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Inpatient ward beds play a central role in hospital operations. To better facilitate coordination of care,

the beds are usually grouped into different specialized units, with each unit designated to serve patients in

certain primary specialties. However, inpatient wards are often associated with high level of bed utilization

and large variability in demand. When waiting time is excessively long before a bed in the primary ward

becomes available, the patient may be assigned to a bed in a non-primary ward. This is referred to as off-

service placement. In this paper, we take a data-driven approach to study off-service placement by taking into

account three key aspects of the problem: the network structure of the wards; the complex bed assignment

decisions; and the causal effect of off-service placement on patient outcome. Our analysis quantifies the

trade-off between off-service placement and admission delay, and provides prescriptive solutions to improve

system performance.
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1. Introduction

Inpatient ward beds are one of the most important resources in a hospital. The management of

these beds has a direct impact on the majority of patients in the hospital. Moreover, it also affects

the patients in the connected units, such as the Emergency Department (ED), the Intensive Care

Unit (ICU), and the Operating Room (OR). The inpatient ward beds are typically grouped into

specialized units, with each ward unit dedicated to a specific care type (specialty). This focused

care model allows the hospital to better coordinate the care team, which consists of the specialized

physicians, the nurses, and the technicians. It also allows the nurses to standardize and improve

the process within the ward unit and better manage the specialized equipment and procedures

(Best et al. 2015). As a result, the focused care model enables the hospital to provide better-quality

of care to patients. However, there are also drawbacks associated with this focused care model.
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Since inpatient ward units often experience high utilization of bed capacity and high variability

in demand, when a designated ward unit is overloaded, patients may experience extensive delays

in the admission process. To reduce this admission delay, a common strategy adopted by many

hospitals, both in the U.S. and in other countries, is to place the patients in a non-designated

ward unit, which is referred to as off-service placement. In other words, hospitals may often need

to choose between excessive admission delay and off-service placement. As a result, it is necessary

for hospital managers to understand the impact of both the admission delay and the off-service

placement on patient- and system-level performance metrics and, more importantly, the tradeoffs

they face when choosing between them.

While the impact of admission delay on an individual patient’s medical outcome, as well as on

system-level performance, has been well studied in the literature (Allon et al. 2013, Carr et al. 2010,

Chan et al. 2016, Hoot and Aronsky 2008, Singer et al. 2011), we understand far less about the

effect of off-service placement. Stylianou et al. (2017) and Song et al. (2018) show that off-service

placement can lead to longer length-of-stay (LOS) for those patients who are placed in off-service

units. We refer to this effect as the off-service slowdown in this paper. However, to the best of

our knowledge, the literature has not studied how the off-service slowdown propagates through

the complex inpatient ward network and impacts the overall system performance. On the one

hand, off-service placement creates more resource pooling in the inpatient ward network, which

may improve system performance by reducing admission delay. On the other hand, the longer

LOS of the off-service patients may generate a greater workload for the system and block future

admissions, triggering longer admission delay and even more off-service placements – or a ‘snowball

effect.’ Thus, it is important to understand how the off-service slowdown affects admission delay in

the inpatient ward system. In particular, it is important to analyze how the longer LOS propagates

through the complex inpatient ward network and to quantify the overall delay in the system in the

presence of off-service placement. This is the first goal of our paper.

Our second goal is to quantify the tradeoff between admission delay and off-service placement

faced by hospital managers more generally. The perspective we take is similar to that of the “ef-

ficiency frontier” analysis, in which we trace out the full set of admission delay and off-service

placement proportion combinations possible for given inpatient ward configurations. The resulting

curve can provide hospital managers with a detailed quantification when deciding between the

desired level of admission delay and off-service placement. More importantly, it provides a nat-

ural way to evaluate the effectiveness of off-service placement as an important control to reduce

admission delay in inpatient ward units.

