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We investigate the impact of delay announcements on the coordination within hospital networks using a

combination of empirical observations and numerical experiments. We offer empirical evidence which suggests

that patients take delay information into account when choosing emergency service providers and that such

information can help increase coordination in the network, leading to improvements in performance of the

network, as measured by Emergency Department wait times. Our numerical results indicate that the level

of coordination that can be achieved is limited by the patients’ sensitivity to waiting, the load of the system,

the heterogeneity among hospitals and, importantly, the method hospitals use to estimate delays. We show

that delay estimators that are based on historical averages may cause oscillation in the system and lead

to higher average waiting times when patients are sensitive to delay. We provide empirical evidence which

suggests that such oscillations occur in hospital networks in the US.
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1. Introduction

Delay announcements, commonplace in service systems, can be used to influence quality percep-

tions and customer sentiment towards the service provider. In addition, such announcements can

affect customer choices, with follow-on effects on actual system operations. In consequence, delay

announcements have over recent years attracted the attention of the operations research and man-

agement communities, with research streams dedicated to both understanding the impact of delay

announcements and developing methods to support them. Thus far, most research in this area has

concentrated on call center announcements, where delay information has been shown to influence

customer abandonment (Mandelbaum and Zeltyn 2013, Yu et al. 2014).

In recent years, a growing number of hospitals have begun posting their Emergency Department

(ED) waiting times on websites, billboards, and smartphone apps (see, for example, Figure 1(a))—a

trend that evidence suggests is welcomed by consumers. As can be seen in Figure 1(b), the volume
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of Google search engine queries (as reported in trends.google.com) for “hospital wait time” and “ER

[Emergency Room] wait time” has been rising steadily over the past several years. Yet it is unclear

whether and how such information actually affects patients’ choices—and the subsequent effects of

their choices on hospitals’ performance. Although patients’ primary consideration in selecting an

ED is generally its timely provision of treatment, other factors have bearing as well, including the

reputation of the hospital, its expertise, limitations imposed by patients’ medical insurance plans,

and recommendations by the primary physician (Marco et al. 2012). Given the effort required

to provide waiting time information for hospital ED services, a number of questions should be

addressed. First, do customers actually want this information and do they use it? Second, is the

proportion of people who seek such information large enough to have an operational impact on the

healthcare system, and on hospital networks in particular? Third, do hospitals provide the right

information to help achieve coordination (load balancing) in the network?
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(a) Real time delays announcement web-page of emergency

departments in north Texas, USA.

(b) Google Trends query volume regarding ED wait

times

Figure 1 ED wait time Internet query trends and real-time delay announcements

Here we examine the effect of ED delay information (i.e., delay announcements or waiting time

announcements) on patients’ choice of hospital emergency departments, using a combination of

empirical analysis and numerical experiments. We base our analysis on two primary sources of

data: real ED delay announcements from more than 200 hospitals in the US over a period of

three months; and anonymized queries made to the Bing search engine by people seeking ED

delay information during that period. The empirical data provide objective evidence for the use of

delay information, including public interest in such delay announcements and the influence of such

announcements on the delays themselves.
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Drawing on insights from queueing theory, we then study the operational influence of delay

announcements on correlations among different hospitals’ waiting times. We refer to the correlation

between the wait times of two hospitals (or EDs) as synchronization, and to EDs whose wait times

are positively correlated as synchronized EDs. We then use a stylized simulation model, calibrated

with real data, to investigate how system characteristics, such as patients’ sensitivity to waiting,

load, and different delay estimators, influence the phenomena observed in the data.

1.1. Scientific Background

Delay announcements have a measurable influence on customer satisfaction (Carmon and Kahne-

man 1996, Larson 1987). However, such announcements can vary widely in their specificity, from

vague information on the current load to relatively precise details about the customer’s location

in the queue or their expected waiting time. The effects of these messages differ. Munichor and

Rafaeli (2007) showed that, in a call center environment, informing customers about their location

in the queue results in lower abandonment rates and higher customer satisfaction compared to

other waiting time fillers, such as music or apologies. Allon et al. (2011) developed a game theoretic

model, based on a strategic service provider and a strategic customer, which provides a theoretical

basis for determining how vague or specific delay announcements should be.

One of the challenges in implementing detailed delay announcements is producing a credible

estimation of the delay. In a series of papers, Ibrahim and Whitt proposed several delay estimators,

based on queueing theory, for customers joining a multi-server service system. They considered

queuing systems with a time-homogeneous, as well as time-varying, arrival process (Ibrahim and

Whitt 2009, 2011). Their proposed estimators are based on a real-time history of the queue, includ-

ing last-to-enter-service (LES) information (i.e., the delay experienced by the last customer entering

service) and head-of-line (HOL) data (the total delay experienced by the customer currently at

the head of the line). These estimators perform well in reality, as was shown in Senderovich et al.

(2014). Senderovich et al. (2014) used queue mining techniques to solve the on-line delay prediction

problem, validating the theory-based queueing predictors with real data.

Estimating delays in EDs is substantially more difficult than in call centers because of the inher-

ent complexity and transient nature of these systems. ED patients do not wait in a single queue,

but instead undergo a process involving multiple resources (physicians, nurses, labs, etc.) which

generally take 3 to 6 hours to complete. The complexity is even greater when we consider that

patients’ arrival rate is time-varying, patients are prioritized according to severity, and that any

given patient’s route is unknown ahead of time. Plambeck et al. (2014) developed a forecasting

method for estimating ED delays based on a combination of queueing and machine learning meth-

ods. None of the hospitals from which we drew our data use such sophisticated models. Instead,
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they publish historic average waiting times using a 4-hour moving average, a measure which has

become the convention in US hospitals.

As suggested above with respect to call centers, delay announcements influence not only customer

satisfaction but also customer waiting costs and, in response, customer actions. Announcing the

expected delay as customers enter the system, especially during heavily loaded periods, may cause

customers to balk (leave the system upon arrival) or abandon after a short time (Mandelbaum

and Zeltyn 2013, Yu et al. 2014). Xu et al. (2016) show that information provided to potential

patients on availability and quality of service influences physician demand. In this paper, we use a

multinomial choice model to incorporate the effect of a delay announcement on customer’s arrival

decision (as in Armony et al. (2009)). A similar choice model has been applied in Huang et al.

(2013) to measure the effect of bounded rationality, that is, the ability of customers to estimate

delay.

Given the potential influence of delay announcements on customer behavior, the announcements

can be used as an operational tool. For example, delay announcements are used in call centers to

help customers choose their time of service via a call-back option (Armony and Maglaras 2004). In

theme parks, delay announcements can enhance resource allocation by helping customers choose

preferred queues (Kostami and Ward 2009).

The above-mentioned research investigated the impact of delay announcements on the company

which provides the information. Our paper investigates the impact of such announcements in a

network setting, as is the case when several EDs are located in the same area. In such settings,

announcements by one service provider may impact demand at other providers. Moreover, in the

case of EDs, service providers are not only in competition, but also have incentives to cooperate.

On the one hand, hospitals want to attract patients, and EDs are considered the ‘gateway’ to a

range of hospital services. On the other hand, the expensive nature of ED services limits their

resources and capacity—leading to occasional high congestion and long waiting times, with the

potential for diminished quality of care (Chalfin et al. 2007) and increased mortality (Bennidor

and Israelit 2015). At such times, therefore, the hospital has an incentive to ease some of the load

by reducing the arrival rate.

Some hospitals attempt to share the load through ambulance diversions. However, ambulance

diversions are inefficient for this purpose because the patients being diverted in this way are those

most in need of urgent medical care. Therefore, some US states ban this policy (e.g. Massachusetts).

The goal of hospitals is, instead, to influence the behavior of those least in need of immediate treat-

ment: the non-acute patient population, which can account for up to 90% of ED visits (Plambeck

et al. 2014). Delay information, unlike ambulance diversions, can be used when the ED is crowded

to encourage those non-acute patients to respond to long wait times by choosing a different ED or
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delaying their visit. Assuming patients take such information into account, announcements are thus

expected to smooth the demand for hospital services throughout the day and to balance patient

loads between nearby hospitals.

Figure 2 compares the simulated wait-time sample path of two networks, each with two hospi-

tals. Figure 2a shows the wait times of two hospitals, where patients uniformly randomly choose

which hospital to attend. We observe that wait times are uncorrelated. Figure 2b shows the same

simulation when patients always choose the hospital with the shortest waiting time. We base our

analysis on the observation that in the latter, the wait times of the two hospitals are synchronized

(i.e., the wait times of the hospitals are highly correlated). Therefore, in this paper, we identify

connections between delay announcements and correlations between workloads at geographically

proximate EDs. We also observe that the waiting time of the second system is much shorter than

(about half) the waiting time of the first system, on average. This is because synchronization leads

to load balancing, and thus better performance. If wait time can be halved in reality by the mere

announcement of wait time, it has the potential to improve patient care and safety dramatically

with very low costs.
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Figure 2 Unsynchronized vs. synchronized systems.

From a theoretical point of view, even a small amount of coordination—for example, a system

that enables a fraction of customers to choose to Join the Shortest Queue (JSQ)—improves the

efficiency of the network to almost the level of a fully pooled system (Foley and McDonald 2001,

Turner 2000). Hence, one of the operational rationales for providing delay announcements is that

they may improve the efficiency of the hospital network.

This paper uses online search engine logs to explore correlations between waiting time obser-

vations and people’s choice of emergency departments. Search engine queries have been shown to
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reflect people’s activities in the physical world as well as the virtual one. For example, Ofran et al.

