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Abstract: Formants are characteristic frequency components in human speech that are caused by
resonances in the vocal tract during speech production. They are of primary concern in acoustic
phonetics and speech recognition. Despite this, making accurate measurements of the formants, which
we dub “the formant measurement problem” for convenience, is as yet not considered to be fully
resolved. One particular shortcoming is the lack of error bars on the formant frequencies’ estimates.
As a first step towards remedying this, we propose a new approach for the formant measuring
problem in the particular case of steady-state vowels—a case which occurs quite abundantly in
natural speech. The approach is to look at the formant measuring problem from the viewpoint of
Bayesian spectrum analysis. We develop a pitch-synchronous linear model for steady-state vowels
and apply it to the open-mid front unrounded vowel [E] observed in a real speech utterance.
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1. Introduction

Formants are characteristic frequency components in human speech that are caused by resonances
in the vocal tract (VT) during speech production and occur both in vowels and consonants. Fant
(1960) [1] systematized the then relatively young science of acoustic phonetics with his acoustic theory
of speech production, often called the source-filter model, which has since become the dominant
paradigm. At that time, the source-filter model, which is formulated in the language of linear
time-invariant system theory, justified the practice of deriving formants from power spectra as
prominent local maxima in the power spectral envelope of appropriately windowed and processed
speech signals. From this point of view each formant is characterized by three parameters describing
the local maximum associated with it: the maximum’s center frequency (called the formant frequency),
its bandwidth and its peak amplitude.

The concept of a formant is fundamental to phonetics and automated speech processing.
For example, formants are considered to be primary features for distinguishing vowel classes, speech
perception and for inferring speaker identity, sex and age. Despite this fundamental status—and
despite a long history of work on vowel formants starting out with [2]—the issue of making accurate
measurements of the formant parameters, which we dub “the formant measurement problem” for
convenience, is as yet not considered to be fully resolved (e.g., [3–5]). Accordingly, a large amount of
formant measurement methods exist in the literature, of which most rely on linear predictive (LPC)
analysis. The fundamental cause underlying the formant measurement problem is that most of these
methods yield formant frequency estimates (the main quantity of interest) that are sensitive to various
user-made choices, such as the form and length of the tapering window form or the number of poles
in LPC analysis (e.g., [6,7]). In other words, measuring formants currently requires rather careful
fine-tuning while speech is notorious for its variability [8]. In addition, there currently seems to be no
way to put error bars on the formant frequency, bandwidth and amplitude measurements.
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In this paper an attempt is made to tackle the formant measuring problem for an important special
case, i.e., steady-state vowels (SSVs). The usual definition of the SSV is the steady-state portion of a
vowel, i.e., the time interval in which the VT configuration can be taken to be approximately fixed on
the time scale of the pitch period, which is on the order of 5 ms. The fixed VT implies that the SSV
is characterized by formants with unchanging frequency and bandwidth through time. In contrast,
the SSV model in this paper allows the formant amplitudes and pitch periods to change over time,
but this change is expected to be small due to the steady state. As such, SSVs can be recognized in
natural speech as a semi-periodic string of typically about 3 to 5 pitch periods [9].

By modeling SSVs in the time domain with a pitch-synchronous linear model, it becomes possible
to apply the machinery of Bayesian spectrum analysis [10,11] to the formant measuring problem.
Our approach shows several promises:

• Ability to derive error bars on the formant frequencies, bandwidths and peak amplitudes.
• Elimination of windowing and averaging procedures. A typical method to measure formants in a

SSV is to slide over the signal with a tapering window, estimate the formant frequency, bandwidth
and peak amplitude in each window, and then to average these estimates over the windows [9].
In our approach, the pitch-synchronous nature of the model eliminates any windowing procedure
(and thus various user-made choices) by making use of the pitch period as a natural time scale [12].
In addition, the formant frequencies and bandwidths are estimated simultaneously in each period,
which can be understood as a generalized averaging operation over pitch periods ([11] Section 7.5).

• “Automatic” model order determination. This is done by inferring the most probable model order
given the SSV (and the model). This can be contrasted with traditional LPC analysis, where the
number of poles must be decided by the user on the basis of several well-established guidelines,
but where the final judgment ultimately remains qualitative. However, in the current approach,
the proposed model (including the prior pdfs) is still too simple to guarantee satisfactory model
order determination in all cases.

Compared to standard LPC analysis, there are three main disadvantages of our approach:

• Limited applicability: we only model SSVs, though possible extensions are discussed in the
conclusion of the paper.

• For our approach it is necessary to determine the pitch periods in advance. There are several
algorithms available (e.g., waveform matching [13] or ML estimation [14]) for this task, but ideally
this should be a part of the SSV model itself.

