge density of an individual wavefunction may not represent the

physical reality. Nevertheless, the sum of electrical charges of all wavefunc-
tions of the same energy eigenvalue

ρ(r) = −e
∑

ψ2(r) (3.153)

Fig. 3.13. Charge density of the 2p states. (1) and (2), charge density distributions
of the 2px- and 2py-states. (3) and (4), the 2p-states rotated around the z-axis by 45◦.
(5) The sum of (1) and (2), or the sum of (3) and (4), represents measurable physical
reality.
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is invariant under a coordinate rotation. Experimental observation provides
the total density distribution of all wavefunctions at the same energy level.
For example, in the Hartree-Fock approximation of the the sodium atom,
the outer valence electron is moving in the field of the s-states and the six
degenerate 2p states. Only the collective effect of the six 2p states, forming
a spherical symmetric electrical charge, is an observable reality.

This observation hints to a powerful theorem in quantum mechanics:
the Hohenberg-Kohn theorem, that at least for the ground state, the total
charge density distribution function of the entire system contains complete
information about the system, as we shell present in Chapter 4. Neverthe-
less, the individual wavefunctions, also called orbitals, are necessary and
indispensible in the computation and understanding of the atomic system.
Take an analogy, although the mechanical phenomena is independent of the
choice of coordinate system and invariant under a rotation of the coordinate
system, to study and calculate a mechanical process, the choice of a specific
coordinate system is necessary.

3.7 Quantization of bosons

The creation operator and annihilation operator presented in Section 3.3.1
are the basis of quantum field theory. The energy of a harmonic oscillator
is an integer multiple of an elementary energy, ε = �ω, plus the zero-point
energy ε/2. The zero point energy is not observable. Each chunk of energy,
ε = �ω, is identified as a particle. Note that in quantum mechanics, the
term particle does not mean a material point which can be represented by
a coordinate r or a trajectory r(t). The term particle means a chunk of
energy, mass, or electricity as an integer multiple of an elementary value.
In all cases, the so-called particle is always spread out in space.

3.7.1 Bosons and fermions

In quantummechanics, there are two types of particles, bosons and fermions.
For bosons, such as photons, each energy level can have any number of
particles. For fermions, such as electrons, each energy level can have at most
one particle. In other words, the occupation number of fermions is either
zero or one. Here we present the quantization of bosons. The quantization
of fermions will be presented in Chapter 4.

3.7.2 Fock space of bosons

For a system which can be described by a single harmonic oscillator, as we
have presented in Section 3.3.1, the state of an energy level is represented
by a non-negative integer, the particle occupation number n. An empty



118 The Static Schrödinger Equation

energy level with zero particle, the vacuum, is denoted by |0〉. An energy
level with n particles can be expressed through the creation operator

|n〉 = 1√
n!

(
â†

)n |0〉. (3.154)

The number of particles in an energy level can be determined using the
particle number operator,

N̂ ≡ â†â, (3.155)

because its eigenvalue is the number of energy quanta,

N̂ |n〉 = n|n〉. (3.156)

For a system of m harmonic oscillators, the empty state is defined as

|0〉 ≡ |0, 0, ..., 0〉 (3.157)

where there are m zeros. With a number of creation operators and annihi-
lation operators, a general state is defined as

|n1, n2, ..., nm〉 =
(
â†1

)n1

√
n1!

(
â†2

)n2

√
n2!

...

(
â†m

)nm

√
nm!

|0〉, (3.158)

which has n1 bosons in energy level 1, n2 bosons in energy level 2, and so
on. Such a representation of states is called particle number representation,
and the collection of states such as in Eq. 3.158 is called a Fock space. Note
that for bosons, all elements in the Fock space are non-negative integers.
Examples of applications of the particle-number representation and Fock
space to electromagnetic waves are presented in Chapter 9.



Chapter 4

Many-Electron Systems

Eyewitnessed the success of Schrödinger’s non-relativistic wave equation in
condensed-matter physcis, in 1929, Paul Dirac made the following statement
in a paper entitled Quantum Mechanics of Many-Electron Systems:

The general theory of quantum mechanics is now almost com-
plete, the imperfections that still remain being in connection
with the exact fitting in of the theory with relativity ideas.
These give rise to difficulties only when high-speed particles are
involved, and are therefore of no importance in the consideration
of atomic and molecular structure and ordinary chemical reac-
tions, in which it is, indeed, usually sufficiently accurate if one
neglects relativity variation of mass with velocity and assumes
only Coulomb forces between electrons and nuclei.