(2012) found a high correlation between the number of searches for specific types of cancer and their

population incidence. Similarly, a high correlation was observed between the number of searches

for certain medications and the number of prescriptions written for those drugs (Yom-Tov and

Gabrilovich 2013). Additionally, search engine logs have been used to monitor influenza activity

(Polgreen et al. 2008), to examine the association between online exposure to underweight celebri-

ties and the development of eating disorders (Yom-Tov and boyd 2014), and to discover potential

adverse effects of certain medicines (Yom-Tov and Gabrilovich 2013). In the context of emergency

departments, aggregated search logs were used to predict ED visits (Ekström et al. 2014).

1.2. Goals and main contributions

The main questions we address in this work are: Is there empirical evidence that patients are

influenced by delay announcements when choosing an emergency service provider? If so, how do

patients’ choice and system characteristics influence waiting time synchronization within the hos-

pital network?

Combining empirical analysis and numerical experiments, we make the following contributions:

• We develop a new performance measure to define the level of load balancing a queueing

network.

• Using that measurement and by utilizing search engine data we find that:

— Patients explore delay information provided by hospitals, and do so at a growing rate.

— There is significant variation in the level of load balancing each hospital network experiences,

and about 15% of those networks experience negative pairwise correlation (§3.1.2).

— The number of customers who take delay information into account when selecting ED

providers is sufficient to have a load balancing effect within the hospital network. We show that by

exploring periods in which hospitals randomly stopped providing data, and show that providing

such information has a significant effect on wait times of adjacent hospitals (§3.2.2).

— The distance between hospitals is also correlated with synchronization: the greater the

distance between two hospitals, the lower their effect on one another (§3.1.3).

— Increasing the number of hospitals reporting wait time (in an area) increases synchroniza-

tion, but the number of potential customers who are exposed to wait time information has a

non-linear effect on synchronization levels in hospital networks (§3.2.3), which we further explore

in the numerical section of the paper.

• Synchronization between two hospitals is influenced by how sensitive customers are to delay,

the load of the system, the scale (size) of the system, and the hospitals’ heterogeneity in terms of

customer preferences and size (§5).
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• If the appropriate method is used for delay estimation (and loads are fairly balanced), the social

welfare of patients in this network increases. That is, delay announcements will reduce average

wait times for all hospitals in the network.

• The accuracy of the wait time estimator, as well as the delay of the estimator in reflecting true

wait times, have a profound impact on the effectiveness of delay announcements. We find that the

commonly used method of a 4-hour moving average could be problematic. This method can cause

high oscillation of the load between hospitals and increase wait times when there is a large enough

proportion of strategic patients and/or when patients are very sensitive to delay (§5.2).

2. Data description and transformation
2.1. Data description

To analyze patient choices, we use information on the announcements provided to potential visitors,

as an indication that potential patients were exposed to that knowledge, and data on the outcome

of such choices on the network state. We augment the data with control variables to explain

heterogeneity in population between cities throughout the US.

Hospital level information - Real-time announcement data: For the first data source,

we identified 211 US hospitals which published their waiting times using RSS feeds as of March

2013. RSS (Really Simple Syndication) is a method Internet websites can use to provide updates to

online content in a standardized, computer-readable format (Libby 1999). Note that, as explained

below, publication of wait times on an RSS feed does not entail publishing this information in

human-readable format on the hospital website.

We collected these waiting times every 5 minutes by polling the hospitals’ RSS feeds between

April and June 2013 (inclusive). The waiting times refer to the time expected to elapse from when

the patient enters the ED to when he/she is first seen by a qualified medical professional1. No

real-time information is provided on the patient’s total length of stay or classification according to

severity. Nevertheless, all the hospitals explain in their websites that the reported wait times do

not apply to urgent patients, as these patients are prioritized according to their medical condition.

Hence, hospitals urge patients to ignore this information if they are in immediate threat to their

lives. All the hospitals included in this research use the same estimation method, namely, a moving

average over a 4-hour time window. From our data it appears that this information is updated every

15 minutes. Note that the higher sampling rate utilized here (once every 5 minutes) is required

because the sampling is not synchronized to the hospital’s rate of change, and thus the higher rate

reduces the lags in the time it takes to identify a change in reported wait times.

1 A qualified medical professional is defined as a Doctor of Medicine (MD), Doctor of Osteopathy (DO), Physician
Assistant (PA) or Advanced Registered Nurse Practitioner (ARNP).
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All the hospitals in our sample published their wait times in their RSS feed. However, not all

hospitals published the wait time information on their websites for human consumption in the same

manner. Some provided only their own waiting times, some also provided information on waiting

times of (two or more) nearby hospitals, and some did not present their wait times on the hospital

website at all during those 3 months. In all hospitals, if wait time information was presented, it

was presented on the front page of the hospital website. In our data, 27 hospitals did not present

any wait times, 104 showed only their own wait times, and 80 showed their wait times as well as

those of nearby hospitals.

Geographic and demographic information: The second data set includes data about the

area in which each hospital operates. These include the number of other medical facilities in the

area, distances between hospitals, as well as demographic information on the population living in

the area of each hospital.

To estimate the total number of hospitals in each area we obtained a list of 36,438 medical

facilities listed in the Bing Local search application, and their location. As this list contains irrele-

vant medical facilities (maternity centers, mental health facilities, and rehabilitation facilities), we

filtered the list to include only those hospitals registered with Medicare2, resulting in a total of

4,576 hospitals throughout the US. This information allows us to compute the distances between

hospitals.

As our analysis focuses on how patients choose between geographically proximate hospitals, the

211 hospitals that report wait times, in the RSS feeds, were divided into clusters such that the

reporting hospitals in each cluster were within no more than 20 km apart from one another (see

§3.2.3). This partition created 46 clusters of hospitals, each defining a geographical area enclosing

the reporting hospitals within it.

For each such cluster, the following additional variables were calculated:

• Fraction of hospitals reporting their own wait times;

• Fraction of hospitals reporting their own wait times as well as those of proximate hospitals;

• Fraction of hospitals reporting their own wait times and requiring another click to present

those of proximate hospitals.

Several demographic variables may influence both access to online information as well as the

tendency to use it (Perrin and Duggan 2015). Hence, we collected demographic county-level infor-

mation from three sources:

1. The US Census American FactFinder3.

2 https://data.medicare.gov/Hospital-Compare/Hospital-General-Information/xubh-q36

3 http://factfinder.census.gov/
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2. The US Census Small Area Income and Poverty Estimates4.

3. US Government Health Indicators Warehouse5

The demographic variables includes:

• Number of primary care persons per 100k population;

• Poverty level;

• Household income (HHI);

• Median male age;

• Median female age;

• Male to female ratio;

• Fraction of children aged 4 or under;

• Fraction of people 65 and over;

• Total population.

Remark: We note in passing that wealth does not seem to be associated with more hospitals

publishing their wait times. To demonstrate this, we extracted the adjusted gross income (AGI)

from the 2012 IRS data for the closest zip code to each of the 4,576 hospitals identified in the

Bing local search application (as explained above). The median AGI matched to hospitals that

published wait times is not dissimilar from that of all other hospitals (P = 0.03, ranksum test).

Exposure information: Finally, to measure interest and exposure to the presented informa-

tion, we extracted all queries made using the Bing search engine between April and June 2013

(inclusive) which resulted in a visit to the web page of one or more hospitals on our list. We assume

that all visitors to these pages noticed the wait times, which are prominently displayed.

Each query contained an anonymized user identifier, a time stamp, user location details (GPS

information for mobile users and zip-code information for other users), the query text, and the

pages which were clicked as a result of the query.

Following Yom-Tov et al. (2013), we define sessions as all contiguous queries made by a user

without a break of 30 minutes or more. We note that 2.2% of sessions where users inquired about

the location of a hospital or its emergency room resulted in visits to the websites of more than one

of the target hospitals. This indicates that a non-negligible percentage of users seek information

about multiple hospitals when choosing which one to visit.

Bing is the second-largest search engine operator in the USA, with an estimated market share

of approximately 20%, as of March 20156. We assume that the population of Bing users is a good

4 https://www.census.gov/did/www/saipe/data/statecounty/data/2013.html

5 http://www.healthindicators.gov/Indicators/Primary-care-providers-per-100000_25

6 http://www.comscore.com/esl/Insights/Market-Rankings/comScore-Releases-March-2015-US-Desktop-Search-Engine-Rankings
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representation of the general population. This assumption is supported by the following analyses:

First, the correlation between the number of Bing users per county in the USA and the number

of people in that county according to the 2010 US Census is R2 = 0.83 (P < 10−6). Second, an

analysis of data collected from an opt-in consumer panel recruited by an Internet analytics company

comScore, which includes age (in 5-year increments) and gender, shows a correlation of R2 = 0.62

(P = 0.004) of the fraction of users between Bing and Google at each age and gender group.

From the exposure data above we calculated the following variables:

• Number of queries made to the Bing search engine about each of the reporting hospitals;

• Number of Bing queries about each hospital which also mentioned the word ‘wait’;

• Number of Bing queries per capita.

In addition, for each area of clustered hospitals we defined the following variables:

• Number of Bing sessions which included queries about more than one hospital, where one was

to a hospital in the cluster;

• Number of EDs reporting wait times per square km within a cluster;

• Number of hospitals per square km (whether reporting wait times or not) within a cluster;

• Number of pediatric EDs within the cluster (some EDs do not cater to children, or do so only

during certain hours).

2.2. Data transformation

The main explanatory variables in our analysis are hospital waiting times and their correlation

among nearby hospitals. However, these wait times are reported in a way that requires pre-

processing to remove the effects of recurrent patterns and reporting biases caused by averaging.