• Though the inference algorithm described below is efficient and relatively fast compared to typical
problems in numerical Bayesian inference, it is still much slower than LPC analysis. For example,
all calculations for the SSV [E] discussed below took about half a minute.

2. SSV Model

The model of a SSV proposed here is inspired by Ladefoged [15]’s picture of speech; that is, the
pulses in the speech waveforms coincide with glottal closing instants (GCIs). The GCIs causing the
pulses in the speech waveforms is illustrated by the electroglottograph (EGG)—see Figure 1.
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Figure 1. (After [16]; reproduced with kind permission.) The EGG signal is the electrical conductance
between two electrodes placed on the neck. When the glottis is closed, the measured conductance is
high, and vice versa. The EGG signal is displayed in the bottom panel. In the top panel the synchronized
speech waveform is plotted and three individual pitch periods are shown. From comparing the top
and bottom panel, it is evident that the pulses in the speech waveform occur when the EGG signal rises
sharply; i.e., when the glottis closes. Additionally, there are two phases (closed-open) within each pitch
period in which the damping of the speech waveform seemingly changes; this is primarily due to the
glottal waveform which becomes prominent at the end of the pitch periods as the glottis is reaching its
maximum aperture. The blue baseline drawn in the top panel by simple visual inspection is related to
the time derivative of the glottal flow (dGF). A second and smaller effect causing the pitch periods to
exhibit two phases is the extra coupling to the subglottal cavities (such as the lungs) of the acoustic
waves in the VT when the glottis opens; this causes these waves to decay faster.

2.1. Individual Pitch Periods

According to Ladefoged, in each pitch period of length T these pulses excite the VT such that the
resulting speech waveform consists of a superposition of Q decaying resonances

Q

∑
j=1
{Bj cos(ωjt) + Cj sin(ωjt)} exp(−αjt). (0 ≤ t < T) (1)

This is a model of the formants in the time domain where Q is the number of formants (i.e., damped
sinusoids), Bj and Cj are the amplitudes, and ωj and αj are the frequency [rad Hz] and the decay
constant [Hz] of formant j, respectively. Thus if we take Q = 2, we model the first two formants of a
pitch period which are denoted as F1 and F2. The frequency of F1 is ω1 and its decay constant is α1,
and similarly for F2.

Ladefoged’s model has considerable merit [12,15], but it does not incorporate the effects of the
glottal flow derivative (dGF) during the open phase of the pitch period. During this phase, the glottal
flow weakly excites the VT which can be roughly approximated with a simple differentiation ([17] p. 3).
For this reason, we consider the dGF instead of the glottal flow itself. In Figure 1 the baselines marked
in blue roughly indicate the dGF trends, which are clearly not negligible in the open phase of the pitch
period as they become the dominant effect in that phase. There are indications that this a general
effect [12,17]. As the dGF can be taken to vary relatively slowly, we propose to model it by a polynomial
of order P− 1. Thus the model function for one pitch period of length T is

f (t; P, Q, Ak, Bj, Cj, Ω) = ∑P
k=1 AkLk−1(t) + ∑Q

j=1{Bj cos(ωjt) + Cj sin(ωjt)} exp(−αjt), (0 ≤ t < T) (2)

where the Lk−1(t) are the numerically convenient Legendre polynomials and the Ak are their
amplitudes and Ω ≡ (ω1 · · ·ωQ, α1 · · · αQ).
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With the above model for individual pitch periods we can use Bayesian spectrum analysis to
obtain the posterior distribution of the Ω, which are the parameters of interest as they describe the Q
formants. Suppose the SSV consists of n predetermined pitch periods such that the SSV is defined by
the string {D1D2 · · ·Di · · ·Dn}, i.e.,

Di = {di[t]} (t = 0, 1, 2, · · · , Ni − 1) (3)

is the waveform of the ith pitch period which consists of Ni samples. Then we assume that

di[t] = f (t; P, Q, Ak, Bj, Cj, Ω) + ei[t] (t = 0, 1, 2, · · · , Ni − 1), (4)

where ei[t] ∼ N(0, σ2), i.e., the pdf for the errors is white noise with constant power. An example of a
fit of the model function f (t) in Equation (4) to one pitch period i is shown in Figure 2.
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Figure 2. One pitch period extracted from a SSV /E/ plotted as samples (the dots) together with the
model function fit f (t; P, Q, Âk, B̂j, Ĉj, Ω̂) (smooth line).

