
Preface to the Third Edition

More than ten years have passed since the publication of the second edi-
tion of Introduction to Scanning Tunneling Microscopy (STM). Significant
advances in this research field have been made during that decade. One of
the most important advances is the direct experimental observation of the
wavefunctions of atoms and molecules (through field quantities representing
local values of wavefunctions) down to picometer resolution with negligible
disturbance. This advance was a result of two breakthroughs.

The first breakthrough came about 2005 when a group at IBM Zurich
Laboratory discovered a method to image the wavefunctions of single atoms
and organic molecules in pristine state using STM by separating the molecule
and the metal substrate with an ultrathin film of insulator, typically NaCl
[1, 2]. By using different biases, images of highest occupied molecular or-
bital (HOMO) and lowest unoccupied molecular orbital (LUMO) are clearly
observed, agreeing with the charge density contours of those wavefunctions
calculated from first-principle quantum mechanical computations.

The second breakthrough took place around 2011, where the same group
at IBM Zurich Laboratory imaged the organic molecules sitting on an in-
sulating film using an STM tip functionalized with a CO molecule [3]. The
STM images did not resemble the charge density contour at all, but rather
the squares of the lateral derivatives of the molecular wavefunctions, which
peak at the nodal structures of the molecular wavefunctions. For the first
time in science history, the nodal structures inside molecular wavefunctions
are directly observed and mapped in real space. That Physics Review Let-
ter was reviewed by a Viewpoint article in Physics [4], entitled Visualizing
Quantum Mechanics, which commented that the direct observation of the
nodal structures inside molecular orbitals “will help future generations of
chemists in obtaining an intuitive understanding of molecular properties
that will guide them to novel solutions in all areas of chemistry.”

The direct observation of the wavefunctions and their derivatives touches
a fundamental scientific question unresolved over almost one century: the
interpretation of wavefunctions. In A Brief History of Time [5], Stephen
Hawking said: “Quantum mechanics underlies all of modern science and
technology. It governs the behavior of transistors and integrated circuits,
and is the basis of modern chemistry and biology.” On the other hand, as
Richard Feynman famously said, “If you think you understand quantum
mechanics, you don’t understand quantum mechanics”—because the inter-
pretation of its central subject, wavefunction, was highly controversial [6, 7].
The direct experimental observation of wavefunctions shows that they are
observable physical reality, similar to Maxwell’s electromagnetic fields. This
new edition features an added chapter on Imaging Wavefunctions, including
a section Meaning of Wavefunction Observation.
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During the writing of the new edition, an unavoidable difficulty was
how to present the experimental observation of wavefunctions. According
to the orthodox view of quantum mechanics, represented by the Copenhagen
doctrine and the von Neumann axioms [7], wavefunction is not observable.
Regarding this question, I communicated extensively with Franck Laloë, the
author of Do We Really understand Quantum Mechanics? [8], and the coau-
thor of the well-known textbook Quantum Mechanics with Nobelist Claude
Cohen-Tannoudji [9]. In the foreword of the 2019 edition of Laloë’s book [8],
Cohen-Tannoudji said that it “provides clear and objective presentation of
the alternative formulations that have proposed to replace the traditional
orthodoxy”. Accordingly, until about 1970 or 1980, most physicists took
the Copenhagen interpretation as the orthodoxy. Nowadays, the attitude
of physicists is more open concerning the matters [8]. Laloë recommended
the three-volume masterpiece Mécanique Quantique [10] by Émile Durand,
a graduate student of Louis de Briglie and a long-term dean of Toulouse
University. Published in the 1970s, it started with a formulation that all
wavefunctions are real, including Pauli and Dirac spinors [10]. By identify-
ing real wavefunctions as the physical reality, the meaning of wavefunction
observation becomes natural, as shown in Section 8.4.
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Columbia University

New York

October 2019



Chapter 8

Imaging Wavefunctions

The concept of wavefunction was introduced in the first 1926 paper by Er-
win Schrödinger entitled “Quantisierung als Eigenwertproblem (erste Mit-
telung)” [11] as the central object of the atomic world and the cornerstone
of quantum mechanics. It is a mathematical representation of de Broglie’s
postulate that the electron is a material wave. In that historical paper,
wavefunction ψ(r) was defined as “everywhere real, single-valued, finite, and
continuously differentiable up to the second order.” Schrödinger defined the
quantity −e|ψ(r)|2 as the charge density distribution of an electron extended
in real space. The normalization condition∫

d3r |ψ(r)|2 = 1 (8.1)

is required because the total charge of an electron is always the elementary
charge −e. The meaning of −e|ψ(r)|2 as the charge density distribution of
a single electron is the basis for quantum-mechanical treatments of many-
electron atoms, molecules, and solid state. The wavefunction of a many-
electron system is a Slater determinant of the wavefunctions of individual
electron states. The wavefunction of each individual electron state, also
known as an orbital, is the solution of the Schrödinger equation in a potential
field formed by the nuclei and the electrical charge densities of all other
electrons. It is the basis of the self-consistent field theory, including the
Hartree method and the Hartree-Fock method, especially the DFT [12, 13].
It is documented in standard quantum mechanics textbooks [14, 15] as well
as standard quantum chemistry textbooks [16, 17].

