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Scanning tunneling microscopy current from localized basis orbital density functional theory
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We present a method capable of calculating elastic scanning tunneling microscopy (STM) currents from
localized atomic orbital density functional theory (DFT). To overcome the poor accuracy of the localized orbital
description of the wave functions far away from the atoms, we propagate the wave functions, using the total
DFT potential. From the propagated wave functions, the Bardeen’s perturbative approach provides the tunneling

current. To illustrate the method we investigate carbon monoxide adsorbed on a Cu(111) surface and recover the
depression/protrusion observed experimentally with normal/CO-functionalized STM tips. The theory furthermore
allows us to discuss the significance of s- and p-wave tips.
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I. INTRODUCTION

Scanning tunneling microscopy has made large strides since
its conception 35 years ago. Advances include studies of
detailed atomic structure including the shapes of molecular
orbitals [1], atomic manipulation [2], and inelastic spec-
troscopy from vibrational [3] and magnetic excitations [4].
Theoretically, the standard methods of Bardeen [5] and the
Tersoff-Hamann [6] approximation have served to model
and provide understanding of the STM measurements. The
Tersoff-Hamann approach to model STM experiments from
first principles calculations has provided a clear understanding
of many phenomena [7]. However, with the emergence of non-
s-wave functionalized STM tips [1], e.g., CO functionalized
tip, refined methods are required such as the Bardeen method
[8-12] or Chen’s derivative method [13-15] with a proper
description of the tip states.

Advances in the related field of conduction through
nanoscale devices have made great progress using nonequilib-
rium Green'’s function methods [16]. However, these methods
are in practice not directly applicable to STM modeling since
(i) scanning the STM tip over the surface results in many costly
computations, and (ii) the prevalence of localized basis set
DFT calculations to describe the electronic structure, which
cannot accurately capture the tunneling at large distances.
These difficulties to use large scale DFT calculations with
localized basis set to model STM images has given rise to
several methods to improve the modeling capabilities [8,9,12].

In this paper we pursue a similar methodology as Paz et al.
[8] where the electronic states of the tip and sample sides are
calculated accurately close to the tip and sample sides using the
localized basis DFT method SIESTA [17]. These states are then
propagated in the vacuum region to provide accurate states to
use in the Bardeen formalism. However, instead of assuming
a flat potential in the vacuum region we utilize the total DFT
potential landscape to propagate the wave functions into the
vacuum region, and thereby, by the Bardeen method, construct
first principles STM images. To benchmark our method, we
focus on describing the current dip over a carbon monoxide
molecule (CO) adsorbed on the Cu(111) surface [18], which
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has been well studied experimentally as well as being used to
provide larger resolution when the STM tip is functionalized
by the CO molecule [19].

II. THEORY

Our theoretical framework relies on the well known Bardeen
[5] approximation. In the small current limit, time-dependent
perturbation theory using a Fermi’s golden rule like formalism,
alternatively nonequilibrium Green’s function theory [20,21],
gives the tunneling current as

/= Zihe Z [F(e) = FENMy 286, — & +eV), (1)

where f(g; ;) are the Fermi-Dirac functions, & s the energy
levels of tip and substrate relative respective chemical poten-
tial, and V the applied bias. The matrix element, M,, couples
a tip state, ¢y, to a substrate state, ¢;, by the expression

hZ
M = ~om / dS - [¢/ () Ves(r) — os(mVe/ (D],  (2)
mJs

where the integral is evaluated on any surface in between the
adsorbate and tip. In this paper, we focus on the low bias
conductance, where only the tip and substrate wave functions
close to the Fermi energy are needed. Henceforth, when
referring to the tunneling current in the small bias limit, we
simply use I = GV, where G = G(T, and T is the transmis-
sion probability, T = 42| M,,|?, for a specific tip-substrate
combination, and Gy = e?/(r h) is the conductance quantum.
Generalizations to investigate bias dependent tunneling should
be straightforward. Since the integration surface is far from
either the tip or substrate, the low electron density in addition
to the use of finite range basis orbitals in SIESTA, c.f., Fig. 1, the
wave functions are poorly described in the vacuum region. In
contrast, the wave functions close to the atomic nuclei can be
accurately and efficiently calculated by SIESTA. STM images
can thus be calculated by propagating these accurate wave
functions (close to the nuclei) into the vacuum region.