Since the model function f (t; P, Q, Ωi) is a linear combination of basis functions (which depend
on Ω), this model is an instance of the well-known general linear model [18]. It is possible to
marginalize over the amplitudes Ak, Bj, Cj together with the noise level σ: assuming uniform priors,
we arrive at the typical Student-t distribution (written in non-standard form) ([11] p. 35)

p(Ω|P, Q, Di, I) ∝
[
1−

mh2
i (Ω)

Nid2
i

]m−Ni
2 . (pitch period) (5)

Here m = P + 2Q is the number of basis functions, d2
i = (1/Ni)∑Ni−1

t=0 di[t]2 and h2
i (Ω) is the

sufficient statistic for the problem, obtained in the standard way [19] from the projections of the
data di[t] on the orthogonalized basis functions which are linear combinations of the basisfunctions
{Lk−1(t), cos(ωjt) exp(−αjt), sin(ωjt) exp(−αjt)} appearing in Equation (2). The sufficient statistic

h2
i (Ω) can be seen as a generalization of the Schuster periodogram [10], to which it reduces in the case

that P = 0 and αj = 0 (1 ≤ j ≤ Q) and the frequencies ωj are well separated (i.e., |ωj −ωk| � 2π/Ni
for 1 ≤ j < k ≤ Q).

2.2. Multiple Pitch Periods: SSV

We model an SSV as a string of independent pitch periods that share the same formants
(see Figure 3); that is, the formant frequencies and decay constants Ω = (ω1 · · ·ωQ, α1 · · · αQ), as well
as the noise power σ2 are kept fixed across the pitch periods, as well as the order parameters P and Q.
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Figure 3. A model of the SSV (in this case an /E/, which is also used in the next section) consists of
several model functions f (t; P, Q, Ai,k, Bi,j, Ci,j, Ω) strung together, as shown in this plot by giving each
such model function its own color. The model functions are fitted to the individual pitch periods but
are “frustrated” by their having to share the formant frequencies and decay constants Ω.

The other parameters are again marginalized over, once again assuming uniform priors, and we
arrive at the simplest generalization of Equation (5):

p(Ω|P, Q, D1 · · ·Dn, I) ∝
n

∏
i=1

p(Ω|P, Q, Di, I). (SSV) (6)

The assumption of independent pitch periods—while knowing that these are in fact perfectly
correlated, being almost periodical—has an important effect on the error bars of the final estimates Ω̂
which is comparable to using uninformative priors; the effect is to make the error bars conservative,
because the uncertainties in the amplitudes etc. transfer to the posterior marginal error bars on the
frequencies and decay constants in Ω̂. Any correlation put into the model can only decrease this
uncertainty, and thus decrease the magnitude of the error bars [11]. Bretthorst has shown this explicitly
for the case of correlated errors ei[t] which in our story would apply to adjacent pitch periods [20]. Since
the frequency estimates are already sharp (see the next section for an example) from the viewpoint
of what one is used to in acoustic phonetics [3], this issue (i.e., overly conservative error bars for the
frequency estimates) seems perfectly acceptable as it buys us very convenient analytical expressions for
the posterior p(Ω|P, Q, D1 · · ·Dn, I). However, the error bars on the decay rates and the amplitudes
are quite broad, and improving the accuracy of their estimates is desirable in certain applications.

2.3. Estimation

We perform a Gaussian approximation at the maximum a posteriori point Ω̂, which is found by
optimizing Equation (6) with the Levenberg-Marquardt algorithm [21]. This approximation lets us
estimate the posterior covariances (of which the diagonal gives the desired error bars) and lets us
crudely estimate the posterior probability of the polynomial order and number of formants (P, Q).
“Crudely” because our priors are uninformative, so we can hardly expect model comparison as
guided by p(P, Q|D1 · · ·Dn, I) to give satisfactory results (relative to all the things we know about the
data—correlations, acceptable physical forms, etc.—but did not tell probability theory).

3. Application on a Steady-State Portion of [E]

We apply the model to a steady-state portion of the vowel [E] (the second ‘e’ in “etcetera”)
consisting of n = 6 pitch periods shown in Figure 4.

Before applying the model, the order parameters P and Q must be chosen. For simplicity we set
Q = 3, i.e., we are interested in the first three formants, which is a typical case. Figure 5 shows the
posterior p(P|Q = 3, D1 · · ·D6, I), where now the former parameters of interest Ω have been integrated
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out using the Gaussian approximation. The preferred value of P is clearly P = 4. Unfortunately,
the choice (P = 4, Q = 3) yields unphysical results as the inferred sinusoids are not damped but
actually grow considerably during the pitch periods. The same goes for P = 3. These unphysical
results can arise because we did not restrict αj > 0 in the parameter space. The choices P = 5, 6, 7, 8 do
yield physical results, and the estimates for the Q = 3 formants depend only slightly on the actual
value of P in this range (remember that P− 1 is the order of the Legendre polynomial describing the
slowly varying baseline).
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Figure 4. Steady-state portion of [E] consisting of six pitch periods. Extracted from the CMU ARCTIC
database [22], speaker BDL, sentence a0001.wav, from 2.847 to 2.898 sec at 16 kHz (no downsampling
was done).
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Figure 5. The posterior probability p(P|Q = 3, D1 · · ·D6, I) for the SSV /E/.

