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Determining emergency department (ED) nurse staffing decisions to balance quality of service and staffing

costs can be extremely challenging, especially when there is a high level of uncertainty in patient demand.

Increasing data availability and continuing advancements in predictive analytics provide an opportunity to

mitigate demand uncertainty by utilizing demand forecasts. In this work, we study a two-stage prediction-

driven staffing framework where the prediction models are integrated with the base (made weeks in advance)

and surge (made nearly real-time) nurse staffing decisions in the ED. We quantify the benefit of having the

ability to use the more expensive surge staffing and identify the importance of balancing demand uncertainty

versus system stochasticity. We also propose a near-optimal two-stage staffing policy that is straightforward

to interpret and implement. Lastly, we develop a unified framework that combines parameter estimation,

real-time demand forecasts, and nurse staffing in the ED. High-fidelity simulation experiments for the ED

demonstrate that the proposed framework has the potential to reduce annual staffing costs by 10%–16% ($2

M–$3 M) while guaranteeing timely access to care.
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1. Introduction

Emergency department (ED) crowding is a significant problem in many countries around the world,

leading to adverse effects on patient outcomes, patient satisfaction, and staff morale (Bernstein

et al. 2009). Nurses provide a substantial portion of patient care and are often a bottleneck resource

in the ED (Green 2010). Inadequate nurse staffing is found as a major contributor to the significant

increase in the waiting time experienced by patients and the percentage of patients who leave

without being seen (LWBS) (Ramsey et al. 2018). In addition, nursing costs comprise a substantial

fraction of hospital operating budgets. Therefore, developing effective nurse staffing policies to

ensure timely access to care is of great importance.

Optimally balancing the ED nurse staffing levels to ensure good quality of service versus increas-

ing staffing costs can be extremely challenging. One of the major complications comes from the high

level of uncertainty in patient demand and the relatively static nature of nurse staffing decisions.

Poisson processes have been standard assumptions in modeling the arrival processes in service

systems due to their analytical tractability. Their validity has also been statistically verified in
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some healthcare settings (Kim and Whitt 2014). However, several recent empirical studies suggest

the presence of a higher level of uncertainty (dispersion) relative to standard Poisson processes

in real ED arrival data (Maman 2009, Armony et al. 2015), and in other service systems such as

call centers (Brown et al. 2005, Steckley et al. 2009, Zhang et al. 2014). Random events such as

weather conditions or severity of the flu strain in circulation can cause a high level of fluctuation in

ED demand. On the other hand, ED staffing decisions are often made well ahead of time and the

staffing level is difficult (or very expensive) to change in real time (Chan et al. 2021). In particular,

it is common for EDs to divide a day into multiple nursing shifts, e.g., two 12-hour nursing shifts,

with the day shift lasting from 7am to 7pm, and the night shift from 7pm to 7am the next day. As

a typical practice, a “base” staffing level, which consists of the majority of the staff, is determined

several weeks in advance, when the actual demand is largely unknown. This allows the nurses to

plan their working schedule ahead of time. As the time approaches to several hours before the

shift, if the ED manager senses a surge in patient volume, he/she can add an extra level of “surge”

staffing by calling in overtime or agency nurses at a higher compensation (e.g., overtime salary).

The nurse staffing level is then held more or less at a constant level throughout the shift. The

surge staffing provides some flexibility to cope with the demand surge, but there currently lack any

systematic guidelines on how to optimally utilize this partial flexibility.

Meanwhile, in recent years, increasing data availability and continuing development in statisti-

cal learning tools provide an emerging opportunity to mitigate demand uncertainty by building

advanced demand forecast models. There have been considerable efforts devoted to developing

prediction models for ED patient volume and flow (see, e.g., Marcilio et al. (2013), Calegari et al.

(2016), Chang et al. (2018), Whitt and Zhang (2019), Bertsimas et al. (2021)). However, despite

the vast amount of literature on demand forecasts, how to effectively incorporate the predictive

information to improve ED nurse staffing decisions is less studied. In particular, while advanced

prediction models that utilize real-time information generate more accurate short-term forecast

of the ED demand in comparison to using traditional historical averages (Schweigler et al. 2009),

it remains unclear how the increased prediction accuracy can be translated to improved system

performance (e.g., reduction in patient waiting time and LWBS rate) and/or reduced staffing costs.

In this paper, we study prediction-driven surge planning. The key tradeoff in this two-stage staffing

problem is the long-term staffing commitments which have a lower costs but face a higher level

of demand uncertainty (larger prediction error) versus the short-term staffing commitments which

have a higher cost but face a lower level of demand uncertainty (smaller prediction error).
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To capture the highly uncertain demand faced by the ED, we assume that patients arrive to

the ED according to a doubly stochastic Poisson process as in Maman (2009), Bassamboo et al.

(2010), Koçağa et al. (2015). The arrival rate for a particular type of shift is a random variable

that takes the form of

Λ = λ+λαX, (1)

where λ is the mean arrival rate, α∈ (0,1) captures the order of arrival-rate uncertainty, and X is a

random variable with zero mean. At the base-stage, our prediction model is only able to capture the

long-run average pattern that defines the type of the shift, e.g., day of the week effect and day versus

night effect. Thus, we assume the base-stage prediction model predicts E[Λ] = λ accurately. At the

surge stage, as we gather more real-time information, we can build more sophisticated prediction

models. Motivated by value of real-time information identified in Hu et al. (2021), we assume in

our main model that the surge-stage prediction model is able to predict the realized arrival rate

`= λ+λαx where x is a particular realization of X for the specific shift. Conditional on `, the ED

operates as a Markovian multi-server queue with Poisson arrival process, exponentially distributed

service times, and exponentially distributed patience times. Note that even with the surge-stage

predictive information, we still incur a certain level of uncertainty due to the randomness in the

interarrival times between patients, patients’ service requirements, and their patience times (time

before abandoning).

The ED manager makes two staffing decisions for each shift: a base staffing level and a surge

staffing level. The base staffing decision is based on the base prediction, i.e., λ, and knowledge of

the arrival rate distribution, i.e., the distribution of λαX. The surge staffing decision is based on

the surge prediction, i.e., `. The surge staff are assumed to be more costly than the base staff.

Our objective is to minimize the sum of the staffing cost and the performance cost which consists

of the costs incurred by patients’ waiting and patients’ LWBS. Our main contributions can be

summarized as:

The benefit of surge staffing. To quantify the benefit of having the more expensive surge

staff, we compare the two-stage stochastic optimization problem to a single-stage benchmark where

only base staffing is allowed. We quantify the cost saving of the optimal two-stage staffing rule

over the optimal single-stage policy. Our result shows that the magnitude of cost-saving depends

on the order of arrival-rate uncertainty captured by α in (1). In particular, the cost saving is

o(
√
λ) if α < 1/2, O(

√
λ) if α = 1/2, and Θ(λα) if α > 1/2. As we will explain in more details,

the three regimes of cost saving are divided by the interplay between the order of arrival-rate

uncertainty, which is O(λα), and stochastic variability in patient arrival and services, which is
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O(
√
λ). The cost-saving quantification suggests that surge staffing is most beneficial when the

arrival-rate uncertainty dominates the system stochasticity, i.e., α> 1/2. In this regime, the larger

the arrival-rate uncertainty, the more cost savings we gain from the flexibility of surge staffing.

Near-optimal two-stage staffing rule. Focusing on the regime where the arrival-rate uncer-

tainty dominates the system stochasticity, i.e., α > 1/2, we propose a near-optimal two-stage

staffing rule that is easy to interpret and implement. In particular, at the base stage, the base

staffing level is set to meet the mean demand, together with a hedging that is of the same order as

the arrival-rate uncertainty. After the random arrival rate is realized at the surge stage, the surge

staffing level is brought up to meet the realized offered load, together with a hedging against the

stochastic variability catered to the realized arrival rate. The parameters of the staffing rule, which

dictate the amount of hedging, are the optimal solutions to a two-stage newsvendor problem, which

can be viewed as a stochastic-fluid approximation to the optimal staffing problem, and the optimal

solutions to a square-root staffing problem based on a diffusion approximation of the queue length

process. We prove that our proposed policy has an optimality gap of o(
√
λ) compared to the exact

two-stage optimum. We also extend the two-stage staffing rule to allow more general prediction

errors at the surge stage. In particular, we consider the case where we are not able to predict the

realized arrival rate ` exactly. Instead, we may incur different levels of prediction error. We quantify

how prediction error affect the staffing rule and its corresponding performance.

Practical insights and ED implementation. To facilitate real-world implementation, we

propose an integrated framework to which includes 1) parameter estimation, 2) a two-stage pre-

diction model, and 3) a two-stage prediction-driven staffing rule. Using data from the ED in New

York Presbyterian Columbia University Medical Center (NYP CUMC), we estimate its arrival-rate

uncertainty to be α= 0.769. We then build a two-stage prediction model to inform the staffing pol-

icy. At the base stage, a simple linear regression model that incorporates the day of the week and

day v.s. night effect works well. For the surge stage, we implement a recently developed prediction

model in Hu et al. (2021), which utilizes concurrent information such as weather, patient comorbid-

ity profile, ED congestion level, etc. Lastly, we extend the two-stage staffing rule developed based

on the parsimonious queueing model to accommodate realistic patient-flow characteristics in our

collaborating ED. We extend our two-stage staffing rule to allow adjustment for the transient-shift

effect. This includes a base-stage adjustment which accounts for the difference in average queue

length between day and night shifts, and a surge-stage adjustment which takes the concurrent

queue length information into account. With these adjustments, our policy achieves significant

cost savings for the simulated ED. For example, compared to the newsvendor solution (Bassamboo
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et al. 2010), our policy achieves a reduction of 16% ($3 M) in the annual staffing cost while the

average waiting time is kept below 30 minutes.

Remark 1 In this paper, we focus on the nurse staffing problem under the assumption that nurses

are the bottleneck resource. This is because nurses are the primary staff who execute care plans

during patients’ length of stay in the ED. In addition, burnout and high turnover rates among ED

nurses have been widely reported by healthcare systems (Phillips et al. 2022, Susila and Laksmi

2022). These problems further worsened during and after the COVID-19 pandemic. That said, our

staffing framework can be applied to plan other resources, such as physicians and technicians, as

long as the two-stage planning with the corresponding information and cost tradeoff is relevant.

1.1. Related Literature

Classic square-root staffing rule. The standard stream of capacity planning problems for service

operations focuses on systems where model parameters are exactly known. In this setting, the

square-root staffing principle dates back to Erlang (1917) in the study of automatic telephone

exchanges. The principle is more recently explained based on an infinite-server queue heuristic

in Kolesar and Green (1998). In particular, it is shown that the stochastic fluctuation of the

system is of square root order of the offered load. Thus, the square-root staffing can be viewed as

an uncertainty hedging against system stochasticity. Halfin and Whitt (1981) establish a formal

diffusion limit for M/M/N queues under the square-root staffing as the arrival rate goes to infinity.

Borst et al. (2004) further establishes that the square-root staffing rule optimally balances the

staffing cost and the service quality. For this reason, the many-server asymptotic scaling under

the square root staffing is often referred to as the quality-and-efficiency driven (QED) regime. A

few extensions have been considered to incorporate features not captured by the M/M/N model.

Garnett et al. (2002) generalize the diffusion limit under the square-root staffing to the M/M/N +

M queue where customers can abandon the system if waiting for too long under the exponentially

distributed patience time; more general patience time distributions are considered in Mandelbaum

and Zeltyn (2009). Jennings et al. (1996) and Liu and Whitt (2012) extend the square-root staffing

rule to systems with time-varying arrival rates. Our work extends this stream of literature by

allowing the arrival rate to be random and considering a two-stage staffing problem in two time

scales. Relevantly, after the random arrival rate is realized at the surge stage, our proposed two-

stage QED staffing rule brings the total staffing level up to the square-root staffing prescription if

the base-stage capacity is inadequate. In addition, similar to the literature, our theoretical analysis
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takes an asymptotic approach, where we send the mean arrival rate λ to infinity and study how

the optimal staffing level scales with λ.

Managing queues with parameter uncertainty. Motivated by the high level of demand uncer-

tainty in many service systems, more sophisticated models for arrival processes that account for

characteristics not captured by standard Poisson processes have been proposed in the literature.

Whitt (1999) is one of the first to study a random arrival rate for call centers and its implications

on staffing decisions. Chen and Henderson (2001), Avramidis et al. (2004), Brown et al. (2005)

and Steckley et al. (2009) provide empirical evidence of arrival-rate uncertainty and explore its

modeling implications. Maman (2009) finds empirical evidence of high arrival-rate uncertainty in

an Israeli ED. Our work is closely related to works that study staffing decisions in the presence

of arrival-rate uncertainty. Whitt (2006) investigates a fluid-based staffing prescription catered to

arrival-rate uncertainty and absenteeism of servers. Harrison and Zeevi (2005) and Bassamboo

et al. (2010) propose a newsvendor-based solution method whose effectiveness is pronounced when

the order of arrival-rate uncertainty is larger than stochastic variability. Their proposed staffing

rule is set to meet the mean demand plus a hedging against the arrival-rate uncertainty. More

recently, moving from single-stage to two-stage decisions, Koçağa et al. (2015) formulate a joint

staffing and co-sourcing problem, where the staffing decision is made before the random arrival-rate

is realized, and the co-sourcing decision is made in real time after the arrival-rate uncertainty is

resolved. Our two-stage optimization problem has similar decision epochs to those in Koçağa et al.

(2015), i.e., before and after the random demand is realized. However, different from Koçağa et al.

(2015), we consider a two-stage staffing problem and allow the arrival-rate uncertainty to be of a

larger magnitude than stochastic variability. The solution method we use to solve the two-stage

stochastic optimization problem leverages the stochastic fluid approximation introduced in Harri-

son and Zeevi (2005), but we considered a more refined version of this approximation, which takes

the system stochasticity into account at the surge stage.

Predictive analytics and data-driven methods in capacity sizing. Several works take a data-driven

approach for capacity sizing with demand uncertainty. Zheng et al. (2018) and Sun and Liu (2021)

propose statistical methods to estimate the arrival-rate distribution. See also Ibrahim et al. (2016)

for a comprehensive review of literature on modeling and forecasting for call center arrivals. Bas-

samboo and Zeevi (2009) develop a data-driven approach that yields staffing prescriptions that

are asymptotically optimal, as both the system scale and data size increase to infinity. There is a

large literature on studying demand uncertainty in inventory systems without queueing dynamics

(see for example (Chen et al. 2007, Perakis and Roels 2008, Levi et al. 2015, Ban and Rudin 2019,
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Boada-Collado et al. 2020)). Motivated by the operations of EDs, our work takes into account

the arrival-rate distribution at the base stage, the demand visibility at the surge stage, and the

stochasticity of queueing dynamics.

Two-stage stochastic optimization problem. Our work is related to the mathematical program-

ming literature on two-stage stochastic optimization problems for staffing and resource planning;

see representative works from Kim and Mehrotra (2015), Bodur and Luedtke (2017), Rath and

Rajaram (2022). However, our work has important differences from the existing literature and adds

new insights by taking an analytical approach that allows us to 1) develop simple, explicit, and

interpretable staffing policies, 2) provide more managerial insights by quantifying cost savings from

the surge staffing in different demand uncertainty regimes and the effects of prediction errors on

system performance, and 3) capturing detailed queueing dynamics.

ED capacity planning Our work relates to the growing literature on using queueing theory to

address capacity planning problems in the ED. Green et al. (2006) model the ED as an Mt/M/s

queue and use a Lag SIPP (stationary independent period by period) approach to gain insights

into the staffing prescriptions. Yankovic and Green (2011) develop a finite source queueing model

with two types of resources —nurses and beds—to study the interplay between bed occupancy

level and demand for nursing. Véricourt and Jennings (2011) study nurse staffing using a closed

queueing model, where patients alternate between being needy of service and stable without service

need. Similar patient reentrant behavior is studied by Yom-Tov and Mandelbaum (2014) using

an Erlang-R model in time-varying environments. Chan et al. (2021) use a multiclass queue to

study the dynamic assignment of nurses to different areas of the ED at the beginning of each shift.

Batt et al. (2019) empirically investigate the impact of discrete work shifts on service rates and

patient handoffs (i.e., passing patients in treatment to the next care provider at the end of a shift).

Compared to the literature, we focus on studying the effect of demand uncertainty on ED staffing,

where we investigate how demand prediction can be utilized to make better staffing decisions.

Dual sourcing problem in supply chain management. Though our work is motivated by the staffing

problem for service systems, a similar core tradeoff between cost and responsiveness arises in dual

sourcing inventory systems, in which one supplier is cheaper but slower, while the other is more

costly but faster. In this setting, a tailored base-surge (TBS) sourcing policy is found to be effective

in both continuous and periodic review models (Allon and Van Mieghem 2010, Janakiraman et al.

2015). Xin and Goldberg (2018) formally prove that the TBS policy is asymptotically optimal as the

lead time of the cheaper supplier grows without bound. Different from the dual sourcing problem,

our theoretical framework further incorporates queueing dynamics into the optimization problem.
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We quantify how the cost savings of our proposed policy increase with the order of arrival-rate

uncertainty.

1.2. Organization

The rest of the paper is organized as follows. In Section 2 we introduce the model and formulate the

two-stage staffing problem. In Section 3 we quantify the cost savings from surge staffing. In Section

4 we propose near-optimal two-stage staffing rules that are easy to interpret and implement. The

optimality gap between the proposed policy and the exact two-stage optimum is also derived. The

performance of the two-stage staffing rule is further illustrated through numerical experiments in

Section 5, where we compare the performance of our proposed staffing rule to several benchmark

policies. In Section 6, we extend the two-stage staffing rule to accommodate more general prediction

errors at the surge stage. Lastly, in Section 7, we develop a holistic framework to implement the

prediction-driven staffing policy in the actual ED, which includes parameter estimation, demand

forecast, and capacity sizing that takes the transient shift effect into account. We conclude in

Section 8. All the proofs appear in the appendix.

1.3. Notation

As we take an asymptotic approach to performance analysis, we define some notations following

the convention in the literature (see, e.g., Chapter 3 in Cormen et al. (2022)) For a sequence of

positive real numbers {an : n ∈ R+} and a sequence of real numbers {bn : n ∈ R+}, we write (i)

bn = o(an) if |bn/an| → 0 as n→∞, (ii) bn = O(an) if |bn/an| is bounded from above, and (iii)

bn = Θ(an) if |bn/an| is bounded from above and from below by a strictly positive real number,

i.e., if m≤ |bn/an| ≤M for some 0<m<M <∞ for all n> 0. For a sequence of random variables

{Xn : n ∈ R+} and a sequence of positive real numbers {an : n ∈ R+}, we write (i) Xn = o(an) if

|Xn/an| → 0 as n→∞ with probability 1, and (ii) Xn = oUI(a
n) if Xn = o(an) and there exists

some random variable Y with E [Y ]<∞ such that |Xn/an|<Y for all n> 0.

2. The Model

To gain insights into the potential benefits of two-stage staffing, we start with a stylized model

of the ED using a parsimonious multi-server queueing system where patients arrive according

to a doubly stochastic Poisson process. The arrival rate for a shift Λ is a random variable with

cumulative distribution function FΛ and mean E [Λ] = λ. Conditional on Λ, the arrival process is a

homogeneous Poisson process with that rate. Patients are served on a first-come first-served (FCFS)

basis, and wait in an infinite capacity buffer when all servers (nurses) are busy. While waiting for

service, a delayed patient abandons the system (LWBS) after an exponentially distributed amount
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of time with mean 1/γ. Patients have service requirements that are independently and identically

distributed (i.i.d.) exponential random variables with mean 1/µ. Hence, conditioned on Λ, the

ED operates as an M/M/N +M queue (also known as the Erlang-A queue; see, e.g., Zeltyn and

Mandelbaum (2005)), where the staffing level N is the decision variable.

The ED manager makes two decisions: an upfront base staffing level and a surge staffing level,

both of which are non-negative integers. At the base stage, which is often a few weeks/months before

the start of the actual shift, the prediction model can only predict the average arrival rate level, λ.

We assume the arrival rate distribution is known. Thus, the base staffing level N1 :=N1(FΛ) ∈ N

is made before the arrival rate is realized, based on knowledge of the arrival rate distribution, FΛ,

only. At the surge stage, as we gather more real-time information, the prediction model can predict

the realized arrival rate ` quite accurately. Thus, the surge staffing level N2(N1, `) ∈ N is made

based on the base staffing level, N1, and the realized arrival rate, `. We do not allow N2(N1, `)

to take negative values, because in most EDs, the manager cannot make a last-minute decision to

reduce the staffing level, e.g., by canceling shifts for the nurses who are staffed at the base stage.

We denote the joint staffing decision as π := (N1,N2(N1, `)), and use Π to denote the set of all

feasible staffing rules. Note that in this parsimonious model, the prediction at the base stage is

captured by the expected arrival rate, λ := E[Λ], and the prediction errors are captured by the

distribution of Λ−λ. To start, we assume perfect prediction at the surge stage. We will relax this

assumption in Section 6 to explicitly incorporate prediction errors at the surge stage.

There are costs associated with patients’ waiting, patients’ LWBS (abandonments), and staffing.

In particular, a holding cost is incurred at a rate of h per patient per unit time spent waiting.

Each abandoning patient incurs a fixed cost of a. The staffing cost is c1 per base server per unit

time, and c2 per surge server per unit time. Let Q(n, `) denote the steady-state queue length of an

M/M/n+M queue with arrival rate `. Then, we consider the following two-stage cost minimization

problem.

min
π∈Π
Cπ = min

N1

{
c1N1 +E

[
min

N2(N1,Λ)
{c2N2(N1,Λ) + (h+ aγ)E [Q(N1 +N2(N1,Λ),Λ)|Λ]}

]}
. (2)

For an M/M/n+M queue with arrival rate `, γE [Q(n, `)] is the steady-state abandonment rate.

Thus, aγE [Q(n, `)] captures the abandonment cost while hE [Q(n, `)] captures the holding cost

in steady state. Note that there are two expectations in (2). The inner expectation is taken with

respect to the stochasticity in the steady-state queue length, i.e., randomness in Q(n,Λ) condi-

tional on Λ = `. The outer expectation is taken with respect to the arrival-rate uncertainty, i.e.,

randomness in Λ.
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2.1. Parameter Regime

It makes intuitive sense that if the waiting and abandonment costs are excessively lower than the

staffing costs, there is no motivation to staff any server. In addition, if the base staffing cost is

higher than the surge staffing cost, i.e., c1 > c2, it is cost-effective to staff all servers at the surge

stage when the arrival-rate uncertainty is resolved. This intuition is formalized in Proposition 1.

Proposition 1 For the optimal solution (N∗1 ,N
∗
2 (N∗1 ,Λ)) to problem (2):

(I) If min{c1, c2} ≥ hµ/γ+ aµ, then N∗1 = 0 and N∗2 (N∗1 ,Λ) = 0.

(II) If min{c1, hµ/γ+ aµ} ≥ c2, then N∗1 = 0.

(III) If c2 ≥ hµ/γ+ aµ≥ c1, then N∗2 (N1,Λ) = 0 for any base staffing level N1.

Based on Proposition 1, the cost parameters can be divided into four regimes as summarized in

Table 1.

Table 1 Optimal staffing combination for different cost parameters

Cost parameters Staffing decisions
min{c1, c2} ≥ hµ/γ+ aµ No staffing
min{c1, hµ/γ+ aµ} ≥ c2 Complete surge staffing
c2 ≥ hµ/γ+ aµ≥ c1 Complete base staffing
hµ/γ+ aµ> c2 > c1 Base + surge staffing

In this paper, we are interested in the non-trivial regime that provides motivation to staff both

base and surge servers.

Assumption 1 The cost rates satisfy hµ/γ+ aµ> c2 > c1.

2.2. Arrival-Rate Uncertainty

Solving (2) explicitly is challenging due to the two sources of randomness. In addition,

E [Q(N1 +N2(N1, `), `)] has no closed-form expression. To gain analytical insights, we take an

asymptotic approach by sending the mean arrival rate λ to infinity and study how the optimal

staffing rule scales with λ.

To facilitate the theoretical development, we assume that the random arrival rate takes the form

Λ = λ+Xλαµ1−α, (3)

for some constant α ∈ (0,1) and X is a random variable with E [|X|] <∞ 1. Note that because

E[Λ] = λ, E[X] = 0. Let FX denote the cumulative distribution function (cdf) of X. We assume that

1 This form of arrival-rate uncertainty, i.e., (3) is equivalent to the one introduced in (1); we factor out µ1−α to
facilitate technical derivations.
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X has a proper probability density function (pdf). The second term in (3) captures the fluctuation

of the arrival rate around its mean. It is further decomposed into two parts: X and λαµ1−α, where

the second part captures the order of fluctuation in relation to λ. We refer to the exponent α as

the order of arrival-rate uncertainty. A random arrival rate of the form (3) is proposed in Maman

(2009). Similar arrival rate formula has been used in Bassamboo et al. (2010), Koçağa et al. (2015).

In what follows, we use the superscript λ to denote quantities that scale with λ. To simplify

notations, we sometimes suppress the superscript when it is clear from the context.

3. When is Surge Staffing Beneficial?

As mentioned in Section 1, implementing the two-stage staffing requires knowing the realized

arrival rate with high precision. In practice, this often involves investing in sophisticated prediction

models, which can be costly to develop and maintain. In addition, even though surge staffing is

paid at a higher rate, it may not be a desirable working mode for nurses. Therefore, it is important

to know how much cost saving we can gain by having the flexibility of surge staffing.

Analogous to the two-stage optimization problem (2), we define the single-stage optimal staffing

problem as

min
π∈Π
Cπ = min

N1

{c1N1 +E [(h+ aγ)Q(N1,Λ)]} . (4)

Note that the single-stage problem is equivalent to the two-stage staffing problem (2) by imposing

the surge staffing level to be N2(N1,Λ) = 0 for any base staffing level N1.

For the sequence of systems indexed by λ, we use Cλ1,∗ to denote the optimal total cost for the

single-stage optimization problem (4). Correspondingly, we use Cλ2,∗ to denote the optimal total

cost for the two-stage optimization problem (2).

Theorem 1 (benefit of surge staffing) Given the order of uncertainty α, the difference in opti-

mal costs for the single-stage versus two-stage optimization problem can be summarized as:

(I) If α< 1/2, then Cλ1,∗−Cλ2,∗ = o(
√
λ).

(II) If α= 1/2, then Cλ1,∗−Cλ2,∗ =O(
√
λ).

(III) If α> 1/2, then Cλ1,∗−Cλ2,∗ = Θ(λα).

We next provide some intuition behind Theorem 1. We first note that when γ = µ, for a given

realization of the arrival rate, i.e., Λ = `, the steady-state number of patients in the system follows

a Poisson distribution with mean `/µ. Its standard deviation is equal to
√
`/µ=O(

√
λ), which is

known as the system stochasticity and cannot be resolved by the prediction model. On the other
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hand, the arrival-rate uncertainty characterized by (3) is of order λα. This parameter uncertainty

can be resolved by the prediction model at the surge stage. When α< 1/2, the system stochasticity

dominates the parameter uncertainty. The gain by conducting two-stage staffing is restricted to

o(
√
λ). The cost savings are O(

√
λ) if the parameter uncertainty and system stochasticity are of

the same order, i.e., α = 1/2. When α > 1/2, the parameter uncertainty dominates the system

stochasticity. This is when we gain the most cost savings from the flexibility offered by surge

staffing. In this regime, the larger the order of arrival-rate uncertainty is, the larger magnitude of

cost savings we gain from surge staffing.

4. Near-Optimal Surge Staffing Policy

As derived in Section 3, when the order of arrival-rate uncertainty is strictly larger than that of

system stochasticity, the cost saving of implementing the two-stage staffing optimally is significant,

i.e., Θ(λα). We thus consider this regime as the most meaningful scenario to execute the two-stage

staffing, and assume throughout this section that α> 1/2. We next derive solutions to the two-stage

staffing problem.