2.2.1. Removing diurnal and weekly patterns The wait times of hospitals have strong

daily (diurnal) and weekly patterns of activity, exhibiting higher wait time during the day than

during the night. Hence, closely situated hospitals will have a natural synchronization level that

is due to the pattern of the exogenous arrival rate, and not necessarily to endogenous influence

of information provided to potential patients. In most of the empirical analyses, we would like to

exclude such synchronization.

To focus on correlation due to endogenous influence of information provided to potential patients,

we remove the hourly and daily waiting time trends from the observed (reported) waiting times,

for each hospital, in the following manner. For each hospital, a linear predictor was trained to

predict waiting times from the hour of the day and the day of the week (h(t) ∈ [0,1, ...,23] and

d(t) ∈ [1,2, ...7]). These predicted waiting times were subtracted from the observed waiting times.

Thus, we denote the waiting time predicted from the hour and day as rRec
i , since it captures the
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recurrent portion of the reported wait time signal, and refer to the resulting detrended reported

waiting times as Residual Waiting Times (RWT).

Let RWTi(t) be the residual wait time of hospital i at time t. Then,

ri(t) = β1h(t) +β2d(t) + εi(t);

rRec
i (t) = β1h(t) +β2d(t);

RWTi(t) = ri(t)− rRec
i (t).

The average ratio between the weight of the hourly trend and the weight of the daily trend was

0.999, indicating that the terms had almost identical effects. Together, these two variables explain

85.0% of the variance of the reported waiting times, i.e. the trained rRec
i (t) achieves an R2 = 0.85.

2.2.2. The effect of averaging on wait time correlations The wait time data collected

represents precisely the information provided to potential visitors, but is not an accurate indicator

of the actual hospital state. This is because wait times are provided after averaging using a 4-hour

moving window7, and rounding to the nearest minute.

If the exact (e.g., not rounded) wait time would have been provided, the non-averaged wait time

could be reconstructed up to a constant. However, attempting to reconstruct the non-averaged

wait time from the available signal quickly diverges from the average wait times, as the rounding

errors accumulate and can be larger that the actual wait times.

However, below we show that an approximation can be elicited for the cross-correlation between

the reported hospital wait times.

Let wi(t) be the actual wait time of hospital i at time t. Without loss of generality let wi(t) be

normalized to zero mean and unit variance. The effect of averaging using a moving window is akin

to convolving wi(t) with a rectangular window W of length 4 such that:

f(t) =

{
1/4 if 0≤ t < 4;

0 otherwise.

The observed/reported averaged wait time, ri(t), is thus denoted by ri(t) = wi(t) ∗ f(t), where ∗

denotes the convolution operator.

The cross-correlation between two signals x(t) and y(t) can be computed as x(t) ∗ y(t). For two

wait times, wi(t) and wj(t), after averaging, the correlation of the observed signal is:

CObs = (wi(t) ∗ f(t)) ∗ (wj(t) ∗ f(t)). (1)

7 For example, the Medical Center of Lewisville, one of the reporting hospitals, states on its website that ”ER wait
times represent a four-hour rolling average... defined as the time of patient arrival until the time the patient is greeted
by a qualified medical professional.”
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Using properties of the convolution operator:

CObs = (wi ∗wj) ∗ (f ∗ f). (2)

Thus, the correlation of the averaged wait times is equal to the correlation of the unaveraged wait

times, convolved with a window which equals:

F [t] = f ∗ f =


(4 + t)/16 if − 3≤ t < 0;

(4− t)/16 if 0≤ t < 4;

0 otherwise.

(3)

This is a triangular window centered at 0. The effect of this convolution is that the observed

correlation from the (averaged) wait times is a weighted average of the non-averaged correlation

at lags of between -3 and +3 hours.

The relationship between Cij, the (unfiltered) cross-correlation function of xi and xj, and the

observed cross-correlation CObs
ij for a signal of length N can be written explicitly (recalling that

F [−i] = F [i]) in matrix form as:
F [0] F [1] ... F [4] 0 0 0 ... 0
F [1] F [0] F [1] ... F [4] 0 0 ... 0
F [2] F [1] F [0] F [1] ... F [4] 0 ... 0

...
0 0 · · · 0 F [4] F [3] F [2] ... F [4]

 ·

C[0]
C[1]
C[2]

...
C[N ]

=


CObs[0]
CObs[1]
CObs[2]

...
CObs[N ]

 (4)

In matrix form, we denote this as FM ·C =CObs. Since FM is a fully-ranked (symmetric) Toeplitz

matrix, C can be recovered by the Moore-Penrose pseudo-inverse:

C = (FM ·FM)−1 ·FM ·CObs (5)

This correction is true up to the rounding discussed above. Rounding errors, which are akin to

quantization errors, can be modeled as additive white noise (Widrow et al. 1996). This, together

with the fact that the cross-correlation function averages over a large number of samples, should

cause rounding to have a negligible effect, especially for shorter lags.

2.2.3. Correcting detrended wait time correlation for smoothing effects As explained

in 2.2.1 we would like to measure the correlation of the residual wait time. In this section we show

that these correlations can be estimated either by first correcting for smoothing and then removing

the recurring trends, or vice versa. In practice, the latter is preferred, since it is less sensitive to

rounding effects in the data.

As noted above, the wait time of a hospital can be decomposed into two components: A recur-

ring diurnal and weekly component, and a component representing all other effects. These two
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components are provided to us after smoothing and rounding, so that the observed wait time ri(t)

can be written as:

ri(t) =wi ∗ f = (wTr
i (t) +wRec

i (t)) ∗ f (6)

where wRec
i (t) is the recurring component, and wTr

i (t) the component representing all other tran-

sient effects of the real wait times.

Without loss of generality, if both wRec
i (t) and wTr

i (t) are time series with zero mean and unit

variance, the correlation between two hospitals before correction for smoothing can be written as:

E
(
(wTr

i (t) ∗ f)(wTr
j (t) ∗ f)

)
=E

((
(wi(t)−wRec

i (t)) ∗ f
) (

(wj(t)−wRec
j (t)) ∗ f

))
=

E
((
wi(t) ∗ f −wRec

i (t) ∗ f
) (
wj(t) ∗ f −wRec

j (t) ∗ f
))

(7)

The components wi(t) ∗ f and wj(t) ∗ f are simply the observed time series, while wRec
i (t) ∗ f and

wRec
j (t)∗f are the recurring components, convolved by the smoothing operator. When the recurring

components are estimated after smoothing (as described in Section 2.2.1 above), they correspond

to these smoothed recurring components.

Therefore, to accurately estimate the correlation between the detrended time series of two hos-

pitals we can simply calculate the correlation between the detrended time series (Section 2.2.1),

and then correct it using the procedure in Section 2.2.2. We denote the detrended and corrected

correlation between hospital i and j by CTR
ij . In the remaining of the paper, unless otherwise stated,

correlations between pairs of hospitals are corrected in this manner.

3. Empirical Results

In this section, we draw on the data described in Section 2 for objective indicators that patients

indeed use delay information in choosing emergency service providers, and that this has a profound

influence on network coordination.

We begin our discussion with a descriptive analysis of the variations in waiting times, the effects

of time-of-day, and the difference between the announced waiting time to the actual waiting time

and its influence on our analysis. We then report our findings on the effects of wait time reporting

on hospital synchronization.

3.1. Initial investigation

3.1.1. Wait time variation Hospitals differ greatly in their reported wait times. To examine

these variations, we clustered the 211 hospitals which reported their wait times into three groups

according to their wait times, using the K-means algorithm with Euclidean distance. Each hospital

was represented by a vector of the average hourly reported wait times.
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The resulting clusters partition the hospitals into three groups: low wait, medium wait, and

high wait times. Table 1 provides characteristics of each cluster. Figure 3 shows the average of

the reported wait times, ri(t), for the three groups over a 3-week period. The figure demonstrates

daily patterns as well as the variation in waiting times among the three groups. The average wait

times in highly loaded hospitals range from 30 minutes at night to 70 minutes wait during the day.

Moderately loaded hospitals experience wait times ranging from 10 to 30 minutes, while lightly

loaded hospitals announce average wait times of 7 minutes during the night to 12 during the day.

Cluster Low wait Medium wait High wait
Number of hospitals 97 99 13
Average wait (min) 8.2 16.4 32.5

Standard deviation (min) 3.1 2.7 8.2

Table 1 Clustering hospitals by reported wait. N=211
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Figure 3 Average waiting times for the three groups of hospitals—low wait, medium wait, and high wait times.

3.1.2. Correlations between hospital wait times Figure 4 shows a histogram of the Spear-

man correlations found between wait times of all pairs of hospitals. The line denoted as ‘reported’

represents correlation of the original wait time signals as related to visitors to the website, and the

line marked as ‘detrended’ shows the correlation of the RWTs.

We observe that, as expected, the correlation of the reported wait times is greater than the

correlation of detrended wait times. In general, most hospital pairs show positive correlations, but

surprisingly, a significant proportion of them show negative correlation. We will discuss possible

reasons for such phenomena in Section 5.2.
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Figure 4 Correlation of reported waiting times versus correlation of detrended waiting times.

3.1.3. The effect of distance between hospitals on synchronization Figure 5 plots the

wait times of two hospital pairs. As the figure suggests, some ED pairs are much more synchronized

than others, a fact which is also evident in Figure 4. An important factor that is correlated with

synchronization level is distance.