To achieve our two goals, we combine econometric tools with stochastic modeling and con-

duct a fully data-driven analysis using the detailed patient flow data from a large public hospital
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in Singapore. Specifically, we first estimate the bed assignment policy using a multinomial logit

model. Next, using an instrumental variable approach, we estimate the causal effect of off-service

placement on the LOS of those misplaced patients. Then, we use these estimates to calibrate a

high-fidelity stochastic model that captures the complex inpatient ward network structure and

patient flow dynamics. Finally, we use the model to compute system performance measures and

perform counterfactual analyses to answer our research questions.

We next summarize our main findings and highlight the advantage of our methodology.

Off-service placement and admission delay tradeoff. Our tradeoff curves illustrate that off-

service placement is, in general, an effective way to reduce admission delay; that is, there is a

negative relationship between the overall admission delay and the off-service placement proportion.

However, the marginal reduction in admission delay diminishes quickly as the off-service place-

ment proportion increases. In other words, the effectiveness of off-service placement as a control

to manage delay varies substantially. As a result, it is important for hospital managers to have

information about where the current operation lies on the tradeoff curve and the set of choices

they face about trading off admission delay with off-service placement.

Capacity reallocation and network effect. To provide more general insights into the off-service

and admission delay tradeoff, we deviate from the current operations of our partner hospital and

analyze the tradeoff curves under more balanced bed allocation scenarios. First, we find that more

balanced bed allocation can substantially improve the efficiency frontier. Second, we show that the

diminishing marginal return to off-service placement also applies to the scenarios with balanced

allocation. Third, by comparing the tradeoff curves under different capacity reallocation strategies,

we find that the structure of the patient flow network plays a key role in determining the off-service

and admission delay tradeoff. Allocating capacity to well-connected specialty wards (wards that are

attractive for off-service patients from other specialties) improves the tradeoff curve substantially

more than those wards that are less connected in the network.

Off-service slowdown. Finally, we analyze the impact of off-service slowdown on the tradeoff

curve. We find that under the current load and patient composition of our partner hospital, the

magnitude of the off-service slowdown factor does not have a big impact on the tradeoff curve.

However, if the share of patients potentially subject to the off-service slowdown is larger or the

system load is higher, the off-service slowdown can have a significant impact on the shape of the

tradeoff curve. In those cases, when the off-service proportion is relatively high, further increas-

ing the off-service proportion can lead to longer admission delays. In other words, the off-service

slowdown effect cancels out the benefit of resource pooling created by off-service placement in the

network. In addition, the off-service slowdown can have different impacts on different specialty
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wards, depending on the ward network structure. In particular, well-connected wards suffer more

from the higher workload generated by off-service slowdown.

Methodology. The stochastic network model we build incorporates several key features of inpa-

tient flow dynamics. In particular, to model how patients are assigned to different wards in the

network, we take a fully data-driven approach, as opposed to the stylized routing policies in the

multi-class queueing literature. Using the data, we fit a discrete choice model to understand the im-

portance of various determinants of patient routing policies in practice. We also demonstrate that

even a highly sophisticated yet stylized index-based policy, constructed according to the insights

from our choice model, is inadequate to capture the real system dynamics. More importantly, a

comparison between the tradeoff curves constructed using our fitted bed assignment policy and

the index-based policy shows that using the index-based policy can lead to substantial bias in the

shape of the tradeoff curve and, therefore, biased managerial decisions. This highlights the impor-

tance of our method of combining econometric tools with stochastic models to provide accurate

evaluations of system performance. We believe that our framework can be applied in other hospital

management settings in which stylized policies may not be able to capture the complex nature of

the managers’ decision-making process.

The rest of the paper is organized as follows. We conclude this section with a brief review

of the literature. In Section 2, we provide an overview of our dataset and the operation of our

partner hospital. In Section 3, we introduce the stochastic network model, providing details about

the key features of the model and how to calibrate the model. In Sections 4 and 5, we address

two main estimation challenges: the routing policy; and the causal effects of admission delay and

off-service placement on patients’ outcome. In Section 6, we construct the tradeoff curve based

on the stochastic network model. We also study how different factors, such as the ward network

structure and the off-service slowdown, impact the tradeoff curves. We provide prescriptive policy

recommendations and insights on inpatient flow management using the tradeoff curves. Section 7

concludes the paper.