Nevertheless, for many decades since its introduction as a physical con-
cept, wavefunction has not been characterized as an observable for legiti-
mate reasons. First, it is too small. The typical size of a wavefunction is a
fraction of a nanometer. Second, it is too fragile. The typical bonding en-
ergy of a wavefunction is a few electron volts. Using an optical microscope
is out of the question: the wavelength of visible light is thousands of times
greater than the size of a wavefunction. Heisenberg [18] suggested using a
gamma ray microscope to observe electrons in a subatomic scale. However,
the energy of such gamma ray photons is thousands of times greater than
the bonding energy of the wavefunctions, which would severely disturb the
electrons under observation. This was an argument for his uncertainty prin-
ciple. An electron microscope has a much better resolution than an optical
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microscope. However, to achieve spatial resolution smaller than a fraction
of a nanometer, the energy of the electrons is still too high. According to
de Broglie, the wavelength of an electron with energy E in eV is

λ =
h

p
=

h√
2meE

=

√
1.504

E
nm. (8.2)

Table 8.1 shows some typical values of the wavelength λ of an electron.
Therefore, wavefunction is not observable by an electron microscope.

The advancement of STM and AFM has made wavefunctions observ-
able. First, the accuracy of position determination can be a fraction of a
picometer. Second, both STM and AFM are nondestructive, which leaves
the object of observation undisturbed. The importance of nondisturbance
in quantum mechanical measurement process is discussed in Section 8.4.

The meaning of expression “imaging wavefunctions” needs to be clar-
ified. To take advantage of the Euler formula eix = cosx + i sinx, many
quantum mechanics textbooks define wavefunctions as complex. However,
it contradicts the original definition of wavefunctions by Schrödinger, and it
is often unnecessary. According to Wigner’s theorem, if the Hamiltonian is
time-reversal invariant, all wavefunctions can be real, see Appendix B. For
applications in STM and AFM, it is always fine to follow the original defini-
tion of Schrödinger that all wavefunctions of bound states are real. In most
cases, the wavefunction has multiple lobes of opposite signs. By multiply-
ing the wavefunction with −1, it is still a good solution of the Schrödinger
equation. Nevertheless, the signs of all lobes are reversed. The field quanti-
ties directly observed and mapped by STM and AFM are derived from the
local values of wavefunctions, as shown by the following examples. First,
the square of the wavefunction, which is proportional to the charge density
distribution of the electron at that location, ρ(r) = −e|ψ(r)|2. Second, the
square of the lateral derivatives of the wavefunction, as measured using a
p-type tip wavefunction. Third, the absolute value of the wavefunction, as
measured through the chemical-bond interaction energy between an s-type
tip and the sample. Lastly, the absolute value of the lateral derivatives
of the wavefunction by AFM using a p-type tip. If the wavefunctions are
degenerate (in the tip or in the sample), then a linear superposition of
the degenerate wavefunctions can change the observable quantity from an
individual wavefunction. However, because the degenerate wavefunctions
are orthogonal and normalized, the observable quantity arising from all de-

Table 8.1: Wavelength and electron energy

Energy (eV) 25 50 100 200

Wavelength (nm) 0.245 0.173 0.123 0.087
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generate wavefunctions at the same energy level is invariant under a linear
superposition, for example, due to a coordinate rotation. For all those cases,
a field quantity representing the local values of wavefunctions is observed
and mapped [3]. An umbrella term “imaging wavefunctions” is thus used.
For more details, see Section 8.4.

8.1 Use of ultrathin insulating barriers

Atoms and molecules adsorbed on metal surfaces have been observed even
in the early years of STM. However, in those early experiments, the wave-
functions of the adsorbed atoms and molecules are seriously perturbed by
the metal substrate. The images are often interpreted as a disturbance of
the LDOS of the metal surface at the Fermi level caused by the adsorbed
atoms or molecules.

By placing an ultrathin insulating barrier between the atom or molecule
under observation and the metal substrate, atoms and molecules, including
the amplitudes and the derivatives of the wavefunctions, can be investigated
in pristine condition. A well-verified system consists of two atomic layers of
NaCl on a Cu(111) substrate [19, 20, 21]. The perturbations of the metal
substrate to the wavefunctions become negligible.