Recall that CObs
i,j is the correlation between the observed wait time of hospital i and hospital j,

e.g., ri(t) and rj(t), respectively, over the 3-month period. Let DISTi,j be the distance between

hospital i and hospital j. The correlation between the distance among hospitals, DISTi,j, and the

level of synchronization between them, CObs
i,j , is negative (Spearman, ρ=−0.138 (P < 10−5)).

Observation 1. Distance relates to synchronization; greater distance between pairs of hospitals

is associated with a lower correlation between their wait times.

This geographical synchronization could be attributed to several factors, including, daily patterns

and information provided to ambulance services. What we seek next is to understand whether

announcements of anticipated delays contribute to this synchronization, and to what extent.

3.2. The association between delay announcement and wait time synchronization

3.2.1. How does the amount of information displayed correlate with hospital syn-

chronization? Hospitals display wait time information in various ways. While some hospitals

suppress the display of that information, all the hospitals in our dataset which present that infor-

mation do so on their front page. Still differences in display occur; some hospitals show only their

own ED information, while others show the information of nearby hospitals as well. We identify in

our dataset four levels of information display:

• Not presented: Wait times are not shown on the hospital website.

• Only self: Only the own hospital’s wait times are shown.
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(a) Highly synchronized EDs (32 km apart)
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(b) Poorly synchronized EDs (1257 km apart)

Figure 5 Waiting times announced by different EDs.

• Others too: Both the hospital’s own wait times, as well as that of nearby hospitals are shown.

• Others, click: The hospital’s own wait time is shown, and that of adjacent hospitals are shown

when the user clicks on a button to display them.

Figure 6 presents examples of the three display formats.

(a) Only self (b) Others too (c) Others, click

Figure 6 Examples of a hospital wait time displays.

Figure 7 shows the average correlation of the RWT, CTR, according to the level of information

displayed in the hospital website, stratified by the distance to the nearest hospital reporting wait

times. The figure suggests that nearby hospitals that display their own wait times as well as that of

nearby hospitals are more correlated than those that do not. This correlation is much lower when

distance to the nearest hospital is large (grey bars in Figure 7). These observations indicate that

the information display coupled with the availability of close alternatives are associated with an

increased correlation in wait times.

We evaluate this hypothesis using an ANOVA model, where the dependent variable is the cor-

relations among hospitals, and the independent variables are the information display type, the

distance (continuous), and the interaction of the two. The results are presented in Table 2, showing
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Figure 7 Average RWT correlation (CTR) by information display and distance to nearest hospital. Correlations

when the nearest hospital is less than 8km apart are shown in strip bars, and among farther hospitals

in gray. Correlation of wait times differ significantly by both distance and information type (See Table

2.

that both variables and their interaction are statistically significantly correlated with the correla-

tions among hospitals. Note that there is no strong statistical evidence about which type of display

(only self, others, click, or yes) is most effective. In what follows, we distinguish between whether

the hospital displays the wait time information or not.

Variable F p-value
Information type 3.32 0.024

Distance between hospitals 6.01 0.016
Interaction between the two variables 2.79 0.044

Table 2 ANOVA model for the correlation between nearby hospitals as a function of information type displayed

and the distance between hospitals. The model is constructed for hospitals 30km or less of each other.

3.2.2. The effect of withholding information on wait times In this section, we evaluate

whether providing information to potential patients through a website creates a load balancing

effect and therefore reduces wait times. Sometimes, probably due to technical faults, the wait times

disappear from the RSS feeds. These can be used to construct “natural experiments” (Meyer 1995)

to establish causality between the effect of one hospital reporting wait times and the wait times of

the closest hospital to it (neighboring hospital). In particular, when one hospital ceases publishing

its wait times, we cannot measure synchronization. Instead, we can measure the effect that the

disappearance of the wait times in one hospital has on the wait time of its neighboring hospital.

Since the wait time information is not provided, load balancing reduces or stops. Our conjecture is

that wait times in the neighboring hospitals will increase during such breaks. However, the effect

of stopped load balancing should only appear in hospitals where such information was provided to
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patients. If such information was not provided both before and after the stop, no significant change

should be observed. Therefore, we hypothesize the following:

Hypothesis 1. ED wait times are shorter when wait time information is displayed in two adja-

cent EDs as opposed to when information is not published in both hospitals.

Figure 8 demonstrates the change in RWT of the closest hospital (but not more than 20 km

distant) to the one in which the reporting break has happened, from 12 hours before the break in

wait time displays and until 12 hours after it. In order to set a similar baseline for all hospitals,

we removed the average RWT in the 12 hours preceding the break from the entire (25-point) data

sequence for each break, and show the median times in Figure 8. As the figure shows, there were

smaller changes in the wait times of hospitals which did not report wait times. However, those that

did report it saw a large increase in their wait times. This is the expected trend: when information

stops being presented, load balancing stops too, and therefore waiting times increase.

-10 -5 0 5 10
Time [hours]

-3

-2

-1

0

1

2

3

4

M
ed

ia
n 

R
W

T
 [m

in
ut

es
]

Figure 8 Median RWT of the closest hospitals when wait time reports disappear. The horizontal axis denotes

time, where zero hour is when the break in wait time reporting began. The dotted line shows the

median RWT of the closest hospital, when the break occurred in a hospital which did not display wait

times on its website (n = 45), while the full line shows the same when the break occurred in those

hospitals that showed the wait times for both them and adjacent hospitals (n= 25).

As a more rigorous statistical test, we perform a difference-in-difference analysis of the breaks. We

focus on times where wait times were absent from the RSS feed for 4 hours or more, stratified by the

way in which they were normally displayed in the hospital website. We found in our data 2740 such

4-hour breaks; 1771 of those occurred in hospitals that did not display the wait time information

on their websites. One may suggest that hospitals stop providing information strategically, for

example, when they are extremely loaded and prefer not to present information which may show
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them in unfavorable light. To refute this, we checked that the breaks do not appear to be correlated

to wait times. Specifically, the wait times reported one hour prior to the break, compared to the

average of the wait time in the corresponding hour one day before and one week before at the same

hospital are not statistically significantly different (signtest, P > 0.05). Additionally, the day of

the week at which breaks occur is not statistically significantly different (chi2 goodness-of-fit test,

P = 0.92). Interestingly, breaks do tend to concentrate during a particular time period of the day,

with the average at 6AM and the mode at 3AM. Thus, we deduce that long breaks occur mostly

due to technical failure, when technical staff are not available to fix the failure.

To test Hypothesis 1, we construct the following difference-in-difference model (Abadie 2005) at

the hospital level:

T̄i,j,t = β0 +β1 ·hi +β2 · It +β3 ·Dispi +β4 ·Dispj+

β5 ·DISTi,jβ6 · (It ◦Dispi) +β7 · (It ◦Dispj) +β8 · (It ◦Dispi ◦Dispj) + εi,j,t (8)

Here, T̄i,j,t is the average wait time at hospital j, which is the closest hospital to hospital i, in the

time interval t (either 4 hours prior to the break or the first 4 hours following the break); DISTi,j

is the distance between the two hospitals; hi is the time of day in which hospital i experienced

the break; It indicates whether t was a break interval; Dispi indicates whether hospital i displays

wait times on its website in general; Dispj indicates whether hospital j displays wait times on its

website in general; (It ◦Dispi) is an interaction term equal to 1 if t is a break interval and hospital i

displays information in general; (It ◦Dispj) is an interaction term equal to 1 if t is a break interval

and hospital j displays information in general; (It ◦Dispi ◦Dispj) is an interaction term equal to

1 if both hospitals i and j display information and t refers to time during a break; βi’s are the

corresponding coefficients; and εi,j,t is the remaining error term.

In estimating Equation 8, we use the estimator of the interactions to compare the difference

in hospitals’ average wait time before break occurred to the difference after the break occurred.

Because the information to which the potential patients were exposed was not different before

and after the break if hospital i does not display information, we consider hospitals that do not

provide information (Dispi = 0) as the untreated comparison group and those hospitals that display

information (Dispi = 1) as the treatment group. The use of the difference-in-differences approach

enables us to control the effects of variables that are common to both hospitals before and after

the breaks, even when those variables are unobserved.

There should also be a difference for whether hospital j displays information or not. If hospital

j does not display wait time information on its website, patients who are considering going there

will not be able to compare wait times regardless of the information presented by hospital i.
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Therefore, the group for which we expect to see a difference when breaks occur is one in which

both hospitals display information, i.e. both Dispi = 1 and Dispj = 1. Therefore, we estimate the

effect of publishing wait time information by examining the coefficient on the interaction term, β8.

Table 3 presents the coefficient estimated for Equation 8. We observe that if a hospital displays

wait times, it reduces the wait times of the adjunct hospital (β3 = −0.51, p = 0.0004), but once

that information stops we see an increase in wait times only if both hospitals display information

(β8 = 1.11, but β6 =−1.20).

Number Variable Parameter estimate (SE) p-value
1 h - Time of day 0.07 (0.02) 0.0004
2 It - During break? -1.71 (0.56) 0.0022
3 Dispi - Hospital i reports wait times -0.51 (0.14) 0.0004
4 Dispj - Hospital j reports wait times 0.83 (0.51) 0.1011
5 Distance between hospital i and j 0.47 (0.16) 0.0046
6 Interaction of It and Dispi -1.20 (0.52) 0.0221
7 Interaction of It and Dispj 1.31 (0.56) 0.0195
8 Interaction of It, Dispi and Dispj 1.11 (0.52) 0.0352

Table 3 Model of the effect of withholding information.