A. Propagation of wave functions

The SIESTA method solves the Kohn-Sham equations using
norm conserving pseudopotentials and a localized basis set.
Outside the range of the pseudopotentials, the Kohn-Sham
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FIG. 1. Illustration of CO adsorbed on a Cu surface and Cu tip.
The finite range basis orbitals used in SIESTA, shaded region, underline
the difficulty of describing the tunneling current with a localized basis.
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orbitals obey, at a specified energy, a Schrodinger-like equation
with a local potential, which makes it conceptually straightfor-
ward to propagate a known wave function from a surface into
the vacuum region. The substrate and tip sides are treated in the
same way, and to simplify the presentation we henceforth only
describe the details starting from substrate side. To propagate
the wave functions in real space, we start from a charge density
isosurface, see Fig. 2, chosen close to the substrate but outside
of the radii of the pseudopotentials. In the vacuum region,
the Kohn-Sham equations (Rydberg units) therefore read
(—=V? 4+ Vi)W = epW where the total potential (Vo) contains
the Coulomb, Hartree, and exchange-correlation terms. For
efficiency, the calculation cell actually contains both substrate
and tip situated far enough away from each other to give a
negligible current. To remove the tip potential we therefore
find the real space grid slice containing the maximum value of
the total DFT potential value and set the total potential further
away from the substrate to the average value of V| at that
height above the substrate. In order to use this modified DFT
potential, a sufficiently large vacuum gap is required in order
to capture the work function properly.

The substrate and tip states are obtained for the device
region coupled to semi-infinite electrodes using TRANSIESTA
[22], which is a nonequilibrium Green’s function method built
on the SIESTA method. The states at the Fermi energy are found
in the SIESTA basis set by diagonalizing the partial spectral
function [23], i.e., the spectral function of the substrate (tip)
side Agry = GaTyyGly = Y2, [¥)An (W], where Gy is the
retarded Green’s function of the device region, and Iy is
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FIG. 2. 2D illustration of the device (full region), substrate
(black), and vacuum (gray) regions. The dashed white line illustrates
the constant density surface, pi, from which the substrate states,
{|¥,)}, are propagated into the vacuum region.
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the broadening of the substrate (tip). Although the device
region can be arbitrarily large, only a few (of the order
of 10 in our examples) eigenvalues are nonzero and the
corresponding eigenvectors give the scattering states when
properly normalized [23],

_ Mn o 3
() —\/Ehﬁn% (3

where |v,) are the energy normalized scattering states. Any
unitary transformation of a scattering state, e.g., sign flip
or rotation, does not affect the physical observables. Note
that the scattering states are neither basis orbitals nor current
eigenfunctions. They are formed by incoming Bloch states in
the semi-infinite electrodes which are almost totally reflected.
The number of states is therefore determined by the number
of Bloch states in the leads at the Fermi energy. Owing to the
finite transmission probability, the scattering states consist of
a real and an imaginary part, where the real part is dominant
(by a factor ~ 10%) due to almost total reflection of the waves.
Hence, in the discussion below, only the real part is considered
when visualizing the wave functions. To propagate these states
into the vacuum region, the wave functions are evaluated on
the same real space grid as used by SIESTA.

The real space wave functions can then be computed
using the Green’s function formalism. Here we use the finite
difference (FD) method to discretize the device region [24],
i.e., the gray and black regions in Fig. 2. The FD Hamiltonian
is a sparse tight-binding Hamiltonian which, by separating the
full device region into subspaces, can be written as

no |MF )
B TT H2 ’
where subspace 1 contains the volume with the high charge
density (close to the atoms), and subspace 2 is the vacuum
region. The matrix T describes the coupling elements between
the two regions.
By means of the Dyson equation, the wave functions inside

region 1, |Y,) (known from the SIESTA calculation), relate to
the propagated wave functions, |¢,), in the vacuum region as

lon) = GoT|¥n), &)