The substrate with an ultrathin NaCl insulating film on Cu(111) is rela-
tively easy to prepare and well studied. The underlying substrate, Cu(111)
surface, can be prepared with repeated sputtering and annealing. NaCl is
then evaporated thermally, with the sample temperature kept at about 320
K. NaCl forms (100)-terminated islands up to several microns in size, start-
ing with a double layer [20]. Islands of three-layer film also exist, which can

Fig. 8.1. Ultrathin insulating barrier for imaging wavefunctions. (A) An STM
image of a NaCl film on Cu(111) substrate. (B) A schematic diagram of a top view,
showing a (100) structure of NaCl on top of the Cu(111) surface. (C) A lateral view.
The average thickness of the double NaCl film is about 564 pm. The interference to the
atoms and molecules from the metal substrate is substantially reduced.
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be identified by STM, see Fig. 8.1(A). The structure, with a lattice param-
eter of 0.564 nm, is shown in Fig. 8.1(B). The energy gap of NaCl is 8.5 eV,
which has been shown to exist already for a bilayer [3]. It is equivalent to a
vacuum gap of 0.564 nm, see Fig. 8.1(C). The work function of Cu(111) is
4.94 eV. The gap causes a decay constant

κ = 5.1×
√
4.94 ≈ 11.3 nm−1. (8.3)

The reduction ratio for the tunneling current is

R = e−0.564×11.3 ≈ 1.7× 10−3. (8.4)

The tunneling current reduction can be compensated by increasing ampli-
fication, whereas the perturbation to the wavefunctions under observation
is reduced by about three orders of magnitude.

8.2 Imaging wavefunctions with STM

8.2.1 Imaging atomic wavefunctions

One of the most well-known wavefunctions, described in all quantum me-
chanics textbooks, is the ground state of a hydrogen atom. It is

|1s〉 = 1√
πa30

e−r/a0 , (8.5)

where

a0 ≡ 4πε0�
2

mee2
≈ 52.9 pm (8.6)

is the Bohr radius. The energy level is

E = − mee
4

32ε20π
2�2

≈ −13.6 eV. (8.7)

Fig. 8.2. Wavefunction of ground-state hydrogen atom. (A) Amplitude plot of
the ground-state wavefunction of hydrogen. (B) The amplitude profile.
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Table 8.2: Wavefunction radii and energy levels.

Atom Configuration Radius (pm) Energy level (eV)

H 1s 53 -13.60

Li 1s22s 167 -5.39

Na ...2s22p63s 190 -5.14

K ...3s23p64s 243 -4.34

Cu ...3p63d104s 145 -7.72

Ag ...4p64d105s 165 -7.57

Au ...5p65d106s 174 -9.22

A density plot and an amplitude contour of the wavefunction of ground-state
hydrogen atom are shown in Fig. 8.2. As shown, the equal-amplitude con-
tours of the wavefunction are spheres. If it is possible to map the amplitude
contours, the results should be spheres of different radii.

However, the size of the wavefunction of the ground-state hydrogen atom
is very small, and the energy level is much too deep with respect to the
work function of the metal substrate, typically 5 eV. Other atoms with a
single outer electron are the alkali metals and noble metals. The size of the
wavefunctions and the energy levels are shown in Table 8.2.

As shown, for alkali metal atoms (Li. Na, K), the energy level is very
close to the Fermi level and roughly equals the work function of the metal
substrate. Therefore, the wavefunction of those atoms tends to spread over
to the surface. The three group-11 elements (Cu, Ag, Au), the so-called no-
ble metals, have a single electron moving in the potential field of a spherical
charge distribution formed by the nucleus and other electrons. The energy

Fig. 8.3. STM images of Au atoms on NaCl film. The images of Au atoms on a
NaCl insulating film appear as protrusions of apparent height of 0.20 nm to 0.25 nm, as
part of a spherical electrical charge distribution. The charge state of the Au atom can be
switched by applying electrical pulses. (A) By applying an electrical pulse of V ≥0.6V
near the center of the Au atom, the charge state of the Au atom is apparently changed, as
the diameter and height of the image is changed, see (B) By applying another electrical
pulse of -1 V, the charge state of the Au atom is switched back, see (C).
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Fig. 8.4. Explanation of the charge-state switching of an Au atom. Calculated
electronic and geometrical properties of the neutral (A and C) and negatively charged
(D and F) Au atom. The geometry of the atomic arrangement and the energy levels are
changed due to the state switching After Repp et al. [1].

levels are a few eV below the Fermi level. Those metal atoms are convenient
for wavefunction observation and mapping.

Figure 8.3 shows examples of experimental observations of Au atoms on
a NaCl insulating film. As expected, the images of the Au atoms appear as
round-shaped protrusions of 0.20 to 0.25 nm, the top part of the contours
of the spherical electrical change distribution.

An interesting effect is, the charge state of the Au atoms can be switched
using electrical pulses. As shown in Fig. 8.3(A), by applying a pulse of
V ≥ 0.6 V on top of an Au atom, the image is dramatically changed, see
Fig. 8.3(B). By applying a pulse of higher voltage and opposite polarity, the
state can be switched back, see Fig. 8.3(C).

Another interesting fact is, before and after state change, not only the
shape of the image is changed, but also peak bias voltage to observe the
images is changed. It is because the energy levels of different states are
different, and the bias voltage realigns the energy levels. Figure 8.4 is an
explanation of the process. The geometry of the atomic arrangement and
the energy levels are changed due to the state switching.