Finally, Figure 6 shows the results for (P = 6, Q = 3). Despite the fact that we can estimate the
formant frequencies, bandwidths and peak amplitudes, we only compare the formant frequencies to a
standard LPC analysis. The reason is that the comparison of the bandwidths and peak amplitudes
between our model and the LPC model is not well defined, as on the one hand the LPC bandwidths
depend on the size of the LPC window used; and on the other hand the formant amplitudes are
allowed to vary between pitch periods in our model. The actual formant frequency estimates are
(at two standard deviations):

• (F1)est = 658 ± 2 Hz at −2.0 ± 0.1 dB/ms
• (F2)est = 1463 ± 10 Hz at −2.9 ± 0.5 dB/ms
• (F3)est = 2660 ± 10 Hz at −3.0 ± 0.7 dB/ms

The formant frequency estimates calculated with LPC on the entire steady-state portion is:
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• (F1)LPC = 670 Hz
• (F2)LPC = 1491 Hz
• (F3)LPC = 2771 Hz

We calculated these with Praat [23], a popular tool in acoustic phonetics. The discrepancies might
seem large (on the order of 50 Hz) but this is actually quite acceptable in acoustic phonetics. While
much more work is needed to understand the discrepancy, the basic reason is quite clear: LPC analysis
can be interpreted as an all-pole expansion of the spectrum of a (windowed) segment of speech to
estimate the formants in that window. But Jaynes [10] and Bretthorst [11] showed clearly that the
spectrum is only an optimal estimator for frequency content (more precisely: spectral lines) if six
conditions are met ([11] p. 20), of which two are very clearly violated in the estimation of formant
frequencies in SVVs. The two conditions state that the data must not contain a constant component
and that there is no evidence of a low frequency. But these conditions do not hold because of the
slowly varying dGF components, perhaps to the point that the spectrum is not just a suboptimal
estimator, but a potentially misleading one. This misleading nature (i.e., local maxima in spectra do
not designate actual harmonic content) has been shown for economical data [24], where data often
need to be “detrended”, which is exactly what we do here.
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Figure 6. Cont.
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Figure 6. Application of the model(P = 6, Q = 3) to a SSV /E/ in order to estimate the frequency
and decay constants of F1, F2, F3. (a) Fit to the data shown in Figure 4. (b) We can estimate the dGF
waveform via the amplitudes Âk, and integrating this estimate yields the glottal flow (GF) waveform.
As an independent qualitative check, in this subplot the GF is compared to a GF obtained via inverse
filtering [25]. (c) The estimated GF waveform (the same as in plot (c)) is now compared to the EGG
signal which was simultaneously recorded with the /E/ waveform [22]. A high value of the EGG
means that the glottis is closed, so the GF must be small. A low value of the EGG means that the glottis
is open, and the GF should be big (as air from the lungs can escape outward). This anticorrelation is
perfectly observed.

4. Conclusions

Though we have shown that this approach holds some promises, a lot more work is needed
before anything definitive can be asserted; in particular work is underway in which the method
will be systematically compared to a “ground truth“ to test its validity using a speech production
simulation with known glottal flow and formants. In addition, the model would benefit greatly from
making the estimation of the pitch periods part of the inference, rather than requiring it as a given;
using more informative priors is also expected to improve the model order inference (e.g., it is known
that there are typically about three resonances of significance, for a human vocal tract, below about
3500 Hz ([26] p. 20)). Finally, for shorter pitch periods (i.e., higher fundamental frequency of speech)
the model is expected to deteriorate, as we do not allow the damped sines to “leak“ into the next pitch
period. Thus a more elaborate model would have to include nearest-neighbor interactions between
adjacent pitch periods.

Applications of high-accuracy formant measurements equipped with error bars should be
plentiful, but two examples worthwhile are forensic speaker identification (e.g., [27]) and medical
diagnosis (e.g., [28]). Remarkably, the field of forensic phonetics seems to have adopted a Bayesian
methodology [29,30], so perhaps in the future this model could deliver quantities directly for use in
their likelihood ratios [6].

4.1. Possible Extensions

This approach can be extended to non-stationary vowels (i.e., non-SSVs) by explicitly modeling the
formant tracks (e.g., by parametrization or by a free-form model [31]); one would then get error-bars
on the tracks. The pitch period model (Equation (5)) might be extendable to a restricted class of
consonants called plosives (such as [k]), insofar the plosive mechanism is qualitatively similar to the
glottal closure [32].
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