where Gy = (egl — H, — X 3)~! is the isolated Green’s func-
tion of the vacuum region, optionally connected to a semi-
inifinite continuation on the right hand side by the self-energy
Y g. The Hamiltonian, H,, contains the FD Laplacian of the
vacuum (region 2, Fig. 2), and the total potential, including
the modified vacuum part far away from the substrate. The
total potential and charge density are readily available in real
space from the SIESTA code, and we therefore only need to
specify the boundary conditions to be able to propagate the
wave functions. Furthermore, calculation of the self-energy
on the vacuum boundary, X, can safely be omitted if the
device region is large, since the propagated modes vanish
exponentially fast in the vacuum region (i.e., near total
reflection). Inclusion of the vacuum self-energy is therefore
optional as long as the device region is large enough, and
will be omitted in the following. We compute the modes in
the vacuum region, |g,), by algebraically solving the (sparse)
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linear system of equations,

(erl = Ha)|@n) = V). 6)

Note that solving the system of linear equations is much less
demanding than performing a matrix inversion to obtain Gy,
allowing for larger systems to be considered.

Assuming that the calculated wave functions are unchanged
by translation of the tip relative to the substrate allows us to
efficiently calculate the STM current image as a convolution
in two dimensions,

h2
Mm(R)=—% [dS~[(ﬂt*(l'+R)V<px(r)—<px(r)prt*(l‘+R)],
S

(N

where the convolution is performed efficiently using fast
Fourier transforms (FFT) [8,12]. Shifting the wave functions
in the Z direction is easily accomplished and the computational
cost negligible.

B. Computational details

We use the SIESTA [17] DFT program to obtain the relaxed
geometry of the supercell. The substrate consists of five 4 x 4
Cu-layers forming the Cu(111) geometry, with lattice constant
2.57 A hence giving images of dimensions 10.3 x 10.3 A.The
molecule, the two top layers of the substrate, and the tip atom
are relaxed until the residual force is less than 0.04 eV//&.
The tip consists of three similar layers with a pyramidal tip
apex with four Cu-atoms attached to the underside of the tip
slab. A part of the relaxed supercell geometry is visualized
in Fig. 5. The maximal range of the atomic orbitals are
4.8, 3.0, and 3.9 A for Cu, O, and C respectively. Periodic
boundary conditions are imposed in all spatial dimensions. The
computations were performed with the PBE GGA functional
[25], SZP(DZP) basis set for Cu(CO), a 200 Ry mesh cutoff
energy for real space grid integration, and 4 x 4 k-points in the
surface plane. Nonequilibrium wave functions are calculated
by the TRANSIESTA [22] and INELASTICA [26] modules by
adding three(six) layer electrodes at the substrate(tip) side of
the supercell.

For the real space wave function propagation we have
found that the real space grid given by SIESTA (200 Ry cutoff)
is unnecessarily fine, and in the wave function propagation
the grid coarseness were doubled (corresponding to a 50 Ry
cutoff in SIESTA). This reflects that the potential and the wave
functions in the vacuum region change slowly compared to
closer to the atoms. Furthermore, the propagation, and STM
image computation time is reduced from ~hours (200 Ry) to
~minutes (50 Ry) [27].

The grid sizes used below consist of 40 x 40 points in
the plane of the substrate and approximately 50 points along
the transport direction. The density on the isosurface, pio,
is chosen so that the this surface lies just outside the radii
of the pseudopotentials. Henceforth, we will use pio = 5 X
1073 Bohr_3Ry_' , and we have verified that small changes in
this parameter do not affect the results. In this study, the STM
images were found from the scattering states in the I point
for computational reasons. Further extensions of the code to
include k-point sampling is being considered.
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FIG. 3. Comparison of the calculated constant height STM image
at 5.0 A, computed by means of (a) the propagated, and (b) SIESTA
wave functions. Bottom panel shows the cross sections along the
dashed lines.