8.2.2 Imaging molecular wavefunctions

The STM imaging of the wavefunctions of metal atoms on an insulating
barrier showed definitively its observability, as its charge density distribution
can be mapped in real space [1]. Much richer images can be observed
on organic molecules on top of the ultrathin insulating films. With an s-
wave tip state of a typical metallic apex atom, representing the square of
wavefunctions at different energy levels [22]

Is(x, y) ∝ |ψ(x, y, z0)|2, (8.8)

are mapped in real space [21, 23]. Not only are the structures of the wave-
functions more complex, for many organic molecules, but also both the



8.2 Imaging wavefunctions with STM 241

Fig. 8.5. Charge density and STM image of naphthalocynine. (A) The molec-
ular structure of naphthalocynine. (B) The theoretical charge density distributions and
STM images of naphthalocynine, for both HOMO and LUMO. The theoretical charge
densities contours are computed using density-functional theory. The STM images closely
resemble the theoretical charge density contours, represented by the square of the wave-
functions. [25].

HOMO (highest occupied molecular orbitals) and LUMO (lowest unoccu-
pied molecular orbitals) states have energy levels within the reach of STM by
using reasonable bias voltages. In 2005, the wavefunctions of both HOMO
states and LUMO states of pentacene were observed by STM [21]. The
images and the energy levels fit well with the wavefunctions and energy
eigenvalues of the free molecules from first-principle numerical computa-
tions using DFT based on quantum mechanics [24], see plate 14. Figure 8.5
shows another example of imaging naphthalocynine molecule on a NaCl in-
sulating film. (A) is the molecular structure. (B) shows the theoretical and
experimental images. The HOMO state is observed with a bias of -1.75 V,
and the LUMO state is observed with a bias of +0.6 V. The charge den-
sity contours, represented by the square of the wavefunctions, are computed
using DFT methods. The STM images are shown to closely resemble the
charge density contours, or the square of wavefunctions. Those STM images
show clearly that the electron charge density distributions, or the square of
the wavefunctions, are observable field quantities.

8.2.3 Imaging nodal structures

In 2011, using a tip functionalized by a CO-molecule to image organic
molecules adsorbed on a NaCl thin film, completely different STM images
were observed [3]. The process of controlled transfer of a CO atom between
the STM tip and the sample was discovered in 1997 [26]. The physics of
the process and the electronic states of the CO molecule is well understood
[27], see Section ??. The carbon atom is directly attached to the metal
base. The oxygen atom has a pair of degenerate px and py states, that
dominate the tunneling process. According to the derivative rule of tunnel-
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Fig. 8.6. STM images of HOMO wavefunctions of pentacene, s-wave-tip and
p-wave-tip. (a) The theoretical and observed images of HOMO wavefunctions by an
s-wave tip, from [21]. (b) The theoretical and observed images of HOMO wavefunctions
by an p-wave tip, from [3].

ing theory [22, 28, 29], the tunneling matrix elements are proportional to
the derivatives of the sample wavefunction ψ, which are

Mpx
∝ ∂ψ

∂x
and Mpy

∝ ∂ψ

∂y
, (8.9)

respectively. The tunneling current Ip(x, y) is proportional to the sum of
the squared tunneling matrix elements. On a plane z = z0, it is

Ip(x, y) ∝
∣∣∣∣∂ψ(x, y, z0)∂x

∣∣∣∣
2

+

∣∣∣∣∂ψ(x, y, z0)∂y

∣∣∣∣
2

. (8.10)

Fig. 8.7. STM images of LUMO wavefunctions of pentacene, s-wave tip and
p-wave-tip. (a) The theoretical and observed images of LUMO wavefunctions by an
s-wave tip, from [21]. (b) The theoretical and observed images of LUMO wavefunctions
by an p-wave tip, from [3].
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Fig. 8.8. Mechanism of STM imaging with a p-wave tip. (a) The tip wavefunction
is dominated by the px and py orbitals of the O atom. At the center of a lobe of the
sample wavefunction, the contributions to the tunneling current from the two lobes of
the p-orbital cancel each other. The net tunneling amplitude is zero. (b) At a nodal
plane of the sample wavefunction, the contributions from the two lobes of the p-orbital
of the tip wavefunction are additive, and the tunneling amplitude reaches maximum. (c)
At a site of four-fold asymmetry, the contributions of different lobes of the p-orbital of
the tip again cancels each other.

The predicted and observed images from such a p-type tip for the HOMO
wavefunction of pentacene are shown in Figure 8.6(b). Those for the LUMO
wavefunction are in Figure 8.7(b). Those images resemble the squares of
the lateral derivatives of wavefunctions.

A combination of images with an s-type tip and a p-type tip enables
the experimental determination of complete wavefunctions up to a global
sign. Typically, in many places where the tunneling current from a metal
tip Is(x, y) (see Eq. 8.8) vanishes, the current from a p-type tip Ip(x, y) (see
Eq. 8.10) is at its maximum. As a consequence of Schrödinger’s equation,
the derivatives of the wavefunction should be continuous. A sign change in
the wavefunction is observed. Consequently, the phase contrast of different
lobes of wavefunctions is observable. Therefore, the entire wavefunction can
be mapped experimentally up to a global sign.