Analytic solutions of the Schrödinger equation are only available for two
natural systems, the hydrogen atom and the hydrogen molecular ion, H+

2 .
Both are single electron system. For atoms and molecules with two or more
electrons, approximations are required. Over the last century, many effec-
tive approximate methods have been developed, culminated with two Nobel
Prizes in Chemistry to John Pople and Walter Kohn in 1998. Quantum
mechanics of many-electron systems is still an active research field. New
methods and approximations are intensively pursued. In this Chapter, the
principles and some most important approximate methods are presented.

4.1 Many-electron Schrödinger equation

Following the argument leading to the single-electron Schrödinger’s equation
in Chapter 3, a many-electron wave equation can be introduced from the
classical energy integral and the de Broglie relation. Because the mass
of an nucleus is thousands of times greater than the mass of an electron,
in almost all computations, the coordinates of the nuclei are treated as
fixed input parameters. The accuracy of such approximation was analyzed
mathematically by Born and Oppenheimer in 1927. For a system with M
electrons with coordinates rj in a potential field formed by N nuclei, the
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classical energy integral, similar to that for a single electron, Eq. 3.3, is

j=M∑
j=1

[
p2
j

2me
+ v(rj)

]
+

i=M∑
i>j>0

e2

|ri − rj | = E. (4.1)

where the external potential v(rj) is the total attractive potential of all
nuclei on the j-th electron at position rj ,

v(rj) = −
l=N∑
l=1

Zl e
2

|rj −Rl| , (4.2)

where Rl is the position of the l-th nucleus with atomic number Zl. The
second sum in Eq. 4.1 is the repulsive potential between pairs of electrons,
and the condition i > j is to avoid double counting.

The wavefunction as a function of the positions of the electrons is

ψ = ψ(r1, r2, . . . , rM ). (4.3)

The wave vector associated to the j-th electron is

k2j = − 1

ψ
∇2

jψ, (4.4)

where the Laplacian for the j-th electron is

∇2
j =

∂2

∂x2j
+

∂2

∂y2j
+

∂2

∂z2j
. (4.5)

Using the de Broglie relation,

p2j = �
2k2j , (4.6)

we obtain the Schrödinger equation for the wavefunction ψ,

j=M∑
j=1

[
−�

2∇2
j

2me
+ v(rj)

]
ψ +

i=M∑
i>j>0

e2

|ri − rj |ψ = Eψ. (4.7)

Table 4.1: Atomic units

Quantity Name Notation Value in SI

Mass electron mass me = 1 9.109 ×10−31 kg
Charge electron charge |e| = 1 1.602 ×10−19 C

Action Dirac constant � = 1 1.0546 ×10−34 J·s
Length Bohr radius a0 �

2/mee
2 0.05291 nm

Energy hartree mee
4/�2 27.211 eV
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By using atomic units, see Table 4.1,

� = e = me = 1, (4.8)

Equation 4.7 is simplified to

j=M∑
j=1

[
−1

2
∇2

j + v(rj)

]
ψ +

i=M∑
i>j>0

1

rij
ψ = Eψ, (4.9)

where rij = |ri − rj |, and Eq. 4.2 becomes

v(rj) = −
l=N∑
l=1

Zl

|rj −Rl| . (4.10)

4.2 The Hartree-Fock method

Equation 4.9 is complicated. In 1928, Douglas Hartree invented a method
to resolve Eq. 4.9 by writing the wavefunction of M electrons as a product
of M single-electron wavefunctions,

ψ(r1, r2, . . . , rM ) = ψ1(r1)ψ2(r2) ... ψM (rM ). (4.11)

Equation 4.9 is then decomposed into M differential equations. The indi-
vidual wavefunctions, or orbitals, are orthogonal and normalized,∫

ψi(r)ψj(r) d
3r = δij . (4.12)

4.2.1 The self-consistent field

Take an example of helium atom, where M = 2, N = 1, and Z = 2, and set
the nucleus at the origin of the coordinate system, R = 0,[

−1

2
∇2

1 −
2

r1
− 1

2
∇2

2 −
2

r2
+

1

r12
− E

]
ψ1(r1)ψ2(r2) = 0, (4.13)

where E is the energy eigenvalue to be determined. Multiply Eq. 4.13 by
ψ2(r2) and integrate over the space, using Eq. 4.12, one finds[

−1

2
∇2

1 −
2

r1
+ vee(r1)− E1

]
ψ1(r1) = 0, (4.14)

where

E1 = E +

∫
d3r2 ψ2(r2)

[
1

2
∇2

2 +
2

r2

]
ψ2(r2) (4.15)
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is a new energy eigenvalue for electron 1 to be determined. The integration
in Eq. 4.15 is obviously independent of the variable r1.