1.1. Related Literature

Our work is related to several strands of the literature. First, our paper is closely related to the

literature on hospital capacity management. Green (2002) is among the first to study capacity

management in hospitals with the focused care model. She points out that different medical special-

ties have different service-level requirements and that hospital managers should carefully quantify

the capacity needs for each specialty. Subsequent research also studies capacity planning and ward

design for hospitals (Gupta and Potthoff 2016, Pinker and Tezcan 2016). Best et al. (2015) and

Kuntz et al. (2019) analyze the design of medical wards and compare pooled versus separate ward
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designs. Our work contributes to this line of research by using a data-driven approach to study

the capacity management across wards and specialties in a hospital. In particular, we take into ac-

count three important features not explicitly captured in the literature: the inpatient ward network

structure; the complex routing decisions; and the slowdown effect due to off-service placement.

Second, this paper also contributes to the literature on the common practice of off-service place-

ment in hospitals. It has been acknowledged in the medical literature that there are potentially

negative consequences associated with off-service placement (Goulding et al. 2012, Stylianou et al.

2017). In the operations management literature, a concurrent paper by Song et al. (2018) takes an

empirical approach to rigorously quantify the magnitude of off-service placement’s effect on various

patient outcomes, including the LOS, readmission rates, and mortality risks for patients placed

off-service. To correct for endogeneity in unobserved patient severity, they apply an instrumental

variable (IV) approach using the occupancy in the primary wards and an indicator of hospital

business as the instruments. We adopt a similar IV strategy and identify a similar magnitude of

the increase in LOS among off-service patients, using data from a different hospital. Our outcome

analysis in Section 5 confirms the substantial negative impact of off-service placement on patient

outcome, suggesting that the effect is pervasive. However, quantifying this impact is just an im-

portant intermediate step in our analysis. The focus of our study is to understand how the longer

LOS of the off-service-placed patients is propagated through the complex inpatient ward network

and affects overall system performance. Moreover, we quantify the tradeoff between off-service

placement and admission delay, and, thus, provide insights into and guidelines for inpatient-flow

management.

Third, a growing body of literature studies admission control and scheduling policies in hospital

settings (Freeman et al. 2017, Jacobson et al. 2012, Kim et al. 2015), and, more broadly, routing

and scheduling policy in service operations (Ata and Van Mieghem 2009, Gurvich and Whitt 2009).

The studies most relevant to our paper are Helm and Oyen (2014), Samiedauluie et al. (2017) and

Dai and Shi (2019). In this line of work, the authors typically formulate the optimal routing policy

as a solution to a stochastic optimization problem by imposing a specific objective function for

the decision maker. For instance, the decision maker minimizes the sum of the holding cost and

the off-service placement cost. In addition, this line of work usually makes stylized assumptions

about the set of policies from which the decision maker is choosing, including imposing the first-

come-first-served discipline or strict priority rules. By contrast, in this paper, we acknowledge that

the objective of the decision maker is likely to be very complicated in practice. For example, there

can be certain upper bounds on the amount of time that patients can stay in the ED, or different

preferences for the proportion of off-service placement in certain wards. Thus, we take a fully
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data-driven approach and estimate the decision rule. This allows us to provide a more reliable and

realistic estimate of the impact of different capacity improvement strategies.

In terms of the methodologies used in the analysis, our paper adopts methods from two streams

of the literature. First, to develop the stochastic model describing the patient-flow dynamics, we

borrow insights from recent developments in patient-flow modeling (Armony et al. 2015, Dong and

Perry 2018, Shi et al. 2016). In particular, our model incorporates features such as the time-varying

patient arrival rate, physician rounding, and discharge delays. In addition, our model also captures

the network structure. The sophistication of the model renders the exact analysis impossible. We

rely, therefore, on extensive simulation experiments to conduct performance analysis. (Shi et al.

2016) and (Han et al. 2016) use similar strategies to evaluate patient discharge and overflow policies,

while (Kim et al. 2015) also use such strategies to evaluate ICU admission policies.