Due to the convoluted system dynamics, solving the two-stage stochastic optimization prob-

lem (2) explicitly is hard. Part of the difficulty lies in characterizing the expected steady-state

queue length which depends intricately on the staffing decisions. While the problem can be solved

numerically, e.g., via simulation optimization, limited insights about the optimal policy can be

generated. Hence, we take the approach of solving more tractable approximations of the two-stage

optimization problem (2). These approximations can be viewed as asymptotic limits of (2) under

appropriate scalings as the system scale λ grows to infinity. Thus, policies derived based on them

work really well for relatively large systems and provide insights into how the optimal policy scales

with λ. We also discuss small system adaptions in Section 4.3.

4.1. Stochastic-Fluid Based Solution

Since the parameter uncertainty is of a larger order than system stochasticity, we start by approxi-

mating the objective function in (2) via suppressing the system stochasticity and focusing solely on

the uncertainty in the arrival rate. This relaxation is known as the stochastic-fluid approximation

(Harrison and Zeevi 2005, Bassamboo et al. 2010). In particular, conditional on the arrival rate Λ,

we approximate the steady-state queue length of the M/M/n+M queue via (Λ− nµ)/γ, which

is the equilibrium queue length of a deterministic fluid model with the same arrival rate, service

rate, and abandonment rate.

Before introducing the stochastic-fluid approximation for the two-stage optimization problem

(2), we illustrate the idea by reviewing the single-stage newsvendor policy (denoted by u1,NV )
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proposed by Bassamboo et al. (2010). Given the staffing level N1, the steady-state abandonment

rate is approximately (Λ−µN1) and the steady state queue length is approximately (Λ−N1µ)/γ.

Then, the single-stage optimization problem (4) can be approximated by

min
N1

{
c1N1 + (hµ/γ+ aµ)E

[
(Λ/µ−N1)

+
]}
. (5)

Note that (5) is a typical newsvendor problem, with unit capacity cost c1, unit sales price hµ/γ+aµ,

random demand Λ/µ, and capacity decision N1. The optimal solution is given by

N1 = F̄−1
Λ/µ

(
c1

hµ/γ+ aµ

)
,

where F̄Λ/µ := 1−FΛ/µ is the complementary cumulative distribution function (ccdf) of Λ/µ, and

F̄−1
Λ/µ is its inverse. Equivalently, we can write

N1 =
λ

µ
+ F̄−1

X

(
c1

hµ/γ+ aµ

)(
λ

µ

)α
, (6)

where F̄X is the ccdf of X. We remark that for all staffing rules discussed in the paper, we do not

explicitly restrict N1 and N2 to satisfy the integer constraints. Since rounding becomes immaterial

when we consider the asymptotic performance of the policy as λ→∞, we assume without loss of

generality that each staffing prescription is rounded up to its nearest integer.

Let Cλ1,NV denote the expected total cost defined in (2) under the one-stage newsvendor solution.

Recall that Cλ1,∗ is the optimal total cost for the single-stage optimization problem (4). Theorem 1

in Bassamboo et al. (2010) establishes that

Cλ1,NV −Cλ1,∗ =O(λ1−α). (7)

Note that when α > 1/2, O(λ1−α) = o(
√
λ). Thus, the single-stage newsvendor solution works

remarkably well in the single-stage optimal staffing problem.

We next extend the single-stage newsvendor solution to the two-stage newsvendor solution where

surge staffing is allowed after we observed the realized arrival rate. The stochastic-fluid approxi-

mation of the two-stage optimization problem (2) takes the form

min
N1

{
c1N1 +E

[
min

N2(N1,Λ)

{
c2N2(N1,Λ) + (h/γ+ a) (Λ−µ(N1 +N2(N1,Λ)))

+
}]}

. (8)

Given N1, Assumption 1 implies that the optimal surge-stage staffing level in (8) is given by

N2(N1,Λ) = (Λ/µ−N1)
+
.
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Hence, the optimal base-stage staffing level is the optimal solution to

min
N1

{
c1N1 + c2E

[
(Λ/µ−N1)

+
]}
. (9)

Similar to (5), (9) is a newsvendor problem, with unit capacity cost c1, unit sales price c2, random

demand Λ/µ, and capacity decision N1. The optimal solution is given by

N1 = F̄−1
Λ/µ (c1/c2) = λ/µ+ F̄−1

X (c1/c2) (λ/µ)
α
.

Let β∗ := F̄−1
X (c1/c2). We propose the following two-stage newsvendor solution denoted by u2,NV .

Definition 1 (two-stage newsvendor solution) For α ∈ (1/2,1), the parameters of the two-

stage newsvendor solution u2,NV are set as follows:

1. At the base stage, the base-stage staffing level is

N1 := λ/µ+β∗(λ/µ)α + o((λ/µ)α).

2. At the surge stage, the surge-stage staffing level is

N2(N1,Λ) := (X −β∗)+
(λ/µ)α + oUI((λ/µ)α).

In the two-stage newsvendor solution, the base-stage capacity is equal to the average offered

load, λ/µ, together with a hedging term that is in the same order as the arrival-rate uncertainty.

The additional o((λ/µ)α) term can be set as zero or some number that is of a smaller order

than (λ/µ)α. As we will show in Theorem 2, this term will not affect the asymptotic performance

of the staffing rule. After the arrival rate is realized at the surge stage, the capacity is brought

up to the realized offered load if X > β∗, with some flexibility of order oUI((λ/µ)α); see Section

1.3 for a formal definition of oUI(·). Note that the surge staffing is of a smaller order than the

base staffing. Since X is a continuous random variable, by the definition of β∗, the probability

of assigning nonzero surge staffing is equal to c1/c2. Moreover, it follows from Assumption 1 that

c1/(hµ/γ+ aµ)< c1/c2. Thus, in comparison to the single-stage newsvendor solution described in

(6), the two-stage newsvendor solution prescribes less capacity at the base stage. This is intuitive,

because with the flexibility to respond to surges in demand by raising the staffing level at the surge

stage, the two-stage newsvendor solution can be less aggressive in assigning base-stage uncertainty

hedging.

Note that Definition 1 defines a family of two-stage solutions, where some flexibility of order

o((λ/µ)α) in the base stage staffing and flexibility of order oUI((λ/µ)α) in the surge stage staffing are



15

allowed. For ease of exposition, we refer to this family of staffing rules as the two-stage newsvendor

solution, and let Cλ2,NV denote the expected total cost defined in (2) under the two-stage newsvendor

solution. Recall that Cλ2,∗ is the optimal total cost for the two-stage optimization problem (2).

Theorem 2 (optimality gap of u2,NV ) For α ∈ (1/2,1), the two-stage newsvendor solution in

Definition 1 has Cλ2,NV −Cλ2,∗ = o(λα).

Since α> 1/2, Theorem 1 implies that Cλ1,NV −Cλ2,∗ = Θ(λα). This, together with Theorem 2 and

the gap in (7), suggests that Cλ1,NV −Cλ2,NV = Θ(λα).

We provide numerical demonstrations of Theorem 2 in Section 5.

Remark 2 Our development so far has assumed a single pool of nurses, the ability to recruit surge

nurses as needed, and all nurses show up (i.e. no nurse no-shows). The model can be generalized

to relax these assumptions in a relatively straightforward manner. First, it is possible to distinguish

between base and surge nurses by assuming different service rates. Second, we can incorporate a

capacity cap on surge nurses and create an on-call pool with a small amount of monetary compen-

sation. That is, a compensation c0
2 ∈R+ per nurse per shift is paid at the base stage to staff a total

of N 0
2 ∈N nurses in the on-call pool. Then at the surge stage, the ED manager calls N2 (N2 ≤N 0

2 )

nurses from the on-call pool to serve as surge staff in the upcoming shift. If called, these nurses will

be paid at the surge rate. In this setting, N1 and N 0
2 are determined at the base stage, while N2 is

determined at the surge stage. Third, we can consider nurse no-shows by modeling the number of

nurses who show up to work as a Bernoulli random variable. In all cases mentioned above, similar

lines of analysis can be followed to develop a “generalized” two-stage newsvendor solution. More

detailed discussions are relegated to Appendix H.

4.2. Refinement for The Two-Stage Newsvendor Solution

We have established in Theorem 2 that the two-stage newsvendor solution achieves an optimality

gap of o(λα) compared to the exact two-stage optimum. In this section, we propose a refinement

for the two-stage newsvendor solution which further reduces the optimality gap to o(
√
λ). The

improvement is achieved by characterizing the oUI(λ
α) term in the two-stage newsvendor solution

more carefully.

To provide intuition for the refinement, we shall ignore the o(λα) and oUI(λ
α) terms for now, i.e.,

setting them to zero, in the two-stage newsvendor solution. The key observation is that depending

on the realized arrival rate, the two-stage newsvendor solution will result in the system being either
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underloaded (capacity exceeding offered load), or critically loaded (capacity equal to offered load).

In particular, for any realized arrival rate `= λ+xλαµ1−α, if x< β∗, then

N1 +N2(N1, `)− `/µ= (β∗−x) (λ/µ)
α

= Θ(λα).

In this case, the steady-state average queue length is ”negligibly” small, i.e., o(
√
λ) (more details

is provide in Appendix C.1, see (32) in the proof of Lemma 3) In the case where x≥ β∗, the total

staffing level is equal to `/µ, under which the system operates in the QED regime (Mandelbaum

and Zeltyn 2009). We can then add a square-root hedging against the stochastic fluctuation of the

queue process. In particular, consider

N1 +N2(N1, `) = `/µ+ η
√
`/µ+ o(

√
`/µ), for some η ∈R. (10)

Under the capacity prescription in (10), the expected steady-state queue length is Θ(
√
λ). This fact

is well-known and will be made rigorous for our system in the proof of Theorem 3 in Appendix E.

Thus, to “optimize” queue length of this magnitude, we refine the two-stage newsvendor solution

by restricting the oUI(λ
α) term to O(

√
λ) + oUI(

√
λ), so that it serves as a safety capacity against

system stochasticity.

A few more definitions are needed to formally introduce the refined staffing rule. Let φ and Φ be

the pdf and cdf of the standard normal distribution, respectively. The hazard rate of the standard

normal distribution is given by

H(t) = φ(t)/Φ(−t), t∈R.

Define

η∗ := arg min
η∈R

c2η+

(
hµ

γ
+ aµ

)√ γ
µ

[
H
(
η
√

µ
γ

)
− η
√

µ
γ

]
1 +

√
γ
µ

H(η
√

µ
γ )

H(−η)︸ ︷︷ ︸
(a)

. (11)

η∗ is the optimal solution of the square-root staffing problem in (Mandelbaum and Zeltyn 2009).

In particular, the term (a) on the right-hand side of (11) is the diffusion approximation (and a

bona-fide limit in the QED regime) of the expected steady-state queue length of an M/M/n+M

queue with service rate µ, abandonment rate γ, staffing cost c2, abandonment cost a, and staffing

level prescribed in (10) (i.e., with square root staffing parameter η).

We are now ready to introduce the following refinement to the two-stage newsvendor solution.

Since the system operates in the QED regime when X ≥ β∗, we refer to this policy as the two-stage

QED staffing rule and denote it by u2,QED.
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Definition 2 (two-stage QED staffing rule) For α∈ (1/2,1), the two-stage QED staffing rule

prescribes staffing levels as follows:

1. At the base stage, the base-stage staffing level is

N1 := λ/µ+β∗(λ/µ)α +O(
√
λ/µ).

2. At the surge stage, the surge-stage staffing level is

N2(N1,Λ) := (Λ/µ+ η∗
√

Λ/µ−N1)+ + oUI(
√
λ/µ).

Similar to Definition 1, Definition 2 characterizes a family of two-stage QED staffing rules, where

some flexibility of order O(
√
λ/µ) is allowed at the base stage staffing and flexibility of order

oUI(
√
λ/µ) is allowed at the surge stage staffing; see Section 1.3 for the definition of oUI(·). To

simplify the exposition, we use the two-stage QED staffing rule to refer to any staffing specification

in this family. In the two-stage QED staffing rule, the base-stage staffing level is of a similar form

as in the two-stage newsvendor solution. After the arrival rate is realized at the surge stage, we first

compute the optimal staffing level in the QED regime, and then bring up the staffing level to meet

that target. Let Cλ2,QED denote the expected total cost in (2) under the two-stage QED staffing

rule. The two-stage QED staffing rule guarantees a smaller optimality gap than the two-stage

newsvendor solution as quantified in the following theorem.

Theorem 3 (optimality gap of u2,QED) For α ∈ (1/2,1), the two-stage QED staffing rule in

Definition 2 has Cλ2,QED−Cλ2,∗ = o(
√
λ).

Theorem 3 establishes that any two-stage QED staffing rule achieves the same o(
√
λ) optimality

gap. While it is intuitive that the oUI(
√
λ/µ) flexibility term in N2 does not influence the optimality

gap, it is less straightforward to see the effect of theO(
√
λ/µ) flexibility term inN1. We next provide

a brief explanation for this (a more detailed explanation can be found in the proof of Theorem 3

in Appendix E). Let D1 denote the O(
√
λ/µ) term we add in N1. This generates a staffing cost of

c1D1 at the base stage. At the surge stage, for λ sufficiently large, When X ≥ β∗, adding D1 to N1

leads to a reduction of D1 in N2, which decreases the surge staffing cost by c2D1. When X < β∗,

adding D1 to N1 does not change N2. By the construction of β∗, we have P (X ≥ β∗) = c1/c2. Then,

the total staffing cost change is c1D1 − c2D2P (X ≥ β∗) = 0. Furthermore, in both scenarios, the

holding cost (expected steady-state queue length) does not change significantly (i.e., the change is

of order o(
√
λ/µ)). Therefore, having a flexible term of order O(

√
λ/µ) in N1 does not impact the

optimality gap.
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We provide numerical demonstrations of Theorem 3 in Sections 4.3 and 5. Importantly, in Section

4.3, we numerically examine which specification of the flexibility terms, i.e., the O(
√
λ/µ) term in

N1 and oUI(
√
λ/µ) term in N2, achieves better performance for pre-limit finite stochastic systems.

4.3. Effective Translation of The Two-Stage QED Staffing Rule to Small Systems

Theorem 3 shows that any policy that belongs to the family of the two-stage QED staffing rules

in Definition 2 achieves an optimality gap of o(
√
λ). The specification of the O(

√
λ/µ) term in N1

and the oUI(
√
λ/µ) term in N2, though asymptotically indistinguishable in the context of Theorem

3, may have non-negligible impact on system performance for a finite system, especially when λ

is small. We next numerically investigate system performance under different specifications of the

two-stage QED staffing rule.

To this end, we consider staffing prescriptions of the form

N1 = λ/µ+β∗(λ/µ)α + k
√
λ/µ and N2(N1,Λ) = (Λ/µ+ η∗

√
Λ/µ−N1)+, for k ∈R. (12)

We consider systems with small arrival rates, namely, setting λ= 25,50,75,100. We vary the value

of k in (12) from −3 to 3 in increments of 1. In each experiment, we estimate the steady-state

cost by averaging over 1000 realizations of the random variable X. For each mean arrival rate λ,

we compare the costs under different values of k, and report the percentage gap between each

cost under the examined policy and the exact optimal cost (obtained by exhaustive search) in

Tables 2 and 3. For example, in Table 2, when λ = 25, the exact optimal cost is 39.47. In this

case, the policy specification with k = 1 achieves a cost of 39.48 and thus has an optimality gap

of (39.48− 39.47)/39.48 = 0.03%, which is the smallest among different values of k. The system

with k = −3 achieves a cost of 49.75 which corresponds to a percentage gap of 20.66%. In all

experiments, the random variable X is assumed to follow a standard normal distribution. The

other system parameters and the resulting value of (β∗, η∗) are listed in the caption of the tables.

Table 2 System performance (optimality gap) under different specifications of the two-stage QED staffing rule

with β∗ = 0, η∗ = 0.610

(µ= 1, γ = 0.1,α= 0.75, h= 1.5, a= 3, c1 = 1, c2 = 2)

λ
k

-3 -2 -1 0 1 2 3

25 20.66% 13.73% 6.91% 2.08% 0.03% 2.01% 7.37%
50 15.04% 9.61% 4.77% 1.47% 0.00% 1.28% 4.98%
75 12.56% 7.69% 3.99% 1.18% 0.00% 0.98% 4.09%
100 10.44% 6.35% 3.02% 0.87% 0.00% 1.04% 3.76%

We first observe from the tables that even though all the staffing prescriptions, i.e., k ranging from

−3 to 3, are asymptotically optimal, there are substantial differences in the pre-limit performances.
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Table 3 System performance (optimality gap) under different specifications of the two-stage QED staffing rule

with β∗ = 1.282, η∗ =−0.140

(µ= 1, γ = 0.1,α= 0.75, h= 1.5, a= 3, c1 = 1, c2 = 10)

λ
k

-3 -2 -1 0 1 2 3

25 43.49% 25.83% 10.35% 1.28% 2.64% 9.64% 17.46%
50 31.77% 17.38% 6.51% 0.42% 1.39% 6.57% 12.90%
75 25.86% 14.42% 5.18% 0.20% 1.10% 5.60% 11.35%
100 20.84% 10.35% 3.40% 0.04% 1.67% 5.71% 10.66%

In Table 2, k = 1 leads to the best performance across all system scales tested. In Table 3, k = 0

leads to the best performance. Second, k has a highly nonlinear effect on the cost. Staffing too few

servers tends to result in a larger optimality gap than staffing too many servers at the base stage.

In particular, in both tables, k=−3 leads to the worst performance. In Table 3, when λ= 25 and

k = −3, the percentage gap can be as large as 43.49%. Third, we note that as the system scale

grows, the performance gap among different policies shrinks. This is consistent with our optimality

gap quantification in Theorem 3. Lastly, we note that when k is properly tuned, u2,QED can achieve

a very small optimality gap even for very small systems. For example, when λ = 25, the gap is

0.03% for k= 1 in Table 2 and 1.28% for k= 0 in Table 3.

Besides the experiments reported in Tables 2 and 3, we also summarize a few more sets of

simulation results with different surge staffing costs in Appendix I.1. Among all the numerical

experiments, we find the following specification of the two-stage QED staffing rule to be effective

and robust for small-scale systems:

N1 = λ/µ+β∗(λ/µ)α + η∗
√
λ/µ, and N2(N1,Λ) = (Λ/µ+ η∗

√
Λ/µ−N1)+. (13)

The capacity prescription in (13) lends itself to an intuitive explanation. At the base stage, the

staffing level consists of the offered load, a hedging against arrival-rate uncertainty, and a hedging

against system stochasticity catered to the mean arrival rate λ. At the surge stage, the staffing

level is raised to reach the optimal value in the QED regime catered to the realized arrival rate.

5. Numerical Experiments

In this section, we perform numerical experiments to demonstrate the cost savings of our pro-

posed two-stage staffing rules over single-stage benchmark policies for different levels of arrival rate

uncertainty and cost rates. We also examine the optimality gaps between the two-stage staffing

rules and the numerically-solved exact optimal staffing levels. Moreover, we check the robustness

of our proposed staffing rules when the service time distribution is lognormal. For comparison, we

consider the following five staffing rules:
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(I). Our proposed two-stage QED staffing rule u2,QED prescribes staffing levels

N1 = λ/µ+β∗(λ/µ)α + η∗
√
λ/µ, and N2(N1,Λ) = (Λ/µ+ η∗

√
Λ/µ−N1)+,

for β∗ = F̄−1
X (c1/c2), and η∗ defined in (11).

(II). Our derived two-stage newsvendor solution u2,NV assigns staffing levels

N1 = λ/µ+β∗(λ/µ)α, and N2(N1,Λ) = (X −β∗)+
(λ/µ)α.

(III). The single-stage newsvendor solution u1,NV prescribes staffing levels

N1 = λ/µ+ F̄−1
X

(
c1

hµ/γ+ aµ

)
(λ/µ)α, and N2(N1,Λ) = 0.

This policy accounts for arrival-rate uncertainty, but does not allow surge staffing.

(IV). The conventional single-stage square-root staffing rule, denoted by u1,QED, makes a one-

time staffing decision at the base stage, assuming a staffing cost of c1 and a deterministic arrival

rate of λ. In particular, the staffing levels are given by

N1 = λ/µ+ η∗1,QED
√
λ/µ, and N2(N1,Λ) = 0,

where η∗1,QED is defined as

η∗1,QED := arg min
η∈R

c1η+

(
hµ

γ
+ aµ

)√ γ
µ

[
H
(
η
√

µ
γ

)
− η
√

µ
γ

]
1 +

√
γ
µ

H(η
√

µ
γ )

H(−η)

. (14)

This policy ignores arrival-rate uncertainty. It is important to distinguish η∗1,QED in (14) (used

in the single-stage square-root staffing rule) from η∗ in (11) (used in the two-stage QED staffing

rule). While both serve as coefficients in front of the hedging against system stochasticity, η∗1,QED is

calculated assuming a staffing cost of c1 (base-stage cost) and η∗ is calculated assuming a staffing

cost of c2 (surge-stage cost).

(V). The optimal two-stage staffing rule, denoted as u2,OPT . We numerically solve for the optimal

staffing levels via simulation optimization. Calculating the exact optimal staffing levels enables

us to examine the optimality gaps characterized asymptotically in Theorems 2 and 3 for finite

stochastic systems.
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5.1. Level of Arrival-Rate Uncertainty

In the first set of experiments, we examine the cost savings of the proposed two-stage QED rule

as we vary the magnitude of arrival-rate uncertainty. In particular, we assume that the random

variable X is normally distributed with mean 0 and standard deviation σ. We vary the order of

arrival-rate uncertainty, α, and the standard deviation of X, σ, respectively, with everything else

held constant. We simulate 1000 realizations of X and calculate the expected steady-state cost

(where the expectation is taken over the stochastic fluctuations) for each realization. The expected

total cost (where the expectation is taken over the random variable X) is then averaged over the

expected steady-state costs for all realizations of X.

Figure 1 illustrates the expected total costs under the five policies, with α increasing from 0.6 to

0.8 in Figure 1(a) and σ increasing from 0.6 to 1 in Figure 1(b). We observe that u1,QED performs

the worst as it does not take the arrival rate uncertainty into account. As the level of arrival-rate

uncertainty increases, the performance gap between the one-stage policies (u1,QED or u1,NV ) and

two-stage policies (u2,NV or u2,QED) increases as suggested by Theorem 1. Lastly, compared to

µ2,OPT , u2,QED achieves almost the exact optimal performance (i.e., the lines for µ2,OPT and u2,QED

are almost identical). This suggests that the o(
√
λ) bound for the optimality gap developed in

Theorem 3 is likely to be conservative. Meanwhile, u2,NV still has a considerable optimality gap.

Figure 1 Sensitivity analysis with respect to the order of arrival-rate uncertainty

((a): λ= 100, µ= 1, γ = 0.1, h= 1.5, a= 3, c1 = 1, c2 = 1.5, σ= 1

(b) : λ= 100, µ= 1, γ = 0.1, h= 1.5, a= 3, c1 = 1, c2 = 1.5,α= 0.75)
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5.2. Cost Rates

We next investigate the performance of our proposed two-stage policy with respect to the cost

parameters. We first compare the costs of the three policies under different holding costs, h, in
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Figure 2(a). Note u2,QED outperforms u1,QED and u1,NV by a larger magnitude as the holding cost

becomes larger. However, the cost saving under u2,NV relative to u1,NV increases as h increases. This

is likely because as h increases we put more emphasis on the queueing cost, but u1,NV and u2,NV

do not take the detailed queueing dynamics into account. Figure 3 demonstrates the distribution

of the average steady-state queue length for a given value of h over 1000 realizations of X under

u1,NV and u2,QED. We observe that the average steady-stage queue length under u1,NV is either

very high or very low, while u2,QED leads to more stable performance. This is not surprising. On

one hand, the two-stage QED staffing rule is able to circumvent understaffing when the realized

arrival rate is excessively large by adding staff at the surge stage. In contrast, due to the inability

to adjust staffing levels at the surge stage, the single-stage policies can result in a relatively larger

queue when the realized arrival rate is large. On the other hand, u1,NV tends to assign more base

staff to hedge against arrival-rate uncertainty, which can result in overstaffing when the realized

arrival rate is low.

Besides the holding cost, we also vary the surge-stage staffing cost, c2. Recall from Assumption 1

that the surge staffing cost is larger than the base staffing cost c1, but smaller than the performance

cost hµ/γ+aµ. In the numerical experiment depicted in Figure 2(b), we set c1 = 1, hµ/γ+aµ= 18,

and vary c2 from 2 to 6. We see that the cost saving of the proposed two-stage policies decreases

as c2 increases. For example, the performance of u2,QED becomes nearly indistinguishable from

that of u1,NV when c2 reaches 6. This is because when the surge staffing costs are very large, the

two-stage policy will hardly ever surge, even though it has the option to. Lastly, we again observe

that u2,QED achieves almost the optimal performance in various scenarios tested.

Figure 2 Sensitivity analysis with respect to the cost rates

((a): λ= 100, µ= 1, γ = 0.1, a= 2h, c1 = 1, c2 = 1.5,α= 0.75, σ= 1

(b): λ= 100, µ= 1, γ = 0.1, h= 1.5, a= 3, c1 = 1,α= 0.75, σ= 1)
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Figure 3 Distribution of the average steady-state queue length

(λ= 100, µ= 1, γ = 0.1, h= 1.5, a= 3, c1 = 1, c2 = 1.5,α= 0.75, σ= 1)
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(a) Single-stage newsvendor solution (mean =

19.131, std = 49.070)
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(b) Two-stage QED staffing rule (mean = 8.029,

std = 5.305)

Remark 3 The numerical experiments in Sections 5.1 and 5.2 suggest that the cost difference

between the two-stage QED staffing rule and the exact two-stage optimum is very small. This

suggests that it may be possible to refine the optimality gap o(
√
λ) in Theorem 3. This requires

substantial methodological developments, such as those in Gurvich et al. (2014) and Randhawa

(2016), which we reserve as an interesting future research direction.

5.3. Lognormal Service Time Distribution

To achieve analytical tractability, we assume an exponential service time distribution. However,

it is quite common to have service times with heavier tails in real healthcare systems; see, e.g.,

Armony et al. (2015) for inpatient wards and Section 7 for our partner ED. As such, a lognormal

service time distribution can often be a better fit than an exponential service time distribution.

In this section, we conduct numerical experiments to examine the performance of the proposed

staffing rules under lognormal service time distributions. We consider lognormal service times with

a fixed mean at 1 and vary the variance with values from 0.25 to 2.25 in increments of 0.25. For each

value of the variance, we numerically solve for the optimal staffing levels. We then compare u2,OPT ,

u2,QED, and u1,NV Note that the latter two policies are based on the assumption of exponential

service time distribution.

Table 4 summarizes the base staffing levels and average surge staffing levels under each policy

for different variances of the service time distribution. Because the two-stage QED rule and single-

stage newsvendor solution only depend on the service distribution through its mean, they are

identical for all variances. We also report the optimality gaps of u2,QED (relative to u2,OPT ) in the

second-to-last column, as well as the cost savings of u2,QED compared to u1,NV in the last column.
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We observe that u2,QED performs similarly to the optimal staffing policy. The optimality gaps are

less than 6%. u2,QED achieves significant cost savings over u1,NV in all cases. Moreover, there do

not exist any directional trends in the optimal base and surge staffing levels as the variance of the

lognormal service time distribution increases. Therefore, we do not recommend any adjustment to

the two-stage QED rule in situations where service times follow a lognormal distribution.

Table 4 Optimality gaps and cost savings under lognormal service time distributions

(λ= 100, γ = 0.1, h= 1.5, a= 3, c1 = 1, c2 = 1.5,α= 0.75, σ= 1)

Variance
Two-stage OPT Two-stage QED Single-stage NV

Opt gap
Cost savings

Base Avg surge Base Avg surge Base over u1,NV

0.25 90 20.86 94 19.34 150 0.92% 18.17%
0.5 90 20.78 94 19.34 150 1.57% 17.47%
0.75 96 17.26 94 19.34 150 1.13% 18.52%

1 96 17.26 94 19.34 150 1.06% 18.36%
1.25 90 21.02 94 19.34 150 0.99% 18.36%
1.5 90 20.58 94 19.34 150 2.21% 17.75%
1.75 94 18.44 94 19.34 150 1.85% 17.49%

2 86 19.32 94 19.34 150 5.86% 18.88%
2.25 86 19.48 94 19.34 150 5.29% 19.70%

6. Model Extension: Incorporation of Surge-Stage Prediction Error

In the two-stage optimization problem (2), we assume that the realization of the random arrival

rate Λ is known exactly at the surge stage. That is, the surge-stage prediction model provides

perfect arrival rate information. However, in practice, the surge-stage predictive models may incur

some prediction errors. In this section, we investigate a model extension where we allow prediction

errors in the surge stage.