The electron-electron repulsion potential in Eq. 4.14 is

vee(r1) =

∫
d3r2

|ψ2(r2)|2
r12

. (4.16)

Because the electric charge is defined as |e| = 1, the square of the wavefunc-
tion of electron 2 is its charge density,

ρ2(r2) = |ψ2(r2)|2, (4.17)

the electron repulsion potential in Eq. 4.14 is then

vee(r1) =

∫
d3r2

ρ2(r2)

r12
. (4.18)

Equation 4.14 has an intuitive explanation. Electron 1 is moving in the
potential field of the nucleus and the charge density of electron 2.

Similarly, a differential equation for electron 2 can be derived,[
−1

2
∇2

2 −
2

r2
+ vee(r2)− E2

]
ψ2(r2) = 0, (4.19)

where vee(r2) is the electron-electron repulsion potential on electron 2 gen-
erated by the charge density of electron 1, ρ1(r1) = |ψ1(r1)|2. Equations
4.14 and 4.19 are the one-electron equations for the two-electron system. It
can be extended to systems of more than two electrons.

The two equations are correlated to each other. To solve the equation
for electron 1, the orbital of electron 2 is required. Those equations are
always resolved using iteration: By first guess a set of initial orbitals, do
the computation, then used the results of the first round of computation as
the basis for the second round, and so on, until the results converge. This
method, invented by Hartree, is termed self-consistent field.

4.2.2 Pauli exclusion principle and Slater determinants

As we have presented in Section 3.6.1, because the electrom is a fermion,
no two electrons can occupy a single state. The Pauli exclusion principle
should be applied to the wavefunctions. The standard representation of
the exclusion principle, as proposed by John Slater in 1930, is to write the
wavefunction as a determinant. For a two-electron system,

ψ =
1√
2

∣∣∣∣ ψ1(r1) ψ1(r2)
ψ2(r1) ψ2(r2)

∣∣∣∣ = 1√
2
[ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)] . (4.20)

By exchanging any two rows or any two columns, the wavefunction changes
sign. Therefore, if any two rows are identical, the Slater determinant be-
comes zero. The square root of 2 is added for normalization. For general
definition and properties of determinates, see Appendix C.



4.2 The Hartree-Fock method 123

4.2.3 The electron spin

As we presented in Section 2.5, each electron wavefunction can have two
spin states. Helium is an interesting example to show the effect of spin, see
Fig. 4.1. The two electrons can have opposite spin states, one spin up and
one spin down, to form a state called parahelium. The two electrons can
also have the same spin state, both spin up or both spin down, to form a
state called orthohelium. Those types of states cannot make a transition
to the other one by optical means. For parahelium, the spin states of the
two electrons are different. The spatial wavefunction can be identical. The
lowest state is 1s, similar to the ground state of hydrogen. The energy level
is -24.47 eV, almost twice as that of hydrogen, as expected.

4.2.4 Exchange interaction

For orthohelium, the wavefunction of the entire atom is a Slater determi-
nant. The Schrödinger equation is[

−1

2
∇2

1 −
2

r1
− 1

2
∇2

2 −
2

r2
+

1

r12
− E

] ∣∣∣∣ ψ1(r1) ψ1(r2)
ψ2(r1) ψ2(r2)

∣∣∣∣ = 0. (4.21)

Following the same procedure leading to Eq. 4.14, by multiplying the equa-
tion with ψ2(r2) then integrate over r2, one finds[

−1

2
∇2

1 −
2

r1
+ vee(r1)− E1

]
ψ1(r1) = vxc(r1)ψ2(r1), (4.22)

Fig. 4.1. Energy diagram of helium atom. For parahelium, the spins of the two
electrons are antiparallel, and the spatial wavefunction can be identical. The orbitals of
the lowest are 1s, with no nodes. For orthohelium, the spin states are parallel. One of
the spatial orbitals must have a node. The energy level is higher.
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where

vxc(r1) =

∫
d3r2

ψ2(r2)ψ1(r1)

r12
(4.23)

is the exchange potential that acting to the second orbital. Similarly,[
−1

2
∇2

2 −
2

r2
+ vee(r2)− E2

]
ψ2(r2) = vxc(r2)ψ2(r2), (4.24)

where the exchange interaction potential is

vxc(r2) =

∫
d3r1

ψ1(r1)ψ2(r2)

r12
. (4.25)

With the exchange potentials, Eqs. 4.23 and 4.25, the accuracy is greatly
improved, while the computation is much more demanding. The above equa-
tions, often called the Hartree-Fock method, is widely used in the quantum-
mechanical computations of atoms and small molecules.