Second, in model calibration, we use an IV approach to estimate the causal effect of off-service

placement on patient outcomes. Similar empirical strategies have been adopted in many other

empirical health care studies (Chan et al. 2016, KC and Terwiesch 2012, Kim et al. 2015). We also

use a discrete choice model to estimate the bed assignment policy. This method has been used

in estimating customer choice in service operations (Guajardo et al. 2015, Phillips et al. 2015).

The advantage of the method is that it allows the decision maker to have a flexible and complex

objective function. In other words, we use data to estimate how much weight the decision maker

assigns to different factors, such as the system load, the waiting time, etc., in their decision making.

2. Overview of hospital operations

Our study is based on a collaboration with a large teaching hospital in Singapore. The data contain

all patient admissions in 2010. To study the inpatient flow, we use a subset of 34,030 admissions

out of the 92,081 total admissions. In particular, we exclude admissions to non-inpatient wards

and those for certain (highly specialized) specialties that have little interaction with others. The

selected subset contains patients admitted to eight specialties: Cardiology (Card), Surgery (Surg),

Orthopedic (Ortho), Respiratory (Resp), Gastroenterology (Gastro Endo), General Medicine (Gen

Med), Neurology (Neuro), and Renal. Each specialty admits patients from five different sources:

emergency department admissions (ED), elective admissions (Elec), intensive care unit (ICU),

transfer patients (Trans), and others. For all eight specialties, we also exclude patients admitted

to the private wards which require private insurance and consists of a very small share of the

population. We provide more details about the dataset in the online supplement; see Figure 1 for

a brief summary.

We next provide an overview of the network of inpatient wards we are modeling. The network has

13 inpatient wards serving patients from eight specialties. Each ward contains 20 to 50 inpatient
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Total admissions in 2010: 
92081

Admissions to general wards: 
44022

Patients only visited non-
general wards: 48059 
(52%)

Admissions from major 
specialties: 39865

Selected sample size: 
34030

ED
53%

Admissions from OB/GYN, 
Oncology, Dental, ENT, 
Eye: 4157 (9%)

Admissions to private 
wards and special wards: 
5835 (14%)

Elec
14%

ICU
9%

Others
7%

Trans
17%

Figure 1 Selection of the patient sample.

ward beds. The hospital uses a focused care model, with each ward designated to serve patients

from one specialty (referred to as dedicated wards) or two specialties (referred to as shared wards).

For the shared wards, there is a nominal allocation of the beds between the two specialties. Analysis

of the bed occupancy data suggests that bed assignments follow the nominal allocations. Figure 2

shows the specialty-ward mapping. The wards are listed in circles, and the specialties are listed in

rectangles.

NW56
NW63 NW43 NW51

NW52 NW64 NW55 NW57

Card Surg Ortho Respi Gastro
Endo Renal Gen

Med Neuro

NW53NW41 NW54 NW44 NW42

Figure 2 Specialty-ward assignment.

Due to the high operating costs, healthcare systems often operate under a very high load. To

understand the workload in our partner hospital, we first calculate some basic statistics describing

the size of the practice and the capacity utilization for each specialty. The (nominal) utilization

for specialty i is defined as

ρi := ΛiE[LOSi]/Ci,
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where Λi is the daily arrival rate (average number of arrivals per day); E[LOSi] is the average

length of stay; and Ci is the nominal capacity allocated to that specialty. Specifically, Ci counts the

number of beds in the dedicated ward and the nominally assigned number of beds in shared ward

for specialty i. ΛiE[LOSi] is the average demand per day for specialty i. Thus, ρi measures the

nominal occupancy rate (capacity utilization rate). As the hospital allows off-service placement,

ρi can be larger than 100%, suggesting that the capacity allocated to specialty i is not enough to

meet the corresponding demand. Table 1 summarizes these statistics. We observe that there is a

mismatch between capacity and demand across the eight specialties. For example, Card, Gen Med,

and Neuro have insufficient capacity allocated (ρi > 100%), while Ortho has a very low occupancy

rate (59%). This mismatch may be due to several reasons. For example, the demand for Card and

Gen Med grows fast due to the aging population, and the capacity change can be very slow. Ortho

is usually very profitable, so the hospital tends to allocate more capacity to it to ensure a good

quality of service.