To incorporate prediction error, we further decompose the random arrival rate into two terms:

predictable and unpredictable arrival rate uncertainty. In particular, we consider a random arrival

rate of the form

Λ = λ+Y λαµ1−α +Zλνµ1−ν , (15)

where α ∈ (1/2,1), ν ∈ (0, α], and Y and Z are continuous random variables independent of each

other. We assume that E [Y ] = E [Z] = 0, E [|Y |] <∞, and E [|Z|] <∞. In (15), Y and Z can be

understood as the predictable and unpredictable arrival-rate uncertainty, respectively. If there is a

prediction model to forecast demand at the surge stage, then Y λαµ1−α is the predicted arrival rate

and Zλνµ1−ν is the error (residual) of the prediction model. α captures the scale of the arrival-

rate uncertainty and ν captures the scale of the prediction error. It is reasonable to assume that
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the distributions of Y and Z are known at the base stage. The two-stage staffing problem with

prediction error is then formulated as

min
N1

{
c1N1 +E

[
min

N2(N1,Y )
{c2N2(N1, Y ) + (h+ aγ)E [Q(N1 +N2(N1, Y ),Λ)|Y ]}

]}
. (16)

To differentiate notation from that of problem (2), we denote the optimal objective value of (16)

as Ce,λ2,∗ when there is prediction error at the surge stage.

Similar to problem (2), we compare to the single-stage optimization problem (4) for Λ in form

of (15), and use Ce,λ1,∗ to denote its optimal objective value. To facilitate the connection between

the arrival rates in (3) and (15), we can let X be such that

Xλαµ1−α = Y λαµ1−α +Zλνµ1−ν . (17)

In this context, problem (2) can be seen as an “oracle” problem that knows the exact realized

arrival rate at the surge stage. We use Co,λ2,∗ to denote the optimal objective value of the oracle

problem (2) for Λ in form of (15). In particular, the oracle problem does not incur any unpredictable

arrival-rate uncertainty (prediction error). Intuitively, the impact of the prediction error should

depend on how substantial it is. We formalize this for “small” and “moderate/large” prediction

errors in the next subsections. The error regime depends on the relationship between the scale of

the arrival-rate uncertainty and that of the prediction error.

6.1. Small Prediction Error: 0< ν < 1/2

When ν ∈ (0,1/2), the prediction error is sufficiently small to be “ignored.” Doing so does not

impact performance. For problem (16), we propose the two-stage error policy and denote it by

u2,ERR.

Definition 3 (two-stage error policy for ν < 1/2) For α ∈ (1/2,1) and ν ∈ (0,1/2), the two-

stage error policy prescribes staffing levels as follows:

1. At the base stage, the base-stage staffing level is

N1 := λ/µ+ F̄−1
Y (c1/c2) (λ/µ)α +O(

√
λ/µ).

2. At the surge stage, the surge-stage staffing level is

N2(N1, Y ) := ((λ+Y λαµ1−α)/µ+ η∗
√

(λ+Y λαµ1−α)/µ−N1)+ + oUI(
√
λ/µ),

for η∗ defined in (11).
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When ν ∈ (0,1/2), u2,ERR is similar to u2,QED, the latter of which is defined for the case without

prediction error. In particular, u2,ERR completely ignores the existence of prediction error Z and

makes staffing decisions based on Y only. Let Ce,λ2,ERR denote the expected total cost under u2,ERR

when the mean arrival rate is λ. Analogous results to Theorems 1 and 3 hold for u2,ERR.

Proposition 2 For α∈ (1/2,1) and ν ∈ (0,1/2), we have

(I) Cost saving: Ce,λ1,∗ −C
e,λ
2,∗ = Θ(λα).

(II) Optimality gap: Ce,λ2,ERR−C
e,λ
2,∗ = o(

√
λ).

(III) Cost of prediction error: Ce,λ2,∗ −C
o,λ
2,∗ = o(

√
λ).

Item (III) in Proposition 2 quantifies the gap between the two-stage optimal costs with and

without prediction error. We observe that when the prediction error is small, i.e., ν < 1/2, there is

not much value, from the cost-saving perspective, to further improve the prediction accuracy.

6.2. Moderate to Large Prediction Error: 1/2 ≤ ν ≤α

When ν ∈ [1/2, α], the prediction error is of a larger order than the system stochasticity and thus

can no longer be ignored for staffing. To derive a near-optimal solution to problem (16), we consider

the following stochastic-fluid optimization problem

min
N1

{
c1N1 +E

[
min

N2(N1,Y )

{
c2N2(N1, Y ) + (hµ/γ+ aµ)E

[
(Λ/µ−N1−N2(N1, Y ))

+ |Y
]}]}

. (18)

Let (N̄1, N̄2(N̄1, Y )) denote an optimal solution to (18), whose existence is rigorously established

in the proof of Proposition 3. When ν ∈ [1/2, α], we define the two-stage error policy, u2,ERR, to

prescribe staffing levels (N̄1, N̄2(N̄1, Y )).

When 1/2< ν < α (moderate prediction error), the prediction error is of a smaller order than

the predictable arrival-rate uncertainty. In this case, we still expect that resolving some of the

arrival-rate uncertainty at the surge stage can bring a cost saving as large as O(λα) compared to the

optimal single-stage staffing rule. When ν = α (large prediction error), the prediction error is of the

same order as the predictable arrival-rate uncertainty. The following assumption requires that the

predictable arrival-rate uncertainty is sufficiently large compared to the unpredictable arrival-rate

uncertainty when ν = α. If Assumption 2 holds, resolving the predictable arrival rate uncertainty

could still lead to Θ(λα) cost savings when compared to the optimal single-stage staffing rule. In

contrast, if Assumption 2 does not hold, the predictable uncertainty is so small compared to the

unpredictable uncertainty that resolving Y only leads to limited cost savings.

Assumption 2 There exists p∈ (0,1] such that

Y + F̄−1
Z

(
c2

hµ/γ+ aµ

)
− F̄−1

Y+Z

(
c1

hµ/γ+ aµ

)
> 0 with probability p.
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Note that Assumption 2 can be violated when Y has a bounded support, c2 is large, and/or

Z has a large standard deviation. For a concrete example, consider Y ∼ Uniform[−1,1], Z ∼

Normal(0,102), hµ/γ + aµ= 1, c1 = 0.1, and c2 = 0.9. In this case, Y + F̄−1
Z (c2/(hµ/γ+ aµ))< 0

and F̄−1
Y+Z (c1/(hµ/γ+ aµ))> 0 with probability 1.

Proposition 3 For α∈ (1/2,1) and ν ∈ [1/2, α], we have

(I) Cost saving: If ν < α, then Ce,λ1,∗ − C
e,λ
2,∗ = Θ(λα). If ν = α and Assumption 2 holds, then

Ce,λ1,∗ −C
e,λ
2,∗ = Θ(λα). If ν = α and Assumption 2 does not hold, then Ce,λ1,∗ −C

e,λ
2,∗ = o(λα).

(II) Optimality gap: Ce,λ2,ERR−C
e,λ
2,∗ =O(

√
λ).

(III) Cost of prediction error: Ce,λ2,∗ −C
o,λ
2,∗ = Θ(λν).

Comparing item (III) in Proposition 3 to item (III) in Proposition 2, we note that when having a

large prediction error, there is potentially more cost savings we can gain by improving the prediction

accuracy. In particular, when ν ≥ 1/2, the cost saving brought by a more accurate prediction model

can be as large as Θ(λν).

6.3. Numerical Experiments for Models with Prediction Error

We conduct numerical experiments in the presence of prediction errors, and focus on the case where

the magnitude of prediction error is the most salient, namely, ν = α.

We compare the following five staffing rules:

(I) The two-stage error policy u2,ERR introduced in Section 6.2. It has near-optimal performance

as established in Proposition 3.

(II) The two-stage QED rule u2,QED, which is a straightforward extension of the two-stage

QED rule defined in Definition 2 by ignoring the prediction error: For X defined in (17) (namely,

X := Y +Z), it assigns

N1 = λ/µ+ F̄−1
X (c1/c2) (λ/µ)α + η∗

√
λ/µ

N2(N1, Y ) = ((λ+Y λαµ1−α)/µ+ η∗
√

(λ+Y λαµ1−α)/µ−N1)+.

The staffing prescription takes into account the distribution of X at the base stage, but uses the

realization of Y as a proxy for the realization of X at the surge stage. To simplify notation, we

still refer to this policy as u2,QED in the following experiments.

(III) The single-stage newsvendor solution u1,NV as defined in Section 5, assuming we know the

distribution of X. Note that for a fixed distribution of X, the single-stage staffing rule and its

performance will not be affected by the surge-stage prediction errors.

(IV) The single-stage square-root staffing rule u1,QED as defined in Section 5.
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(V) To demonstrate the cost of prediction error, we also consider an oracle policy termed second-

stage full arrival rate information (SFARI), and denote it by u2,SFARI . It prescribes staffing levels

N1 = λ/µ+ F̄−1
X (c1/c2) (λ/µ)α + η∗

√
λ/µ and N2(N1,Λ) = (Λ/µ+ η∗

√
Λ/µ−N1)+,

for η∗ defined in (11). Note that u2,SFARI is identical to u2,QED when there is full arrival rate

information at the surge stage. It provides a performance lower bound.

We assume that Y and Z are normally distributed with standard deviation σY and σZ , respec-

tively. We then fix the standard deviation of X to be equal to 1, i.e., σ2
Y +σ2

Z = 1, and vary σZ from

0.1 to 0.7 in increments of 0.2. For each policy and each value of σZ , we simulate 1000 independent

and identically distributed realizations of the random arrival rate, and use the average to approx-

imate the expected total cost. Figure 4 compares the costs under the five policies with different

values of σZ . Note that, as expected, the single-stage benchmark policies (u1,NV and u1,QED) and

the oracle policy (u2,SFARI) are unaffected by prediction accuracy. In contrast, the performance

of our proposed two-stage policies (u2,ERR and u2,QED) degrades as the prediction error increases.

When σZ is larger than or equal to 0.5, u2,QED yields higher expected total cost than u1,NV . On

the other hand, u2,ERR, which properly accounts for prediction errors, outperforms the benchmark

single-stage policies for all σZ . As σZ increases from 0.1 to 0.7, the expected total cost under

u2,ERR increases from 131.356 to 156.897. This further demonstrates the cost savings we can gain

by improving the prediction accuracy. In practice, this can often be achieved by employing more

sophisticated machine learning models or including more relevant real-time features.

Figure 4 Sensitivity analysis with respect to prediction error

(λ= 100, µ= 1, γ = 0.1, h= 1.5, a= 3, c1 = 1, c2 = 1.5,α= ν = 0.75)
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7. Application to the Emergency Department

In this section, we develop a unified framework to guide the implementation of the proposed two-

stage staffing policy in ED nurse staffing. Our framework consists of three key elements:

1) Estimating the arrival rate distribution, especially the order of arrival-rate uncertainty. This

helps us determine whether the ED operates in an environment where surge staffing could be

beneficial. In our partner hospital, α is estimated to be 0.769. According to Theorem 1, we can

gain substantial cost savings by utilizing the surge staffing in this case.

2) Building an integrated two-stage prediction model that is synchronized with the staffing

decision epochs. At the base stage we can only capture the day-of-the-week and day-versus-night

effects, while at the surge stage, we can utilize more real-time information such as the severity

profile of patients currently in the ED, the weather condition, etc.

3) Evaluating the prediction-driven staffing rule in a set of more complex simulation experiments

that incorporates more realistic ED operational features. For our partner hospital, we incur a non-

negligible prediction error at the surge stage. Thus, we employ u2,ERR. We also modify u2,ERR to

adjust for the transient-shift effects.

7.1. Background and Data

Our partner hospital, NYP CUMC, is an urban academic medical center in New York City. We

focus on the Milstein ED at NYP CUMC, which is the main adult ED of the hospital and treats

more than 90,000 patients annually. Nurses are typically scheduled for 12-hour shifts that begin at

7am (day shift) or 7pm (night shift) each day. The nursing schedules are set 4–8 weeks in advance

and the staffing level is difficult to change in real time. If the ED manager anticipates a high

patient volume close to the start of a shift, he/she can call in extra nurses. Currently, there lacks

a data-driven approach to determine the appropriate surge staffing levels.

We provide the following remarks on the timing of the base and surge staffing epochs. For

the theoretical model, the exact timing of the base and surge epochs can be flexible, as long as

there are significant differences between the arrival-rate prediction accuracy and staffing costs at

these two stages. Our theoretical results suggest that the two-stage staffing framework is able to

achieve significant cost savings if 1) the order of arrival-rate uncertainty dominates the order of

system stochasticity, and 2) the surge-stage prediction model is able to resolve much of the arrival-

rate uncertainty. For the real-world application, the timing of the base and surge epochs depends

on the feasible practice of the hospital, which determines what information is available at these

stages (especially the surge stage) for prediction and staffing. Throughout Section 7, we assume

an idealistic setting where the surge-stage planning can happen right before the focal shift, so we
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“maximize” the amount of real-time information available. That said, having a reasonable amount

of lead time (e.g., several hours before the shift start time) for surge staffing should not affect

the results significantly. In the subsequent sections, we will discuss further how the lead time may

affect surge-stage prediction and transient-shift adjustment.

We collect 12 months of data from February 1, 2018 to January 31, 2019. The data contain

patient-level records that include 1) patient-flow time stamps (i.e., time stamps for arrival, first

evaluation, lab and imaging orders, admission decision, and departure), 2) patient’s demographics

and severity (i.e., age, gender, arriving source, emergency severity index, chief complaint, comor-

bidities, and deposition decision), and 3) patient’s lab and imaging requests (i.e., different tests

and imaging that are ordered for the patient). We also collect data from two other sources: weather

information (i.e., temperature, precipitation, snow, wind, etc.) and Google trend data (i.e., search

volume for keywords such as “flu,” “heart attack,” “abuse,” etc.). These data allow us to a) estimate

arrival-rate uncertainty, b) build a two-stage prediction model where the surge-stage prediction

model can utilize rich real-time information, and c) calibrate a simulation model that incorporates

more real-world ED features to evaluate different staffing policies.

We first group the shifts into 14 different types based on the day of the week and day versus

night. Table 5 provides some summary statistics for different shifts. We observe that the day shifts

see more arrivals than the night shifts, and weekday day shifts see more arrivals than the weekend

day shifts. We also note that the coefficient of variation can be as high as 14% for some shifts

(e.g., Sunday night shift and Thursday night shift). This suggests that even after we control for

day-of-the-week and day-versus-night effects, there can still be significant uncertainty in demand.

Table 5 Mean and standard deviation (std) of the shift-level arrival counts

Day shift
Sun Mon Tue Wed Thur Fri Sat

Mean 141.019 207.385 188.769 186.942 185.208 175.173 147.058
Std 15.788 21.503 20.701 23.657 21.004 16.124 12.095

Night shift
Sun Mon Tue Wed Thur Fri Sat

Mean 89.462 97.058 97.769 93.711 95.189 96.692 94.115
Std 12.698 12.064 10.547 12.508 13.602 12.199 11.514

The length of stay (LOS) for each patient is defined as the time interval between the first evalu-

ation time and departure time. The average LOS in our ED is 8.156 hours due to a long boarding

time for patients who need to be admitted into the hospital; see Figure 5 for the empirical LOS

distribution. The average waiting time (calculated as the time between arrival and first evaluation)
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is close to an hour, i.e., 0.975 hours, and the proportion of patients who left without being seen is

4.35%. Properly managing congestion is a key challenge faced by the ED. In what follows, we look

into how our data-driven surge planning can help reduce congestion and staffing costs.

Figure 5 Patient LOS distribution (The solid line illustrates the fitted lognormal distribution whose logarithm

has a mean equal to 1.597 and a standard deviation equal to 1.050.)

7.2. Estimating Arrival-Rate Uncertainty

In this section, we introduce statistical procedures to estimate the arrival-rate uncertainty. Because

there are significant day-of-the-week and day-versus-night effects, the shifts are classified into 14

different types as demonstrated in Table 5. Let λi denote the mean arrival rate for type i ∈ I :=

{1, ...,14} shift. Since we have one year of data, each shift type i has ni = 52 observations. For each

type of shift, we assume that the random arrival rate takes the form

Λi = λi +λαi µ
1−αX, i∈ I,

for µ equal to the inverse of the average LOS. In particular, the uncertainty scaling parameter α

and the distribution of X is the same across different types of shifts. We also make the parametric

assumption that X ∼N(0, σ2) for some σ ∈R+; see Appendix G.4 for the normal probability plot

to validate this assumption. Then Λi ∼N(λi, λ
2α
i µ

2(1−α)σ2), i∈ I.

Let L
(k)
i denote the observed arrival count for the kth shift of type i, 1≤ k≤ ni. We also define

L̄i := 1
ni

∑ni
k=1L

(k)
i and Σ2

i := 1
ni

∑ni
k=1(L

(k)
i − L̄i)2, i.e., the corresponding sample mean and sample

variance. Based on the method of moments, we have the following system of equations for the

estimators

L̄i = λ̂i, Σ2
i = λ̂2α̂

i µ
2(1−α̂)σ̂2, i∈ I. (19)
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It follows from (19) that

log Σi = α̂ log L̄i + log(µ1−α̂σ̂), i∈ I. (20)

Then, we can fit α̂ and σ̂ by solving the following least squares problem

min
α∈(0,1), γ∈R

14∑
i=1

(
log Σi− γ−α log L̄i

)2
. (21)

In particular, let γ∗ and α∗ denote the optimal solution to the least squares problem (21). Then,

α̂= α∗ and µ1−α̂σ̂= exp(γ∗).

In Table 6, the first row below the header (with |I|= 14) summarizes the point estimates for α

and µ1−ασ; see Appendix G.1 for the full estimation results. We also report their corresponding

95% confidence intervals. Based on our estimation, for the Milstein ED, α= 0.769 and µ1−αX ∼

N(0,0.3482).

To check the robustness of our estimation, we also run a similar analysis by dividing the shifts into

56 different types. In particular, in addition to the day-of-the-week and day-versus-night effects,

we also incorporate the season-of-the-year effect. The second row below the header (with |I| =

56) summarizes estimation results (see also Appendix G.1), which are very close to our original

estimation. Lastly, we also consider a non-parametric estimation proposed in Maman (2009), which

works for α> 1/2 only (see Appendix G.2 for more details). It gives the same results as our original

estimation. Since it is a priori unclear for a real-world system whether α > 1/2, our parametric

estimation method, which allows α∈ (0,1), is preferred.

Table 6 Estimated α and standard deviation of X

Number of shift types α̂ 95% CI for α̂ µ1−ασ̂ 95% CI for µ1−ασ̂
Day-of-week and day/night: |I|= 14 0.769 (0.543, 0.994) 0.344 (0.114, 1.034)

Day-of-week, day/night and seasons: |I|= 56 0.746 (0.558, 0.933) 0.362 (0.135, 0.902)

7.3. Two-Stage Prediction Model

To facilitate base and surge staffing decisions, we need to develop a two-stage prediction model

that is synchronized with these decision epochs.

At the base stage, which is several weeks before the start of the shift, there is very limited

information we can utilize for demand forecasting. The key features based on our analysis are the

day-of-the-week effect and the day-versus-night effect. The stratified historical averages based on

these features are able to capture 88.26% of the variability in shift-level arrival counts.

At the surge stage, which we assume is right before the start of the shift, we have access to more

real-time information. We employ a recently developed linear regression model in Hu et al. (2023)
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to forecast the realized arrival rate. The model utilizes the following five categories of features:

(i) Time-of-the-shift information, including season of the year, day of the week, day versus night,

and whether the shift takes place on, before, or after a national holiday; (ii) Previous-shift arrival

counts, including the shift-level arrival count 1 day before the shift, the shift-level arrival count 7

days before the shift (a week ago), and a moving average of shift-level arrival counts over the past

30 days; (iii) Patient severity, which is the average of the weighted sum of a total of 17 Charlson

comorbidity indices in ICD-10-CM coding for each patient over the past 3 days; (iv) Google trends,

including the Google search volume for the keywords “depression” and “flu” in New York State for

the week before the shift; (v) Weather forecast, including the minimum temperature, precipitation,

snow, wind, and whether the maximum temperature exceeds 86oF on the day of the shift. The

estimated coefficients for the covariates in the model are provided in Table 13 in Appendix I.2.

This linear regression model is able to capture 90.84% of the variability in shift-level arrival counts.

(Since we are fitting simple linear regression models, we use the entire one-year of data as the

training set.)

The root mean-square error (RMSE) of the prediction model is 15.860 at the base stage, and

14.009 at the surge stage. The real-time information is able to reduce the RMSE by 11.67%. That

said, what we are more interested in is the value of this gained accuracy in making staffing decisions.

We shall investigate this in the next subsection.

We use the random arrival-rate model with prediction error, i.e., (15), and estimate ν and the

distribution of Z next. We assume Z follows a normal distribution with zero mean; see Appendix

G.4 for the normal probability plot to validate this assumption. Then, we can estimate ν and the

standard deviation of Z following a similar procedure as that developed in Section 7.2 for α and

the standard deviation of X (the detailed estimation procedure is provided in Appendix G.3). This

gives us v̂= 0.508 and Z ∼N(0,1.067).

We conclude this subsection with two remarks. First, in situations where the surge-stage decision

epoch has a lead time (e.g., several hours before the start time of the focal shift), the surge-stage

prediction model needs to be modified by only using the available information at the decision

epoch. This is likely to reduce the prediction accuracy. Second, the base-stage prediction model

can be improved by including more features (e.g., holiday information) or using more advanced

prediction techniques. We view our results here as a simple proof of concept and refer to Hu et al.

(2023) for more informatics-oriented development on ED demand prediction.



34

7.4. ED-Adapted Two-Stage Staffing Rule

To examine the performance of the proposed two-stage staffing rule, we build a queueing model to

simulate the patient flow process in Milstein ED over 52 weeks from February 1, 2018 to January

31, 2019.

7.4.1. Model Calibration The hospital system is modeled as an Mt/G/Nt + M queue, a

multi-server queue with time-varying arrival rate at the hourly level, log-normal service time dis-

tribution, and time-varying staffing at the shift level, where the servers are the nurses. For a shift

of type i in the kth week, we assume that the realized arrival rate for that shift is equal to the

observed arrival count in data, L
(k)
i , 1≤ i≤ 14, 1≤ k≤ 52. The hourly arrival rate for each of the 12

hours in a shift is obtained by scaling L
(k)
i according to the empirical hourly proportion of arrivals

as illustrated in Figure 6. In what follows, we shall refer to the L
(k)
i ’s as the realized arrival rates.

As shown in Figure 5, the LOS can be well fitted by a lognormal distribution whose logarithm has a

mean equal to 1.597 and a standard deviation equal to 1.050. While waiting in the queue, patients

can leave the system without being seen after an exponentially distributed amount of patience time

with a mean equal to 27.5 hours (fitted using the maximum likelihood estimation; see Appendix G.5

for details). Patients are served in a FCFS manner and once a patient begins service, he/she will

not abandon the system. Note that in practice while patients within a severity class (e.g., within

the same ESI) are often served FCFS, this is not necessarily the case across different classes. As

we are interested in assessing the impact of the new staffing approach on system-level performance

(e.g. average waiting time across all patients), rather than on specific individual patients, FCFS is a

reasonable simplification. Furthermore, we consider a nurse-to-patient ratio of 1-to-3, which is the

number of patients that an ED nurse can treat simultaneously. We scale down the staffing levels

suggested by the staffing policies by the nurse-to-patient ratio to get the actual number of nurses

needed for the shift. We also assume the boarding patients require the same level of nursing care

as other ED patients (i.e., the LOS includes the boarding time). Note that in some EDs, boarding

patients may be taken care of by inpatient nurses rather than ED nurses. Thus, our assumption

gives a conservative estimation of ED nursing requirements.

At the end of each shift, patients who have not finished service are queued up in a FCFS manner

(according to their arrival times) for the nurses who are staffed for the upcoming shift to continue

treatment, and do not abandon the system while waiting to resume service. When calculating the

performance metrics, the waiting time includes the time he/she waits to be first evaluated by a

nurse upon arrival, as well as the period during which his/her treatment is in suspension due to the
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change of shifts. We remark that while there are different ways to handle patient hand-off at shift

transitions (such as having nurses work overtime or allowing multi-tasking), our assumption on

having the patients wait to resume service has practically insignificant impact on the system-level

performance.

In terms of the costs, we assume that the salary is $45 per hour for nurses who are staffed at

the base stage, and $67.5 ($45× 1.5) per hour for nurses who are staffed at the surge stage (Weiss

et al. 2011). We vary the holding and abandonment costs in our numerical experiments.

Figure 6 Proportion of patient arrivals by hour within day/night shift

(a) Day shift (b) Night shift

7.4.2. Adjustment to the Staffing Rules The queueing dynamics during each shift in the

ED are different from the stylized model considered in Section 2. In particular, based on our model

calibration in Section 7.4.1, i) the arrival rate is time-varying, ii) the service-time distribution is

lognormal (not exponential), and iii) each shift is only 12 hours, which may not be long enough for

the system to reach stationarity. We single out these deviations and run simulation experiments

to check the performance of our two-stage error policy (Appendix I.3). It turns out that our two-

stage error policy achieves robust performance to non-exponential service time distributions and

time-varying arrival rates. However, the fact that each shift only lasts for 12 hours and the arrival

rate for the day shift can be twice as large as that for the night shift degrades the performance of

our proposed policy. Specifically, since the night shift has a much lower arrival rate than the day

shift, the day shift usually starts with a lower patient volume than an otherwise stationary system.

Similarly, the night shift usually starts with a higher patient volume than an otherwise stationary

system. Our proposed policy based on the stylized model is not able to capture these transient

shift effects well. We next propose an adjustment to our two-stage error policy that takes these

transient shift effects into account. At the base stage, we increase the base staffing level for night
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shifts and decrease the base staffing level for day shifts based on the steady-state mean arrival

rates. Then at the surge stage, we further adjust the surge staffing level based on the current state

of the system, i.e., the number of patients in the system towards the end of the current shift.

Formally, the two-stage error policy is adjusted as follows:

Base Stage: For 1≤ i≤ 14, let N1,i denote the base staffing level for shift of type i under u2,ERR,

which is calculated using the base-stage prediction λ̂i. For a shift of type i, calculate the expected

steady-state queue length for an M/M/n+M queue with arrival rate λ̂i and number of servers

equal to N1,i, and denote it by Q̄i. Let ∆i denote the difference in the expected queue length

between two consecutive shifts, i.e., ∆i := Q̄i−1 − Q̄i, where Q̄0 ≡ Q̄14. The adjusted base-stage

staffing level is given by NAdj
1,i :=N1,i + ξ1∆i, where ξ1 ∈R is some base adjustment parameter to

be determined. Intuitively, the base-stage adjustment accounts for the difference in the expected

steady-state queue length for two adjacent shift types. For example, if the expected steady-state

queue length of shift (i− 1) is higher than that of shift i, e.g., when transitioning from a day shift

to a night shift, then the base staffing level for the ith shift is adjusted up to account for the high

number of patient handoffs from the previous shift.