The two orbitals in Eq. 4.21, ψ1 and ψ2, must be orthogonal. If one of
them is an 1s-state, the other one must have a node. Such an orbital with
lowest energy is 2s, see Fig. 3.8. With a node, the energy level is much
higher, see Fig. 4.1. Although the lowest state of orthohelium is about 20
eV higher than the lowest state of parahelium, no optical process can make
a transition to a state on parahelium. The ground state of orthohelium can
stay for a long time. It is called a metastable state.

The observed spectrum of helium is shown in Fig. 4.2. Seven strongest
spectral lines in the visible region are shown. For parahelium, the spec-
tral lines to or from the ground state are in deep ultraviolet region. For
orthohelium, the lines are in visible and infrared region.

Fig. 4.2. Observed spectrum of helium atom. The most intensive spectral lines
in the visible range are shown. Wavelengths are in nanometers.
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Fig. 4.3. Density distributions of electrons in argon, theory and experiment.
The electron density distribution is defined by Eq. 4.35. The red curve is from electron
diffraction experiments, and the dashed curve is from Hartree-Fock computation.

4.2.5 Accuracy of self-consistent computations

According to Schrödinger, the electron density distribution, represented
by ψ2, is a measurable physical quantity. Therefore, the accuracy of the
Hartree-Fock computations can be verified experimentally. Figure 4.3 shows
a comparison of the electron charge density obtained by electron diffraction
experiments and the result of Hartree-Fock computation.1

The red curve in Fig. 4.3 is the electron distribution measured by elec-
tron diffraction experiments. The dashed curve is the result of numerical
quantum-mechanical computation. The agreement is satisfactory. The to-
tal electron density distribution is the basis of the density functional theory
for numerical computations, see Section 4.4.

4.3 More complicated atoms

The Hartree-Fock method has been successfully applied to compute the
wavefunctions of all atoms. The results are listed in the open literature, in
the form of expansions in terms of atomic basis functions.

4.3.1 Atomic basis functions

The hydrogen radial wavefunctions are products of a polynomial of r and
an exponential function, see Table 3.2. For practical computations, those
functional forms are still too complicated. In 1930, John Slater defined a set
of base functions as simplified versions of the hydrogen wavefunction, and

1See L. S. Bartell and L. O. Brockway, The Investigation of Electron Distribution in
Atoms by Electron Diffraction, Physical Review, 90, 833 (1953).
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then widely used in numerical computations involving atoms and molecules.
An atomic wavefunction is expressed as a radial function times a spherical
harmonics, see Table 1.4. The radial function is expanded as a sum of Slater
base functions, abbreviated as SBF, defined as

Sn(r) = Nn r
n−1e−ζr, (4.26)

where n is the principle quantum number. The normalization constant is

Nn =
(2ζ)(n+

1
2 )√

(2n)!
. (4.27)

The explicit formulas for n = 1 through n = 3 are

S1(r) =

√
(2ζ)3

2!
e−ζr, (4.28)

S2(r) =

√
(2ζ)5

4!
r e−ζr, (4.29)

and

S3(r) =

√
(2ζ)7

6!
r2e−ζr, (4.30)

The Slater basis functions are quite similar to the authentic hydrogen
wavefunctions, and are widely used to represent atomic orbitals. Neverthe-
less, the integrals such as in Eqs. 4.16 and 4.23 must be evaluated numeri-
cally. Another type of atomic base functions, the Gaussian basis functions,

Fig. 4.4. Electron density distributions of several basis functions. For SBFs, the
parameter ζ is 2.0. For GBFs, the parameter α is 1.0. All electron density distributions
are normalized to r, such that the area below each curve is 1.
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abbreviated as GBF, are more frequently used in calculation of molecules.
The radial functions are defined as

Gn(r) =

√
2(4α)n

(2n− 1)!!