This natural experiment provides supporting evidence that the information provided in the

hospital’s website indeed influences patient choices, and thus influences the synchronization levels

by creating load balancing in the network. We next provide a more detailed analysis of factors that

are associated with the level of synchronization.

3.2.3. How does network structure and exposure influence load balancing? As noted

above, the past several years have seen a steady growth in the number of people searching online for

delay information. In the following we investigate how load balancing effects are influenced by the

network structure in which hospitals operate and people’s tendency to look for delay information

online. To do this, we model the level of synchronization between clusters of geographically proxi-

mate hospitals (less than 20 km apart) using geographic, demographic, and exposure information

as explanatory variables.

To define ‘geographically proximate hospitals’, we clustered the hospitals which published wait

times according to their geographic location by performing Agglomerative Hierarchical Cluster-

ing (Duda et al. 2001) with closest-link aggregation until no hospitals were found within 20 km.

Specifically, each hospital was initially considered a separate cluster. We then iteratively merged

the pair of clusters closest to each other (in the sense of the closest-link), until the closest link was

greater than 20 km. This procedure resulted in 46 clusters.

We propose two models for these data: A non-linear model and a linear model with interactions

between variables.
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Regression tree model: For the non-linear model we first trained a regression tree (see Figure

9) to predict the average correlation CTR within a cluster using the geographic, demographic, and

exposure variables defined in Section 2.1. Applying the leave-one-out cross-validation method to

estimate the performance of the model, we found that the Spearman correlation between predicted

and actual CTR values was ρ = 0.528 (P = 0.002), indicating that the variables provide good

predictive power for the dependent variable—i.e., the synchronization level as measured by the

correlations between RWT.

The variables of the highest levels of the tree (Figure 9) are the number of EDs reporting wait

times per unit area within a cluster, the number of Bing queries about hospitals in the cluster,

median female age, and the fraction of children aged 4 or under in the area of the cluster. We

attribute the first variable to the availability of wait time information, where more information

translates to a higher correlation. The last two attributes are demographic variables, which imply

that specific populations are more likely to engage in decisions on which hospitals to visit. For

example, young people are more likely to use delay information, which is not surprising since young

people are more likely to use the Internet as a source for health information (Fox and Duggan

2013). A surprising observation is that the number of queries has a non-monotonous effect. In some

populations and networks, more queries are associated with lower synchronization levels, which is

the opposite of what we expected. We will discuss possible explanations for that phenomena in

Section 5.2 via controlled simulation experiments.

Stepwise linear regression model: These data were also modeled by a stepwise linear regression

model, which is shown in Table 4. Similar to the regression tree, this linear model shows that

the number of reporting EDs is the most important factor. However, instead of the total number

of queries per cluster, we observe that the number of queries about multiple hospitals becomes

significant here. A third interesting factor is the relative number of primary care personnel in the

area, that is significant only through interaction with the number of reporting EDs. The coefficient

of the interaction is negative, suggesting that if there are many EDs in the area but also many

primary care physicians, there is less synchronization. Our explanation is that in such areas only

more urgent patients seek ED services, and the delay information is less relevant for them. This

conjecture is based on the fact that in the US, EDs are used as a supplement of primary care

service when the latter is not well provided (NEHI 2010).

Observation 2. Customer’s exposure to delay information is associated with hospital synchro-

nization. As is evident from Table 4 and supported by Figure 9, the number of delay-reporting

hospitals per unit area and the number of queries about waiting times are significant indicators

of hospital network synchronization. The higher the number of reporting hospitals per unit area

and the greater the number of queries, the higher the correlations observed. When coupled with
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Figure 9 Regression tree classifier for predicting in-cluster RWT correlations. Decision nodes show the splitting

variable and the average correlation at the node (in parentheses). Leaf nodes show the average corre-

lation at the node. The split point is given in each node. For example, ”Reporting hospitals < 0.43”

means that all clusters where the fraction of reporting hospitals per square km is lower than 0.43 will

be routed to the left branch, and all others to the right one. The variables are listed in the main text.

Variable Parameter estimate (SE) p-value
(1) Number of EDs reporting wait times per square km within a cluster 3.90 (0.37) < 10−10

(2) Number of Bing queries about multiple hospitals in the cluster 0.004 (.002) 0.046
(3) Number of primary care persons per 100k population in the cluster area 50.3 (30.2) 0.10
(4) Median male age 0.009 (0.003) 0.003
Interaction of (1) and (3) -1255.6 (148.5) < 10−10

Interaction of (1) and (4) -0.051 (0.008) < 10−6

Table 4 A stepwise regression model for the average correlation within a cluster (R2 = 0.90, P < 10−6).

the observation of Section 3.2.2, we conclude that the proportion of customers that take delay

information into account is large enough to have an operational influence on the state of EDs and

their delay times.

4. A simulation case study

Our empirical study provides evidence that the number of EDs reporting waiting time information

and the exposure level to these data are important factors in predicting the synchronization level of

hospital waiting times. Our observations also raise questions on specific aspects of synchronization,

e.g., the exact role of information seeking (number of queries) and synchronization rates, as well as

the effect of different demographics. However, the nature of our data, which does not include spe-

cific patient level choice information, limits our ability to establish the causal relationship between
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patients’ reaction to delay announcements and the synchronization level of waiting times. In this

section, we use stochastic simulation to mimic the dynamics of a network with two hospitals in

the same neighborhood and investigate how patients’ sensitivity to delay may affect the synchro-

nization level of hospital waiting times. We will show, using simulation study that the level of

synchronization observed in the data can indeed result from patients acting strategically to delay

information. Later, in Section 5, we will study factors that influence the level of synchronization.

Model calibration: In this study, we model the two hospitals as two multi-server queues with

a time-varying arrival rate and time-varying staffing levels, Mt/G/st. The arrivals follow a time-

varying Poisson process. We fit the arrival rate function using the scaled arrival rate data of all

ED visits in the US during 2010 (Centers for Disease Control and Prevention 2010), which is a

piecewise constant function as depicted in Figure 10(a). This shape of arrivals is common in many

EDs throughout the world (e.g. Armony et al. (2015), Shi et al. (2015)). The most common Length

of Stay (LOS) in EDs follows a Lognormal distribution (see e.g. Armony et al. (2015)). Hence, we

assume service times are independent and identically distributed Lognormal random variables with

parameter µ= 4.18 and σ = 1. In particular, the mean service time is 108 minutes, which is the

national average LOS of patients who are discharged after ED treatment minus the national average

waiting times for those patients. We notice that according to the Medicare website, the average

LOS of more severely ill or injured patients, who need to be hospitalized after ED treatment, is 274

minutes, which is much longer than the LOS we use. We choose to focus on the less urgent cases

because we think these are the patients who will use delay information to choose which hospital to

visit. The limited capacity in the ED is a combination of the number of physicians and the number

of beds. Many hospitals in the US apply a case load management policy, where each physician has

a cap on the maximum number of patients they can care for simultaneously. Hence even if beds

are available in the ED, the capacity might be limited due to the number of physicians attending.

A typical capacity constraint is the number of attending physicians multiplied by the number of

patients per physician. A description of the connection between the two and its impact on waiting

can be found in Song et al. (2015) and Campello et al. (2017). We will refer to this limiting capacity

in the general term ‘servers’. We use two staffing levels: from 7:00AM to 11:00PM; both hospitals

are staffed by 15 servers, and from 11:00PM to 7:00AM the next day, both hospitals are staffed by

10 servers. We notice that hospital EDs in general have three shifts which results in two different

staffing levels (Song et al. 2015). Figure 10 (b)–(d) summarizes data on the average LOS of patients

who are discharged after ED treatment and the average ED waiting time (both collected from the

Medicare website) and the size of the ED as measured by the number of beds (based on data from

24 hospitals which publish this information on their websites).
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Figure 10 Model calibration data summary

Customer choice: Many factors come into play when patients select an ED. These include,

for example, the reputation of the hospital, its expertise, and any limitation imposed by medical

insurance plans (Marco et al. 2012). Those are in addition to the delay information discussed here.

Moreover, not all potential patients are exposed to delay information, and the weight of this factor

for those that are exposed to it is unclear. Therefore, we consider a choice model that incorporates

several factors that may affect how patients choose between two hospitals.

We call the patients who check the delay information strategic patients. We denote θ as the

proportion of the strategic patients among all arriving patients. We assume the non-strategic

patients are equally likely to choose any one of the two nearby hospitals. We model the choice of

the strategic patients using a Multinomial Logit Model (MNL) (see Anderson et al. (1996, §2.6)).

Specifically, the utility for being seen in hospital i with reported delay ri is

ui(ri) = βi−αri + εi,

where εi is an unobservable patient dependent term that is assumed to be i.i.d. Gumbel with

parameter 0 and 1, βi is a hospital-dependent parameter that reflects differences between hospitals

in terms of their service quality, insurance policies, etc., which may affect how patients perceive the

“value” of the service, and α measures the “cost of delay”. We do not assume outside alternatives
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and the utility can be negative, i.e. the patient must choose one of the two hospitals. The probability

of choosing hospital 1 then takes the form

p1(r1, r2) =
exp(β1−αr1)

exp(β1−αr1) + exp(β2−αr2)
,

where r1 and r2 are the reported waiting times of hospital 1 and hospital 2, respectively. By

rearranging the above equation, we have

p1(r1, r2) =
1

1 + exp((β2−β1)−α(r2− r1))
.

When the difference between the reported waiting times of the two hospitals is small, the strategic

patients will choose the less loaded one with slightly greater probability. When the difference

between the reported waiting times is large, the strategic patients will almost certainly (with

probability 1) choose the less loaded one. For the same waiting time difference, the larger the value

of α, the more likely the patient will choose the less loaded one. We refer to α as the sensitivity

parameter.