III. RESULTS

We demonstrate the theory by primarily considering a
CO molecule adsorbed on a top site of a clean 4 x 4 atom
Cu(111) surface with a pyramidal shaped tip apex, consisting
of four copper atoms, see Fig. 1. A comparison between
direct use of the scattering states computed from the localized
SIESTA basis, and the modes found by Eq. (6) will first be
examined to highlight the advantages of our theory. This
reveals the characteristic depression over the CO molecule
in the tunneling current, which will be analyzed in terms of
the individual wave functions, and compared with the STM
image obtained with a CO-terminated tip. The tip-height is
henceforth defined as the core-core height difference (along
Z) between the outermost tip apex atom and its closest atom
adsorbed on the substrate, see Fig. 1.

A. Comparison between localized and propagated
wave functions

To illustrate the limitations of using the localized orbitals to
describe the wave functions in the vacuum gap, we use Eq. (1)
for both the wave functions found directly from SIESTA, and
compare with using the propagated modes. Figure 3 displays
the constant tip-height (5.0 A) tunneling current showing
the expected dip in current over the CO molecule using the
propagated wave functions [Fig. 3(a)], and the failure of the
SIESTA wave functions to reproduce the dip [Fig. 3(b)].

Since the SIESTA basis orbitals are exactly zero outside a
certain range, the scattering states calculated in the SIESTA
basis have a vanishingly small overlap when the tip is moved
away laterally from the molecule. Over the molecule this
overlap is increased, and the CO molecule therefore appears
as a protrusion in the tunneling current contrary to the
characteristic dip seen experimentally. This can be remedied,
at least partially, by using longer range basis functions [12].
Here, we instead propagate the SIESTA wave functions into
the vacuum region and obtain a more accurate representation
of the scattering states, especially away (laterally) from the
molecule. This provides an overall increase in the tunneling
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FIG. 4. STM image dependence on the substrate-tip distance and lateral displacement of the tip. (i) Illustrations of the six geometries, each
computed by a separate DFT calculation. (ii) the total potential at the separation surface, %, for the 3.5 A system, in (i). (iii) Constant height
STM image cross sections for the six DFT calculations. (iv) total potential energy along the bonding axis of the CO molecule where the black
(dashed blue) line is the potential used in propagation of the wave functions from the substrate (tip) side, and the horizontal black line is the

Fermi energy.

current. Additionally, as will be discussed in more detail below,
the characteristic dip over the CO molecule is recovered.

B. Substrate-tip distance

The basic assumption in the Bardeen approximation is that
the potential of the tip does not perturb the wave functions from
the substrate and vice versa [5]. To investigate this assumption
we carried out calculations at three different substrate-tip
distances with the tip above the CO molecule and with the
tip laterally displaced from the molecule, see Fig. 4(i).

Visualizing the DFT total potential at a constant height
above the substrate, see Fig. 4(ii), clearly shows the effect
of the tip on the potential at tip-heights below 5 A, e.g.,
Fig. 4(ii)(f) shows the potential of the molecule and underlying
Cu lattice while (d) and (b) clearly show the perturbation of
the potential from the tip. The perturbation of the tip potential
on the substrate wave functions severely modify the simulated
STM images for distances below 5 A, see Fig. 4(iii), and gives
differences between the calculated STM images even when
the tip is shifted laterally at the same height. Furthermore,
the approximation to use a flat potential outside the maximum
potential, see Fig. 4(iv) is also questionable for tip-heights
below 5 A since the height of the potential will give the
exponential decay into the vacuum region.

In summary, these calculations demonstrate the need for a
relatively large vacuum gap in order to minimize the impact
from the tip potential when calculating the substrate wave
functions and vice versa. In the following calculations we keep
the tip-heights larger than 5 A. However, this might, in some
cases, be an artificially large distance when comparing with
experimental STM images. Other possible solutions might
be to introduce the tip potential as a perturbation, although
this would necessitate the recalculation of the perturbed wave
functions at each lateral displacement of the tip.