√
2α

π
rn−1e−αr2 . (4.31)

The explicit formulas for n = 1 through n = 3 are

G1(r) = 2

(
8α3

π

) 1
4

e−αr2 , (4.32)

G2(r) = 4

(
8α5

9π

) 1
4

r e−αr2 , (4.33)

and

G3(r) = 8

(
8α7

225π

) 1
4

r2 e−αr2 . (4.34)

A significant advantage of the GBF is, all integrals involved have analytic
expressions. Numerical computations are greatly simplified.

Electron density plots of those atomic basis functions are shown in
Fig. 4.4. To make a fair comparison, the radius dependence of the elec-
tron density ρ(r) from a basis function f(r) is expressed as

ρ(r)dr = r2|f(r)|2dr, (4.35)

such that the density distribution is normalized in radius r,∫ ∞

0

ρ(r)dr = 1. (4.36)

The SBFs are very close to the hydrogen wavefunctions, and the tails
extend more to the space. the GBFs are cut off sharply for large r. There-
fore, to accurately represent an atomic wavefunction, a larger number of
GBFs are required.

A complete orbital is a product of a radial factor and a spherical har-
monics. Examples of GBFs in terms of Cartesian coordinates are,

gs(α, r) =

(
2α

π

) 3
4

e−αr2 , (4.37)

gz(α, r) =

(
128α5

π3

) 1
4

z e−αr2 , (4.38)

and

gxy(α, r) =

(
2048α7

π3

) 1
4

xy e−αr2 . (4.39)

For more details on GBFs, see the monograph Ab Initio Molecular Orbital
Theory coauthored by John Pople, and many more recent books.
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4.3.2 The Roothaan-Hartree-Fock method

In 1951, Clemens Roothaan invented a method to compute atomic orbitals
by expanding each one as a sum of SBFs, see Eq. 4.26,

Rnl(r) =
∑
j

CjlnSjl (4.40)

An atomic orbital with principle quantum number n and azimuthal quantum
number l is a sum of several SBFs with expansion coefficients Cjln. Each
SBF is described by an integer njl and an exponent ζjl, which determine
the normalization constant Njl, see Eqs. 4.26, and 4.27,

Sjl = Njl r
njl−1e−ζjlr. (4.41)

The coefficients Cjln and the exponents ζjl are then computed using the
Hartree-Fock equations with a self-consistent procedure, similar to Eqs. 4.22
and 4.24. A table of Roothaan-Hartree-Fock atomic wavefunctions was pub-
lished as www.ccl.net/cca/data/atomic-RHF-wavefunctions/tables.html.

The published data for atomic wavefunctions is the starting point of un-
derstanding their chemical property, and the ab-initio quantum-mechanical
computations. Here we show two examples of lithium and carbon.

4.3.3 Lithium

Figure 4.5 shows part of the RHF-wavefunction data table for lithium, an-
notated for easy understanding. Each atomic orbital is a sum of seven Slater
basis functions. The electron density distributions as a function of distance,
according to Eq. 4.35, are shown in Fig. 4.6.

As shown, the electron density of the 1s state of the lithium atom has
a small radius, almost one half of that of the ground-state hydrogen. The
valence electron 2s is loosely attached to the core. With a small ionization
energy, the lithium atom can easily loose an electron to become a positive
ion with a very small radius, ideal for rechargeable battery.

Fig. 4.5. Data for the wavefunctions of lithium. The data set is adapted from
open literature, see Section 4.3.2. Each item is annotated for easy understanding.
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Fig. 4.6. Density distributions of electrons in lithium. The electron density
distributions defined in Eq. 4.35 as a function of r are shown. Being normalized to r, the
area below each curve is 1. Not that the 1s electrons are tightly bounded to the nucleus.
It can easily loose a 2s electron to become a positive ion with tiny radius.

4.3.4 Carbon

Figure 4.7 shows part of the RHF-wavefunction data table for carbon, an-
notated for easy understanding. Each carbon atom has two 1s orbitals, two
2s orbitals, and two 2p orbitals.

As shown, the two 2s orbitals and the two 2p orbitals have similar ra-
dius and energy level. Linear combinations of those orbitals could make
four hybridized orbitals. It is the basis of organic chemistry and molecular
biology, and the strongest chemical bond in diamond. See Chapter 5.