For our simulation study in this section, we set β1 = β2 = 1, and test the effect of different values

of θ and α on the synchronization level between the resulting wait times of hospital 1 and 2,

Cor(w1,w2), and on the correlation between the detrended wait times Cor(wTr
1 ,wTr

2 ). The system

performances are measured by long-run average waiting times of the two hospitals, E[w1] and

E[w2]. All the correlations and expectations are calculated based on the long-run time average,

i.e. E[wi] = limt→∞
1
t

∫ t

0
Wi(s)ds, and Cov(w1,w2) = limt→∞

1
t

∫ t

0
(W1(s)−E[w1])(W2(s)−E[w2])ds.

We assume the existence of these limits, as the arrival rates and staffing levels are periodic.

Reported waiting times (waiting time estimator): The hospitals in our empirical study

estimated waiting times using a 4-hour moving average. We use the same moving average as the

reported waiting times of the two hospitals.

Simulation calibration results: Figure 11 plots the average hourly wait times. We notice that

the time variability of the wait time process agrees with our empirical data of the high loaded

hospital group.

Figures 12 & 13 summarize the simulation results of this case study with its corresponding 95%

confidence intervals. We start both hospitals from empty. Each simulation run contains 1000 days

of data where the true waiting times are recorded every 15 min. We apply a burning period of 100

days. The estimators and the corresponding confidence intervals are constructed using the Batch

means method with 10 batches. As the average wait times of the two hospitals are very close to

each other (due to symmetry of the system parameters), we only plot the wait times of hospital 1.

We observe that when there is only a small fraction of people acting strategically (θ= 0.1), the

synchronization level increases with α (Figure 12a) and the average wait time decreases with α
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Figure 11 Expected waiting time for different values of θ (α= 0.05, solid: θ= 0, - -:θ= 0.1, · · · :θ= 1)

(Figure 13a). These changes in wait times is in line with the changes in the synchronization level,

and the classical theory of the effect of the JSQ policy. In particular, the higher the synchronization

level, the higher load balancing we can achieve, and the better the performance. The increase in

the synchronization level is concave, i.e. it increases faster for small values of α.

Surprisingly, when θ increases things change: When there are more people acting strategically

(θ= 0.5), the synchronization level first increases and then decreases with α. When θ= 0.9, the syn-

chronization level can decrease to negative values for large values of α. This phenomenon requires

further elaboration, which we provide in Section (§5.2), showing that this is mainly due to the

delay effect in the waiting time estimator (four-hour moving average).

We notice, in our simulation case study, that reduction in the expected waiting time is at most

around 16%, which is not as much as we would expect from a fully synchronized system (Figure 2).

This is because the detrended synchronization level (Cor(wTr
1 ,wTr

2 )) we can achieve is very small,

around 0.2 at its maximum. Note that this was also the case in the data we collected, in which the

range of synchronization was below 0.2, and could indeed be negative for some hospital groups.

Hence, this case study captures some of the observations seen in the real world.

Additionally, we see that θ and α have a similar effect. This precludes our ability to estimate

a realistic α. Nevertheless, if one could estimate the proportion of people looking for information,

then α could be estimated using our simulation.

In the next section, we will take a closer look at the stochastic model we suggested and investigate

what limits our ability to achieve a higher synchronization level.
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Figure 12 Synchronization level between the two hospitals for different customer sensitivity values and the

proportion of strategic customers. (Correlation between actual wait times is presented in gray, while

correlation between detrended wait times is presented in black.)
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Figure 13 Expected waiting time of the two hospitals for different values of customer sensitivity values and the

proportion of strategic customers.

5. Sensitivity analysis of the queueing models

To improve our understanding of the level of synchronization that can be achieved with different

parameter values, we use simulation models to study the impact of the following factors: load,

system scale, network symmetry and different waiting time estimation methods (delay estimator).

As the proportion of strategic customers, θ, and the sensitivity to wait of strategic customers, α,

have a similar effect on the synchronization level, in this section, we fix θ= 1 and focus on changes

in the patients’ sensitivity to delay only. We also assume both the arrival rate and the staffing

level to be time homogeneous. This simplification will allow us to directly remove the effect of time

variability on the correlation between waiting times. We verified that all results follow if arrivals

are time-varying.
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The simulation model allows full flexibility in terms of inter-arrival time and service time distri-

butions. For simplicity, we consider the classical Markovian setting where arrivals follow a Poisson

process with rate λ. Service times are exponentially distributed with rate µ.

There has been a significant volume of work analyzing the JSQ strategy, where customers join

the shortest of several parallel queues upon arrival. Most results in this area are established for

networks of single-server queues in the heavy-traffic asymptotic regime. The main insight related

to our work is that we only need a small fraction of customers to act strategically (choose the

shortest queue) to achieve a high level of load balancing (state-space collapse in the limit) (Reiman

1984, Turner 2000).

Note that we are looking at a system in which customers choose a queue not according to the

length of the queue but according to the expected wait in the queue. Hence, the analysis is actually

of a Join the Shortest Wait (JSW) policy. Nevertheless, we expect the two policies to preform in

a similar manner (Selen et al. 2016).

We extend the previous JSQ literature in three directions:

a) We introduce a choice model to capture the phenomenon that people are relatively insensitive

to small differences in waiting times, but are more sensitive to larger gaps. We analyze how the

sensitivity of customers to delay (the value of α) affects the synchronization of the system. The

choice model also allows the inclusion of preferences which are not related to delays at each ED

(by varying βi), thus allowing heterogeneity between hospitals.

b) We focus on pre-limit performance. We gain more insights into the dynamics of small-scale

systems. As we are only conducting numerical experiments, our study offers flexibility in terms

of allowing multiple servers in each hospital (queue), heterogeneity in hospital sizes within the

network, time-varying arrival rates, and general service time distributions.

c) We investigate the effect of the type of information provided to customers on the synchro-

nization of the system. This is motivated by the fact that most hospitals report a moving average

of historical waiting times instead of the true waiting time or the current queue length. We are

also able to distinguish between the effect of estimator accuracy and the time lag (delay effect) of

different delay estimation methods.

We shall start in Section 5.1 with an idealistic model where each system has perfect information

and hence is able to report its true waiting time. Note that if, in addition, α =∞, then every

arriving customer chooses to join the queue with the shortest waiting time and we achieve com-

plete load balancing, i.e. the two queues act as a fully pooled one. We analyze how the sensitivity

parameter α, the offered load (i.e., the offered load of each system when α = 0), system scales,

asymmetries in patients’ preferences, and system sizes affect synchronization and system perfor-

mance. Then, in Section 5.2, we investigate the effect of non-perfect information in which waiting

time announcements (delay estimator) may be inaccurate.
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As before, we denote wi(t) as the true waiting time (delay) of queue i at time t, ri(t) as the

reported delay of queue i at time t, and ni as the number of servers in queue i for i= 1,2.

Similarly, the reported simulation results are based on a single long run of 1000 days of data. The

waiting times are recorded every 15 minutes. Both systems start from empty and we discard the

first 100 days of data as the burning period. We report both the estimator and the corresponding

95% confidence interval using the method of batch means with 10 batches.

5.1. Perfect information (idealistic) model

In the ideal model, each hospital will be able to provide patients with the precise waiting times (this

is only possible in a simulation model). As customers’ cost of waiting increases, patients are more

sensitive to small differences in wait times, and we would expect to see a higher synchronization

level. Our focus here is to understand how other system parameters may limit the synchronization

level that can be achieved for various sensitivity values.

We divide the analysis into two cases: symmetric and non-symmetric. In the symmetric case,

we assume that both hospitals (queues) have the same capacity, service time distributions, and

quality (i.e. patient preferences are equal). In the non-symmetric case we consider hospitals with

either different preference parameters or different capacities.

5.1.1. Symmetric case: The impact of the cost of waiting (α), offered load and

system scale Here we assume that β1 = β2, µ1 = µ2 = µ and n1 = n2 and analyze how the total

system load, ρ= λ/((n1 + n2)µ), and system scale, n1, affect a) the synchronization between the

two hospitals, measured by the correlation between waiting times, and b) system performance,

measured by average waiting times.

In this case, the probability of choosing Hospital 1, when reported w1 and w2 as the wait times

of Hospital 1 and Hospital 2, respectively, is:

p1(w1,w2) =
1

1 + exp(−α(w2−w1))
.

Our numerical experiments lead to the following observations:

Observation 3. a) Sensitivity to wait times increases synchronization, and greater synchro-

nization leads to better performance for both queues.

b) Load increases synchronization.

c) Smaller-scale systems gain greater synchronization.

We next demonstrate Observation 3 through the following numerical examples. Figure 14 plots

synchronization as a function of α for three different values of system load ρ. We observe that

synchronization increases with α, and the increase in synchronization is not linear. A small value of

α will lead to a significant increase in synchronization. This suggests that even if customers are only
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sensitive to very large gaps between waiting times, we still achieve a high degree of synchronization.

For fixed α, when α= 0, the load has no effect on the synchronization level; when α> 0, the more

loaded the hospitals, the more synchronization we gain.

,
0 0.02 0.04 0.06 0.08 0.1

C
or

(W
1
,W

2
)

0

0.2

0.4

0.6

0.8

1

Figure 14 Synchronization level as a function of α for different offered loads (n1 = n2 = 25, upper: ρ = 0.95,

middle: ρ= 0.9, lower: ρ= 0.85).