Figure 8.8 is an intuitive explanation of the observed contrast. The CO
molecule has two degenerate πx and πy orbitals near the Fermi level, that
dominate the tunneling current. As shown in Fig. 8.8(a), on the O atom
of the tip, the wavefunctions are basically a px and a py atomic orbitals,
each has two lobes. Here the polarity (positive or negative) of the lobes are
marked by grey or white. If the tip is located on top of the center of a lobe of
the sample wavefunction, the tunneling current from the positive lobe and
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Fig. 8.9. Imaging naphthalocynine with a Cu tip and a CO tip. (a) The
topographical image of naphthalocynine HOMO wavefunction using a Cu tip. The gross
features are resolved. (b) and (c) Images of the same, using a CO tip. The fine features
of the eight-fold patterns are clearly resolved. (d) Theoretical images of the square of the
HOMO wavefunction, showing similar features as (a). (e) and (f) Theoretical images of
the square of lateral derivatives of the HOMO wavefunction of naphthalocynine, showing
great details of the eight-fold features. The theoretical image based on a mixture s-state
and p-state in (f) fits perfectly with the observed image.

the negative lobe of the p-orbital cancel each other. The tunneling matrix
element |M | is zero. In Fig. 8.8(b), the tip axis is located at a nodal plane
of the molecular orbital. The tunneling amplitudes from the two lobes of
the p-orbital of the O atom to the two sides of the sample orbital have the
same sign, thus are added together, similar to a constructive interference.
The tunneling conductance reaches a maximum. Figure 8.8(c) shows a third
case. At a sample site of a four-fold symmetry, the tunneling conductance
from different lobes of the p-orbital again cancel each other, and shows a
zero tunneling current.

Figures 8.9 and 8.10 show the images of another molecule, naphthalo-
cynine, with more details on the effects of the combinations of different tip
wavefunctions. Figure 8.9 shows the theoretical results and the observed
images of the HOMO wavefunction of naphthalocynine with a Cu tip and a
CO tip. As shown in (b) and (c), by using a CO tip, many more details of
the wavefunction are resolved than the images with a Cu tip, as shown in
Fig. 8.9(c) . Furthermore, the theoretical image based on a mixture of s-tip
wavefunction and p-tip wavefunction fits accurately to the observed image
with a CO tip. It indicates that the actual tip wavefunction is a mixture
s-tip wavefunction and p-tip wavefunction.



8.3 Imaging wavefunctions with AFM 245

Fig. 8.10. Imaging naphthalocynine with a Cu tip and a CO tip. (a) The
topographical image of naphthalocynine LUMO wavefunction using a Cu tip. The gross
features are resolved. (b) and (c) Images of the same, using a CO tip. The fine features
of the eight-fold patterns are clearly resolved. (d) Theoretical images of the square of the
LUMO wavefunction, showing similar features as (a). (e) and (f) Theoretical images of
the square of lateral derivatives of the HOMO wavefunction of naphthalocynine, showing
great details of the eight-fold features. The theoretical image based on a mixture s-tip
wavefunction and p-tip wavefunction in (f) fits perfectly with the observed image.

In Fig. 8.10, images of the LUMO wavefunction of naphthalocynine are
presented. The images with a CO tip, Fig. 8.10(b) and (c), show more
details of the internal structure of the LUMO wavefunction than with a
Cu tip, Fig. 8.10(a). Again, the theoretical images based on a mixture of
s-tip wavefunction and p-tip wavefunction makes a perfect match to the
experimental images using a CO tip.

The interpretation of the STM images with a CO-functionalized tip as
associated with lateral derivatives of sample wavefunctions has been ex-
tended and verified by further experiments. For example, in 2015, Corso et
al. reported the observation of enhanced resolution of internal structures of
acetylene by a CO-functionalized tip [30]. In 2018, Shiotari et al. reported
the observation of lateral derivatives of molecules with a NO-functionalized
tip, which also has 2pπ∗ states at the apex [31].

8.3 Imaging wavefunctions with AFM

As discussed in Chapter 4, the chemical bond energy can be represented by
the Bardeen tunneling matrix elements. Therefore, the main component of
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Fig. 8.11. AFM images of a pentacene molecule with different tips. The nature
of the AFM image depends drastically on the tip. (A) Ag tip. (B) CO tip. (C) Cl tip.
(D) Pentacene tip. See Gross et al. [32].

the attractive atomic force, the chemical bond energy, is capable of imag-
ing the sample wavefunction. A straightforward inference from the STM
imaging of wavefunctions in the previous sections is that the observed AFM
images should dramatically depend on the atomic structure of the tip. A
properly functionalized tip could improve the resolution.

One complication of AFM compared to STM is, the Pauli repulsive force
is an unavoidable component. The repulsion between atomic cores would
eventually appear at shorter tip-sample distances. In 2009, both the effects
of tip functionalization and the Pauli repulsive force were observed with
pentacene molecules on a Cu(111) substrate buffered by two atomic layers
of NaCl, see Gross et al. [32].

Figure 8.11 shows four AFM images of a pentacene molecule with dif-
ferent tips. (A) is from an Ag tip. As shown, only a single broad peak
is observed. (B) is from a CO tip. A lot of details, including the atomic
skeleton, are apparent. (C) is from a Cl tip. The resolution is much higher
than the Ag tip, but the image is somewhat different from that with a CO
tip. (D) is from a pentacene tip. The image is very different from that with
a CO tip. Apparently, using different tips, different features related to the
molecular wavefunction are imaged.