Table 1 also lists the off-service placement proportion for each specialty. We observe from the

table that specialties that are overloaded (ρi > 100%) have very high off-service percentages. This

is because these specialties simply do not have enough capacity to handle their demand. However,

even for specialties that are underloaded, the off-service percentage can still be significant (e.g.,

Gastro, Resp). The possible reason is twofold: (i) The demands are stochastic (randomness in the

number of arrivals and the length of stay) and non-stationary. Off-service placement is employed

to cope with these stochastic fluctuations. (ii) The primary wards for these specialties also take

in a significant number of off-service patients. These off-service patients increase the occupancy

of the ward and may, from time to time, prevent the ward from admitting its primary patients –

who, in turn, need to be placed off-service in other wards. This suggests that to fully understand

the tradeoff between off-service placement and admission delay, we need to take the complicated

network structure and the interaction between different specialties into account. Indeed, we will

introduce a high-fidelity stochastic network model in Section 3 to capture the underlying physics

of the patient flow dynamics.

Card Ortho Surg Gastro GenMed Neuro Renal Resp Overall
Λi 19.8 13.2 17.5 8.2 17.8 5.9 6.2 4.6 93.2
E[LOSi] 3.7 4.4 3.6 3.6 4.5 3.7 4.5 4.0 4.0
Ci 61 98 87 39 67 16 32 25 425
ρi 119% 59% 73% 76% 119% 134% 87% 74% 87%
Off-service % 26% 6% 12% 33% 27% 54% 26% 14% 22%

Table 1 Summary of workload related statistics.
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3. A high-fidelity stochastic network model

To capture the inpatient flow dynamics, we build a special multi-class, multi-pool queue. In our

setting, customers correspond to patients in need of inpatient care, and servers correspond to

inpatient ward beds. This stochastic model provides the basis to quantify the tradeoff between

off-service placement and admission delay. In what follows, we first introduce the key components

of the model. These components are important for our application context, and differentiate our

model from the stylized models used in the literature. We then discuss the calibration of the model.

We highlight two major estimation challenges: estimating the routing policies and the causal effect

of admission delay and off-service placement on patient LOS. Lastly, we compare our estimated

routing policy with other highly sophisticated, yet stylized, index-based routing policies in the

queueing literature. Our comparison indicates that the stylized routing policies are insufficient to

capture the time-dependent dynamics of the system and do not match the empirical performances

well.

3.1. Key modeling components

Our stochastic model incorporates unique characteristics associated with inpatient-ward opera-

tions. These are critical to take into account when studying inpatient flow, and are not particular to

our partner hospital. Some features, such as time-varying arrival and block discharges, are studied

in recent works on inpatient flow modeling (Armony et al. 2015, Dong and Perry 2018, Shi et al.

2016). Important new features studied in this paper include a detailed network structure, routing

policies based on choice models that consider several key factors, and off-service slowdown–i.e.,

increased LOS due to off-service placement. We summarize the five key components of our model

next; more details about the model can be found in the online supplement.

1. Network structure. There are J = 13 inpatient wards (server pools), where the j-th pool has

Nj beds (servers). Patients are classified into I = 8 medical specialties (classes). Each specialty has

seven different subclasses representing different admission sources, as shown in Figure 1. For the ED

admissions, for example, we further divide them into three subclasses: i) short-stay observational

patients, who stay for zero or one day; ii) focus-group patients, who stay for two to seven days

(inclusive); and iii) long-stay patients, who stay for longer than seven days. We define the number

of days as the number of midnights a patient spends in the hospital, following the literature.