Synchronization leads to better load balancing, and therefore to better performance as measured

by expected waiting times. Figure 15 plots the expected waiting time as a function of α for different

values of load, ρ. We observe that the expected waiting time decreases with α, and most of the

improvement is achieved with small values of α. In all load levels, the expected waiting time can

be reduced by more than half if some patients act strategically.
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Figure 15 Expected waiting time (in minutes) as a function of α for different offered loads (n1 = n2 = 25).

Figure 16 plots synchronization levels as a function of α for different values of system scale, n1,

(n1 = n2). We observe that for the same values of α and ρ, the smaller system (n1 = n2 = 10) achieves

greater synchronization compared to the larger system (n1 = n2 = 40). The intuition behind this
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is that large systems are relatively well-balanced when acting alone, while small systems benefit

more from the load balancing effect when connected to another system. More specifically, for an

M/M/n queue, the conditional waiting time, W |W > 0, follows an exponential distribution with

rate nµ(1− ρ) (Whitt 1992). Thus, for the same offered load ρ, the larger the system scale n, the

smaller the mean and variance of the conditional waiting times. Therefore, when customers act

strategically, we gain more benefit from the load balancing effect for small systems.
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Figure 16 Synchronization level as a function of α for different hospital sizes (upper: ρ= 0.95, middle: ρ= 0.9,

lower: ρ= 0.85).

5.1.2. Non-symmetric case: The impact of patient preferences and ED size hetero-

geneity We next consider two non-symmetric cases—hospitals that differ in terms of patients’

preferences (βi) and hospitals that differ in the size (capacity) of their ED, expressed by a difference

in ni for i= 1,2. The delay announcements themselves are still exact. We start by assuming that

the EDs are the same size but that patients have a predetermined preference for the second hospital

(i.e., β2 >β1). (This can happen, for example, due to differences in the quality-of-care provided or

constraints imposed by insurance providers that drive a higher proportion of the nearby population

to a specific facility.) As a result, when α= 0, p1(w1,w2) = exp(−β1)/(exp(−β1)+exp(−β2))< 0.5.

Hence, Hospital 2 has a higher demand than Hospital 1 to start with. Expressed mathematically,

if ρ1 = λp1(w1,w2)/(n1µ) and ρ2 = λp2(w1,w2)/(n2µ), then ρ2 >ρ1. We also notice that since

p1(w1,w2) =
1

1 + exp((β2−β1)−α(w2−w1))
,

we can measure the heterogeneity in preferences by |β2−β1|.

Our numerical experiments lead to the following observations:

Observation 4. Preference heterogeneity reduces synchronization. Synchronization always

leads to better performance of the more preferred (more loaded) queue, while performance of the
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less preferred (less loaded) queue may rise or fall depending on the level of heterogeneity between

them.

Figures 17 and 18 provide a numerical example in this setting. We define hospital Network A to

have β1 = 1 and β2 = 1.1 and Network B to have β1 = 1 and β2 = 2. Both networks have the same

total load (ρ = λ/(µ(n1 + n2)) = 0.9), but the partition of the load between the hospitals in the

network differs. In Network A,

ρ1 = λ
exp(−β1)

exp(−β1) + exp(−β2)

1

n1µ
≈ 0.855

and

ρ2 = λ
exp(−β2)

exp(−β1) + exp(−β2)

1

n2µ
≈ 0.945.

In system B, when α= 0, ρ2 > 1 (i.e., Hospital 2 is unstable when acting alone, so we start the plot

of expected waiting times from α= 0.01). In Figure 17, we observe that, as in the symmetric case,

synchronization increases as α increases, and most of the load balancing effect is achieved with

small values of α. For the same value of α, synchronization decreases with the level of asymmetry,

|β2−β1| – networks that are more balanced in demand can achieve higher synchronization. Figure

18 shows that in both networks, the expected waiting time of the more loaded hospital decreases

with α. Moreover, in Network B, synchronization assures stability. Nevertheless, this comes at the

cost that w1 increases slightly with α. In general, for small values of |β2−β1|, the expected waiting

time of the less loaded system falls with α, while for large values of |β2−β1|, it rises slightly with

α.
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Figure 17 Synchronization level as a function of α for different values of β2 (n1 = n2 = 25, upper: Network A

(β1 = 1, β2 = 1.1), lower: Network B (β1 = 1, β2 = 2)).

We make similar observations when the heterogeneity is in staffing levels (n1, n2) (while all other

parameters are equal). Synchronization increases with α, and the expected waiting time of the
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Figure 18 Expected waiting time as a function of α for different values of β2 (n1 = n2 = 25, upper: w2, lower:

w1).

more loaded hospital (the hospital with fewer beds/staff) falls with α. For a fixed value of α,

synchronization decreases with |n2−n1|. For small values of the level of asymmetry, |n2−n1|, the

expected waiting time of the less loaded system (the system with more beds/staff) decreases with

α, while for large values of |n2−n1|, the expected waiting time of the less loaded system increases

with α. Here, again, synchronization has the potential benefit of ensuring stability.

5.2. The importance of timely and accurate delay announcements

The waiting time estimator used by hospitals will err from time to time. This kind of inaccuracy

in delay estimators is inevitable. In this section, we show that these errors limit the degree of syn-

chronization that can be achieved. We also show that delays of the wait time estimator in reflecting

the true wait time may make the system more volatile (oscillating), and cause synchronization to

fall (instead of rise) with α.

In practice, hospitals in the US publish different wait time estimators: All hospitals in our

empirical study calculate waiting times by a moving average with a 4-hour window. Other websites

and online apps report historical averages using even longer periods of time—up to 1 year (see,

for example, the online app “ED Wait Watcher” (Groeger et al. 2014)). In recent years, a few

hospitals have started employing waiting time estimators that are based on shorter time windows.

For example, Stanford Hospital reported a moving average with a one-hour window. Our results

show the potential effect of different wait time estimators, thus provide guidance on what delay

announcements to use.

We compare the following two delay estimators:

1. Moving average: Historical average over time windows of specific lengths (the method cur-

rently used by most hospitals). Let l be the time window for the moving average function.
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2. Head-of-Line (HOL) wait : Time waited by the customer who is currently at the head of the

line when a new customer arrives. This method could be considered as a moving average with l= 0.

This method was proved to be quite accurate for estimating delays in multi-server queuing systems

(Ibrahim and Whitt 2009, Senderovich et al. 2014).

We start by simulating a network with two time-homogeneous queues with Poisson arrivals and

Exponential service times as in Section 5.1. Figure 19 shows how synchronization levels change with

the sensitivity parameter α for different window lengths l. Here, in contrast to what we observed

with the idealistic model, synchronization first increases, but then decreases with α. When l = 4

hours, synchronization actually falls to negative levels, while when l= 30 minutes and HOL (l= 0),

synchronization is positive for all values of α. Figure 20 shows how the expected waiting time

changes with the sensitivity parameter α for different window lengths l. We observe that when the

averaging window is long (l= 4 hours), the expected waiting time increases with α for moderate

to large values of α. This suggests that the system is better off without announcements if patients

are highly sensitive to delays. However, if the window used is small enough, the expected waiting

time falls as sensitivity rises.
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Figure 19 Synchronization level as a function of α (n1 = n2 = 25, ρ= 0.9)

Our observations reflect differences in accuracy between the estimators. Indeed, the error rate

of the reported waiting times with respect to the true waiting times increases with l. Specifically,

when α= 0.1, l = 4 hours, the root mean square error of the reported waiting times for Hospital

1,
√
E[(R1−W1)2], is approximately 341.99; when l = 30 minutes,

√
E[(R1−W1)2]≈ 32.81, and

when l= 0 (HOL),
√
E[(R1−W1)2]≈ 12.17. Figure 21 shows the sample path of the true waiting

times versus the reported waiting times for different values of l, demonstrating the increase in

inaccuracy is accompanied with a considerable time-lag between the two.

Interestingly, it is not the error alone which drives the phenomenon of performance deterioration

with α. To validate this, we analyze a modified-idealistic model where we report the true waiting
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Figure 20 Expected waiting time as a function of α (n1 = n2 = 25, ρ= 0.9).
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Figure 21 Sample path of the true and reported waiting times in hospital 1 (α= 0.1, n1 = n2 = 25, ρ= 0.9).

time plus an error term that is normally distributed with mean 0 and standard deviation σ.

Large values of σ lead to inaccurate delay announcements, but there is no delay effect as with the

moving average method. Figure 22 shows how σ affects synchronization levels. We observe that

synchronization increases monotonically with α for each value of σ, which is in contrast to the

non-monotonic effect of α we observed in Figure 19. This is because although increasing α increases

the error, the overestimates/underestimates are random, i.e. the reported waiting times are not

distorted in a systematic way. Still, the inaccuracy has an impact—synchronization will not reach

its full potential when the announcement is inaccurate. This is reasonable, as patients relying on

inaccurate information may inadvertently choose the more loaded queue. Hence, as the error size

rises, the maximal synchronization level will fall.

To understand why a moving average estimator performs so poorly, we next take a closer look at

the sample path of the two queues for α= 0.1 (see Figure 23). We observe that when l= 4 hours,

the waiting time processes of the two queues take an alternating oscillating form. Specifically, when

w1(t) is large (small), w2(t) is small (large). This explains the negative correlation we observe
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Figure 22 Synchronization level for different values of α and σ (upper: σ = 10, lower: σ = 100, n1 = n2 = 25,

ρ= 0.9).

between the two waiting times. This phenomenon is known in control theory as self-oscillation,

where systems with delayed feedback may oscillate solely because of the delay (Jenkins 2013). Here

the delay announcement and its influence on customer choice can be considered a control mecha-

nism. When l = 30 minutes or 0 (HOL), the two waiting time processes are closer to each other.