Surge Stage: For 1≤ i≤ 14, 1≤ k≤ 52, let N
(k)
2,i denote the surge staffing level for shift of type

i in the kth week under u2,ERR, which is calculated using the surge-stage prediction ˆ̀(k)
i . For each

shift, calculate the expected steady-state queue length for an M/M/n+M queue with arrival rate

ˆ̀(k)
i and NAdj

1,i +N
(k)
2,i servers, and denote it by Q̄

(k)
i . Let Q

(k)
i be the number of patients in the

ED at the end of the previous shift, and let D
(k)
i :=Q

(k)
i − Q̄

(k)
i . The adjusted surge-stage staffing

level is given by N
(k),Adj
2,i := N

(k)
2,i + ξ2D

(k)
i , where ξ2 ∈ R is some surge adjustment parameter to

be determined. Intuitively, the surge-stage adjustment accounts for the concurrent difference in

the actual and expected steady-state queue length for the focal shift. For example, if the observed

queue length at the beginning of the focal shift is much higher than the expected value, then the

surge-stage staffing level is adjusted up to account for the high initial value.

When determining the base and surge adjustment parameters, we see from extensive numerical

experiments that setting ξ1 ∈ [4,8] and ξ2 ∈ [1,2] gives consistently good performance. Thus, we

set ξ1 = 5 and ξ2 = 1 in the subsequent numerical experiments and suggest using these values in

practice.

In what follows, we compare the ED-adapted two-stage error policy to the single-stage newsven-

dor solution using simulation. To make the comparison fair, a similar base adjustment is applied

to the single-stage newsvendor solution, i.e., NAdj
1,i =N1,i + 5∆i. For ease of reference, we keep the

same names and acronyms for these ED-adapted policies.
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We remark that the transient adjustment parameters, ξ1 and ξ2, can be optimized for different

systems, for example, by enumerating of all possible combinations. In Appendix I.4, we show

through numerical experiments that setting ξ1 = 5 and ξ2 = 1 in general achieves good and robust

performance. We also remark that in situations where the surge-stage decision epoch has a lead

time, the surge-stage staffing adjustment can be modified by using the observed queue length at

the surge-stage decision epoch.

7.4.3. Performance Evaluation In practice, it can be challenging to calibrate the holding

and abandonment costs. To circumvent this difficulty, we fix the abandonment cost to be 1.5 times

the holding cost, and calculate the staffing levels for a wide range of holding costs under each

policy. In particular, for each holding cost, we calculate the staffing levels under u2,ERR and u1,NV ,

and simulate the ED over 52 weeks to estimate various system performance measures, such as the

average waiting time, average queue length, percentage of patients who left without been seen, and

percentage of patients whose waiting time exceeds 60 minutes. The same experiment is repeated 5

times using different random seeds to construct the 95% confidence intervals for the performance

measures. This allows us to construct a tradeoff curve between the staffing costs and the system

performances under different staffing rules; see Figure 7. We observe that the tradeoff curve of

u2,ERR is strictly below those of u1,NV . This suggests that for a fixed system performance target,

we are able to achieve it with a much lower staffing cost under the two-stage staffing policy than

the single-stage staffing policy.

Given some specific performance targets, we calculate the staffing cost needed to achieve the

desired service quality under each policy. Table 7 lists the savings in the annual staffing cost of

u2,ERR in comparison to u1,NV in order to guarantee that (i) the average queue length is below 5,

or (ii) the average waiting time is below 30 minutes, or (iii) the percentage of patients who left

without been seen is less than 2%, or (iv) less than 20% of patients wait for more than 60 minutes.

We observe that we are able to achieve 9.799% to 16.492% ($1.644 M to $3.059 M) in annual cost

savings for different performance requirements. In a setting where many hospitals are operating

on thin margins, such savings can have a significant impact on the bottom line. Lastly, recall from

Section 7.3 that the surge-stage linear regression model is able to improve the prediction accuracy

in terms of RMSE at the base stage by 11.16%. Our numerical results suggest that even with

this modest gain in prediction accuracy, this information, together with the real-time queue length

information, can lead to significant cost savings while ensuring timely access to care.

In addition to examining the tradeoff curves between various performance targets and the staffing

costs under u2,ERR and u1,NV , we also compare the expected total costs under these two policies for
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some fixed cost parameters. Specifically, we vary the holding cost so that its ratio to the base-stage

staffing cost ranges from 0.7 to 1.7 in increments of 0.2. The other parameters and experiment

setups are the same as those in Figure 7. Figure 8 below demonstrates the expected total costs

over 52 weeks under u2,ERR and u1,NV for a variety of holding costs. As expected, we observe that

u2,ERR outperforms u1,NV in all scenarios.

We conclude this section by acknowledging that despite our efforts to comprehensively incor-

porate a number of ED patient-flow characteristics, the simulation experiments are not able to

capture many important nuances in reality. Practitioners need to take this limitation into account

when interpreting our reported cost savings.

Figure 7 Tradeoff between staffing cost and quality of service
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(a) Average queue length
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(b) Average waiting time
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(c) % patients LWBS
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(d) % patients waiting > 60 min

Table 7 Annual saving in staffing cost to achieve target performance

Policy
Avg queue
length < 5

Avg waiting
time < 30 min

% patients
LWBS < 2%

< 20% patients
wait > 60 min

V.s. u1,NV $3.059 M (16.407 %) $2.989 M (16.492 %) $1.644 M (9.799%) $2.786 M (15.547%)
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Figure 8 Expected total costs per shift for fixed cost parameters
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8. Conclusion

In this paper, we study the prediction-driven surge staffing problem motivated by ED nurse staffing.

A key tradeoff in this problem is between base-stage staffing, which is cheaper but faces a higher

level of uncertainty versus surge-stage staffing, which is more expensive but faces a lower level

of uncertainty. Our analysis quantifies when surge staffing is beneficial and provides prescriptive

staffing rules that are highly interpretable, easy to implement, and achieve near-optimal perfor-

mance. Our analysis demonstrates that the benefits of surge staffing are substantial when the

arrival-rate uncertainty dominates the system stochasticity. To capture this benefit, at the base

stage, our proposed policy solves a two-stage newsvendor problem to serve the expected offered

load plus an uncertainty hedging term. At the surge stage, we increase the staffing level to meet the

realized demand plus a square-root hedging against the system stochasticity. We then extend the

analysis to study the effect of prediction errors at the surge stage. Lastly, to facilitate implementa-

tion in the actual ED setting, we develop a unified framework that includes parameter estimation,

building a two-scale prediction model that is synchronized with the staffing decision epochs, and

modifying the prediction-driven staffing rule to account for the transient-shift effects. Using data

from the Milstein ED in NYP CUMC, we demonstrate via high-fidelity simulation that our pro-

posed staffing rule can achieve significant cost savings.

We conclude by discussing several limitations of our work and identifying a few interesting future

research directions.

First, we assume a linear waiting/holding cost for analytical tractability. This assumption is

reasonable when the waiting time is relatively short, i.e., where a linear interpolation is accurate,

which is the case in the QD (quality-driven) and QED regimes. These are also the regimes where

the system operates under our proposed two-stage QED rule. When non-linear holding costs are
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concerned, we can heuristically modify the two-stage newsvendor solution by applying the holding

cost function to the approximating queue length in (8); see Appendix I.5 for details on the heuristic

and some numerical experiments. That said, it would be interesting to extend the model and

analysis to non-linear, especially convexly increasing, waiting costs.

Second, we do not explicitly model multiple patient classes. Heuristically, we can incorporate

multiple patient classes by first predicting the demand and making the corresponding staffing

decisions for each class individually. Then, we can pool the staffing decisions for each class together.

The heuristic development and numerical experiments are provided in Appendix I.5. A more refined

extension to a multi-class queue is an interesting future research direction. To do so, we need to

jointly optimize the patient scheduling decision, e.g., which patient class to prioritize, and the

staffing decision.

Third, in our work, we focus on the staffing problem for EDs and do not consider the use of

floating nurses. This is because many hospitals only have a single ED and ED nurses require specific

training and qualification. Floating nurse pools are commonly employed for inpatient wards, where

similar nursing skill sets are required. There, floating nurses are scheduled in advance (i.e., at the

base stage) but can be assigned to a specific unit in near real-time (i.e., at the surge stage). The

use of the floating nurse pools to handle demand uncertainty for various inpatient wards is an

interesting future research direction.

Fourth, while our theoretical model is unable to capture all features of the real ED (e.g., time-

varying arrivals, lognormal service times, etc.), we find that it is able to capture core tradeoffs to

provide insights into the management of ED staffing. That said, we also find that transient-shift

effects can have a measurable impact on system performance. As such, it would be interesting

as future research to explore a transient (rather than steady-state) analysis of our system. Since

closed-form expressions for transient queuing dynamics are limited, new approximation techniques

may need to be developed.

Fifth, our model considers two discrete staffing epochs with different levels of demand informa-

tion. Our view of the two-stage decision is informed by the current nurse staffing practice in hospi-

tals. An interesting extension is to examine more granular decision epochs or even a continuous-time

model, where both demand information and staffing cost increase as the time approaches the start

of the shift. This requires a more granular model of arrival-rate uncertainty, such as those developed

in Zhang et al. (2014), Daw and Pender (2018). However, increasing the granularity of decision

epochs may also come with certain implementation challenges from the practical perspective.
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Appendix A: Roadmap for The Main Proofs

In this section, we introduce the notations used throughout the appendices, present a useful lemma, and give

a roadmap for the organization of the main proofs.

Let α ∈ (0,1). Consider an admissible staffing policy π ∈Π with base staffing level N1 and surge staffing

level N2(N1,Λ). For any realized arrival rate `, the total cost under π is denoted by

Cπ(`) := c1N1 + c2N2(N1, `) + (h+ aγ)E [Q(N1 +N2(N1, `), `)] . (22)

We also write

Cπ(Λ) := c1N1 + c2N2(N1,Λ) + (h+ aγ)E [Q(N1 +N2(N1,Λ),Λ)|Λ] , and Cπ :=E [C(Λ)] .

We use the following notations, in addition to the notations introduced in the main paper:

1. For an M/M/m+M queue with m servers and arrival rate λ, we let P (AB,m,λ) denote the steady-

state abandonment probability, W (m,λ) denote the steady-state waiting time, and V (m,λ) denote the

steady-state virtual waiting time. V (m,λ) is the time that a patient with infinite patience would wait

and W (m,λ) is the minimum of V (m,λ) and the patient’s patience time. Let 1(AB,m,λ) be the indicator

of whether or not a customer arriving to a system in steady-state will abandon, i.e., P (AB,m,λ) =

E
[
1(AB,m,λ)

]
. In what follows, we use P (AB,m,Λ) to denote the steady-state abandonment probability

conditional on the random arrival rate, i.e., P (AB,m,Λ) := E
[
1(AB,m,Λ)|Λ

]
. In particular, P (AB,m,Λ)

is a random variable. Similar convention for notation has been used in the literature; see, e.g., Koçağa

et al. (2015).

2. For an M/M/m/m queue with m servers and arrival rate λ, we let P (BL,m,λ) denote the steady-

state blocking probability, L(m,λ) denote the steady-state loss rate, and 1(BL,m,λ) be the indicator

of whether or not a customer will be blocked in steady state. Note that L(m,λ) = λP (BL,m,λ),

and P (BL,m,λ) = E
[
1(BL,m,λ)

]
. In what follows, we let P (BL,m,Λ) denote the steady-state blocking

probability conditional on the random arrival rate, i.e., P (BL,m,Λ) := E
[
1(BL,m,Λ)|Λ

]
. Similar to

P (AB,m,Λ), P (BL,m,Λ) is a random variable.

3. For functions f : R→R and g :R→R, we use the relation f ∼ k to denote that limλ→∞ f(λ)/k(λ) = 1.

The following lemma will be used in the subsequent development.

Lemma 1 For the multi-server queue with abandonment,

E [Q(N1 +N2(N1,Λ),Λ)|Λ = `]≤max{µ/γ,1} ((`/µ−N1−N2(N1, `))
+

+
√

4π/µ
√
`+ 1/ log 2). (23)

Proof: We conduct the proof in three cases: µ= γ, µ< γ, and µ> γ.

Case 1: µ= γ. In this case, Lemma 3 in Bassamboo et al. (2010) directly implies that

E [Q(N1 +N2(N1,Λ),Λ)|Λ = `]≤ (`/µ−N1−N2(N1, `))
+

+
√

4π/µ
√
`+ 1/ log 2,

from which (23) follows.
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Case 2: µ < γ. In this case, we consider a sequence of auxiliary systems with abandonment rate µ (as

opposed to γ), and every other parameter is held the same as in the original system. Comparing the underlying

Markov chains of these two sequences of systems, we see that the steady-state queue length in the auxiliary

system is stochastically larger than that in the original system. In particular, let E
[
Q̃(N1 +N2(N1,Λ),Λ)|Λ

]
denote the conditional expectation of the steady-state queue in the auxiliary system. It holds that

E [Q(N1 +N2(N1,Λ),Λ)|Λ = `]≤E
[
Q̃(N1 +N2(N1,Λ),Λ)|Λ = `

]
.

We can apply the same arguments as in Case 1 to the auxiliary system, and infer (23).

Case 3: µ > γ. In this case, we consider a sequence of auxiliary systems with abandonment rate µ (as

opposed to γ), and every other parameter is held the same as in the original system. Following similar argu-

ments as in the proof of Theorem 3 in Bassamboo et al. (2010), we get that the steady-state abandonment rate

in the auxiliary system is larger than that in the original system. In particular, let P
(
ÃB,N1 +N2(N1,Λ),Λ

)
denote the steady-state abandonment rate in the auxiliary system. It holds that

P (AB,N1 +N2(N1, `), `)≤ P
(
ÃB,N1 +N2(N1, `), `

)
.

Since the steady-state abandonment rate must be equal to the steady-state arrival rate of abandoning

patients, we have

µE
[
Q̃(N1 +N2(N1,Λ),Λ)|Λ = `

]
= `P

(
ÃB,N1 +N2(N1, `), `

)
,

and

γE [Q(N1 +N2(N1,Λ),Λ)|Λ = `] = `P (AB,N1 +N2(N1, `), `) .

Therefore,

E [Q(N1 +N2(N1,Λ),Λ)|Λ = `] = (`/γ)P (AB,N1 +N2(N1, `), `)

≤ (`/γ)P
(
ÃB,N1 +N2(N1, `), `

)
= (µ/γ)E

[
Q̃(N1 +N2(N1,Λ),Λ)|Λ = `

]
.

We can apply the same arguments as in Case 1 to the auxiliary system, and (23) follows. Q.E.D.

Appendices B–F contain the proofs of the main results. In Appendix B, we prove Proposition 1 which

specifies the nontrivial cost parameter regime for the staffing problem. In Appendix C, we introduce a general

family of two-stage staffing policies for all α ∈ (0,1). We refer to this policy as the two-stage uncertainty

hedging rule, and derive its asymptotic performance in Appendices C.1 (for α> 1/2) and C.2 (for α≤ 1/2).

In Appendix C.3, we prove that the two-stage uncertainty hedging rule with properly selected parameters

achieves an optimality gap of o(λmax{1/2,α}) compared to the exact two-stage optimum. As the two-stage

newsvendor solution is a special case of the two-stage two-stage uncertainty hedging rule when α> 1/2, the

optimality gap of the two-stage newsvendor solution (Theorem 2) follows (see Appendix C.4). In Appendix

D, we prove Theorem 1 which characterizes the cost saving of the optimal two-stage staffing rule compared

to the optimal single-stage policy. This is done by combining the cost quantification under different near-

optimal staffing rules and the corresponding optimality gap results. For example, when α > 1/2, we first

compare the cost under the two-stage newsvendor rule and the single-stage newsvendor rule. We then use
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the optimality gap of the single-stage newsvendor solution (compared to the single-stage optimal) and the

optimality gap of the two-stage newsvendor solution (compared to the two-stage optimal) to quantify the

cost saving. In Appendix E, we prove Theorem 3, where we show that the two-stage square-root staffing rule

refines the two-stage newsvendor solution and further reduces the optimality gap. Lastly in Appendix F, we

analyze the two-stage staffing problem with surge-stage prediction errors. The results for small prediction

errors (Proposition 2) are proved in Appendix F.1 and the results for moderate to large prediction errors

(Proposition 3) are proved in Appendix F.2

Appendix B: Proof of Proposition 1

Proof: Consider an admissible staffing policy π ∈ Π with base staffing level N1 and surge staffing level

N2(N1,Λ). For any realized arrival rate `, we let B1(N1,N2(N1, `), `) denote the steady-state number of busy

servers among those that are staffed at the base stage, and let B2(N1,N2(N1, `), `) denote the steady-state

number of busy servers among those that are staffed at the surge stage. It holds that

B1(N1,N2(N1, `), `)≤N1 and B2(N1,N2(N1, `), `)≤N2(N1, `). (24)

Note that for B1(N1,N2(N1, `), `) and B2(N1,N2(N1, `), `) to be well-defined, we need to specify the assign-

ment policy of patients to the base and surge servers. Since the model does not distinguish base and surge

servers (i.e., they provide the same quality of service), we assume that patients are randomly assigned to the

available servers with equal probability. That said, (24) holds regardless of the assignment policy.

Proof of (I). Following (22), the total cost satisfies

Cπ(`) = c1N1 + c2N2(N1, `) + (h+ aγ)E [Q(N1 +N2(N1, `), `)]

≥ c1E [B1(N1,N2(N1, `), `)] + c2E [B2(N1,N2(N1, `), `)] +

(
hµ

γ
+ aµ

)
γ

µ
E [Q(N1 +N2(N1, `), `)]

≥min

{
c1, c2,

hµ

γ
+ aµ

}(
E [B1(N1,N2(N1, `), `)] +E [B2(N1,N2(N1, `), `)] +

γ

µ
E [Q(N1 +N2(N1, `), `)]

)
=

(
hµ

γ
+ aµ

)
`

µ

=

(
h

γ
+ a

)
`,

(25)

where the second to last equality in (25) follows from the steady-state balance equation:

`= µE [B1(N1,N2(N1, `), `)] +µE [B2(N1,N2(N1, `), `)] + γE [Q(N1 +N2(N1, `), `)]

`

µ
=E [B1(N1,N2(N1, `), `)] +E [B2(N1,N2(N1, `), `)] +

γ

µ
E [Q(N1 +N2(N1, `), `)] .

(26)

Moreover, the cost lower bound in (25) can be achieved by staffing zero base and zero surge servers. To

see this, let π0 denote the “zero-staff” policy under which all customers abandon. The long-run average cost

for the realized arrival rate ` under π0 is

Cπ0
(`) = c10 + c20 + (h+ aγ)E [Q(0, `)] = (h+ aγ)E [Q(0, `)] .

By flow balance, the steady-state rate at which abandoning customers arrive must be equal to the abandon-

ment rate, namely,

`= γE [Q(0, `)] ,
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which gives that Cπ0
(`) = (h+ aγ) `/γ. Hence, π0 achieves the cost lower bound, and is optimal to the

optimization problem (2).

Proof of (II). Based on π, we construct another admissible policy π′ where π′ := (0,N2(N1,Λ) +N1).

Namely, if π assigns N1 base servers and N2(N1,Λ) surge servers, then π′ assigns zero base servers and

N2(N1,Λ) +N1 surge servers. By assumption, either hµ/γ + aµ≥ c1 ≥ c2 or c1 ≥ hµ/γ + aµ≥ c2. It follows

from (22) that Cπ′(Λ)≤Cπ(Λ). Thus, it is optimal to set N∗1 = 0.

Proof of (III). Based on π, we construct another admissible policy π′ where π′ := (N1,0). Namely, π′

assigns the same number of base servers as π but zero surge servers for any realized arrival rate. Following

(22), the total cost satisfies

Cπ(`) = c1N1 + c2N2(N1, `) + (h+ aγ)E [Q(N1 +N2(N1, `), `)]

≥ c1N1 + c2E [B2(N1,N2(N1, `), `)] +

(
hµ

γ
+ aµ

)
γ

µ
E [Q(N1 +N2(N1, `), `)]

≥ c1N1 +

(
hµ

γ
+ aµ

)(
E [B2(N1,N2(N1, `), `)] +

γ

µ
E [Q(N1 +N2(N1, `), `)]

)
≥ c1N1 +

(
hµ

γ
+ aµ

)(
E [B2(N1,0, `)] +

γ

µ
E [Q(N1, `)]

)
= c1N1 +

(
hµ

γ
+ aµ

)(
0 +

γ

µ
E [Q(N1, `)]

)
= Cπ′(`),

where the last inequality follows by observing from (26) that

E [B1(N1,N2(N1, `), `)] +E [B2(N1,N2(N1, `), `)] +
γ

µ
E [Q(N1 +N2(N1, `), `)]

=E [B1(N1,0, `)] +E [B2(N1,0, `)] +
γ

µ
E [Q(N1, `)]

=
`

µ
,

and that

E [B1(N1,N2(N1, `), `)]≤E [B1(N1,0, `)] .

Thus, it is optimal to set N∗2 (N1,Λ) = 0. Q.E.D.

Appendix C: Two-Stage Uncertainty Hedging Rule

For most of the theoretical development starting from this section, we consider the asymptotic behavior of

the system as the mean arrival rate λ grows without bound. Thus, throughout Appendices C–E, we add

superscript λ to all the quantities that scale with λ. For example, we add the superscript λ in Nλ
1 and

Nλ
2 (Nλ

1 ,Λ
λ) to denote the dependence of the staffing levels on the mean arrival rate. We use U to denote the

set of all sequences of admissible staffing polices. The set U contains policies in form of u= {πλ : πλ ∈Πλ},

where u is a sequence of policies that specifies a two-stage staffing decision for each system along the sequence.

Whenever needed, we add the subscript u to the costs (e.g., Cλu) to mark the dependence of the cost on the

staffing policy explicitly.

To facilitate the asymptotic analysis, we re-center and scale the total cost by defining

Ĉλu(Λ) :=
Cλu(Λ)− c1λ/µ
(λ/µ)max{α,1/2} , and Ĉλu := E

[
Ĉλu(Λ)

]
. (27)
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To simplify notation, we denote the sum of the surge-stage staffing and queueing-related cost by

Rλ(Nλ
1 ,N

λ
2 (Nλ

1 , `
λ), `λ) := c2N

λ
2 (Nλ

1 , `
λ) + (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

]
. (28)

Replacing the realized arrival rate `λ with Λλ in (28), we define

Rλ(Nλ
1 ,N

λ
2 (Nλ

1 ,Λ
λ),Λλ) := c2N

λ
2 (Nλ

1 ,Λ
λ) + (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

]
,

where the expectation operator on the right-hand side is with respect to the queue process. Note that

Rλ(Nλ
1 ,N

λ
2 (Nλ

1 , `
λ), `λ) is a constant while Rλ(Nλ

1 ,N
λ
2 (Nλ

1 ,Λ
λ),Λλ) is a random variable.

The proofs of the main theorems require analyzing near-optimal staffing polices. In this section, we propose

the two-stage uncertainty hedging rules and denote it by u2,UH . We characterize the system performance

under u2,UH as the mean arrival rate λ increases to infinity. We also show that the two-stage newsvendor

solution is a special case of the two-stage uncertainty hedging rule. The proof of Theorem 2 follows.

Consider the following staffing policy, which we denote as u2(β1, β2(β1,X)). At the base stage, the base

staffing level is set as

Nλ
1 = λ/µ+β1 (λ/µ)

max{α,1/2}
+ o((λ/µ)

max{α,1/2}
),

for β1 ∈R. Note that the base staffing level is set to meet the mean demand, together with a hedging that

is of the same order as the arrival-rate uncertainty or system stochasticity, whichever is larger. At the surge

stage, after the random arrival rate realizes, the surge staffing level is set to

Nλ
2 (Nλ

1 ,Λ
λ) = β2(β1,X) (λ/µ)

max{α,1/2}
+ oUI((λ/µ)

max{α,1/2}
),

where the coefficient β2(β1,X) ∈ R+ depends on both the base staffing level and the realized arrival rate.

Note that the surge staffing level serves as another hedging against the larger part of arrival-rate uncertainty

and system stochasticity. Importantly, the parameter (β1, β2(β1,X)) does not scale with λ.

We also denote

Dλ
1 :=Nλ

1 −λ/µ−β1 (λ/µ)
max{α,1/2}

= o((λ/µ)
max{α,1/2}

)

and

Dλ
2 (Nλ

1 ,Λ
λ) :=Nλ

2 (Nλ
1 ,Λ

λ)−β2(β1,X) (λ/µ)
max{α,1/2}

= oUI((λ/µ)max{α,1/2}).

Note that Dλ
1 is a constant. On the other hand, Dλ

2 (Nλ
1 ,Λ

λ) may depend on the realization of Λλ and is

thus a random variable. Recall from Section 1.3 that by Dλ
2 (Nλ

1 ,Λ
λ) = oUI((λ/µ)max{α,1/2}), we mean that

Dλ
2 (Nλ

1 ,Λ
λ)/ (λ/µ)

max{α,1/2} → 0 as λ→∞ with probability 1, and there exists some random variable Y

with E [Y ]<∞ such that

|Dλ
2 (Nλ

1 ,Λ
λ)|/ (λ/µ)

max{α,1/2}
<Y for all λ> 0. (29)

We remark that (29) is not restrictive and allows for a wide range of capacity prescriptions. Examples for

Dλ
2 (Nλ

1 ,Λ
λ) include (λ/µ)τ and (λ/µ)τX for τ ∈ (0,max{α,1/2}), etc.

The two-stage uncertainty hedging rule is defined by properly optimizing the staffing parameter

(β1, β2(β1,X)) in u2(β1, β2(β1,X)). In particular, we first derive a proper limit for the scaled total cost under

u2(β1, β2(β1,X)). Then, (β∗1 , β
∗
2(β∗1 ,X)) is defined as the optimal solution to the limiting cost function.
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C.1. Two-Stage Uncertainty Hedging Rule for α> 1/2

For any realized arrival rate `λ = λ+xλαµ1−α, under u2(β1, β2(β1, x)) with parameters β1 and β2(β1, x), the

total staffing level can be written as

Nλ
1 +Nλ

2 (Nλ
1 , `

λ) = λ/µ+ (β1 +β2(β1, x)) (λ/µ)
α

+ o((λ/µ)α)

=
λ+xλαµ1−α

µ
+

(λ/µ)
α

(β1 +β2(β1, x)−x)

(λ/µ+ (λ/µ)
α
x)
α

(
λ+λαµ1−αx

µ

)α
+ o((λ/µ)α)

= `λ/µ+ (β1 +β2(β1, x)−x)
(
`λ/µ

)α
+ o((`λ/µ)α).

(30)

Let β̃ := β1 +β2(β1, x)−x. We first prove an auxiliary lemma on the asymptotic behavior of the steady-state

probability of waiting and steady-state probability of abandonment, which facilitates our subsequent analysis

on the asymptotic behavior of Rλ. The lemma is adapted from Theorem 4.1 and Theorem 4.2 in Maman

(2009).

Lemma 2 Assume that α > 1/2. For any sequence of realized arrival rate `λ = λ + xλαµ1−α, under

u2(β1, β2(β1, x)) with parameters β1 and β2(β1, x), the multi-server queue with abandonment satisfies:

(i) If β1 + β2(β1, x)>x, then the delay probability converges to zero exponentially fast as λ→∞. Specifi-

cally, for λ large enough,

P
(
W (Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)> 0

)
<

1

β̃
√

2π

1

(Nλ
1 +Nλ

2 (Nλ
1 , `

λ))α−1/2
exp

{
− (`λ/µ− (Nλ

1 +Nλ
2 (Nλ

1 , `
λ)) + 1)2

2((Nλ
1 +Nλ

2 (Nλ
1 , `

λ))− 1)

}
.

The probability to abandon of delayed patients decreases at rate 1/(Nλ
1 +Nλ

2 (Nλ
1 , `

λ))α, i.e.,

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ|V (Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)> 0

)
∼ 1

(Nλ
1 +Nλ

2 (Nλ
1 , `

λ))α
γ

µβ̃
.

(ii) If β1 +β2(β1, x)<x, then the delay probability converges to 1 exponentially fast as λ→∞. Specifically,

for λ large enough,

P
(
W (Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ) = 0

)
<

1

|β̃|µ1−α(`λ)α
exp

{
− β̃

2

8γ
µ2−2α(`λ)2α−1

}
.