Furthermore, by measuring the AFM frequency shift (Δf) versus volt-
age dependence to obtain the local contact potential difference (LCPD) at
each point in the space, three-dimensional images of the charge distribution
within a single molecule are obtained [33]. The experiment was done on
naphthalocyanine on a Cu(111) substrate, with a two atomic buffer layer
of NaCl, similar to the conditions in Sections 8.2.2 and 8.2.3. A plot of
the three-dimensional electrical charge density inside the molecule is shown
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Fig. 8.12. Three-dimensional electrical charge map inside a molecule. The
vertical height in nm on each cross-sectional plot is in reference to the STM set point.
The scale bar in each graph is 0.5 nm. See Mohn et al. [33].

in Fig. 8.12. The vertical height in nm on each cross-sectional plot is in
reference to the STM set point (I = 2 pa, V = 0.2 V). The scale bar in
each graph is 0.5 nm. As shown, the closer the tip is to the molecule base
plane, the more details of the charge distribution discovered. Therefore,
the three-dimensional electrical charge distribution of the electron, or the
square of the wavefunction, can be measured and mapped in real space
without significant disturbance to the system under observation.

8.4 Meaning of wavefunction observation

The concept of wavefunction was introduced in the first 1926 paper by
Schrödinger [11] as the mathematical representation of de Broglie’s material
wave of an electron, which is “everywhere real, single-valued, finite, and
continuously differentiable up to the second order.” Schrödinger defined the
quantity −e|ψ(r)|2 as the charge density distribution of an electron. It
is the basis for quantum-mechanical treatments of many-electron atoms,
molecules, and solid states [12, 13, 14, 15, 16, 17].

The experimental observation and mapping of wavefunction through lo-
cal field quantities by STM and AFM, including the square of wavefunction
and the square of the lateral derivative as well as their absolute values,
implied that the wavefunction is a physical field. Schrödinger’s original in-
terpretation is confirmed. The statistical interpretation of the wavefunction,
although valid and indispensible, has to be properly defined.
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8.4.1 Interpretations of wavefunctions

Many quantum mechanics textbooks [34, 35, 36] present the following in-
terpretation of wavefunction. Wavefunction as one of the representations
of an abstract state is not observable. Its absolute square |ψ(r)|2 as a real
function in space is also not observable. As a material point, the position of
an electron in real space is an observable. Each time a measurement of the
position of an electron is conducted, values of its coordinates are returned.
In general, the result of each position measurement is different. The only
meaning of the wavefunction is: the probability of finding an electron in an
elementary volume d3r around r is

P (r) d3r = |ψ(r)|2 d3r. (8.11)

Some textbooks [34, 35] further state that after a position measurement, the
wavefunction collapses to a position eigenstate as a delta function ψ(r) =⇒
δ(r− r0), where r0 is the result of measurement.

Max Born was awarded a Nobel prize in physics in 1954 for his statistical
interpretation of the wavefunction. Nevertheless, according to his Nobel
Lecture, his statistical interpretation has a well-defined meaning. He did
not mention anything related to wavefunction collapse [37]:

Wave mechanics enjoyed a very great deal more popularity
than the Göttingen or Cambridge version of quantum mechanics.
It operates with a wave function ψ, which in the case of one par-
ticle at least, can be pictured in space, and it uses the mathemat-
ical methods of partial differential equations which are in cur-
rent use by physicists. Schrödinger thought that his wave theory
made it possible to return to deterministic classical physics. He
proposed (and he has recently emphasized his proposal anew),
to dispense with the particle representation entirely, and instead
of speaking of electrons as particles, to consider them as a con-
tinuous density distribution |ψ|2 (or electric density −e|ψ|2).

To us in Göttingen this interpretation seemed unacceptable
in face of well established experimental facts. At that time it
was already possible to count particles by means of scintillations
or with a Geiger counter, and to photograph their tracks with
the aid of a Wilson cloud chamber.

Born referred to the matrix mechanics of Heisenberg as the Göttingen
version and the q-number formulation of Dirac as the Cambridge version
of quantum mechanics. According to Born, Schrödinger’s version is a great
deal more popular because of its intuitiveness and easier mathematics.

According to Born, Schrödinger insisted that the electron is an extended
physical field. And the quantity −e|ψ|2 represents the charge density dis-
tribution of the electron as a continuous field. In other words, Schrödinger
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disagreed with the view that the electron can be represented by a geomet-
rical point of ultimate sharpness and arbitrary precision.

Later developments favored Schrödinger’s definition of electron charge
density distribution. It is the basis of the DFT, now a standard method for
computational quantum mechanics [12, 13]. Accordingly, the total electron
density in a many-electron system is the sum of the density distributions of
individual electron wavefunctions,

n(r) =

N∑
j=1

|ψj(r)|2. (8.12)

8.4.2 Wavefunction as a physical field

The experiments described in this Chapter indicate that the wavefunction is
a physical field. Especially, −e|ψ(r)|2 is a charge density distribution. The
nature of wavefunction is similar to the Maxwellian electromagnetic fields,
enabling a realistic interpretation of quantum mechanics.