This suggests that the delay effect is the main reason for the “desynchronization” when patients

are very sensitive to delay. Figure 24 demonstrates that such oscillations are indeed observed in

our data.
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Figure 23 Sample path of the waiting time process in the two hospitals (α= 0.1, n1 = n2 = 25, ρ= 0.9).

We next verify these results using more realistic settings as in Section 4. In particular, we assume

time-varying Poisson arrivals with arrival rate function plotted in Figure 10(a), and time-varying

staffing with two levels for day/night hours. We also assume i.i.d. service times following a log-

normal distribution with a mean of 108 minutes.

Table 5 summarizes the simulation results for different values of l from 0 minutes (HOL) to 100

days. We observe that as l increases, the synchronization level decreases and the system performance
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Figure 24 Sample path of the waiting time data in the two oscillating hospitals.

Table 5 Synchronization level between the two systems and expected waiting times for different values of the

time lag (θ= 1, α= 0.05)

l Cor Cor (detrended) E[W1] E[W2]
0 (HOL) 0.45± 0.02 0.34± 0.02 18.55± 1.42 18.42± 1.33

30 minutes 0.17± 0.02 0.02± 0.02 22.46± 1.15 22.23± 1.04
4 hours −0.09± 0.03 −0.21± 0.03 50.92± 5.11 51.16± 5.37
1 day −0.71± 0.01 −0.81± 0.01 753.63± 22.73 746.84± 20.80

10 days −0.81± 0.01 −0.90± 0.01 7447.42± 272.18 7670.28± 258.21
100 days 0.11± 0.05 −0.01± 0.04 26.75± 3.27 27.01± 3.78

deteriorates. The lowest wait times appear when using the HOL estimator. This is because the

longer the time window, the more delay in feedback the system is suffering from. We observe an

exception for the lag of 100 days. In fact, the intuition is that as the time lag grows beyond a certain

level, the system is essentially reporting its long-run average performance. As the two systems are

symmetric, they have the same long-run average performance. Thus, the delay information doesn’t

affect the system performance in this case. However, this is not entirely true. We did another

simulation experiment for the lag of 100 days, but instead of starting both systems from empty, we

start one system empty and the other system with a severely overloaded state. Then we see again

the alternatively overloaded and underloaded trajectory of the waiting times of the two hospitals

(Figure 25(b)). We conjecture that when l grows beyond a certain level, the system has two stable

regions: In one region, the reported waiting times are the long-run average waiting times and the

two hospitals are operating independently; in the other region, the two hospitals are alternating

between being overloaded and underloaded. In reality, when l is very long, we would expect patients

to disregard the real-time information value of the reported waiting times. Thus, the system is

more likely to be in the first stable region.

We summarize the observations of this section as follows:

Observation 5. a) More accurate delay estimators lead to greater synchronization and bet-

ter performance.
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Figure 25 Sample path of the waiting time process in the two hospitals with different initial conditions (θ = 1,

α= 0.05, l= 100 days)

b) A time-lag in the reported delay has a negative effect on synchronization and thus perfor-

mance.

c) Large lags may desynchronize the system and lead to worse performance when patients are

very sensitive to delay.

6. Discussion and concluding remarks

In this paper, we investigated the impact of ED delay announcements on patients’ choice, and the

effect of patients’ choice on hospital synchronization and expected waiting times. We show that,

even though hospitals consider delay announcements primarily a marketing tool, they also have an

operational impact. Providing such information can improve patient safety at a very low cost. We

provide empirical evidence that patients indeed take delay information into account when choosing

an ED service, and that by providing such information, hospitals can significantly reduce waiting

times. On the other hand, our data suggests that a risk exists. Some hospital pairs are negatively

correlated, which suggests that the load in such an area alternates between hospitals. The regression

tree suggests that this happens where the proportion of hospitals providing information is low, but

the population seeking delay information through the internet is high.

Here the importance of the simulation model comes to the fore, explaining the mechanism by

which such phenomena are created through the concept of delayed information. We calibrated the

simulation model with realistic data and showed that the patient choice mechanism we suggested

can reproduce phenomena observed in empirical data. Specifically, we showed that the range of

network synchronization, including its negative part, appears in the simulation. We also found that

a mismatch between delay announcements and actual delays may cause additional oscillations in the

system load when patients are very sensitive to delays. Using numerical simulations on a simplified
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version of the model, we observed that synchronization between systems increases with patients’

sensitivity to waiting, the load of the system, and the accuracy of delay announcements. As a

result, smaller and/or more loaded hospitals will benefit the most from such a policy. Furthermore,

hospitals need not disseminate the availability of such information widely, as most of the advantages

are achieved by small exposure rates.

With respect to the link between our empirical study and numerical experiments, we note that

although the hospitals in our empirical study all use a moving average with a 4-hour window for

delay announcements, the correlation of RWT between hospitals is still positive in general. This

suggests that the number of patients who use this information when choosing which hospital to go

to is currently relatively small. In this case, even with only a few patients acting strategically, we

still gain improvements in performance as measured by expected waiting times. However, as the

number of people who use this delay information grows, as evident from Figure 1(b), we will need

better delay estimators to achieve optimal performance.

We note that hospitals have a good reason to choose a 4-hour moving average, as this provides

a more stable estimator than the HOL. Nevertheless, the use of this estimator comes at a cost

that needs to be considered. Specifically, our case study suggests that it limits wait time reduction

to 16%. Hence, we recommend not using the 4-hour moving average if the proportion of strategic

customers is large or the cost of waiting is large.

This paper opens several directions for future research. First, the instability caused by the

mismatch between historical averages and future delays calls for more accurate machinery for delay

announcements. We hypothesize that customers will be better served by estimates of future waiting

times, given that wait time reports are accessed before patients travel to the ED and enter the

system. Second, the delay until a physician is first seen represents only very partial information

about the actual load in the ED. One might want to consider the influence of other information

indicators such as ED LOS on patients’ choices. Estimating future LOS is hard, as before a patient’s

arrival, the reason of his visit is unknown, and the treatment required, as well as the requirements of

resources in the system are unknown. Nevertheless, we believe that LOS is an important indicator

for patients when considering which hospital to go to. Lastly, we suggest that further investigation

is needed to develop data and tools for estimating how patients perceive the cost of waiting in

EDs. Such an estimation can help hospitals adjust their announcement policy and balance accuracy

and stability. We are in the process of collecting such data, and hope to continue research in this

direction.

7. Appendix
7.1. In-cluster RWT correlations

Figure 26 shows a histogram of the in-cluster RWT correlation values.
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Figure 26 Histogram of in-cluster RWT correlation values.

Table 6 shows the correlation values between individual attributes and in-cluster RWT correla-

tions.

Variable Correlation p-value
Number of reporting hospitals per square km 0.55 0.0001
Number of hospitals per square km 0.41 0.0044
Number of Bing queries -0.236 N.S.
Number of Bing sessions with multiple hospitals -0.118 N.S.
Number of Bing queries mentioning ‘wait’ -0.09 N.S.
Number of pediatric hospitals -0.11 N.S.
Queries per population 0.15 N.S.
Primary care people per 100k -0.37 0.0114
Poverty level 0.05 N.S.
Household income -0.30 0.04
Median male age 0.40 0.0056
Median female age 0.38 0.0098
Sex ratio -0.29 0.0456
Fraction of children under 5 y.o. -0.54 0.0001
Fraction of people over 65 y.o. 0.37 0.0079
Total number of people -0.16 N.S.
Only wait data of the hospital shown 0.12 N.S.
Wait data of both hospital and adjacent hospitals shown -0.28 0.0631
Wait data of adjacent hospitals shown after click -0.10 N.S.

Table 6 Correlation values between individual attributes and in-cluster RWT correlations. “N.S.” denotes not

statistically significant at P < 0.1.

7.2. Robustness check - natural experiment

We model the effect of these breaks in wait time reporting using a linear regression model. Let A

be the hospital for which a break in reporting occurred, and B be the closest hospital to A in our

data set. The dependent variable in our model is the ratio between the average wait times in B in

the 6 hours following the break in reporting in A, divided by the average wait times in B in the 6

hours prior to the break. If information is presented we expect the break to increase wait times in
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hospital B, hence the ratio shall be larger than 1; if information is not presented, we expect the

ratio to be close to 1, as practically there was no difference in the information given to patients in

that case. Our independent variables are:

1. Average wait time at B in the 6 hours prior to the break, T̄−6:−1

2. Time of the day, h

3. Does hospital B display wait times? (DispB)

4. Does hospital A display wait times? (DispA)

The regression model is:

y= β0 +β1 · T̄−6:−1 +β2 ·h+β3 ·DispB +β4 ·DispA + ε

The results of this model are shown in Table 7. The statistically significant parameter is whether

Hospital A displays wait times on its website. If Hospital A displays wait times (DispA = 1),

withdrawing such information will affect wait times in the network. In particular, wait times after

the breaks in Hospital B increase (β4 > 0). This is because in comparison to before the break,

Hospital A is not providing wait times, and therefore Hospitals A and B are less synchronized.

Variable Parameter estimate (SE) p-value
Wait time at B before break 0.03 (0.18) 0.87
Time of day -0.16 (0.11) 0.16
Hospital B reports wait times -5.60 (3.18) 0.08
Hospital A reports wait times 4.00 (1.84) 0.03

Table 7 Parameters of a regression model for the change in wait times at Hospital B, when the closest hospital

A stops reporting wait times.
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