The probability to abandon of delayed patients decreases at rate 1/(Nλ
1 +Nλ

2 (Nλ
1 , `

λ))1−α, i.e.,

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ|V (Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)> 0

)
∼ |β̃|

(Nλ
1 +Nλ

2 (Nλ
1 , `

λ))1−α .

Proof: Following (30), for total staffing level of the form

`λ/µ+ (β1 +β2(β1, x)−x)
(
`λ/µ

)α
+ f(`),

where f(`λ) = o(
√
`λ), the statement of Lemma 2 follows directly from Theorem 4.1 and Theorem 4.2 from

Maman (2009). The work left is to generalize the result to staffing level of the form in (30), where f(`λ) =

o((`λ)α).

To this end, we show that the proofs of Theorem 4.1 and Theorem 4.2 in Maman (2009) can be generalized

to the case where f(`λ) = o((`λ)α). Indeed, exactly the same lines of derivation go through when f(`λ) =

o((`λ)α) (as opposed to f(`λ) = o(
√
`λ)). Just as in Maman (2009), the results follow from Lemmas 4.2 and
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4.3 which need to be adapted to this more generalized setting. We next illustrate the generalization of Lemma

4.2 to the general case where f(`λ) = o((`λ)α). The other proofs are generalized similarly.

In the proof of Lemma 4.2 in Maman (2009), four places utilize the fact that f(`λ) = o(
√
`λ). We discuss

them one by one. For the rest of this proof, we assume that β̃ > 0, as in the proof of Lemma 4.2. All numbering

of the equations refers to those in Section 4 of Maman (2009).

First, let Ḡ(u) := e−γu denote the ccdf of the patience time distribution. Following (4.44) and using the

definition of δ in (4.40), take

γ̃ :=
1− Ḡ(δ/2)

2
> 0.

Since Ḡ(u)< 1 for all u> 0, and Ḡ(u)− 1<−2γ̃ for all u> δ/2, we get that for λ large enough,

`λ(Ḡ(u)− 1)− β̃(`λ)αµ1−α− f(`λ)µ≤−β̃(`λ)αµ1−α, for all u> 0,

and

`λ(Ḡ(u)− 1)− β̃(`λ)αµ1−α− f(`λ)µ≤−γ̃`λ, for all u> δ/2.

Therefore, (4.45) and (4.46) hold for the case where f(`λ) = o((`λ)α).

Second, in (4.51), define the function

r(`λ) :=
−β̃(`λ)αµ1−αx− f(`λ)µx

β̃µ1−αx
.

Note that for f(`λ) = o((`λ)α), we still have r(`λ)∼ (`λ)α. Therefore, (4.51) still holds by applying Lemma

2.1 in Maman (2009) with m= 0, k1 = α, l1 = 1, k2 = 1, l2 = 2.

Third, utilizing the same fact that r(`λ)∼ (`λ)α, (4.55) goes through by applying Lemma 2.1 in Maman

(2009) with m= 1, k1 = α, l1 = 1, k2 = 1, l2 = 2.

Lastly, for

n :=Nλ
1 +Nλ

2 (Nλ
1 , `

λ) = `λ/µ+ β̃
(
`λ/µ

)α
+ o((`λ/µ)α),

it holds that
(`λ/µ−n+ 1)2

2(n− 1)
∼ β̃2

µ2α−1
(`λ)2α−1,

so the last line in the proof of Lemma 4.2 goes through. Q.E.D.

Lemma 3 Assume that α > 1/2. For any sequence of realized arrival rates `λ = λ + xλαµ1−α, under

u2(β1, β2(β1, x)) with parameters β1 and β2(β1, x), we have

1

(λ/µ)α
Rλ(Nλ

1 ,N
λ
2 (Nλ

1 , `
λ), `λ)→ r̂(β1, β2(β1, x), x) as λ→∞,

where the function ẑ :R×R+×R→R+ is defined as

r̂(β1, β2(β1, x), x) :=

{
c2β2(β1, x) if β1 +β2(β1, x)≥ x
c2β2(β1, x) + (hµ/γ+ aµ) (x−β1−β2(β1, x)) if β1 +β2(β1, x)<x.

(31)
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Proof: It follows from (2.8)–(2.11) in Maman (2009) that when the patience time is exponentially

distributed, we have

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ

)
= P

(
AB,Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ|V (Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)> 0

)
P
(
W (Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)> 0

)
.

By Lemma 2 and the flow balance equation that

`λP
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ

)
= γE

[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

]
,

the following cases hold:

(i) If β1 +β2(β1, x)>x, then for λ large enough,

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ

)
<

γ

µβ̃2
√

2π

1

(Nλ
1 +Nλ

2 (Nλ
1 , `

λ))2α−1/2
exp

{
− (`λ/µ− (Nλ

1 +Nλ
2 (Nλ

1 , `
λ)) + 1)2

2((Nλ
1 +Nλ

2 (Nλ
1 , `

λ))− 1)

}
.

Therefore,

lim
λ→∞

1√
λ/µ

E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

]
= 0. (32)

(ii) If β1 +β2(β1, x)<x, then for λ large enough,

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ

)
∼ |β̃|

(Nλ
1 +Nλ

2 (Nλ
1 , `

λ))1−α .

Therefore,

lim
λ→∞

1

(λ/µ)α
E
[
Q(Nλ

1 ,N
λ
2 (Nλ

1 , `
λ), `λ)

]
=
µ

γ
(x−β1−β2(β1, x)). (33)

Lastly, when β1 +β2(β1, x) = x, we get from Lemma 1 that

E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

]
≤max{µ/γ,1}

((
`λ/µ−Nλ

1 −Nλ
2 (Nλ

1 , `
λ)
)+

+
√

4π/µ
√
`λ + 1/ log 2

)
= o((λ/µ)α) + max{µ/γ,1}

√
4π/µ

√
`λ + max{µ/γ,1}/ log 2.

Then,

lim
λ→∞

1

(λ/µ)α
E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

]
= 0. (34)

The statement of the lemma then follows from (32), (33), and (34). Q.E.D.

Based on Lemma 3, let β∗1 and β∗2(β1,X) be the optimal solution to

min
β1∈R

{
c1β1 +E

[
min

β2(β1,X)∈R+

r̂(β1, β2(β1,X),X)

]}
, for ẑ defined in (31).

It is straightforward to derive that

β∗1 = arg min
β∈R

c1β+ c2E
[
(X −β)+

]
= F̄−1

X (c1/c2) , and β∗2(β1,X) = (X −β1)+. (35)

Then, the two-stage uncertainty hedging rule is defined as u2(β1, β2(β1,X)) with parameters β∗1 and β∗2(β∗1 ,X)

in (35). Note that u2,UH is exactly the two-stage newsvendor solution in Definition 1.

The next lemma establishes the asymptotic performance of u2,UH .
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Lemma 4 Assume that α> 1/2. Under the two-stage uncertainty hedging rule defined in (35) (equivalently,

the two-stage newsvendor solution), we have

Ĉλ→ c1β
∗
1 +E [r̂(β∗1 , β

∗
2(β∗1 ,X),X)] as λ→∞,

for ẑ defined in (31).

Proof: It follows from Lemma 3 that

Ĉλ(Λλ)→ c1β
∗
1 + r̂ (β∗1 , β

∗
2(β∗1 ,X),X) w.p.1 as λ→∞.

Hence, to prove the claim, it is sufficient to show that

lim
λ→∞

E
[
Ĉλ(Λλ)

]
=E

[
lim
λ→∞

Ĉλ(Λλ)
]

(36)

To this end, we utilize the dominated convergence theorem.

Note that

Ĉλ(Λλ) =c1β
∗
1 + c2β

∗
2(β∗1 ,X) +

1

(λ/µ)α
(
Dλ

1 +Dλ
2 (Nλ

1 ,Λ
λ)
)

+
1

(λ/µ)α
(h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

]
.

(37)

For the first two terms on the right-hand side of (37), it follows from the definition of β∗2(β∗1 ,X) that

|c1β∗1 |+ |c2β∗2(β∗1 ,X)| ≤ c2 (|β∗1 |+ |X|) ,

where recall that E [|X|]<∞.

For the third term on the right-hand side of (37), note that Dλ
1 is a constant that is o((λ/µ)α). This,

together with (29), implies that there exists some random variable Ỹ with E[Ỹ ]<∞ such that

1

(λ/µ)α
(
|Dλ

1 |+ |Dλ
2 (Nλ

1 ,Λ
λ)|
)
< Ỹ .

For the last term on the right-hand side of (37), we utilize Lemma 1 to get that

E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

]
≤max{µ/γ,1}

((
Λλ/µ−Nλ

1 −Nλ
2 (Nλ

1 ,Λ
λ)
)+

+
√

4π/µ
√

Λλ + 1/ log 2
)

≤max{µ/γ,1}
((

Λλ/µ−Nλ
1

)+
+
√

4π/µ
√

Λλ + 1/ log 2
)

= max{µ/γ,1}
((

(X −β∗1) (λ/µ)
α−Dλ

1

)+
+
√

4π/µ
√
λ/µ+Xλαµ1−α + 1/ log 2

)
≤max{µ/γ,1}

(
(|X|+ |β∗1 |) (λ/µ)

α
+ |Dλ

1 |+
√

4π/µ
√
λ/µ+

√
4π/µ

√
|X|λαµ1−α + 1/ log 2

)
.

(38)

In (38), Dλ
1 = o((λ/µ)α) is a constant. In addition, for λ large enough, we have

1

(λ/µ)α

√
4π/µ

√
|X|λαµ1−α ≤

√
4π/µ

√
|X|.

By Jensen’s inequality, E
[√
|X|
]
≤
√

E [|X|] <∞. Therefore, there exists some random variable Y with

E [Y ]<∞, such that
1

(λ/µ)α
(h+ aγ)E

[
Qλ(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

]
≤ Y.

Therefore, |Ĉλ(Λλ)| in (37) is uniformly bounded by an integrable random variable, and (36) is justified.

Q.E.D.
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C.2. Two-Stage Uncertainty Hedging Rule for α≤ 1/2

Recall that φ and Φ are the pdf and cdf of the standard normal random distribution, respectively. The hazard

rate of the standard normal distribution is H(t) = φ(t)/Φ(−t), for t∈R.

Lemma 5 Assume that α ≤ 1/2. For any sequence of realized arrival rate `λ = λ + xλαµ1−α, under

u2(β1, β2(β1, x)) with parameters β1 and β2(β1, x), we have

1√
λ/µ
Rλ(Nλ

1 ,N
λ
2 (Nλ

1 , `
λ), `λ)→ r̂ (β1, β2(β1, x), x) as λ→∞,

where the function ẑ :R×R+×R→R is defined as

r̂ (β1, β2(β1, x), x) := c2β2(β1, x)+(
hµ

γ
+ aµ

)√ γ

µ

[
H
(

(β1 +β2(β1, x)−x1{α=1/2})
√

µ

γ

)
− (β1 +β2(β1, x)−x1{α=1/2})

√
µ

γ

]
1 +

√
γ

µ

H((β1+β2(β1,x)−x1{α=1/2})
√

µ
γ )

H(−(β1+β2(β1,x)−x1{α=1/2}))

.
(39)

Proof: For any realized arrival rate `λ = λ+λαµ1−αx, the total staffing level satisfies√
Nλ

1 +Nλ
2 (Nλ

1 , `
λ)(1− ρλ)→ β1 +β2(β1, x)−x1{α=1/2} as λ→∞.

By Theorem 4.1 in Zeltyn and Mandelbaum (2005), we have

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ

)
=

1 +

√
γ

µ

H
(

(β1 +β2(β1, x)−x1{α=1/2})
√

µ

γ

)
H(− (β1 +β2(β1, x)−x1{α=1/2}))


−1

1√
Nλ

1 +Nλ
2 (Nλ

1 , `
λ)

√
γ

µ[
H

(
(β1 +β2(β1, x)−x1{α=1/2})

√
µ

γ

)
− (β1 +β2(β1, x)−x1{α=1/2})

√
µ

γ

]
+ o

(
1√

Nλ
1 +Nλ

2

)

=

√
µ

λ

√
γ

µ

[
H
(

(β1 +β2(β1, x)−x1{α=1/2})
√

µ

γ

)
− (β1 +β2(β1, x)−x1{α=1/2})

√
µ

γ

]
1 +

√
γ

µ

H((β1+β2(β1,x)−x1{α=1/2})
√

µ
γ )

H(−(β1+β2(β1,x)−x1{α=1/2}))

+ o

(
1√
λ/µ

)
.

From the steady-state flow balance equation

γE
[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

]
=
(
λ+λαµ1−αx

)
P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ

)
,

we get that

1√
λ/µ

E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

]
→ µ

γ

√
γ

µ

[
H
(

(β1 +β2−x1{α=1/2})
√

µ

γ

)
− (β1 +β2−x1{α=1/2})

√
µ

γ

]
1 +

√
γ

µ

H((β1+β2−x1{α=1/2})
√

µ
γ )

H(−(β1+β2−x1{α=1/2}))

, as λ→∞,

and the statement follows. Q.E.D.

Based on Lemma 5, let β∗1 and β∗2(β1,X) be the optimal solution to

min
β1∈R

{
c1β1 +E

[
min

β2(β1,X)∈R+

r̂(β1, β2(β1,X),X)

]}
, for ẑ defined in (39). (40)

Then, the two-stage uncertainty hedging rule, u2,UH , is defined as u2(β1, β2(β1,X)) with parameters β∗1 and

β∗2(β∗1 ,X), i.e.,

Nλ
1 = λ/µ+β∗1(λ/µ)1/2 + o((λ/µ)1/2), and Nλ

2 (Nλ
1 ,Λ

λ) = β∗2(β∗1 ,X)(λ/µ)1/2 + oUI((λ/µ)1/2).
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Remark 4 The existence of β∗1 and β∗2(β∗1 ,X) follows from the same lines of analysis as those for the

conventional single-stage square-root staffing rule considered in the literature (see, e.g., Garnett et al. (2002),

Zeltyn and Mandelbaum (2005), Mandelbaum and Zeltyn (2009)). For completeness, we outline the key steps

and omit the lengthy algebraic derivation. Given β1 and X = x, it can be seen from (39) that r̂(β1, β2, x) is

continuous in β2. In addition, it can be checked that r̂(β1, β2, x)→∞ as β2→∞. Thus, an optimal solution

β∗2(β1, x) exists for the inner minimization problem in (40). The existence of β∗1 can be argued similarly.

Let g(β1) := c1β1 +E [r̂ (β1, β
∗
2(β1,X),X)]. It can be checked that g(β1)→∞ as β1→∞. In addition, under

the condition that µ > γ or (h + aγ)µ > c1γ (this latter condition is implied by Assumption 1), we have

g(β1)→∞ as β1→−∞. The existence of an optimal solution β∗1 then follows from the continuity of g(β1)

in β1.

Before we establish the asymptotic performance of u2,UH , we first prove an auxiliary lemma.

Lemma 6 Assume that α≤ 1/2. Under the two-stage uncertainty hedging rule defined in (40), there exists

a random variable X̃ such that β∗2(β1,X)≤ X̃ and E[X̃]<∞.

Proof: For any realized arrival rate `λ = λ+xλαµ1−α, we start by rewriting (39) as

r̂ (β1, β2(β1, x), x)

:= c2 (β1 +β2(β1, x)−x1{α=1/2})− c2 (β1−x1{α=1/2}) +(
hµ

γ
+ aµ

)√ γ

µ

[
H
(

(β1 +β2(β1, x)−x1{α=1/2})
√

µ

γ

)
− (β1 +β2(β1, x)−x1{α=1/2})

√
µ

γ

]
1 +

√
γ

µ

H((β1+β2(β1,x)−x1{α=1/2})
√

µ
γ )

H(−(β1+β2(β1,x)−x1{α=1/2}))

.

Let β̃ := β1 +β2(β1, x)−x1{α=1/2}, and denote

g(β̃) :=

(
hµ

γ
+ aµ

)√ γ

µ

[
H
(
β̃
√

µ

γ

)
− β̃
√

µ

γ

]
1 +

√
γ

µ

H(β̃
√

µ
γ )

H(−β̃)

.

It follows from Section 2.1 in the Online Appendix of Mandelbaum and Zeltyn (2009) that the function g

monotonically decreases from infinity to 0.

Define

β̃∗ := arg min
β̃≥β1−x1{α=1/2}

c2β̃+ g(β̃). (41)

Note that by construction, we have

β∗2(β1, x) = β̃∗−β1 +x1{α=1/2}.

Corresponding to (41), let

β̃† := arg min
β̃∈R

c2β̃+ g(β̃),

where unlike β̃∗, β̃† is a global minimizer of the objective function over the real line. The existence of β̃†

follows from the same lines of arguments as in Remark 4.



56

We discuss the following cases:

Case 1: If β1−x1{α=1/2} ≤ β†, then β̃∗ = β†, and

β∗2(β1, x) = β†−β1 +x1{α=1/2}. (42)

Case 2: If β1 − x1{α=1/2} > β†, then let ε > 0, and let M ∈R be such that (i) M > ε/c2, and (ii) for all

x>M , we have 0≤ g(x)< ε. There are two subcases:

Case 2(i): If β1−x1{α=1/2} ≤M , then exactly one of the following two scenarios holds:

Case 2(i.a): β̃∗ ≤M , so that

β∗2(β1, x)≤M −β1 +x1{α=1/2}. (43)

Case 2(i.b): β̃∗ >M . In this case, (41) can be rewritten as

β̃∗ = arg min
β̃≥M

c2β̃+ g(β̃).

Note that for all y > 2M , it follows from the definition of M that

c2M + g(M)< c2y+ g(y). (44)

Therefore, β̃∗ ≤ 2M , and

β∗2(β1, x)≤ 2M −β1 +x1{α=1/2}. (45)

Case 2(ii): If β1 − x1{α=1/2} > M , then by definition of M , (44) holds for all y > 2(β1 − x1{α=1/2}).

Hence, β̃∗ ≤ 2(β1−x1{α=1/2}), and

β∗2(β1, x)≤ 2(β1−x1{α=1/2})−β1 +x1{α=1/2} = β1−x1{α=1/2}. (46)

In summary, by (42), (43), (45), and (46), we get that

β∗2(β1, x)≤ |β†|+ 2M + |β1|+ |x|. (47)

Let X̃ := |β†|+ 2M + |β1|+ |X|. The statement follows from (47) and E [|X|]<∞. Q.E.D.

The following lemma establishes the asymptotic performance of u2,UL.

Lemma 7 Assume that α≤ 1/2. Under the two-stage uncertainty hedging rule defined in (40), we have

Ĉλ→ c1β
∗
1 +E [r̂ (β∗1 , β

∗
2(β∗1 ,X),X)] as λ→∞,

for ẑ defined in (39).

Proof: It follows from Lemma 5 that

Ĉλ(Λλ)→ c1β
∗
1 + r̂ (β∗1 , β

∗
2(β∗1 ,X),X) w.p.1 as λ→∞.

Hence, to prove the claim, it is sufficient to show

lim
λ→∞

E
[
Ĉλ(Λλ)

]
=E

[
lim
λ→∞

Ĉλ(Λλ)
]

(48)
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To this end, we utilize the dominated convergence theorem.

We start by writing

Ĉλ(Λλ) =c1β
∗
1 + c2β

∗
2(β∗1 ,X) +

1√
λ/µ

(
Dλ

1 +Dλ
2 (Nλ

1 ,Λ
λ)
)

+
1√
λ/µ

(h+ aγ)E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

]
=c1β

∗
1 + c2β

∗
2(β∗1 ,X) +

1√
λ/µ

(
Dλ

1 +Dλ
2 (Nλ

1 ,Λ
λ)
)

+
Λλ√
λ/µ

(h/γ+ a)P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ

)
,

(49)

where the last equality follows from

γE
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

]
= ΛλP

(
AB,Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ

)
.

Recall that P (BL,m,λ) is the steady-state blocking probability for an M/M/m/m queue with number of

servers equal to m and arrival rate equal to λ. It follows from a simple coupling argument that

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ

)
≤ P

(
BL,Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ

)
. (50)

Since the Erlang blocking probability is increasing in the offered load and Nλ
2 (Nλ

1 ,Λ
λ)≥ 0, we further have

P
(
BL,Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ

)
≤ P

(
BL,Nλ

1 , λ+ |X|λαµ1−α) . (51)

In addition, recall that L(m,λ) is the steady-state loss rate in an M/M/m/m queue with number of

servers equal to m and arrival rate equal to λ. In particular, L(m,λ) satisfies L(m,λ) = λP (BL,m,λ), and

by Theorem 1 in Smith and Whitt (1981),

L(Nλ
1 , λ+ |X|λαµ1−α)≤L(Nλ

1 − 1, λ) +L(1, |X|λαµ1−α). (52)

Combining (50)–(52), we have

ΛλP
(
AB,Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ

)
≤ΛλP

(
BL,Nλ

1 , λ+ |X|λαµ1−α)
≤ λP

(
BL,Nλ

1 − 1, λ
)

+ |X|λαµ1−αP
(
BL,1, |X|λαµ1−α)

≤ λP
(
BL,Nλ

1 − 1, λ
)

+ |X|λαµ1−α.

(53)

Dividing both sides of (53) by
√
λ/µ, we get that

Λλ√
λ/µ

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ

)
≤ λ√

λ/µ
P
(
BL,Nλ

1 − 1, λ
)

+ |X|λ
αµ1−α√
λ/µ

, (54)

where the first term on the right-hand side of (54) is a constant. By equation (17) in Whitt (1984),

lim
λ→∞

λ√
λ/µ

P
(
BL,Nλ

1 − 1, λ
)

= µ
φ(β∗1)

Φ(β∗1)
. (55)

Furthermore,

lim
λ→∞

|X|λ
αµ1−α√
λ/µ

=

{
µ|X| if α= 1/2

0 if α< 1/2.
(56)

By (54)–(56), we have for λ large enough,

Λλ√
λ/µ

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ

)
≤ µ φ(β∗1)

Φ(β∗1)
+µ|X|.

This, together with Lemma 6, the assumption that E[|X|] < ∞, and the requirement on Dλ
1 and

Dλ
2 (Nλ

1 ,Λ
λ), implies that |Ĉλ(Λλ)| in (49) is uniformly bounded by an integrable random variable, and the

interchange of limit and expectation in (48) is justified. Q.E.D.
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C.3. Optimality Gap of u2,UH

In Appendices C.1 and C.2, we propose the two-stage uncertainty hedging rule, which prescribes staffing

levels

Nλ
1 = λ/µ+β∗1 (λ/µ)

max{α,1/2}
+ o((λ/µ)

max{α,1/2}
)

Nλ
2 (Nλ

1 ,Λ
λ) = β∗2(β∗1 ,X) (λ/µ)

max{α,1/2}
+ oUI((λ/µ)

max{α,1/2}
).

When α > 1/2, β∗1 and β∗2(β∗1 ,X) are defined in (35), so that the capacity prescription is identical to that

under the two-stage newsvendor solution. When α≤ 1/2, β∗1 and β∗2(β∗1 ,X) are defined in (40). Let Cλ2,UH be

the expected total cost defined under the two-stage uncertainty hedging rules. Recall that Cλ2,∗ is the optimal

total cost for the two-stage optimization problem (2). The next lemma quantifies the optimality gap of the

proposed policy to the exact two-stage optimum.

Lemma 8 For α∈ (0,1), we have Cλ2,UH −Cλ2,∗ = o(λmax{1/2,α}).

Proof: The key of the proof is to show that for any sequence of policies u∈U ,

lim inf
λ→∞

Ĉλu ≥ lim
λ→∞

Ĉλ2,UH . (57)

Note that the limit on the right-hand side of (57) is well defined because of Lemma 4 and Lemma 7.

First, it is without loss of generality to consider a sequence of policies u∈U under which

lim inf
λ→∞

Nλ
1 −λ/µ

(λ/µ)
max{1/2,α} >−∞. (58)

To see this, for any sequence realized arrival rate `λ, recall from the proof of Proposition 1 that

B1(Nλ
1 ,N

λ
2 (Nλ

1 , `
λ), `λ) and B2(Nλ

1 ,N
λ
2 (Nλ

1 , `
λ), `λ) denote the steady-state number of busy servers among

the base and surge staff, respectively. It follows that

E
[
Rλ(Nλ

1 ,N
λ
2 (Nλ

1 , `
λ), `λ)

]
= c2N

λ
2 (Nλ

1 , `
λ) + (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

]
≥ c2
µ
µE
[
B2(Nλ

1 ,N
λ
2 (Nλ

1 , `
λ), `λ)

]
+

(
h

γ
+ a

)
γE
[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

]
≥min

{
c2
µ
,
h

γ
+ a

}(
µE
[
B2(Nλ

1 ,N
λ
2 (Nλ

1 , `
λ), `λ)

]
+ γE

[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

])
= min

{
c2
µ
,
h

γ
+ a

}(
`λ−µE

[
B1(Nλ

1 ,N
λ
2 (Nλ

1 , `
λ), `λ)

])
≥min

{
c2
µ
,
h

γ
+ a

}(
`λ−µNλ

1

)
= c2

(
`λ

µ
−Nλ

1

)
.

Replacing `λ with Λλ, taking expectation, and recalling that E [X] = 0 give

E
[
Rλ(Nλ

1 ,N
λ
2 (Nλ

1 ,Λ
λ),Λλ)

]
≥ c2

(
λ

µ
−Nλ

1

)
.

Then, the scaled cost Ĉλu satisfies

Ĉλu = c1
Nλ

1 −λ/µ
(λ/µ)max{1/2,α} +

E [Rλ(Nλ
1 ,N

λ
2 (Nλ

1 ,Λ
λ),Λλ)]

(λ/µ)max{1/2,α}

≥ c1
Nλ

1 −λ/µ
(λ/µ)max{1/2,α} + c2

λ/µ−Nλ
1

(λ/µ)max{1/2,α}

= (c2− c1)
λ/µ−Nλ

1

(λ/µ)max{1/2,α} .

(59)
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If (58) does not hold, then it follows from (59) and Assumption 1 that lim infλ→∞ Ĉλu =∞. For the purpose

of characterizing (near-)optimal staffing rules, we assume without loss of generality that lim infλ→∞ Ĉλu <∞.

Now, consider a subsequence of systems indexed by λi on which the lim inf in (57) is obtained, namely,

lim
λi→∞

Ĉλiu = lim inf
λ→∞

Ĉλu .

Along this subsequence,

Ĉλiu =
c1
(
Nλi

1 −λi/µ
)

(λi/µ)
max{1/2,α} +

E
[
Rλi(Nλi

1 ,Nλi
2 (Nλi

1 ,Λλi),Λλi)
]

(λi/µ)
max{1/2,α} .

Since the second term is non-negative, it must be the case that

lim sup
λi→∞

c1
(
Nλi

1 −λi/µ
)

(λi/µ)
max{1/2,α} <∞.

Hence,

−∞< lim inf
λi→∞

Nλi
1 −λi/µ

(λi/µ)
max{1/2,α} ≤ lim sup

λi→∞

Nλi
1 −λi/µ

(λi/µ)
max{1/2,α} <∞.

Then, Bolzano-Weierstrass theorem indicates that any subsequence has a further convergent sub-subsequence

indexed by λij along which

N
λij
1 −λij/µ(

λij/µ
)max{1/2,α} → β1 ∈R as λij →∞. (60)

It follows from (60) that

lim
λij→∞

Ĉ
λij
u ≥ lim

λij→∞

c1

(
N
λij
1 −λij/µ

)
(
λij/µ

)max{1/2,α} + lim inf
λij→∞

E
[
Rλij (N

λij
1 ,N

λij
2 (N

λij
1 ,Λλij ),Λλij )

]
(
λij/µ

)max{1/2,α}

= c1β1 + lim inf
λij→∞

E
[
Rλij (N

λij
1 ,N

λij
2 (N

λij
1 ,Λλij ),Λλij )

]
(
λij/µ

)max{1/2,α}

≥ c1β1 +E

[
lim inf
λij→∞

Rλij (N
λij
1 ,N

λij
2 (N

λij
1 ,Λλij ),Λλij )(

λij/µ
)max{1/2,α}

]
,

(61)

where the last inequality follows from Fatou’s lemma.