In an article for the centenary of Maxwell’s birth, Maxwell’s Influence
on the Development of the Conception of Physical Reality, Einstein wrote
[38]:

Before Maxwell, people thought of physical reality—in so far
represented events in nature—as material points, whose changes
consist only in motions which are subject to total differential
equations. After Maxwell, they thought of physical reality as
represented by continuous fields, not mechanically explicable
and subject to partial differential equations. This change in the
conception of reality is the most profound and the most fruitful
that physics has experienced since Newton.

Fig. 8.13. Observing and mapping electrical fields. Using an electrical probe, the
electrical field can be observed and mapped. Note the similarity to the STM mapping of
wavefunctions by using another wavefunction as the probe.
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Fig. 8.14. Observing and mapping magnetic fields. Using iron filings, the mag-
netic field can be observed and mapped. Note the similarity to the STM mapping of
wavefunctions by using another wavefunction as the probe.

For centuries after Newton, the forces between material points, includ-
ing gravitational and electrical, were considered as acting over a distance.
Maxwell introduced electromagnetic fields that exist outside the material
points, governed by partial differential equations. The electromagnetic fields
can be observed independently of the particles, and have energy density in
the space; for example, the black-body energy of standing electromagnetic
waves in a cavity, and the mass and momentum of gamma ray.

Figure 8.13 shows an apparatus for observing and mapping the electrical
field. Note that the probe for observing and mapping is an electrical device,
which is also governed by the same Maxwell equations.

Figure 8.14 shows an experiment for observing and mapping the mag-
netic field. Also note that the probes, iron filings, are magnetic devices, and
the mapping process is governed by the same Maxwell’s equations.

The observation and mapping of the wavefunctions by STM and AFM is
similar to the observation and mapping of Maxwell’s electromagnetic fields.
In the same article about Maxwell’s fields, Einstein made a criticism about
the probabilistic interpretation of quantum mechanics [38]:

Nevertheless, I am inclined to think that physicists will not
be satisfied in the long run with this kind of indirect description
of reality, even if an adaptation of the theory to the demand of
general relativity can be achieved in a satisfactory way. Then
they must surely be brought back to the attempt to realize the
program which may suitably be designated as Maxwellian: a de-
scription of physical reality in terms of fields which satisfy partial
differential equations in a way that is free from singularities.

Einstein’s prophecy may have been realized as the wavefunction becomes
an observable physical reality because of STM and AFM.
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8.4.3 Born’s statistical interpretation

Although the experimental observations of wavefunctions showed the simi-
larity of the wavefunction to the electrical field and magnetic field, as soon
as quantization is brought up, including energy, charge, and mass, Born’s
statistical interpretation is valid and indispensable.

The statistical interpretation is necessary even for electromagnetic waves.
Take an example of the double-slit experiment, see Fig. 8.15. A number of
single-photon detectors of width δ are on the detector side, D. Each de-
tector is made of thousands of atoms and has many energy levels. An
electromagnetic wave with circular frequency ω causes a transition between
two quantum states with energy difference �ω of a detector. The transition
rate is proportional to the square of the field intensity at the location of that
detector. Therefore, the probability of photon detection is proportional to
the square of the field intensity at the location of a detector. In certain
sense, this is Einstein’s statistical interpretation of electromagnetic waves.
Note that in the entire space between the light sourse and the detectors,
the only valid description of light is an electromagnetic wave. There is no
point-like photons moving around. Energy is quantized only when light is
produced or converted into other forms.

Born was the first scientist to publish a paper about the relation of the
probability of particle detection with the wavefunction in 1926 [39]. As Born
stated in his Nobel Lecture [37], his inspiration of statistical interpretation
came from Einstein’s idea that the probability density of the occurrence
of light quanta is proportional to the square of field intensities. Born said,
“This concept could at once be carried over to the ψ-function: |ψ|2 ought to

Fig. 8.15. Double-slit experiment with single-photon detectors. A plane wave
of wavelength λ falls on a screen with two slits S1 and S2 of distance a. An interference
pattern is formed on an array of single-photon detectors δ. The probability of photon
detection is proportional to the square of field intensity at a detector.
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represent the probability density for electrons [37].” Therefore, Born’s sta-
tistical interpretation of wavefunctions is an analogy to Einstein’s statistical
interpretation of electromagnetic waves.

Note that Born’s statistical interpretation is valid only on a macroscopic
scale, such as the double-slit experiment and the particle detection in scat-
tering experiments, where each individual position detector (such as detec-
tor δ in Fig. 8.15, photographic plates, scintillators, Geiger counters, and
tracks in Wilson chambers [37]) is composed of thousands of atoms. On
the other hand, STM and AFM experiments show that wavefunction is an
extended physical field on a subatomic scale. Although on a macroscopic
scale the electrons appear as individual entities, on a subatomic scale, an
electron is a continuous field. Both Born’s statistical interpretation and
Schrödinger’s field interpretation are valid and indispensable.
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[10] E. Durand. Mécanique Quantique. Masson and Cie, 1970.