The accuracy of those numerical computations of atoms can be tested
directly with experimental observations. First, the energy eigenvalues of
each orbitals, including the deepest ones, are the basis of X-ray spectroscopy.
Second, using electron diffraction or X-ray diffraction, the charge density
distribution in atoms can be measured directly. Both are well-verified. The
total electron density distribution function is also the conceptual basis of
density functional theory, see Section 4.4.

Fig. 4.7. Data for the wavefunctions of carbon. The data set is adapted from
open literature, see Section 4.3.2. Each item is annotated for easy understanding.



130 Many-Electron Systems

Fig. 4.8. Density distributions of electrons in carbon. The electron density
distributions defined in Eq. 4.35 as a function of r are shown. Being normalized to r,
that the area below each curve is 1. The two 2s orbitals and the two 2p orbitals have
similar radius and similar energy level. The linear combinations of those orbitals could
make four hybirdized orbitals. It is the basis of organic chemistry and molecular biology,
and the strongest chemical bond to form diamond. See Chapter 5.

4.3.5 Ionization energy and electron affinity

In this Section, the general idea of how electrons are filling up an atom from
a bare nucleus up, and the effect of a variation of the number of electrons
could cause is discussed. By starting from a bare nucleus of Z positive
charges, the electrons can fill up the wavefunctions from the bottom up. By
filling it up with N electrons, the atom becomes neutral. If the number of
electrons is not N , then the atom becomes a charged ion. The two simplest
cases are as follows. If the number of electrons is N − 1, a positive ion, or a

Table 4.2: Ionization energy and electron affinity in eV

Element IE EA ‖ Element IE EA

H 13.6 0.754 ‖ Ne 21.56 -
He 24.6 - ‖ Na 5.14 0.548

Li 5.39 0.618 ‖ Mg 7.65 -

Be 9.326 - ‖ Al 5.98 0.441

B 8.29 0.277 ‖ Si 8.15 1.385

C 11.26 1.263 ‖ P 10.48 0.747

N 14.53 - ‖ S 10.36 2.077

O 13.61 1.46 ‖ Cl 12.96 3.617

F 17.42 3.40 ‖ Ar 15.76 -
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cation, is formed. The energy required to remove an electron from a neutral
atom is called ionization energy. For the case of removing one electron from
the neutral atom, it is the first ionization energy. The first ionization energy
for alkali metals are small, for example, for Li, it is 5.39 eV. The ionization
energy for hydrogen is the Rydberg constant, 13.6 eV, much higher than
lithium. Helium is the highest among all atoms, 24.59 eV.

For many atoms, an electron can be attached to form a negative ion, or
anion, and release some energy, called electron affinity. Therefore, the anion
is stable. For example, the electron affinity of hydrogen atom is 0.7542 eV.
In other words, in the vacuum, the hydrogen anion is stable. Chlorine has
the highest electron affinity of all atoms, 3.61 eV. It is very easy to acquire
an electron to become a chlorine anion. For some atoms, no stable anions
can be formed, for example the inert gas atoms.

4.4 Density functional theory

In Section 3.6.4, we show that because the wavefunctions are subject to
superposition, the charge density of individual orbitals is not an intrinsic
property of the system. However, the sum of the charge density distributions
of wavefunctions at the same energy level is an objective reality. From
Section 4.2.5, the total electron density distribution n(r) is a measurable
quantity, defined as the sum of squares of all single-electron orbitals,

n(r) =

j=M∑
j=1

|ψj(r)|2. (4.42)

The importance of the total electron charge density is apparent by looking
at the many-body Schrödinger equation, Eq. 4.9. Using Dirac notation, by
multiply Eq. 4.9 with 〈ψ| then integrate over the space, one obtains

〈ψ|
j=M∑
j=1

[
−1

2
∇2

j

]
|ψ〉+ 〈ψ|

j=M∑
j=1

v(rj)|ψ〉+ 〈ψ|
i=M∑
i>j>0

1

rij
|ψ〉 = E. (4.43)

Here the first term is the kinetic energy of the electrons,

T = 〈ψ|
j=M∑
j=1

[
−1

2
∇2

j

]
|ψ〉. (4.44)

The last term is the mutual repulsion energy of the electrons,

U = 〈ψ|
i=M∑
i>j>0

1

rij
|ψ〉. (4.45)
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Those two terms are universal to any electron system. The second term in
Eq. 4.43 depends on the external potential that defines the specific nature
of the system. By writing the many-body wavefunction as a product of
single-electron orbitals, see Eq. 4.11, one obtains

V = 〈ψ|
j=M∑
j=1

v(rj)|ψ〉 =
∫
n(r)v(r)d3r, (4.46)

where the external potential is the attractive potential from all nuclei,

v(r) = −
l=N∑
l=1

Zl

|r−Rl| . (4.47)

The term V contains all information about the specifics of the system.
It has a classical meaning in terms of electrostatics in Maxwell’s electro-
magnetism. And the electron density function n(r) is an experimentally
measurable field quantity, for example by electron diffraction.