Next, we are going to establish that for any realized arrival rate `λij ,

lim inf
λij→∞

Rλij (N
λij
1 ,N

λij
2 (N

λij
1 , `λij ), `λij )(

λij/µ
)max{1/2,α} ≥ r̂ (β1, β

∗
2(β1, x), x) . (62)

In (62), when α> 1/2, ẑ is defined in (31) and β∗2(β1,X) is defined in (35). In the other case where α≤ 1/2,

ẑ is defined in (39) and β∗2(β1,X) is defined in (40). To see that (62) holds, define

N̂
λij
2 (N

λij
1 , `λij ) :=N

λij
2 (N

λij
1 , `λij )/

(
λij/µ

)max{1/2,α}
.

Observe that the sequence {N̂
λij
2 (N

λij
1 , `λij ) : λij > 0} satisfies exactly one of the following three cases:

(i) N̂
λij
2 (N

λij
1 , `λij )→ β2 ∈R+ as λij →∞.

(ii) N̂
λij
2 (N

λij
1 , `λij )→∞ as λij →∞.

(iii) N̂
λij
2 (N

λij
1 , `λij ) does not converge.
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For case (i), (62) follows from Lemma 3, Lemma 5, and the definition of β∗2(β1, x).

For case (ii), we have

Rλij (N
λij
1 ,N

λij
2 (N

λij
1 , `λij ), `λij )(

λij/µ
)max{1/2,α} =

c2N
λij
2 (N

λij
1 , `λij ) + (h+ aγ)E

[
Q(N

λij
1 +N

λij
2 (N

λij
1 , `λij ), `λij )

]
(
λij/µ

)max{1/2,α}

= c2
N
λij
2 (N

λij
1 , `λij )(

λij/µ
)max{1/2,α} +

(h+ aγ)E
[
Q(N

λij
1 +N

λij
2 (N

λij
1 , `λij ), `λij )

]
(
λij/µ

)max{1/2,α}

→∞ as λij →∞,
and (62) holds.

For case (iii), we can further consider a further subsequence indexed by λijk along which N̂
λijk
2 (N

λijk
1 , `

λijk )

converges. Such subsequence exists because a sequence has no convergent subsequence if and only if it

approaches infinity. The same arguments for case (i) can be applied to establish (62).

Now, it follows from (61) and (62) that

lim
λij→∞

Ĉ
λij
u ≥ c1β1 +E

[
lim inf
λij→∞

Rλij (N
λij
1 ,N

λij
2 (N

λij
1 ,Λλij ),Λλij )(

λij/µ
)max{1/2,α}

]
≥ c1β1 +E [r̂ (β1, β

∗
2(β1,X),X)] .

Furthermore, since β∗1 is constructed such that

c1β1 +E [r̂ (β1, β
∗
2(β1,X),X)]≥ c1β∗1 +E [r̂ (β∗1 , β

∗
2(β∗1 ,X),X)] ,

it follows that

lim
λij→∞

Ĉ
λij
u ≥ c1β∗1 +E [r̂ (β∗1 , β

∗
2(β∗1 ,X),X)] = lim

λij→∞
Ĉ
λij
2,UH ,

where the last equality follows from Lemma 4 and Lemma 7. Since the subsequence indexed by λij is arbitrary,

we have established (57).

Next, we apply (57) to the sequence of exact optimal two-stage staffing rules, i.e., u2,∗, and get that

lim inf
λ→∞

Ĉλ2,∗ ≥ lim
λ→∞

Ĉλ2,UH .

By the optimality of u2,∗, we also have

lim sup
λ→∞

Ĉλ2,∗ ≤ lim
λ→∞

Ĉλ2,UH .

Thus,

lim
λ→∞

Ĉλ2,∗ = lim
λ→∞

Ĉλ2,UH . (63)

The statement follows from (63). Q.E.D.

The following corollary is a direct consequence from the proof of Lemma 8.

Corollary 1 For α∈ (0,1), let β∗1 and β∗2(β∗1 ,X) be defined in (35) when α> 1/2, and defined in (40) when

α≤ 1/2. Consider a sequence of staffing policies u= {πλ : λ > 0}= {Nλ
1 ,N

λ
2 (Nλ

1 ,Λ
λ) : λ > 0}. If there does

not exist a subsequence indexed by λi along which {Nλi
1 ,Nλi

2 (Nλi
1 ,Λλi) : λi > 0} is prescribed as

Nλi
1 = λi/µ+β∗1 (λi/µ)

max{α,1/2}
+ o((λi/µ)

max{α,1/2}
)

Nλi
2 (Nλi

1 ,Λλi) = β∗2(β∗1 ,X) (λi/µ)
max{α,1/2}

+ oUI((λi/µ)
max{α,1/2}

),

then Cλu −Cλ2,UH ≥Θ(λmax{α,1/2}).
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Corollary 1 indicates that it is without loss of optimality to consider the family of two-stage uncertainty

hedging rule. To improve upon the o(λmax{α,1/2}) optimality gap established in Lemma 8, we need to consider

refinement which puts further restrictions on the o((λi/µ)
max{α,1/2}

) term inNλ
1 and the oUI((λi/µ)

max{α,1/2}
)

term in Nλ
2 (Nλ

1 ,Λ
λ). In the special case when α> 1/2, it is without loss of optimality to consider the family

of two-stage newsvendor solutions. The two-stage QED rule is a refinement of the two-stage newsvendor

solution that reduces the optimality gap from o(λα) to o(
√
λ).

C.4. Proof of Theorem 2

Proof: Note that the two-stage uncertainty hedging rule when α > 1/2 is equivalent to the two-stage

newsvendor solution. The statement follows from Lemma 8. Q.E.D.

Appendix D: Proof of Theorem 1

The proof of Theorem 1 builds on the performance quantification of u2(β1, β2(β1,X)) and u2,UH introduced

in Appendix C. For the sequence of systems indexed by λ, recall that Cλ1,∗ is the optimal total cost for

the single-stage optimization problem (4), and Cλ2,∗ is the optimal total cost for the two-stage optimization

problem (2). We establish Theorem 1 for different values of α.

D.1. Benefit of Surge Staffing When α< 1/2

Lemma 9 If α< 1/2, then Cλ1,∗−Cλ2,∗ = o(
√
λ).

Proof: We start by determining the parameters β∗1 and β∗2(β∗1 ,X) defined in (40) for the two-stage

uncertainty hedging rule when α < 1/2. In particular, for any realization x of the random variable X, the

function ẑ in (39) becomes

r̂ (β1, β2(β1, x), x) = c2β2(β1, x) +

(
hµ

γ
+ aµ

)√ γ

µ

[
H
(

(β1 +β2(β1, x))
√

µ

γ

)
− (β1 +β2(β1, x))

√
µ

γ

]
1 +

√
γ

µ

H((β1+β2(β1,x))
√

µ
γ )

H(−(β1+β2(β1,x)))

.

Note that r̂ (β1, β2(β1, x), x) does not depend on the realization x. Hence, given β1, we have that β∗2(β1, x) =

arg minβ2∈R+
r̂(β1, β2(β1, x), x) does not depend on x either. Then β∗1 and β∗2(β∗1 , x) jointly solve

min
β1∈R, β2(β1,x)∈R+

c1β1 + r̂ (β1, β2(β1, x), x) .

By the assumption that c1 < c2. Thus, it is optimal to set

β∗1 := arg min
β1∈R

c1β1 +

(
hµ

γ
+ aµ

)√ γ

µ

[
H
(
β1

√
µ

γ

)
−β1

√
µ

γ

]
1 +

√
γ

µ

H(β1
√

µ
γ )

H(−β1)

,

and β∗2 (β∗1 , x) := 0 for all realizations x of the random variable X.

In this case, the two-stage uncertainty hedging rule is equivalent to the conventional single-stage square-

root staffing rule (with staffing cost c1, holding cost h, and abandonment cost a). Then,

Cλ2,UH −Cλ1,∗ ≥ 0 for all λ> 0. (64)

In addition, we establish in Lemma 8 that

Cλ2,UH −Cλ2,∗ = o(
√
λ). (65)

The statement follows from (64) and (65). Q.E.D.
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D.2. Benefit of Surge Staffing When α= 1/2

Lemma 10 If α= 1/2, then Cλ1,∗−Cλ2,∗ =O(
√
λ).

Proof: Consider β†2(β1,X) := 0 for all β1, and β†1 := arg minβ1∈R c1β1 +E
[
r̂
(
β1, β

†
2(β1,X),X

)]
. Note that

β†1 and β†2(β1,X) provide a feasible pair of parameters for u2(β1, β2(β1,X)). Let Cλ2,† denote the expected

total cost under u2(β†1, β
†
2(β†1,X)). It follows from similar derivation as in the proof of Lemma 7 that

lim
λ→∞

Ĉλ2,† = c1β
†
1 +E

[
r̂
(
β†1, β

†
2(β†1,X),X

)]
.

Since (β†1, β
†
2(β†1, x)) is not necessarily optimal for the optimization problem in (40), we have

c1β
†
1 +E

[
r̂
(
β†1, β

†
2(β†1,X),X

)]
≥ c1β∗1 +E [r̂ (β∗1 , β

∗
2(β∗1 ,X),X)] .

It then follows from Lemma 7 that

Cλ2,†−Cλ2,UH =O(
√
λ). (66)

Moreover, since β†2(β†1,X) = 0, this policy is equivalent to a single-stage staffing rule. By Proposition 3 in

Bassamboo et al. (2010), we get that

Cλ2,†−Cλ1,∗ =O(
√
λ). (67)

Lastly, by Lemma 8, we have

Cλ2,UH −Cλ2,∗ = o(
√
λ). (68)

The statement follows from (66)–(68). Q.E.D.

Figure 9 below illustrates the performance gap between the employed policies in the proof of Lemma 10.

Figure 9 Cost saving for α= 1/2
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C2,UH
λ

D.3. Benefit of Surge Staffing When α> 1/2

Lemma 11 If α> 1/2, then Cλ1,∗−Cλ2,∗ = Θ(λα).

Proof: Under the two-stage newsvendor solution, the base-stage staffing level is λ/µ + β∗1(λ/µ)α +

o ((λ/µ)α), where β∗1 is given by

β∗1 = arg min
β1∈R

c1β1 + c2E
[
(X −β1)+

]
.

Moreover, Lemma 4 establishes that

Ĉλ2,NV → c1β
∗
1 + c2E

[
(X −β∗1)+

]
as λ→∞.
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In comparison, under the single-stage newsvendor solution, the base-stage staffing level is λ/µ+βNV (λ/µ)α,

where βNV is given by

βNV = arg min
β∈R

c1β+

(
hµ

γ
+ aµ

)
E
[
(X −β)

+
]
.

Similar lines of arguments as in the proof of Lemma 4 show that

Ĉλ1,NV → c1βNV +

(
hµ

γ
+ aµ

)
E
[
(X −βNV )

+
]

as λ→∞.

Therefore, if

arg min
β∈R

c1β+

(
hµ

γ
+ aµ

)
E
[
(X −β)

+
]
> arg min

β∈R
c1β+ c2E

[
(X −β)+

]
, (69)

then

lim
λ→∞

Ĉλ1,NV > lim
λ→∞

Ĉλ2,NV ,

so that

Cλ1,NV −Cλ2,NV = Θ(λα). (70)

Note that a sufficient condition for (69) to hold is that X is a continuous random variable, i.e., with a proper

density function.

Moreover, by Theorem 1 in Bassamboo et al. (2010), we get that

Cλ1,NV −Cλ1,∗ =O(λ1−α) = o(
√
λ). (71)

By Lemma 8, we also have

Cλ2,NV −Cλ2,∗ = o(λα). (72)

The statement follows from (70)–(72). Q.E.D.

Figure 10 below illustrates the performance gap between the employed policies in the proof of Lemma 11.

Figure 10 Cost saving for α> 1/2
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Theorem 1 follows from Lemmas 9–11.
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Appendix E: Proof of Theorem 3

Before we prove Theorem 3, we first prove an important auxiliary result on the asymptotic equivalence of

the family of two-stage newsvendor solutions, and then establish the asymptotic performance of the family

of two-stage QED rules. We assume throughout this section that α> 1/2.

Recall that the two-stage newsvendor policy takes the form

Nλ
1 = λ/µ+β∗1(λ/µ)α +Dλ

1 , Nλ
2 (Nλ

1 ,Λ
λ) = β∗2(β∗1 ,X)(λ/µ)α +Dλ

2 (Nλ
1 ,Λ

λ), (73)

for Dλ
1 = o ((λ/µ)α), and Dλ

2 (Nλ
1 ,Λ

λ) = oUI ((λ/µ)α). Let u be a policy of the form (73). Based on u, we can

construct another policy ũ, where

Ñλ
1 = λ/µ+β∗1(λ/µ)α + D̃λ

1 , and Ñλ
2 (Ñλ

1 ,Λ
λ) = β∗2(β∗1 ,X)(λ/µ)α + D̃λ

2 (Ñλ
1 ,Λ

λ),

for

D̃λ
1 := 0, and D̃λ

2 (Ñλ
1 ,Λ

λ) :=

{
Dλ

2 (Nλ
1 ,Λ

λ) if X <β∗1
Dλ

1 +Dλ
2 (Nλ

1 ,Λ
λ) if X ≥ β∗1 .

Let Cλu and Cλũ denote the expected total cost under u and ũ, respectively.

Lemma 12 If Cλu < Cλũ , then Cλũ −Cλu = o(
√
λ).

Proof: Let Sλu and Sλũ denote the expected staffing cost under u and ũ, respectively. By construction, u

and ũ have the same expected staffing cost, namely,

Sλu = c1(λ/µ) + c1β
∗
1(λ/µ)α + c1D

λ
1 +E

[
c2β

∗
2(β∗1 ,X) + c2D

λ
2 (Nλ

1 ,Λ
λ)
]

= c1(λ/µ) + c1β
∗
1(λ/µ)α + c2

c1
c2
Dλ

1 +E
[
c2β

∗
2(β∗1 ,X) + c2D

λ
2 (Nλ

1 ,Λ
λ)
]

= c1(λ/µ) + c1β
∗
1(λ/µ)α + c2D

λ
1P (X ≥ β∗1) +E

[
c2β

∗
2(β∗1 ,X) + c2D

λ
2 (Nλ

1 ,Λ
λ)
]

= Sλũ ,

where the second to last equality follows from β∗1 = F̄−1
X (c1/c2) and the assumption that X is a continuous

random variable.

We next consider queue length. If Dλ
1 < 0, then by construction of ũ, ũ prescribes a higher staffing level

than u when X <β∗1 , and prescribes the same staffing level as u when X ≥ β∗1 . Thus,

E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)

]
≥E

[
Q(Ñλ

1 + Ñλ
2 (Ñλ

1 ,Λ
λ),Λλ)

]
,

and Cλu ≥Cλũ .

Therefore, it is without loss of generality to assume that Dλ
1 ≥ 0 for all λ> 0. We again divide the discussion

into two cases: X ≥ β∗1 and X <β∗1 . If the realized random variable satisfies x≥ β∗1 , then

D̃λ
1 + D̃λ

2 (Ñλ
1 , `

λ) =Dλ
1 +Dλ

2 (Nλ
1 , `

λ),

where `λ = λ+xλαµ1−α. This implies that

E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)1{X≥β∗1}

]
=E

[
Q(Ñλ

1 + Ñλ
2 (Ñλ

1 ,Λ
λ),Λλ)1{X≥β∗1}

]
. (74)
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In the other case where X <β∗1 , it follows from (32) in the proof of Lemma 3 that

lim
λ→∞

1

(λ/µ)1/2
E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)1{X<β∗1}|Λ

λ
]

= lim
λ→∞

1

(λ/µ)1/2
E
[
Q(Ñλ

1 + Ñλ
2 (Ñλ

1 ,Λ
λ),Λλ)1{X<β∗1}|Λ

λ
]

= 0.
(75)

The above equality and subsequent inequalities involving random variables hold in a path-by-path sense.

Furthermore, recall from Lemma 1 that

E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

]
≤max{µ/γ,1}

((
Λλ/µ−Nλ

1

)+
+
√

4π/µ
√

Λλ + 1/ log 2
)

≤max{µ/γ,1}
(√

4π/µ
√

Λλ + 1/ log 2
)
,

where the second inequality follows because Dλ
1 ≥ 0. Thus, there exists a random variable Y with E [Y ]<∞

such that
1

(λ/µ)1/2
E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)1{X<β∗1}|Λ

λ
]
≤ Y, for all λ> 0.

Moreover, the same derivation applies to ũ. Thus, we can apply the dominated convergence theorem to (75)

and get that

lim
λ→∞

1

(λ/µ)1/2
E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)1{X<β∗1}

]
=

1

(λ/µ)1/2
E
[
Q(Ñλ

1 + Ñλ
2 (Ñλ

1 ,Λ
λ),Λλ)1{X<β∗1}

]
= 0.

(76)

Now, we write Cλu as

Cλu = Sλu + (h+ aγ)E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)

]
= Sλu + (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)1{X<β∗1}

]
+ (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)1{X≥β∗1}

]
.

(77)

In addition, we write Cλũ as

Cλũ = Sλũ + (h+ aγ)E
[
Q(Ñλ

1 + Ñλ
2 (Ñλ

1 ,Λ
λ),Λλ)

]
= Sλũ + (h+ aγ)E

[
Q(Ñλ

1 + Ñλ
2 (Ñλ

1 ,Λ
λ),Λλ)1{X<β∗1}

]
+ (h+ aγ)E

[
Q(Ñλ

1 + Ñλ
2 (Ñλ

1 ,Λ
λ),Λλ)1{X≥β∗1}

]
.

(78)

Then,

Cλu −Cλũ = (h+ aγ)E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)1{X<β∗1}

]
− (h+ aγ)E

[
Q(Ñλ

1 + Ñλ
2 (Ñλ

1 ,Λ
λ),Λλ)1{X<β∗1}

]
= o(
√
λ),

where the first equality follows from (74), (77) and (78), and the second equality follows from (76). Q.E.D.

Recall from Section 4.2 that u2,QED takes the form

Nλ
1 = λ/µ+β∗1(λ/µ)α +O(

√
λ/µ), and Nλ

2 (Nλ
1 ,Λ

λ) = (Λλ/µ+ η∗
√

Λλ/µ−Nλ
1 )+ + oUI(

√
λ/µ).

For a sequence of policies u∈U , let

C̄λu :=
1

(λ/µ)1/2

(
Cλu − c1

λ

µ
− c1β∗1

(
λ

µ

)α
− c2E

[
(X −β∗1)+

](λ
µ

)α)
. (79)

In addition, define the mapping ψ :R→R as

ψ(x) :=


0 if x< β∗1

c2η
∗+
(
hµ

γ
+ aµ

) √ γ
µ [H(η∗

√
µ
γ )−η∗

√
µ
γ ]

1+
√

γ
µ

H(η∗
√

µ
γ )

H(−η∗)

if x≥ β∗1 . (80)
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Lemma 13 We have

lim
λ→∞

C̄λ2,QED =E [ψ(X)] .

Proof: Consider an arbitrary two-stage QED policy u of the form

Nλ
1 = λ/µ+β∗1(λ/µ)α +Dλ

1 , and Nλ
2 (Nλ

1 ,Λ
λ) = (Λλ/µ+ η∗

√
Λλ/µ−Nλ

1 )+ + J(Nλ
1 ,Λ

λ),

for Dλ
1 ∈R, Dλ

1 =O(
√
λ/µ), and J(Nλ

1 ,Λ
λ) = oUI(

√
λ/µ).

For base staffing level, it holds that

c1
(
Nλ

1 −λ/µ−β∗1(λ/µ)α−Dλ
1

)
= 0.

For surge staffing level, we have

lim
λ→∞

1√
λ/µ

c2

(
Nλ

2 (Nλ
1 ,Λ

λ)− (X −β∗1)+

(
λ

µ

)α
+Dλ

11{X>β∗1}

)
= n̄(X), (81)

where

n̄(X) :=

{
0 if X <β∗1
c2η
∗ if X >β∗1 .

We next show that

lim
λ→∞

E

[
1√
λ/µ

c2

(
Nλ

2 (Nλ
1 ,Λ

λ)− (X −β∗1)+

(
λ

µ

)α
+Dλ

11{X>β∗1}

)]
=E [n̄(X)] . (82)

To see (82), note that when X <β∗1 ,

|Nλ
2 (Nλ

1 ,Λ
λ)− (X −β∗1)+(λ/µ)α +Dλ

11{X>β∗1}|= |(Λ
λ/µ+ η∗

√
Λλ/µ−Nλ

1 )+ + J(Nλ
1 ,Λ

λ)|

=
∣∣((X −β∗1)(λ/µ)α + η∗

√
Λλ/µ−Dλ

1

)+

+ J(Nλ
1 ,Λ

λ)
∣∣

≤ |η∗|
√

Λλ/µ+ |Dλ
1 |+ |J(Nλ

1 ,Λ
λ)|.

When X >β∗1 ,

|Nλ
2 (Nλ

1 ,Λ
λ)− (X −β∗1)+(λ/µ)α +Dλ

11{X>β∗1}|

= |(Λλ/µ+ η∗
√

Λλ/µ−Nλ
1 )+ + J(Nλ

1 ,Λ
λ)− (X −β∗1)+(λ/µ)α +Dλ

1 |

=
∣∣((X −β∗1)(λ/µ)α + η∗

√
Λλ/µ−Dλ

1

)+

+ J(Nλ
1 ,Λ

λ)− (X −β∗1)+(λ/µ)α +Dλ
1

∣∣
=

{
|η∗
√

Λλ/µ−Dλ
1 + J(Nλ

1 ,Λ
λ) +Dλ

1 | if (X −β∗1)(λ/µ)α ≥−η∗
√

Λλ/µ+Dλ
1

|J(Nλ
1 ,Λ

λ)− (X −β∗1)+(λ/µ)α +Dλ
1 | if (X −β∗1)(λ/µ)α <−η∗

√
Λλ/µ+Dλ

1

≤ |η∗|
√

Λλ/µ+ 2|Dλ
1 |+ |J(Nλ

1 ,Λ
λ)|.

Thus, in both cases, there exists some random variable Y with E [Y ]<∞ such that∣∣∣∣ 1√
λ/µ

(
Nλ

2 (Nλ
1 ,Λ

λ)− (X −β∗1)+

(
λ

µ

)α)
+Dλ

11{X>β∗1}

∣∣∣∣<Y, for all λ> 0.

The first equality in (82) can then be justified by (81) and the dominated convergence theorem.

For queue length, it follows from (32) in the proof of Lemma 3 (for the case where X <β∗1), and the same

analysis as in the proof of Lemma 6 (for the case where X >β∗1) that

lim
λ→∞

1

(λ/µ)
1/2

(h+ aγ)E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

]
= q̄(X), (83)
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where

q̄(X) :=


0 if X <β∗1(
hµ

γ
+ aµ

) √ γ
µ [H(η∗

√
µ
γ )−η∗

√
µ
γ ]

1+
√

γ
µ

H(η∗
√

µ
γ )

H(−η∗)

if X >β∗1 .

We next show that

lim
λ→∞

1

(λ/µ)
1/2

(h+ aγ)E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)

]
=E [q̄(X)] . (84)

To see (84), it follows from Lemma 1 that

E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

]
≤max{µ/γ,1}

((
Λλ/µ−Nλ

1 −Nλ
2 (Nλ

1 ,Λ
λ)
)+

+
√

4π/µ
√

Λλ + 1/ log 2
)

≤

max{µ/γ,1}
(
|Dλ

1 |+
√

4π/µ
√

Λλ + 1/ log 2
)

if X <β∗1

max{µ/γ,1}
(
|J(Nλ

1 ,Λ
λ)|+

√
4π/µ

√
Λλ + 1/ log 2

)
if X >β∗1 .

Thus, there exists some random variable Y with E [Y ]<∞ such that

1

(λ/µ)
1/2

(h+ aγ)E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)

]
<Y, for all λ> 0.

The first equality in (84) is justified by (83) and the dominated convergence theorem.

Then, for C̄λu defined in (79) and ψ defined in (80),

C̄λu =
1

(λ/µ)
1/2

(
c1N

λ
1 + c2E

[
Nλ

2 (Nλ
1 ,Λ

λ)
]

+ (h+ aγ)E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)

]
− c1

λ

µ
− c1β∗1

(
λ

µ

)α
− c2E

[
(X −β∗1)+

](λ
µ

)α)
=

1

(λ/µ)
1/2

(
c1

(
Nλ

1 −
λ

µ
−β∗1

(
λ

µ

)α
−Dλ

1

)
+ c2E

[
Nλ

2 (Nλ
1 ,Λ

λ)− (X −β∗1)+

(
λ

µ

)α
+Dλ

11{X>β∗1}

]
+ (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)

])
=E [ψ(X)] ,

from which the statement follows. Q.E.D.

We now present the proof of Theorem 3.

Proof: [Proof of Theorem 3] It follows from (57) in the proof of Lemma 8 that for all u∈U ,

lim inf
λ→∞

Ĉλu ≥ lim
λ→∞

Ĉλ2,NV = c1β
∗
1 + c2E

[
(X −β∗1)+

]
,

where β∗1 = F̄−1
X (c1/c2). Thus, for a sequence of policies u∈U , we consider C̄λu defined in (79). We next show

that for all u∈U ,

lim inf
λ→∞

C̄λu ≥ lim
λ→∞

C̄λ2,QED, (85)

where the limit on the right-hand side of (85) is rigorously established in Lemma 13. Similar to the proof of

Lemma 8, for the purpose of characterizing (near-)optimal staffing rules, we assume without loss of generality

that lim supλ→∞ C̄λu <∞.

First, by Corollary 1, it is without loss of optimality to consider a sequence of policies u of the form

Nλ
1 = λ/µ+β∗1(λ/µ)α +Dλ

1 , Nλ
2 = (X −β∗1)+(λ/µ)α +Dλ

2 (Nλ
1 ,Λ

λ),
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for Dλ
1 = o ((λ/µ)α) and Dλ

2 (Nλ
1 ,Λ

λ) = oUI ((λ/µ)α), i.e., the two-stage newsvendor solutions.

In addition, Lemma 12 implies that it is without loss of generality to consider a sequence of policies where

Dλ
1 = 0 for all λ> 0. Thus, we can write

C̄λu =
1

(λ/µ)1/2
E
[
c2N

λ
2 (Nλ

1 ,Λ
λ) + (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

]
− c2(X −β∗1)+

(
λ

µ

)α]
=

1

(λ/µ)1/2
E
[
c2D

λ
2 (Nλ

1 ,Λ
λ) + (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

]]
.

By Fatou’s lemma,

lim inf
λ→∞

C̄λu ≥E
[
lim inf
λ→∞

1

(λ/µ)1/2

(
c2D

λ
2 (Nλ

1 ,Λ
λ) + (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

])]
. (86)

We are going to establish that for any realized arrival rate `λ = λ+xλαµ1−α,

lim inf
λ→∞

1

(λ/µ)1/2

(
c2D

λ
2 (Nλ

1 , `
λ) + (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

])
≥ψ(x), (87)

where ψ is defined in (80). To this end, define

D̄λ
2 (Nλ

1 , `
λ) :=

1

(λ/µ)1/2
Dλ

2 (Nλ
1 , `

λ).

Observe that the sequence
{
D̄λ

2 (Nλ
1 , `

λ) : λ> 0
}

satisfies exactly one of the following four cases:

(i) D̄λ
2 (Nλ

1 , `
λ)→∞ as λ→∞.

(ii) D̄λ
2 (Nλ

1 , `
λ)→−∞ as λ→∞.

(iii) D̄λ
2 (Nλ

1 , `
λ)→ η ∈R as λ→∞.

(iv) D̄λ
2 (Nλ

1 , `
λ) does not converge.

For case (i), since E [Qλ(Nλ
1 +Nλ

2 (Nλ
1 , `

λ), `λ)]≥ 0,

lim inf
λ→∞

1

(λ/µ)1/2

(
c2D

λ
2 (Nλ

1 , `
λ) + (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

])
≥ lim inf

λ→∞
c2D̄

λ
2 (Nλ

1 , `
λ) =∞.