C. Wave function analysis

To gain further insights of the tunneling current contribu-
tions to the constant height STM image, it is instructive to
look at the various propagated wave functions at the surface
on which the integral, My, c.f., Eq. (2), is evaluated, see
Fig. 5. The gradients in the integral can, to zeroth order, be
approximated by an exponential decay in the Z direction, which
means that the integral M, is proportional to the overlap of
the wave functions on the integration surface. To separate the
contributions from the different types of channels we further
separate the contributions of s- and p-like scattering states
from the substrate and tip. They are referred to as s and p
waves henceforth, not to be confused with s and p orbitals of
individual isolated atoms. The classification into s and p waves
is simply done by visual inspection of the integration surface
[see Figs. 5(a), 5(b), 5(e), and 5(f)]. Note that this means
that p, waves are classified as s waves as they are radially
symmetric in the x-y plane. Scattering states which are not
clearly s or p waves in the x-y plane are denoted miscellaneous
orbitals (m.o0.). This pragmatic classification is sufficient for
the current system. However, any unitary mix of the propagated
wave functions leaves the physical observables unchanged,
and should be considered if the important scattering states
have no clear symmetry. This means that, e.g., a sign flip
of a particular scattering state does not affect the results.
The contributions from the scattering states vary with the tip
position, and we therefore present the average with respect
to tip position over the full image or over the molecule. That
is, (ZS rets, pmo) | M, |? )A, where the area A is either the full
image, Figs. 5(c)(i) and 5(g)(i), or the central region over the
molecule delimited by the average of maximum and minimum
currents, Figs. 5(c)(ii) and 5(g)(ii). The resulting plot of the the
|M,S|2 matrix, Figs. 5(c) and 5(g), separates the contributions
from the s- and p-wave scattering states and allows us to
discuss the origin of the STM contrast.
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FIG. 5. Left column (a, b, ¢, and d) shows the substrate and tip wave functions for the pyramidal copper (s-wave) tip, evaluated at the
separation surface in the vacuum region (5.0 A tip-height). The relaxed geometry figure displays the vertical distance between the oxygen atom
and the separation plane, and the scan direction for the cross section figures throughout. The matrix in (c) shows the average tunneling current
for the s-, p-, and miscellaneous wave (m.o.) combinations. The average is taken over tip positions over (i) the full cell and (ii) the area over
the molecule, where the details are given in the text. Figure (d) shows the resulting constant height STM image and its cross section along the
dashed line. The right column (e, f, g, and h) shows the results with a CO functionalized (p-wave) tip at 5.2 A tip-height. The scalebar units in

(a), (b), (e), and (f) are (Bohr’Ry)~'/2.

1. Cu-terminated tip

For the Cu-terminated tip, the main tunneling current (69%)
originates from a few s waves from both substrate (mainly
states 9 and 13) and tip side (7 and 13), see left part of
Fig. 5(c)), whereas, the p waves play a minor role. We further
note that the tip and substrate scattering states contributing to
the current (substrate states 9 and 13, and tip states 7 and 13)

are virtually identical apart from a constant. It seems likely that
a unitary transformation of the wave functions can provide an
even simpler picture, where the main current is carried by a
single state substrate and tip state, c.f., current eigenchannels
[23].

The average of the current and current matrix over the
central area close to the molecule show a clear decrease in the
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FIG. 6. Panel (a) and (b) show the most conducting substrate and
tip wave function combination in a cross section profile over the CO
molecule. Panel (c) displays a cross section profile of the tunneling
current originating from these two states. Below each cross section
its 2D image is shown, where the scanning direction is indicated by a
dashed line, i.e., along an atom row of the Cu(111) surface, see Fig. 5.
Peak heights are normalized.

average current, see Fig. 5(c)(ii). Since the Cu tip gives a lower
current over the molecule, the average over tip positions close
to the molecule is lower (71%) compared to the average over
the full cell, Fig. 5(c)(i) (100%). The main part of the current is
still carried through the s-wave tip states although the current
going through the substrate s wave decrease substantially,
and the importance of the p waves increase markedly. As
neither the amplitude, nor the sign of the wave functions are
clearly visible in Fig. 5, a cross section of the most transmitting
mode combination is shown in Fig. 6. This combination, i.e.,
{ |<ps13 ), |(pt7 )} (giving 24% of the total tunneling current), reveals
a sign change for the substrate mode, whereas the sign is
strictly positive for the tip mode. The sign change implies that
the overlap of the wave functions decreases when the tip is
centered over the molecule, and gives, as an interference effect,
the dip in tunneling current, see Fig. 6. Note that the overlap
of the two wave functions in Figs. 6(a) and 6(b) seems to have
a maximum over the molecule if the overlap is calculated in
1D. However, in 2D the resulting overlap is shown in Fig. 6(c),
where the overlap is lower when the tip is centered over the
molecule. The difference between the 1D and 2D overlap can
be understood as the increase of the area element for increasing
r in a polar coordinate system. The depression in the STM
image arises simply by interference from the change of the
sign of the dominating substrate scattering state. We further
note that the scattering state amplitudes are nonzero laterally
away from the molecule providing a larger current when the
tip is shifted away from the molecule.