For a given external potential v(r), following the Schrödinger equation,
the ground-state electron charge density n(r) is uniquely defined.

4.4.1 The Hohenberg-Kohn theorem

In 1964, Hohenberg and Kohn proved a theorem with mathematical rigor
that the reverse is true: At least for the ground state, the electron density
distribution Eq. 4.11 uniquely defines the external potential v(r). Because
the external potential v(r) contains the full information about the system
under investigation, the ground-state electron electron density function n(r)
contains full information about the system.

The proof proceeds by reductio ad absurdum. Assume that a different
external potential v′(r) gives rise to the same density distribution function
n(r). The ground-state energy will become higher, contradicting the defi-
nition of the ground state. Therefore, there is only one external potential
v(r) corresponding to a given electron distribution function n(r).2

4.4.2 The Kohn-Sham equations

The Hohenberg-Kohn theorem paves the way to a new set of self-consistent
single-electron wave equations, called Kohn-Sham equations, that are much
simpler than the Hartree-Fock equations, and often produces better results.
Those new single-electron wave equations become widely used in numerical
computations in quantum chemistry and solid-state physics.

2For mathematical details of the proof, see the 1998 Nobel lecture of Walter Kohn, or
any monograph about the density functional theory.
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Similar to Hartree and Hartree-Fock approximations, the Kohn-Sham
approximation aims for a series of one-electron orbitals ϕj(r), satisfying
differential equations resembling the one-electron Schrödinger equation,[

−1

2
∇2 + veff (r)− Ej

]
ϕj(r) = 0, (4.48)

where the index j runs from 1 to the number of electrons in the system M .
The electron density distribution n(r) is defined as

n(r) =

j=M∑
j=1

|ϕj(r)|2, (4.49)

similar to Eq. 4.42. There are important differences.
First, in each equation, there is only one unknown function, rather than

more than one as in the Hartree-Fock approximation, Eqs. 4.22 and 4.24.
Therefore, it is significantly simpler than the Hartree-Fock method, and
similar to the original Hartree method, Eq. 4.14 and 4.19.

Second, the form of the effective potential in Eq. 4.48 is much simpler
than in the Hartree and Hartree-Fock approximations. It is defined as

veff (r) = v(r) +

∫
n(r′) d3r′

|r− r′| + vxc(r). (4.50)

The first term v(r) is the external potential from the nuclei, as in Eq. 4.47.
The second term is the repulsive potential from the entire electron density
distribution, including the electron under consideration. This is significantly
simpler than the Hartree and Hartree-Fock approximation, where the repul-
sive potential for each electron must be calculated individually, to exclude
the electron under consideration. The last term is the exchange and corre-
lation potential as a replacement of Eqs. 4.23 and 4.25. It is central to the
Kohn-Sham method, deserving more attention.

In Hartree-Fock approximation, the exchange potential term Eqs. 4.23
and 4.25 must be computed from all orbitals of the entire system, and acting
on other orbitals. It is the most time-consuming computation. In the Kohn-
Sham method, the exchange potential is simplified to an effective potential
acting only on the electron under consideration.

A further simplification is based on the Hohenberg-Kohn theorem, that
the electron density distribution function n(r) contains full information on
the system, and certainly contains the information about the exchange and
correlation potential. Moreover, from a physical point of view, only the
values of the electron density distribution function near the location of the
electron under consideration is important. This physical consideration is
the origin of the local density approximation and generalized gradient ap-
proximation widely used in practical computations, see following Sections.
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4.4.3 Local density approximation

In the local density approximation, abbreviated LDC, the exchange and
correlation interaction vxc(r) is assumed to be a universal function of n(r)
at the position of the electron. There are many different functional depen-
dence in analytic forms or tabulated data, either based on certain theoretical
arguments, or determined by semi-empirical trial-and-error methods.