For case (ii), this case is only possible when x> β∗1 . This is because otherwise, β∗2 = 0, so that Dλ
2 ≥ 0 for

all λ> 0. Now since x> β∗1 , we have

(h+ aγ)E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

]
=

(
h

γ
+ a

)
γE
[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

]
=

(
h

γ
+ a

)(
`λ−µE

[
B2(Nλ

1 ,N
λ
2 (Nλ

1 , `
λ), `λ)

]
−µE

[
B1(Nλ

1 ,N
λ
2 (Nλ

1 , `
λ), `λ)

])
≥
(
h

γ
+ a

)(
`λ−µNλ

2 (Nλ
1 , `

λ)−µNλ
1

)
=

(
hµ

γ
+ aµ

)(
−Dλ

2 (Nλ
1 , `

λ)
)
,

where recall from the proof of Proposition 1 that B1(Nλ
1 ,N

λ
2 (Nλ

1 , `
λ), `λ) is the steady-state number of busy

servers among those that are staffed at the base stage, and B2(Nλ
1 ,N

λ
2 (Nλ

1 , `
λ), `λ) is the steady-state number

of busy servers among those that are staffed at the surge stage. Therefore,

lim inf
λ→∞

1

(λ/µ)1/2

(
c2D

λ
2 (Nλ

1 , `
λ) + (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

])
≥ lim inf

λ→∞

1

(λ/µ)1/2

(
c2D

λ
2 (Nλ

1 , `
λ) +

(
hµ

γ
+ aµ

)(
−Dλ

2 (Nλ
1 , `

λ)
))

= lim inf
λ→∞

1

(λ/µ)1/2

(
c2−

hµ

γ
− aµ

)
Dλ

2 (Nλ
1 , `

λ)

=∞.
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For case (iii), it follows from (32) in the proof of Lemma 3 (for the case where x < β∗1), and the same

analysis as in the proof of Lemma 6 (for the case where x> β∗1) that

lim
λ→∞

1

(λ/µ)1/2

(
c2D

λ
2 (Nλ

1 , `
λ) + (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

])
=c2η+ lim

λ→∞

1

(λ/µ)
1/2

(h+ aγ)E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 , `
λ), `λ)

]
=


c2η if x< β∗1

c2η+
(
hµ

γ
+ aµ

) √ γ
µ [H(η

√
µ
γ )−η
√

µ
γ ]

1+
√

γ
µ

H(η
√

µ
γ )

H(−η)

if x> β∗1 .

Moreover, in the scenario where x< β∗1 , we have β∗2(β∗1 , x) = 0, so it must be that Dλ
2 ≥ 0 and η≥ 0. Therefore,

(87) follows from the definition of η∗ in (11).

For case (iv), we can further consider a subsequence indexed by λi along which D̄λi
2 (Nλi

1 , `λi) converges.

Such subsequence exists because a sequence has no convergent subsequence if and only if it approaches

infinity. The same arguments for case (iii) can be applied to establish (87).

So far we have established (87). This, together with (86) and Lemma 13, gives that

lim inf
λ→∞

C̄λu ≥E
[
lim inf
λ→∞

1

(λ/µ)1/2

(
c2D

λ
2 (Nλ

1 ,Λ
λ) + (h+ aγ)E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 ,Λ
λ),Λλ)|Λλ

])]
≥E [ψ(X)]

= lim
λ→∞

C̄λ2,QED,

which establishes (85).

In this last step, note that by (85), we have

lim inf
λ→∞

C̄λ2,∗ ≥ lim
λ→∞

C̄λ2,QED.

Moreover, by the optimality of u2,∗, it holds that

lim sup
λ→∞

C̄λ2,∗ ≤ lim
λ→∞

C̄λ2,QED.

Therefore,

lim
λ→∞

C̄λ2,∗ = lim
λ→∞

C̄λ2,QED,

which implies that Cλ2,QED −Cλ2,∗ = o(
√
λ). Q.E.D.

Appendix F: Model with Surge-Stage Prediction Error

Recall that we use FY (alternatively, fY ) and FZ (alternatively, fZ) to denote the cdf (alternatively, proba-

bility density function) of Y and Z, respectively.

F.1. Small Prediction Error: Proof of Proposition 2

Proof: Statement (I) follows exactly the same lines of analysis as the proof of Theorem 1 for α > 1/2.

Statement (II) follows exactly the same lines of analysis as the proof of Theorem 3. Lastly, following the

same lines of analysis as the proof of Theorem 3, we can show that Ce,λ2,ERR − C
o,λ
2,∗ = o(

√
λ). This, together

with statement (II), implies statement (III). To elaborate on the generalization, we explain why the proof of

Proposition 2 follows directly from the analysis of the case with perfect surge-stage prediction. In particular,
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when ν < 1/2, the two-stage error policy takes the same form as the two-stage QED rule, with random

variable X (alternatively, its realization x) replaced by random variable Y (alternatively, its realization y).

For `λ = λ+ yλαµ1−α + zλνµ1−ν , it still holds that if y < F−1
Y (c1/c2), then

Nλ
1 +Nλ

2 (Nλ
1 , y) = `λ/µ+F−1

Y (c1/c2)
(
`λ/µ

)α
+O(

√
`λ/µ).

In the other case where y≥ F−1
Y (c1/c2), we have

Nλ
1 +Nλ

2 (Nλ
1 , y) = `λ/µ+ η∗

(
`λ/µ

)α
+ o(

√
`λ/µ),

for η∗ defined in (11). The rest of the analysis is generalized similarly. Q.E.D.

F.2. Moderate to Large Prediction Error: Proof of Proposition 3

Proof: We first show that there exists an optimal solution to (18). In particular, consider the inner-problem

in (18):

min
Nλ2 (Nλ1 ,Y )

{
c2N

λ
2 (Nλ

1 , Y ) + (hµ/γ+ aµ)E
[(

Λλ/µ−Nλ
1 −Nλ

2 (Nλ
1 , Y )

)+ |Y ]} . (88)

Note that (88) is a newsvendor problem with unit capacity cost c2, unit sales price hµ/γ + aµ, random

demand Λλ/µ−Nλ
1 |Y (where the randomness lies in random variable Z), and capacity decision Nλ

2 (Nλ
1 , Y ).

The optimal solution is given by

N̄λ
2 (Nλ

1 , Y ) =

(
F̄−1
Z

(
c2

hµ/γ+ aµ

)(
λ

µ

)ν
+
λ

µ
+Y

(
λ

µ

)α
−Nλ

1

)+

.

Given N̄λ
2 (Nλ

1 , Y ), the outer-problem is given by minNλ1 h(Nλ
1 ), where

h(Nλ
1 ) := c1N

λ
1 +E

[
c2N̄

λ
2 (Nλ

1 , Y ) + (hµ/γ+ aµ)
(
Λλ/µ−Nλ

1 − N̄λ
2 (Nλ

1 , Y )
)+]

.

Differentiating h(Nλ
1 ) with respect to Nλ

1 gives

∂

∂Nλ
1

h(Nλ
1 ) = c1− c2P

((
λ

µ

)α
Y >

(
Nλ

1 −
λ

µ
− F̄−1

Z

(
c2

hµ/γ+ aµ

)(
λ

µ

)ν))
−
(
hµ

γ
+ aµ

)
P
((

λ

µ

)α
Y ≤

(
Nλ

1 −
λ

µ
− F̄−1

Z

(
c2

hµ/γ+ aµ

)(
λ

µ

)ν)
,(

λ

µ

)α
Y +

(
λ

µ

)ν
Z >Nλ

1 −
λ

µ

)
.

By observation, ∂

∂Nλ1
h(Nλ

1 ) is continuous in Nλ
1 , and there exist Nλ,L

1 and Nλ,U
1 such that ∂

∂Nλ1
h(Nλ,L

1 )< 0

and ∂

∂Nλ1
h(Nλ,H

1 )> 0. Thus, the intermediate value theorem implies that there exists critical point N̄λ
1 such

that ∂

∂Nλ1
h(N̄λ

1 ) = 0. In addition, h(Nλ
1 ) is convex in Nλ

1 , because

∂2

∂(Nλ
1 )2

h(Nλ
1 )

=

(
hµ

γ
+ aµ

)(
λ

µ

)−ν ∫ (λµ )
−α

(Nλ1 −λµ−F̄
−1
Z ( c2

hµ/γ+aµ )(λµ )
ν
)

−∞
fY (y)fZ

((
λ

µ

)−ν (
Nλ

1 −
λ

µ
− y

(
λ

µ

)α))
dy≥ 0.

Hence, N̄λ
1 is a global minimum of h(Nλ

1 ), and (N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y )) is optimal to (18).

Proof of (I). We discuss the following two cases: ν < α and ν = α.

Case 1: ν < α. When ν < α, similar lines of analysis as the proof of Theorem 1 for α< 1/2 go through.

Due to the similarity in the steps, we shall present the key structure of the proof and omit the details.
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Consider the two-stage staffing rule denoted by u, where the staffing levels are given by

Nλ
1 := λ/µ+ F̄−1

Y (c1/c2)(λ/µ)α, and Nλ
2 (Nλ

1 , Y ) :=
(
Y − F̄−1

Y (c1/c2)
)+

(λ/µ)α.

Following the definition of Ĉλu in (27), we define

Ĉe,λu :=
Ce,λu − c1λ/µ

(λ/µ)max{α,1/2} .

Similar lines of arguments as in the proof of Lemma 4 establish that

Ĉe,λu → c1F̄
−1
Y (c1/c2) + c2E

[
(Y − F̄−1

Y (c1/c2))+
]

as λ→∞.

In comparison, consider the single-stage staffing rule denoted by ũ, where the base-stage staffing level is

Nλ
1 :=

λ

µ
+ F̄−1

Y

(
c1

hµ/γ+ aµ

)
(λ/µ)α.

Similar lines of arguments as in the proof of Lemma 4 show that

Ĉe,λũ → c1F̄
−1
Y

(
c1

hµ/γ+ aµ

)
+

(
hµ

γ
+ aµ

)
E

[(
Y − F̄−1

Y

(
c1

hµ/γ+ aµ

))+
]

as λ→∞,

where Ĉe,λũ is defined the same way as Ĉe,λu but for policy ũ instead.

By Assumption 1 and the continuity of Y , it can be verified that limλ→∞ Ĉe,λũ > limλ→∞ Ĉe,λu . Thus,

Ce,λũ −Ce,λu = Θ(λα).

Moreover, similar derivation as in the proof of Lemma 8 gives that

Ce,λũ −C
e,λ
1,∗ = o(λα) and Ce,λu −C

e,λ
2,∗ = o(λα).

The statement follows.

Case 2: ν =α. Consider the two-stage staffing rule denoted by u, where the staffing levels are given by

Nλ
1 := λ/µ+β∗1(λ/µ)α, and Nλ

2 (Nλ
1 , Y ) := β∗2(β∗1 , Y )(λ/µ)α,

where β∗1 and β∗2(β∗1 , Y ) jointly solve

min
β1

{
c1β1 +E

[
min

β2(β1,Y )∈R+

{
c2β2(β1, Y ) + (hµ/γ+ aµ)E

[
(Y +Z −β1−β2(β1, Y ))

+
∣∣Y ]}]} . (89)

We first show that an optimal solution to (89) exists. Consider the inner-problem in (89):

min
β2(β1,Y )∈R+

c2β2(β1, Y ) + (hµ/γ+ aµ)E
[
(Y +Z −β1−β2(β1, Y ))

+
∣∣Y ] . (90)

Note that (90) is a newsvendor problem with unit capacity cost c2, unit sales price hµ/γ + aµ, random

demand Y +Z − β1|Y (where the randomness lies in random variable Z), and capacity decision β2(β1, Y ).

The optimal solution is given by

β∗2(β1, Y ) =

(
F̄−1
Z

(
c2

hµ/γ+ aµ

)
+Y −β1

)+

. (91)

Given β∗2(β1, Y ), the outer-problem is given by minβ1∈R h(β1), where

h(β1) :=
{
c1β1 +E

[
c2β

∗
2(β1, Y ) + (hµ/γ+ aµ) (Y +Z −β1−β∗2(β1, Y ))

+
]}
.
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Differentiating h(β1) with respect to β1 gives

∂

∂β1

h(β1) = c1− c2P
(
Y > F̄−1

Z

(
c2

hµ/γ+ aµ

)
+β1

)
−
(
hµ

γ
+ aµ

)
P
(
Y ≤ F̄−1

Z

(
c2

hµ/γ+ aµ

)
+β1, Y +Z >β1

)
.

(92)

By observation, ∂
∂β1

h(β1) is continuous in β1, and there exist βL1 and βU1 such that ∂
∂β1

h(βL1 ) < 0 and

∂
∂β1

h(βH1 ) > 0. Thus, the intermediate value theorem implies that there exists critical point β∗1 such that

∂
∂β1

h(β∗1) = 0. In addition, h(β1) is convex in β1, because

∂2

∂β2
1

h(β1) =

(
hµ

γ
+ aµ

)∫ F̄−1
Z ( c2

hµ/γ+aµ )+β1

−∞
fY (y)fZ(−y+β1)dy≥ 0.

Hence, β∗1 is a global minimum of h(β1).

Following similar lines of arguments as in the proof of Lemma 4 and Lemma 8, we get that

lim
λ→∞

Ĉe,λu = c1β
∗
1 +E

[
c2β

∗
2(β∗1 , Y ) + (hµ/γ+ aµ) (Y +Z −β∗1 −β∗2(β∗1 , Y ))

+
]
,

and

Ce,λu −C
e,λ
2,∗ = o(λα). (93)

Next, consider the single-stage policy denoted by ũ, where the base-stage staffing level is given by Nλ
1 :=

λ/µ+ β̃(λ/µ)α, for

β̃ := arg min
β∈R

c1β+

(
hµ

γ
+ aµ

)
E
[
(Y +Z −β)

+
]

= F̄−1
Y+Z

(
c1

hµ/γ+ aµ

)
. (94)

Similar derivation as in the proof of Lemma 4 gives that

lim
λ→∞

Ĉe,λũ = c1β̃+ (hµ/γ+ aµ)E
[(
Y +Z − β̃

)+
]
.

Theorem 1 in Bassamboo et al. (2010) establishes that

Ce,λũ −C
e,λ
1,∗ =O(λ1−α). (95)

If Assumption 2 holds, then

β∗2(β∗1 , Y ) =

(
F̄−1
Z

(
c2

hµ/γ+ aµ

)
+Y −β∗1

)+

> 0 with probability p > 0. (96)

To see (96), suppose for the sake of contradiction that β∗2(β∗1 , Y ) = 0 with probability 1. It follows by solving

∂
∂β1

h(β∗1) = 0 in (92) that β∗1 = β̃, for β̃ defined in (94). However, plugging in the value of β̃ in (91) gives that

β∗2(β∗1 , Y ) = β∗2(β̃1, Y ) =

(
F̄−1
Z

(
c2

hµ/γ+ aµ

)
+Y − F̄−1

Y+Z

(
c1

hµ/γ+ aµ

))+

.

This, together with Assumption 2, implies that β∗2(β∗1 , Y )> 0 with probability p > 0, a contradiction. Thus,

(96) holds. It follows from (96) that limλ→∞ Ĉe,λũ > limλ→∞ Ĉe,λu , so that

Ce,λũ −Ce,λu = Θ(λα). (97)
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In the other case where Assumption 2 does not hold, similar derivation shows that β∗1 = β̃ and β∗2(β∗1 , Y ) =

β∗2(β̃, Y ) = 0 is optimal to (89), and

Ce,λũ −Ce,λu = o(λα). (98)

The statement follows from (93), (95), (97), and (98).

Proof of (II). We discuss the following three cases: µ= γ, µ> γ, and µ< γ.

Case 1: µ= γ. It follows from Lemma 3 in Bassamboo et al. (2010) that for any staffing prescriptions

Nλ
1 and Nλ

2 (Nλ
1 , Y ), we have(

Λλ

µ
−Nλ

1 −Nλ
2 (Nλ

1 , Y )

)+

≤E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 , Y ),Λλ)|Y,Z
]

≤
(

Λλ

µ
−Nλ

1 −Nλ
2 (Nλ

1 , Y )

)+

+

√
4π

µ

√
Λλ exp

(
− µ

4Λλ

(
Λλ

µ
−Nλ

1 −Nλ
2 (Nλ

1 , Y )

)2
)

+
1

log 2
.

(99)

Taking expectation of (99) conditional on Y gives

E

[(
Λλ

µ
−Nλ

1 −Nλ
2 (Nλ

1 , Y )

)+ ∣∣∣∣Y
]
≤E

[
Q(Nλ

1 +Nλ
2 (Nλ

1 , Y ),Λλ)|Y
]

≤E

[(
Λλ

µ
−Nλ

1 −Nλ
2 (Nλ

1 , Y )

)+ ∣∣∣∣Y
]

+E
[√

4π

µ

√
Λλ

∣∣∣∣Y ]+
1

log 2
.

(100)

It follows from (100) that

c1N
λ
1 +E

[
c2N

λ
2 (Nλ

1 , Y ) + (h+ aγ)E
[(

Λλ/µ−Nλ
1 −Nλ

2 (Nλ
1 , Y )

)+ ∣∣∣∣Y ]]
≤c1Nλ

1 +E
[
c2N

λ
2 (Nλ

1 , Y ) + (h+ aγ)E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 , Y ),Λλ)|Y
]]

≤c1Nλ
1 +E

[
c2N

λ
2 (Nλ

1 , Y ) + (h+ aγ)E
[(

Λλ/µ−Nλ
1 −Nλ

2 (Nλ
1 , Y )

)+ ∣∣∣∣Y ]]+E
[√

4π/µ
√

Λλ

]
+ 1/ log 2

≤c1Nλ
1 +E

[
c2N

λ
2 (Nλ

1 , Y ) + (h+ aγ)E
[(

Λλ/µ−Nλ
1 −Nλ

2 (Nλ
1 , Y )

)+ ∣∣∣∣Y ]]+
√

4π/µ
√
λ

+
√

4π/µ
√
λαµ1−αE [|Y |] +

√
4π/µ

√
λνµ1−νE [|Z|] + 1/ log 2,

(101)

where the last inequality follows from the reverse Jensen’s inequality, and the fact that Y and Z are inde-

pendent.

Let (Nλ,∗
1 ,Nλ,∗

2 (Nλ,∗
1 , Y )) denotes the optimal solution to problem (16). We have

Ce,λ2,Err = c1N̄
λ
1 +E

[
c2N̄

λ
2 (N̄λ

1 , Y ) + (h+ aγ)E
[
Q(N̄λ

1 + N̄λ
2 (N̄λ

1 , Y ),Λλ)|Y
]]

(a)

≤ c1N̄
λ
1 +E

[
c2N̄

λ
2 (N̄λ

1 , Y ) + (h+ aγ)E
[(

Λλ−µ
(
N̄λ

1 + N̄λ
2 (N̄λ

1 , Y )
))+ |Y ]/γ]+O(

√
λ)

(b)

≤ c1Nλ,∗
1 +E

[
c2N

λ,∗
2 (Nλ,∗

1 , Y ) + (h+ aγ)E
[(

Λλ−µ
(
Nλ,∗

1 +Nλ,∗
2 (Nλ,∗

1 , Y )
))+ |Y ]/γ]+O(

√
λ)

(c)

≤ c1Nλ,∗
1 +E

[
c2N

λ,∗
2 (Nλ,∗

1 , Y ) + (h+ aγ)E
[
Q(Nλ,∗

1 +Nλ,∗
2 (Nλ,∗

1 , Y ),Λλ)|Y
]]

+O(
√
λ)

= Ce,λ2,∗ +O(
√
λ),

where (a) follows from (101), (b) follows from the optimality of (N̄1, N̄2(N̄1, Y )) to problem (18), and (c)

follows from (101) again.
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Case 2: µ> γ. To simply notation, define

Ce,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y )) := c1N
λ
1 +E

[
c2N

λ
2 (Nλ

1 , Y ) + (h+ aγ)E
[
Q(Nλ

1 +Nλ
2 (Nλ

1 , Y ),Λλ)|Y
]]

= c1N
λ
1 +E

[
c2N

λ
2 (Nλ

1 , Y ) + (h/γ+ a)P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , Y ), Y
)]
,

(102)

where P (AB,Nλ
1 +Nλ

2 (Nλ
1 , Y ), Y ) denotes the steady-state abandonment probability conditional on Y , i.e.,

P (AB,Nλ
1 +Nλ

2 (Nλ
1 , Y ), Y ) := E

[
1(AB,Nλ1 +Nλ2 (Nλ1 ,Y ),Λλ)|Y

]
. In addition, define

C̄e,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y )) := c1N
λ
1 +E

[
c2N

λ
2 (Nλ

1 , Y ) + (h+ aγ)E
[(

Λλ−µ
(
Nλ

1 +Nλ
2 (Nλ

1 , Y )
))+ |Y ]/γ] . (103)

Note that (N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y )) = arg minNλ1 ,Nλ2 (Nλ1 ,Y ) C̄e,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y )).

Consider an auxiliary sequence of systems with the same parameters as the original sequence of systems

except that its abandonment rate is equal to µ; that is, systems in this sequence have a higher abandonment

rate compared to the original sequence. We refer to this sequence as Sequence II and add the superscript II

to all quantities associated with it, e.g., µII = µ,γII = µ. Quantities associated with the original sequence of

system are denoted without superscripts. For systems in Sequence II, we choose the cost parameters to be

the following: cII1 = c1, c
II
2 = c2, a

II = a, and hII = hµ/γ. The analogues of (102) and (103) for Sequence II

are

Ce,λ,II(Nλ
1 ,N

λ
2 (Nλ

1 , Y )) := cII1 N
λ
1 +E

[
cII2 N

λ
2 (Nλ

1 , Y ) +
(
hII/γII + aII

)
P
(
ABII ,Nλ

1 +Nλ
2 (Nλ

1 , Y ), Y
)]

= c1N
λ
1 +E

[
c2N

λ
2 (Nλ

1 , Y ) + (h/γ+ a)P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , Y ), Y
)]

= Ce,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y )),

and

C̄e,λ,II(Nλ
1 ,N

λ
2 (Nλ

1 , Y )) := cII1 N
λ
1 +E

[
cII2 N

λ
2 (Nλ

1 , Y ) + (hII + aIIγII)E
[(

Λλ−µII
(
Nλ

1 +Nλ
2 (Nλ

1 , Y )
))+ |Y ]/γII]

= c1N
λ
1 +E

[
c2N

λ
2 (Nλ

1 , Y ) + (h+ aγ)E
[(

Λλ−µ
(
Nλ

1 +Nλ
2 (Nλ

1 , Y )
))+ |Y ]/γ]

= C̄e,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y )).
(104)

From the proof of Theorem 3 in Bassamboo et al. (2010), we have

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , Y ), Y
)
≤ P

(
ABII ,Nλ

1 +Nλ
2 (Nλ

1 , Y ), Y
)
,

which implies that

Ce,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))≤Ce,λ,II(Nλ
1 ,N

λ
2 (Nλ

1 , Y )). (105)

Applying (101) to Sequence II, we get that

Ce,λ,II(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))

=cII1 N
λ
1 +E

[
cII2 N

λ
2 (Nλ

1 , Y ) + (hII + aIIγII)E
[
QII(Nλ

1 +Nλ
2 (Nλ

1 , Y ),Λλ)|Y
]]

≤cII1 Nλ
1 +E

[
cII2 N

λ
2 (Nλ

1 , Y ) + (hII + aIIγII)E
[(

Λλ/µII −Nλ
1 −Nλ

2 (Nλ
1 , Y )

)+ ∣∣∣∣Y ]]+O(
√
λ)

=C̄e,λ,II(Nλ
1 ,N

λ
2 (Nλ

1 , Y )) +O(
√
λ)

(106)

Next, consider another auxiliary sequence of systems with the same parameters as the original sequence of

systems except that its service rate is equal to γ; that is, systems in this sequence have a lower service rate

compared to the original sequence. We refer to this sequence as Sequence III and add the superscript III to
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all quantities associated with Sequence III, e.g., µIII = γ, γIII = γ. For systems in Sequence III, we choose

the cost parameters to be the following: cIII1 = c1γ/µ, c
III
2 = c2γ/µ,a

III = a, and hIII = h. The analogues of

(102) and (103) for Sequence III are

Ce,λ,III(Nλ
1 ,N

λ
2 (Nλ

1 , Y )) :=cIII1 Nλ
1 +E

[
cIII2 Nλ

2 (Nλ
1 , Y ) +

(
hIII/γIII + aIII

)
P
(
ABIII ,Nλ

1 +Nλ
2 (Nλ

1 , Y ), Y
)]

=c1γ/µN
λ
1 +E

[
c2γ/µN

λ
2 (Nλ

1 , Y ) + (h/γ+ a)P
(
ABIII ,Nλ

1 +Nλ
2 (Nλ

1 , Y ), Y
)]
,

and

C̄e,λ,III(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))

:=cIII1 Nλ
1 +E

[
cIII2 Nλ

2 (Nλ
1 , Y ) + (hIII + aIIIγIII)E

[(
Λλ−µIII

(
Nλ

1 +Nλ
2 (Nλ

1 , Y )
))+ |Y ]/γIII]

=c1γ/µN
λ
1 +E

[
c2γ/µN

λ
2 (Nλ

1 , Y ) + (h+ aγ)E
[(

Λλ− γ
(
Nλ

1 +Nλ
2 (Nλ

1 , Y )
))+ |Y ]/γ]

=C̄e,λ(γ/µNλ
1 , γ/µN

λ
2 (Nλ

1 , Y )).

(107)

From the proof of Theorem 3 in Bassamboo et al. (2010), we have

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , Y ), Y
)
≥ P

(
ABIII , µ/γ

(
Nλ

1 +Nλ
2 (Nλ

1 , Y )
)
, Y
)
,

which implies that

Ce,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))≥Ce,λ,III(µ/γNλ
1 , µ/γN

λ
2 (Nλ

1 , Y )). (108)

Applying (101) to Sequence III, we get that

Ce,λ,III(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))

=cIII1 Nλ
1 +E

[
cIII2 Nλ

2 (Nλ
1 , Y ) + (hIII + aIIIγIII)E

[
QIII(Nλ

1 +Nλ
2 (Nλ

1 , Y ),Λλ)|Y
]]

≥cIII1 Nλ
1 +E

[
cIII2 Nλ

2 (Nλ
1 , Y ) + (hIII + aIIIγIII)E

[(
Λλ/µIII −Nλ

1 −Nλ
2 (Nλ

1 , Y )
)+ ∣∣∣∣Y ]]

=C̄e,λ,III(Nλ
1 ,N

λ
2 (Nλ

1 , Y )),

(109)

which implies that

Ce,λ(Nλ,∗
1 ,Nλ,∗

2 (Nλ,∗
1 , Y )) = min

Nλ1 ,N
λ
2 (Nλ1 ,Y )

Ce,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))

(d)

≥ min
Nλ1 ,N

λ
2 (Nλ1 ,Y )

Ce,λ,III(µ/γNλ
1 , µ/γN

λ
2 (Nλ

1 , Y ))

(e)

≥ min
Nλ1 ,N

λ
2 (Nλ1 ,Y )

C̄e,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))

= C̄e,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y )),

(110)

where (d) follows from (108), and (e) follows from (107) and (109).

Lastly, we can write

Ce,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y ))−Ce,λ(Nλ,∗
1 ,Nλ,∗

2 (Nλ,∗
1 , Y ))

=Ce,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y ))− C̄e,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y )) + C̄e,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y ))−Ce,λ(Nλ,∗
1 ,Nλ,∗

2 (Nλ,∗
1 , Y ))

(f)

≤Ce,λ,II(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y ))− C̄e,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y )) + C̄e,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y ))−Ce,λ(Nλ,∗
1 ,Nλ,∗

2 (Nλ,∗
1 , Y ))

(g)
=Ce,λ,II(N̄λ

1 , N̄
λ
2 (N̄λ

1 , Y ))− C̄e,λ,II(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y )) + C̄e,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y ))−Ce,λ(Nλ,∗
1 ,Nλ,∗

2 (Nλ,∗
1 , Y ))

(h)
=O(

√
λ),

where (f) follows from (105), (g) follows from (104), and (h) follows from (106) and (110).
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Case 3: µ < γ. The analysis for Case 3 is similar to that for Case 2. In particular, we again consider

Sequence II and Sequence III as constructed in Case 2.