[11] E. Schroedinger. Collected papers on Wave Mechanics. Blackie and Son Limited,
London, 1928.

[12] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–871,
1964.

[13] W. Kohn and L. J. Sham. Self-consistent equations including exchange and corre-
lation effects. Phys. Rev., 140:A1133–1138, 1965.

[14] E. Merzbacher. Quantum Mechanics, Second Edition. John Wiley and Sons, New
York, 1961.

[15] H. A. Bethe and E. E. Salpeter. Quantum Mechanics of One and Two-Electron
Atoms, p. 85. Academic Press, New York, 1957.

[16] I. N. Levine. Quantum Chemistry, Seventh Edition. Pearson, New York, 2016.

[17] P. Atkins and R. Friedman. Molecular Quantum Mechanics, Fourth Edition. Oxford
University Press, Oxford UK, 1957.

[18] W. Heisenberg. The Physical Principles of the Quantum theory. University of
Chicago Press, 1930.

[19] R. Bennewitz, V. Barwich, M. Bammerlin, C. Loppacher, M. Guggisberg,
A. Baratoff, E. Meyer, and H.-J. Guentherodt. Ultrathin films of NaCl on Cu(111):
a LEED and dynamic force microscopy study. Surfave Science, 438:289–296, 1999.

[20] J. Repp, G. Meyer, and K.-H. Rieder. Snell’s law for surfacce electrons: Refraction
of an electron gas imaged in real space. Phys. Rev. Lett., 92:036803, 2004.

[21] J. Repp, G. Meyer, S. M. Stojkovic, A. Gourdon, and C. Joachim. Molecules on
insulating films: Scanning tunneling microscopy imaging of individual molecular
orbitals. Phys. Rev. Lett., 94:026803, 2005.

[22] C. J. Chen. Theory of scanning tunneling spectroscopy. J. Vac. Sci. Technol. A,
6:319–322, 1988.



254 Bibliography

[23] L. Gross. Recent advances in submolecular resolution with scanning tunneling mi-
croscopy. Nature Chemistry, 3:273 – 278, 2011.

[24] R. G. Endres, C. Y. Fang, L. H. Yang, G. Witte, and Ch. Woell. Structural and
electronic properties of pentacene molecule and molecular pentacene soild. Compu-
tational Materials Science, 29:362–370, 2004.

[25] P. Liljeroth, J. Repp, and G. Meyer. Current-induced hydrogen tautomerization
and conductance switching of naphthalocyanine molecules. Science, 317:1203–1206,
2007.

[26] L. Bartels, G. Meyer, and K. H. Rieder. Controlled vertical manipulation of single
co molecules with the scanning tunneling microscope: A route to chemical contrast.
Appl. Phys. Lett., 71:213, 1997.

[27] L. Bartels, G. Meyer, K. H. Rieder, D. Velic, E. Knoesel, A. Hotzel, M. Wolf, and
G. Ertl. Dynamics of electron-induced manipulation of individual co molecules on
cu(111). Phys. Rev. Lett., 80 (9):2004–2007, 1998.

[28] C. J. Chen. Tunneling matrix elements in three-dimensional space: The derivative
rule and the sum rule. Phys. Rev. B, 42:8841–8857, 1990.

[29] C. J. Chen. Introduction to Scanning Tunneling Microscopy. First Edition, Oxford
University Press, New York, 1993. Second Edition, Oxford Science Publications,
Oxford, 2008.

[30] M. Corso, M. Ondracek, C. Lotze, P. Hapala, K. J. Franke, P. Jelinek, and J. I.
Pascual. Charge redictribution and transport in molecular contacts. Phys. Rev.
Lett., 115:136101, 2018.

[31] A. Shiotari, T. Odani, and Y. Sugimoto. Torque-induced change in configuration of
a single NO molecule in Cu(110). Phys. Rev. Lett., 121:116101, 2018.

[32] L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer. The chemical structure of
a molecular resolved by atomic force microscopy. Science, 325:1110, 2009.

[33] F. Mohn, L. Gross, N. Moll, and G. Meyer. Imaging the charge distribution within
a single molecule. Nature Nanotechnology, 7:227, 2012.

[34] D. J. Griffiths. Introduction tof Quantum Mechanics, Second Edition. Prentice Hall,
Upper Saddle River, New Jersey, 2005.

[35] J. J. Sakurai and J. Napolitano. Modern Quantum Mechanics. Cambridge University
Press, 2017.

[36] A. Messiah. Quantum Mechanics. North Holland Publishinc Company, 1967.

[37] M. Born. Nobel Lecture https://www.nobelprize.org/prizes/physics/1954/born/speech/.
https://www.nobelprize.org/prizes/physics/1954/born/ speech/, 1954.

[38] J. C. Maxwell. The Dynamic Theory of the Electromagnetic Field. Einstein’s article
is on pp. 29-32. Wipf and Stock Publishers, Eugene, Oregon, 1996.

[39] M. Born. Zur Quantenmechanick der Stossvorgänge. Zeitschrift für Physik, 37:863–
867, 1926.