As a classical example, the original expression used by Walter Kohn is
a sum of the exchange energy and the correlation energy,

vxc(r) = vx(r) + vc(r), (4.51)

where the exchange energy is

vx(r) = −0.458

rs
, (4.52)

the correlation energy is

vc(r) = − 0.44

rs + 7.8
, (4.53)

and the radius of a sphere containing one electron, rs, is defined as

1

n(r)
=

4πr3s
3

. (4.54)

4.4.4 Generalized gradient approximation

Within the spirit of density functional theory, and the physical intuition that
the exchange and correlation interaction mainly depends on the values of
electron density distribution function near the position of the electron under
consideration, an improvement to the LDC is proposed and practiced. By
assuming that the exchange and correlation interaction depends both the
local value and the average gradient of the electron density distribution,

vxc(r) = f(n(r), |∇n(r)|), (4.55)

the agreement with experimental observations can be further improved. The
method is abbreviated as GGA. The explicit form of the function in Eq. 4.55
is still under intensive research.

4.5 Quantization of fermions

In Chapter 3, we presented the quantization of bosons. Each energy level
can have any number of particles. For fermions, such as electrons, each
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energy level can have at most one particle. The occupation number of
fermions is either zero or one. For example, the vacuum state is

Φ0 = |0, 0, ..., 0〉. (4.56)

and a state with only one of the energy levels occupied is

Φ1 = |0, ..., 1, ..., 0〉. (4.57)

4.5.1 Creation and annihilation operators

Let us first look at the system with one energy level. The state is either
empty |0〉, or full |1〉. The creation operator b̂† and the annihilation operator

b̂ should have the following properties:

b̂†|0〉 = |1〉, (4.58)

means that by applying a creation operator on an empty state, the state
becomes full. And

b̂|0〉 = 0, (4.59)

means that no result will be generated by applying an annihilation operator
on an empty state. And

b̂|1〉 = |0〉, (4.60)

means that by applying an annihilation operator on a full state, the state
becomes empty. And

b̂†|1〉 = 0. (4.61)

means that no result will be generated by applying a creation operator on
a full state.

Instead of the commutation relations for the boson creation and annihi-
lation operators, Eq. 3.43, the operators for fermions satisfy the anticom-
mutation relations, defined as

{b̂†, b̂} ≡ b̂b̂† + b̂†b̂ = 1. (4.62)

and
{b̂†, b̂†} = {b̂, b̂} = 0. (4.63)

From Eqs. 4.58 through 4.61, we have[
b̂b̂† + b̂†b̂

]
|1〉 = b̂†|0〉 = |1〉 (4.64)

and [
b̂b̂† + b̂†b̂

]
|0〉 = b̂|1〉 = |0〉. (4.65)

Therefore, for any state,

{b̂†, b̂} ≡ b̂b̂† + b̂†b̂ = 1. (4.66)

Equations 4.63 are obvious.
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4.5.2 Matrix representations

In order to have an explicit form of the creation and annihilation operators,3

we represent the state of each energy level as a two-component vector with
elements 1 or 0,

|0〉 =
[

0
1

]
(4.67)

and

|1〉 =
[

1
0

]
. (4.68)

The creation operator and annihilation operator are two-by-two matrices,

b̂† =
[

0 1
0 0

]
(4.69)

and

b̂ =

[
0 0
1 0

]
. (4.70)

It is easy to verify that they satisfy Eqs. 4.58 through 4.63. For example,

b̂b̂† + b̂†b̂ =
[

0 0
0 1

]
+

[
1 0
0 0

]
=

[
1 0
0 1

]
= 1. (4.71)

4.5.3 Fock space of fermions

A state of fermions can be constructed by applying creation operators on
the vacuum state |0〉. For example, with states m and n filld, it is

|m,n〉 = b̂†mb̂
†
n|0〉. (4.72)

Such a representation, called particle number representation, is in particular
advantageous for fermions. Because most of the electronic states in the sys-
tem are not active, only those single-electron states involved in the process
of interest are under focus, the expression is concise. The collection of all
vectors such as in Eq. 4.72 is called a Fock space. Note that for fermions,
all elements in the Fock space are binary numbers, 0 or 1, identical to those
in computer science. Examples of applications of the particle-number rep-
resentation and Fock space are presented in Chapter 9.

3Bjorken and Drell, Relativistic Quantum Fields, McGraw-Hill, 1965, pp. 46-54.
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