For Sequence II, it follows by construction that

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , Y ), Y
)
≥ P

(
ABII ,

(
Nλ

1 +Nλ
2 (Nλ

1 , Y )
)
, Y
)
,

which implies that

Ce,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))≥Ce,λ,II(Nλ
1 ,N

λ
2 (Nλ

1 , Y )).

Applying (101) to Sequence II, we get that

Ce,λ,II(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))

=cII1 N
λ
1 +E

[
cII2 N

λ
2 (Nλ

1 , Y ) + (hII + aIIγII)E
[
QII(Nλ

1 +Nλ
2 (Nλ

1 , Y ),Λλ)|Y
]]

≥cII1 Nλ
1 +E

[
cII2 N

λ
2 (Nλ

1 , Y ) + (hII + aIIγII)E
[(

Λ/µII −Nλ
1 −Nλ

2 (Nλ
1 , Y )

)+ ∣∣∣∣Y ]]
=c1N

λ
1 +E

[
c2N

λ
2 (Nλ

1 , Y ) + (h/γ+ a)E
[(

Λλ−µ
(
Nλ

1 −Nλ
2 (Nλ

1 , Y )
))+ |Y ]]

=C̄e,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y )),

which implies that

Ce,λ(Nλ,∗
1 ,Nλ,∗

2 (Nλ,∗
1 , Y )) = min

Nλ1 ,N
λ
2 (Nλ1 ,Y )

Ce,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))

≥ min
Nλ1 ,N

λ
2 (Nλ1 ,Y )

Ce,λ,II(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))

≥ min
Nλ1 ,N

λ
2 (Nλ1 ,Y )

C̄e,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))

= C̄e,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y )).

(111)

For Sequence III, it follows by construction that

P
(
AB,Nλ

1 +Nλ
2 (Nλ

1 , Y ), Y
)
≤ P

(
ABIII , µ/γ

(
Nλ

1 +Nλ
2 (Nλ

1 , Y )
)
, Y
)
,

which implies that

Ce,λ(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))≤Ce,λ,III(µ/γNλ
1 , µ/γN

λ
2 (Nλ

1 , Y )). (112)

Applying (101) to Sequence III, we get that

Ce,λ,III(Nλ
1 ,N

λ
2 (Nλ

1 , Y ))

=cIII1 Nλ
1 +E

[
cIII2 Nλ

2 (Nλ
1 , Y ) + (hIII + aIIIγIII)E

[
QIII(Nλ

1 +Nλ
2 (Nλ

1 , Y ),Λλ)|Y
]]

≤cIII1 Nλ
1 +E

[
cIII2 Nλ

2 (Nλ
1 , Y ) + (hIII + aIIIγIII)E

[(
Λλ/µIII −Nλ

1 −Nλ
2 (Nλ

1 , Y )
)+ ∣∣∣∣Y ]]+O(

√
λ)

=C̄e,λ,III(Nλ
1 ,N

λ
2 (Nλ

1 , Y )) +O(
√
λ)

(113)

Lastly, we can write

Ce,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y ))−Ce,λ(Nλ,∗
1 ,Nλ,∗

2 (Nλ,∗
1 , Y ))

=Ce,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y ))− C̄e,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y )) + C̄e,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y ))−Ce,λ(N∗1 ,N
∗
2 (N∗1 , Y ))

(i)

≤Ce,λ,III(µ/γN̄λ
1 , µ/γN̄

λ
2 (N̄λ

1 , Y ))− C̄e,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y )) + C̄e,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y ))−Ce,λ(N∗1 ,N
∗
2 (N∗1 , Y ))

(j)
=Ce,λ,III(µ/γN̄λ

1 , µ/γN̄
λ
2 (N̄λ

1 , Y ))− C̄e,λ,III(µ/γN̄λ
1 , µ/γN̄

λ
2 (N̄λ

1 , Y )) + C̄e,λ(N̄λ
1 , N̄

λ
2 (N̄λ

1 , Y ))

−Ce,λ(Nλ,∗
1 ,Nλ,∗

2 (Nλ,∗
1 , Y ))

(k)
=O(

√
λ),
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where (i) follows from (112), (j) follows from (107), and (k) follows from (111) and (113).

Proof of (III). For the oracle problem, we consider the following stochastic-fluid optimization problem

min
Nλ1

{
c1N

λ
1 +E

[
min

Nλ2 (Nλ1 ,Λ
λ)

{
c2N

λ
2 (Nλ

1 ,Λ
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[(
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1 −Nλ
2 (Nλ

1 ,Λ
λ)
)+ |Λλ

]}]}
. (114)

whose optimal solution is given by

N̂λ
1 = F̄−1

Λλ/µ
(c1/c2) (λ/µ)

α
, and N̂λ

2 (N̂λ
1 ,Λ

λ) = (Λλ/µ− N̂λ
1 )+.

We denote the staffing rule that prescribes (N̂λ
1 , N̂

λ
2 (N̂λ

1 ,Λ
λ)) as û. The same lines of analysis used to show

statement (II) can be applied to establish that

Co,λû −C
o,λ
2,∗ =O(

√
λ). (115)

Recall from the proof of Proposition 3 that u2,ERR prescribes staffing levels (N̄λ
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λ
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1 , Y )) where
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Next, we compare the two inner-optimization problems in (18) and (114). It holds that
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(117)

Denote part of the integrand in (117) as

gλ(y, z) := c2
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By construction of the two optimization problems, it holds that gλ(y, z)≥ 0 for all y, z ∈R. Moreover, it

follows from (116) that at least one of the following two cases holds:
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In addition, if
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Therefore, we have ∫ ∞
−∞

∫ ∞
−∞

gλ(y, z)fY (y)fZ(z)dydz = Θ(λν). (118)

It follows from (117), (118), and the construction of stochastic-fluid problems (18) and (114) that

Ce,λ2,ERR−C
o,λ
û = Θ(λν). (119)

The statement follows from (115), (119), and statement (II). Q.E.D.

Appendix G: Details on Model Calibration for the ED

In this section, we discuss several model calibration details for the ED application. Section G.1 provides

detailed linear regression results for estimating α and σ. Section G.2 investigates an alternative non-

parametric estimation method for α and σ, which leads to the same estimation results. Section G.2 elaborates

on the statistical procedures to estimate ν and Z, which is an analog to those used to estimate α and X. In

Section G.4 we provide normal probability plots for X and Z. Lastly, in Section G.5, we elaborate on how

to estimate patients’ mean patience time.

G.1. Linear Regression Results for Estimating α and σ

Table 8 provides the detailed estimation results for α and σ using linear regression. The R2 is 0.821 for the

model using 14 observations (obtained by dividing the shifts based on the day of the week and day vs. night),

and 0.541 for the model using 56 observations (obtained by dividing the shifts based on the day of the week,

day vs. night, and quarter of the year).

G.2. Non-Parametric Estimation of α and σ

In this section, we provide more details of the non-parametric estimation proposed in Maman (2009) to

approximate the relationship between α and σ in the random arrival rate (3). In particular, this method

does not impose any distributional assumption on X. However, it requires that α> 1/2.
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Table 8 Linear regression results for estimating α and σ

Dependent variable:

Regression 1: |I|= 14 Regression 2: |I|= 56

log(L̄i) 0.768∗∗∗ (0.565, 0.971) 0.746∗∗∗ (0.563, 0.929)
Constant −1.067∗ (−2.056, −0.077) −1.017∗∗ (−1.909, −0.124)

Observations 14 56
R2 0.821 0.541
Adjusted R2 0.806 0.533
Residual Std. Error 0.126 (df = 12) 0.230 (df = 54)
F Statistic 55.051∗∗ (df = 1; 12) 63.680∗∗ (df = 1; 54)

Note: .p<0.1; ∗p<0.05; ∗∗p<0.01

Let Li be a generic random variable denoting the arrival count during a type-i shift, i ∈ I. Since

Li|Λi ∼Poisson(Λi), we have

E [Li] = E[E[Li|Λi]] = λi

Var(Li) = Var(E[Li|Λi]) +E[Var(Li|Λi)] = λ2α
i σ

2 +λi, i∈ I.

Thus,
Std(Li)

λαi
=
(
σ2 +λ1−2α

i

)1/2
, i∈ I.

In addition, since α> 1/2,

lim
λ→∞

(log Std(Li)−α logλi) = logσ, i∈ I.

Hence, it holds for large λi that

log Std(Li)≈ α logλi + logσ, i∈ I.

Using sample mean L̄i to approximate λi and sample standard deviation Σi to approximate Std(Li), we get

that

log Σi ≈ α̂ log L̄i + log σ̂, i∈ I,

which is equivalent to (20) in our parametric estimation setting.

G.3. Estimation of ν and Z

We assume that Z follows a normal distribution with a mean equal to 0 and a standard deviation equal to

σZ . Let L
(k)
i and R

(k)
i denote the observed arrival count and residual for the kth shift of type i, 1≤ k ≤ ni.

Recall from the random arrival-rate model that the residuals for type-i shifts in the surge-stage prediction

model are distributed according to λνi µ
1−νZ. For shifts of type i, i∈ I, we define

L̄i :=
1

ni

ni∑
k=1

L
(k)
i , R̄i :=

1

ni

ni∑
k=1

R
(k)
i , χ2

i :=
1

ni

ni∑
k=1

(R
(k)
i − R̄i)2,

where L̄i is the mean of the observed arrival counts, R̄i is the mean of the residuals, and χ2
i is the variance of

the residuals. Based on the method of moments, we have the following system of equations for the estimators

L̄i = λ̂i, χ2
i = λ̂2ν̂

i µ
2(1−ν̂)σ̂2

Z , i∈ I. (120)
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It follows from (120) that

logχi = ν̂ log L̄i + log(µ1−ν̂ σ̂Z), i∈ I.

Then, we can fit ν̂ and σ̂Z by solving the following least squares problem

min
ν∈(0,1), γ∈R

14∑
i=1

(
logχi− γ− ν log L̄i

)2
. (121)

In particular, let γ∗ and ν∗ denote the optimal solution to the least squares problem (121). Then, ν̂ = ν∗ and

µ1−ν̂ σ̂Z = exp(γ∗). Following this method, we get that v̂= 0.508 and Z ∼N(0,1.067). Table 9 below provides

the results for estimating ν and σZ using linear regression.

Table 9 Linear regression results for estimating ν and σZ

Dependent variable:

log(L̄i) 0.508∗∗∗ (0.326, 0.691)
Constant 0.142 (−0.747, 1.031)

Observations 14
R2 0.713
Adjusted R2 0.689
Residual Std. Error 0.111 (df = 12)
F Statistic 29.758∗∗ (df = 1; 12)

Note: .p<0.1; ∗p<0.05; ∗∗p<0.01

G.4. Assumption of Normal Distributions for X and Z

To validate the assumption that X and Z follow normal distributions, we examine their normal probability

plots in Figure 11 below. We see that in each plot, the points fall reasonably close to a line, suggesting that

our assumption on the normal distribution is reasonable.

G.5. Estimation of Mean Patience Time

We use maximum likelihood estimation to derive the mean patience time. In particular, let M1 and M2

denote the set of patients who left without being seen and the set of patients who received treatment in the

data, respectively. For patient m ∈M1, let wm be the time between arrival and departure for patient m.

For patient m∈M2, let wm be the time between arrival and evaluation for patient m. Recall that patients’

patience time is assumed to follow an exponential distribution with rate γ. Then the likelihood of observing

patient m∈M1 is 1−e−γwm , and the likelihood of observing patient m∈M2 is e−γw
m

. The overall likelihood

L(γ) is given by

L(γ) =
∏

m1∈M1

(
1− e−γwm1

) ∏
m2∈M2

(
e−γw

m2
)
.

Taking the log of the overall likelihood gives

ln(L(γ)) =
∑

m1∈M1

ln
(
1− e−γwm1

)
−

∑
m2∈M2

γwm2 .

We let γ̂ := arg maxγ>0 ln(L(γ)), and get γ̂ = 27.5 hours from the data. Hence, in the more complex simulation

experiments for the ED, we assume that the mean patience time is 27.5 hours.
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Figure 11 Normal probability plots for X and Z

(a) X (b) Z

Appendix H: Model Generalization: Capacity Cap, On-Call Pool, and Nurse
No-Show Behavior

In this section, we discuss several generalizations of modeling assumptions. Since it is relatively easy to

incorporate different service rates for base and surge nurses (e.g., having µ1 and µ2 instead of a single µ),

we shall omit its discussion to simplify the exposition. We next elaborate on how to incorporate a capacity

cap for surge nurses and random nurse show-up behavior to work.

In particular, we can consider the following generalized model formulation: At the base stage, the ED

manager has information on the distribution of the random arrival rate Λ, and determines 1) N1, the number

of base nurses with cost rate c1, and 2) No
2 , the number of on-call nurses with cost rate co2. These on-call

nurses are staffed in advance (i.e., at the base stage) with a small monetary incentive (i.e., co2) and are

committed to work as surge staff if they turn out to be needed. At the surge stage, the ED manager

has information on the realization of the random arrival rate Λ, and determines N2, the number of surge

nurses to call in from the on-call pool with cost rate c2, subject to N2 ≤No
2 . We require N2 ≤No

2 because

the surge staff are exclusively called in from the on-call pool. Moreover, if a nurse stays on call and actually

gets called in, then his/her pay rate for this shift is co2 + c2. On the other hand, if a nurse stays on call but

is not called in to work as a surge staff, then his/her pay rate for this shift is only co2. At the beginning of

the shift, no-shows are realized among the scheduled base and surge nurses. We assume that the number

of base nurses who actually show up to work is Ñ1, which follows a Binomial distribution with parameters

N1 and show-up probability p1. Similarly, the number of surge nurses who actually show up to work is Ñ2,

which follows a Binomial distribution with parameters N2 and show-up probability p2. The staffing problem

for the generalized model is

min
N1,N

o
2

{
c1N1 + co2N

o
2 +EΛ

[
min
N2≤No2

{
c2N2 +EQ,Ñ1,Ñ2

[
(h+ aγ)Q

(
Ñ1, Ñ2,Λ

)∣∣∣∣Λ]}]} . (122)
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Table 10 Optimal staffing decisions in different cost regimes for the generalized model

Cost parameters Staffing decisions
min{c1/p1, (c

o
2 + c2)/p2} ≥ hµ/γ+ aµ No staffing

min{c1/p1, hµ/γ+ aµ} ≥ (co2 + c2)/p2 Complete surge staffing
(co2 + c2)/p2 ≥ hµ/γ+ aµ≥ c1/p1 Complete base staffing
hµ/γ+ aµ> (co2 + c2)/p2 > c1/p1 Base + surge staffing

For problem (122), Table 10 summarizes optimal solutions for different parameter regimes, and is an analogue

to Table 1 and Proposition 1.

In addition, we can follow similar lines of analysis as those for the two-stage newsvendor solution in the

original paper to derive a “generalized” two-stage newsvendor solution.

The high-level structural results as in Theorems 1 and 2 maintain. That is, introducing capped surge-stage

staffing levels and nurses’ no-show behavior does not change the order of cost savings and optimality gap of

the two-stage staffing framework. Intuitively, the staffing level for any realized arrival rate is on the order of

Θ(λ). Incorporating nurses’ no-show behavior then introduces randomness on the order of O(
√
λ) in staffing

levels. This is because a Binomial random variable with parameters n (number of trials) and p (success

probability) has standard deviation equal to
√
np(1− p). In comparison to the randomness in staffing levels,

the level of uncertainty in the random arrival-rate model is on the order of Θ(λα), for α > 1/2. Since the

uncertainty in random arrival rates dominates the randomness in staffing levels, the generalized two-stage

staffing newsvendor solution is still able to achieve a cost saving of Θ(λα) and an optimality gap of o(λα).

Appendix I: Supplementary Numerical Experiments

In this section we conduct additional numerical experiments to support the results in the main paper.

Section I.1 investigates effective translation of the two-stage QED staffing rule to finite stochastic systems.

Sections I.2–I.4 are devoted to the ED application. Section I.2 provides detailed results for the surge-stage

linear regression model. Section I.3 presents sensitivity analysis of the proposed staffing rule with respect

to ED-specific patient-flow characteristics, specifically, on the joint impact of lognormal LOS distribution

and hourly-varying arrival rates. Section I.4 compares the performance of our proposed heuristic adjustment

and the numerically obtained optimal adjustment to account for the transient-shift effects. Lastly, in Section

I.5 we develop heuristic policies and conduct numerical experiments regarding non-linear holding costs and

multiple patient classes.

I.1. Translation of The Two-Stage QED Staffing Rule

In this appendix we conduct more numerical experiments to examine system performance under the two-stage

QED staffing rule with different specifications of k in (12). In what follows, we repeat the experiments in

Tables 2 (with c2 = 2) and 3 (with c2 = 10) for other values of surge staffing costs, i.e., c2 = 6,14. We remark

that for the system parameters under consideration, Assumption 1 requires that c2 < 18. The results of these

experiments corroborate the efficacy of the particular form of the two-stage QED staffing rule proposed in

(13) for small systems.
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Table 11 System performance (optimality gap) under different specifications of the two-stage QED staffing

rule with β∗ = 0.967, η∗ = 0.120

(µ= 1, γ = 0.1,α= 0.75, h= 1.5, a= 3, c1 = 1, c2 = 6)

λ
k

-3 -2 -1 0 1 2 3

25 37.98% 23.30% 9.50% 1.69% 0.58% 5.89% 13.62%
50 29.15% 16.95% 6.79% 1.27% 0.10% 3.42% 9.17%
75 23.57% 13.71% 5.11% 0.85% 0.05% 2.87% 8.01%
100 19.27% 10.04% 3.40% 0.45% 0.23% 3.07% 7.54%

Table 12 System performance (optimality gap) under different specifications of the two-stage QED staffing

rule with β∗ = 1.465, η∗ =−0.380

(µ= 1, γ = 0.1,α= 0.75, h= 1.5, a= 3, c1 = 1, c2 = 14)

λ
k

-3 -2 -1 0 1 2 3

25 44.04% 24.68% 7.62% 1.15% 5.04% 12.83% 20.36%
50 33.31% 17.89% 5.51% 0.60% 3.94% 10.05% 16.23%
75 27.22% 13.57% 3.25% 0.10% 2.66% 8.07% 13.21%
100 21.75% 10.43% 2.23% 0.07% 2.60% 7.16% 12.21%

I.2. Surge-Stage Linear Regression Model

Table 13 below provides the estimated coefficients in the surge-stage linear regression model.

Table 13: Surge-stage linear regression results

Dependent variable:

Observed

Monday day 119.972∗∗ (115.275, 124.668)
Tuesday day 97.307∗∗ (91.680, 102.934)
Wednesday day 96.277∗∗ (91.056, 101.497)
Thursday day 93.560∗∗ (88.420, 98.700)
Friday day 83.007∗∗ (77.792, 88.222)
Saturday day 57.421∗∗ (51.948, 62.894)
Sunday day 53.682∗∗ (48.349, 59.014)
Monday night 9.599∗∗ (4.116, 15.082)
Tuesday night 6.170. (0.915, 11.426)
Wednesday night 2.755 (−2.481, 7.990)
Thursday night 3.963 (−1.235, 9.161)
Friday night 5.650. (0.213, 11.088)
Saturday night 5.496. (0.161, 10.832)
Winter 3.021 (−0.699, 6.741)
Summer −1.574 (−4.919, 1.772)
Fall −2.355 (−5.519, 0.808)
Holiday −22.392∗∗ (−28.168, −16.616)
Holiday − 1 day −10.137∗∗ (−15.761, −4.513)
Holiday + 1 day 16.840∗∗ (11.174, 22.507)
Min temperature 0.532∗∗ (0.344, 0.719)
Precipitation −0.160∗∗ (−0.249, −0.071)
Snow −0.169∗∗ (−0.224, −0.114)
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Wind 0.078∗ (0.018, 0.139)
Max temperature ≥ 86◦F −5.761∗∗ (−9.292, −2.231)
1-day lag 0.013 (−0.030, 0.055)
7-day lag 0.038 (−0.001, 0.078)
30-day moving average 0.012 (−0.041, 0.065)
Google trend “depression” −0.098 (−0.231, 0.034)
Google trend “flu” 0.270∗ (0.087, 0.452)
Average weighted comorbidity score

per patient over the last 3 days
14.848. (0.345, 29.352)

Constant 57.365∗∗ (22.998, 91.733)

Observations 730
R2 0.908
Adjusted R2 0.904
Residual Std. Error 14.316 (df = 699)
F Statistic 231.112∗∗ (df = 30; 699)

Note: .p<0.1; ∗p<0.05; ∗∗p<0.01

I.3. Robustness of The Proposed Staffing Rule with Respect to ED-Specific Patient-Flow

Dynamics

In this section we conduct numerical experiments to check the robustness of the proposed staffing rules with

respect to ED-specific patient-flow characteristics. In particular, we consider the parameters associated with

Thursday day shifts, and run simulations incorporating different levels of ED-specific features that are not

considered in the theoretical model. To prevent prediction error from confounding the results, we assume

prefect demand information at the surge stage. In particular, we compare the oracle policy u2,SFARI with the

single-stage newsvendor solution u1,NV . Figure 12(a) provides a reference to the theoretical setting, where

we assume exponential service times, constant arrival rate during the shift (which is equal to the average

shift-level arrival rate shown in Table 5), and initialize Thursday day shift at its expected steady-state queue

length conditional on the realized arrival rate. The cost curves are generated by increasing the holding cost

so that its ratio to the base-stage staffing cost is from 0.7 to 1.7 in increments of 0.2. The 95% confidence

intervals are derived by simulating 520 realizations of Thursday day shifts for each holding cost and each

policy. With everything else held constant to that in Figure 12(a), Figure 12(b) assumes lognormal (as

opposed to exponential) service times and hourly-varying (as opposed to constant) arrival rates. We observe

that the cost curves in both figures are very similar. This implies that lognormal service times and hourly-

varying arrival rates do not significantly deviate system performance from that in the theoretical setting.

(Note that more sensitivity analysis of the proposed staffing rule with respect to lognormal service times is

provided in Section 5.3.)

I.4. ED-Catered Staffing Adjustments

In this section we compare the proposed ED-catered staffing adjustment to the optimized one among the

same family of adjustment schemes. Recall from Section 7.4.2 that to account for the end-of-shift effects, we

propose an adjustment scheme for the two-stage error policy and heuristically set ξ1 = 5 and ξ2 = 1. In what

follows, we optimize the adjustment parameters numerically via enumeration. In particular, we simulate the

ED over 52 weeks for a wide range of holding costs whose ratio to the base-stage staffing cost range from 0.7
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Figure 12 Impact of LOS distribution and non-stationary arrival rate
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to 1.7 increment of 0.2. We allow the abandonment cost to grow proportionally to the holding cost by fixing

their ratio to be 1.5. For each policy and each holding cost, we enumerate ξ1 (as well as ξ2 for the two-stage

error policy) from 0 to 10 in increment of 1. Figure 13 demonstrates the expected total cost per shift under

u2,ERR using (i) the heuristic adjustment, (ii) the optimized adjustment, and (iii) no adjustment. We note

that compared to no adjustment, the heuristic effectively reduces the expected total costs. In addition, the

cost curves generated using the heuristic and optimized adjustments are close to each other. These results

demonstrate significant value from applying transient-shift adjustment to u2,ERR. Given the proximity of

the cost curves yielded by the heuristic and optimized adjustments, applying the simple heuristic is effective

and circumvents additional computational need.

Figure 13 Expected total costs per shift under the proposed and optimized adjustment parameters
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I.5. Heuristics for Non-Linear Holding Costs and Multiple Patient Classes

In this section, we elaborate on the heuristic policies to incorporate non-linear holding costs and multiple

patient classes. We demonstrate the efficacy of the heuristic policies by comparing the performance of single-

stage and two-stage policies.

Non-linear holding costs: In situations where non-linear holding costs are directly concerned, heuristic

development of a “generalized two-stage newsvendor solution” is relatively straightforward. Specifically, let
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f : R+→ R+ denote the holding cost (on the queue). The stochastic-fluid approximation of the two-stage

staffing problem takes the form

min
N1

{
c1N1 +E

[
min

N2(N1,Λ)

{
c2N2(N1,Λ) + f

(
(Λ−µ(N1 +N2(N1,Λ)))

+
)}]}

. (123)

We refer to the optimal solution to (123) as the “generalized two-stage newsvendor solution”. We also propose

a “generalized single-stage newsvendor solution”, whose base-stage staffing level is the optimal solution to

min
N1

{
c1N1 +E

[
f
(

(Λ/µ−N1)
+
)]}

.

We then numerically compare the performance of the single-stage and two-stage newsvendor heuristic policies

in a set of simulation experiments. We assume quadratic holding cost, i.e., f(x) = x2, and the rest of the

experiments are set up similarly to those in Section 5. Table 14 demonstrates the expected steady-state costs

under the two policies. We observe that surge staffing can lead to considerable cost savings, i.e., between

40% and 48%.

Table 14 Performance of the heuristic policies for quadratic holding costs

(λ= 20,40,60,80,100, µ= 1, γ = 1, c1 = 1, c2 = 1.5,α= 0.75, σ= 1)

Mean arrival rate Two-stage heuristic Single-stage heuristic Percentage savings by surge staffing
20 27.93 39.13 40.08%
40 54.14 80.38 48.47%
60 79.94 113.47 41.95%
80 105.10 152.34 44.95%
100 129.20 185.75 43.77%

Multiple patient classes: Heuristically, we can incorporate multiple acuity classes by predicting the

demand and making staffing decisions for each class individually, and then combining the required nurses

for each acuity class. Such a heuristic is applicable to both the single-stage and two-stage staffing policies.

We numerically compare the performance of the single-stage and two-stage newsvendor heuristics for a two-

class model. We assume Class-1 patients are relatively more urgent, with longer average LOS and higher

holding/abandonment costs than those of Class-2 patients. In the simulation experiments, Class-1 patients

have priority over Class-2 patients, while patients within the same class are served first come first served.

Table 15 lists 1) the expected steady-state costs, 2) the expected queue length for each class, and 3) the LWBS

proportion for each class under the two policies. We observe that the two-stage newsvendor heuristic not only

achieves significant cost savings, but also considerably reduces the expected queue length and LWBS rates

(especially for the less urgent Class 2), compared to the single-stage heuristic (i.e., without surge staffing).



87

Table 15 Performance of the heuristic policies for the two-class model

(Class 1: λ= 20,40,60,80,100, µ= 0.5, γ = 1, h= 4, a= 8, c1 = 1, c2 = 1.5,α= 0.75, σ= 1;

Class 2: λ= 100, µ= 1, γ = 1, h= 1, a= 2, c1 = 1, c2 = 1.5,α= 0.75, σ= 1)

Queue % LWBS Queue % LWBS Queue % LWBS Queue % LWBS Queue % LWBS Queue % LWBS
20 174.16 0.04 0.16% 1.60 1.29% 185.68 0.06 0.21% 5.32 3.70% 6.20% 31.98% 23.47% 69.93% 65.07%
40 222.67 0.08 0.18% 1.67 1.39% 237.62 0.11 0.19% 5.44 3.79% 6.29% 28.91% 8.30% 69.24% 63.38%
60 270.88 0.14 0.20% 2.34 1.93% 297.62 0.21 0.26% 8.68 6.04% 8.98% 33.30% 21.79% 73.06% 68.09%
80 316.75 0.18 0.17% 2.29 1.85% 348.60 0.28 0.25% 9.10 6.29% 9.13% 34.98% 30.64% 74.86% 70.53%
100 365.35 0.26 0.21% 3.08 2.49% 401.16 0.39 0.27% 10.49 7.29% 8.93% 34.25% 22.09% 70.63% 65.78%

Class-1 
mean 
arrival 

Two-stage heuristic Single-stage heuristic Percentage savings by surge staffing

Cost Class 1 Class 2 Cost Class 1 Class 2 Cost Class 1 Class 2
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