For completeness, the substrate LDOS is shown in Fig. 7
for several vertical distances. In the Tersoff-Hamann approx-
imation [6], or the more general Chen’s derivative rules [13],
the current is simply given by the local density of states
(LDQOS) at the tip position for an s-wave tip. At tip-heights
>5A (Figs. 7(d), 7(e), and 7(f)) the LDOS resemble the
calculated STM image, c.f., Fig. 5. However, in the Bardeen
approximation, the integration surface is approximately in the
middle of the gap, see Fig. 5, where the LDOS does not

PHYSICAL REVIEW B 93, 115434 (2016)
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FIG. 7. Cross section plots of the normalized local density of
states from the substrate, CO@Cu(111), at distance (a) 2.5, (b) 3.4,
(c)4.3,(d)5.2,(e) 6.1, and (f) 7.0 A above the oxygen molecule. The
insets show the 2D images.

resemble the STM images (Figs. 7(a), 7(b), and 7(c)). In
addition, imaging with a non s-wave tip, e.g., CO-terminated
tip, makes the interpretation more difficult.

2. CO-terminated tip

Using a CO-terminated tip increases the importance of the
tip p waves and can increase the STM resolution [1,28,29].
Previous studies have introduced p wave tips by expanding
the tip orbitals using Chen’s derivative method [14] or setting
the mix between tip s and p waves by hand [1]. In addition, the
importance of the p waves for the CO-functionalized tip has
been seen theoretically in calculations of inelastic electron
tunneling spectra [28,29]. In our case, the current matrix
analysis allows us to analyze the contributions directly from
the DFT calculations of the tip and substrate states.

For the CO-terminated tip our calculations show the reversal
of the STM contrast with a conductance peak above the CO
molecule, c.f., Fig. 5(h), in agreement with experiments [19].
The propagated wave functions and the current contributions
from the s and p waves are shown in the right column in
Fig. 5(g). Due to the contrast inversion (compared to the Cu
tip, Fig. 5(d)), the average current inside half the maximum of
the final STM image, Fig. 5(g)(ii), is higher (225%) compared
to when scanning the full cell (100%). As with the Cu tip, the
various combinations of s waves yield a current dip. However,
the relative intensity for these s waves are significantly weaker
for the CO tip, whereas the p-wave intensities play a dominant
role, especially over the molecule, as seen from the current
matrix. Away from the molecule, the p channels are not as
dominant but still significant in the resulting STM current.
For the p-wave tip states, see Figs. 5(e) and 5(f), the overlap
with the substrate states increases when the substrate states
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change sign, c.f., Chen’s derivative rules for a p-wave tip
[13]. The difference in contrast compared to the Cu tip,
with a conductance peak over the molecule, can therefore be
understood from the overlap of the p-wave scattering states
from the tip and substrate.

IV. SUMMARY

The ability to propagate the wave functions into the vacuum
gap overcomes the disadvantages of localized atomic orbital
DFT in describing the wave functions in the STM gap.
This allows us to use computationally relatively inexpensive
DFT calculations to model STM experiments. The method
can furthermore be extended to include k-point sampling,
as well as energy dependence to model scanning tunneling
spectroscopy. The usefulness of the method is exemplified

PHYSICAL REVIEW B 93, 115434 (2016)

by the correct description of the CO molecule on Cu(111)
depression seen in STM experiments. Here, the depression
stems from the sign change of the dominating substrate s-wave
functions. In contrast, the same molecule shows a protrusion
when measured with a CO-functionalized tip, which is due to
the p-wave character of the tip.
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