For the other four admission sources, we use one subclass to represent each. We model these

subclasses separately because their arrival patterns and LOS distributions vary greatly, and the bed

management team has different considerations when making routing (bed assignment) decisions

for each of them. Figure 1 shows the proportion of patients from each admission source. For ED

admissions: the focused group constitute 63% of ED admissions; short-stay observational patients

constitute 26%; and long-stay patients constitute 14%. These correspond to 33%, 11%, and 5.8%

of all inpatient admissions, respectively.
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2. Nonstationarity. Like most service systems in practice, the arrival rates of patients are time-

varying. Figure 3a plots the hourly admission rates for patients from three different admission

sources in our partner hospital. We observe that the admission rate varies significantly for different

hours of the day. Patients from different admission sources also have very different arrival-rate

functions. Therefore, we model the arrival process for each subclass as a nonhomogeneous Poisson

processe with its corresponding periodic arrival-rate function (the period is equal to one day).

3. Block discharge and LOS. Most discharge decisions are made during the morning rounds,

which take place once a day at around 10:00 am. There are further delays between when the

discharge is approved and the actual departure time of the patient (when the bed is released).

These delays are due to reasons such as paperwork, need for transportation arrangements, coaching

by professionals, etc. Figure 3b plots the hourly discharge rate of our partner hospital. We observe

that there is almost no departure before 10 am, and the majority of patients are discharged between

11am and 8pm, with noon to 4pm being the peak discharge period. Thus, we model a patient’s

LOS in two time scales: an integer number of days, dlos, corresponding to the medically necessary

LOS; and a real number of hours, hdis, corresponding to the discharge delay between the morning

rounds (10 am) on the day of discharge and the actual departure time of the patient.

4. Routing decision. Bed assignment decisions are complicated by many competing factors. For

example, in addition to balancing the load among different wards, one must also take future bed

availability into account. If a patient must be placed off-service, there may be different preferences

over different non-primary wards. When analyzing the bed assignment decisions in our partner

hospital, none of the stylized routing policies is able to capture this level of complexity. Even if

we incorporate all the relevant factors, it is hard to decide how much weight to put on each of

them. Therefore, we take a fully data-driven approach and fit randomized routing policies from the

data. We are especially interested in the routing policies for ED admissions: due to the randomness

in their arrival times and the negative consequences associated with admission delay, decisions

involving the tradeoff between admission delay and off-service placement must be made in real time.

For this class of patients, we fit a detailed discrete choice model, which incorporates key factors in

bed-assignment decisions. These factors include preferences for different wards, wards’ occupancy,

admission delay, and future bed availability. Based on the fitted model, we use a randomized

bed-assignment rule (routing policy).

5. Off-service slowdown. The literature suggests that both admission delay and off-service place-

ment can lead to worse patient outcomes. From the operational perspective, we are especially

interested in their effects on patients’ medical length of stay, dlos, as this directly affects the work-

load of the system. Thus, it is important to account for this when analyzing system performance.
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(a) Hourly admission rate (b) Discharge time distribution

Figure 3 Hourly rates of admissions and discharges by patient sources. The numbers on the x-axis denote the

hourly interval, e.g., 2 denotes the interval of 1-2am.

Using data from our partner hospital, we estimate the causal effect of admission delay and off-

service placement on the patient LOS. We find a longer LOS for patients who are placed off-service.

Note that this estimated slowdown is only the immediate effect of off-service placement on the

off-service-placed patients. We still need our stochastic model to quantify how this immediate ef-

fect on LOS is propagated through the complex patient flow network and affects overall system

performance.

3.2. Model calibration

To populate the stochastic model, we need to estimate components (2)-(5) mentioned above for

each class (subclass) of patients. That is, the arrival rate functions; the two-time scale service

time distributions: dlos and hdis; the routing policies; and the causal effects of admission delay and

off-service placement on patient LOS. While the arrival rate and the service time distributions can

be estimated from the data rather straightforwardly, estimating the routing policies and the causal

effects are highly non-trivial.

Estimating routing decisions. The routing decisions for patients from different admission

sources are very different in general. Hospitals have more control over the arrival time of elective

patients and transfer patients, as their admissions are planned ahead of time. Thus, these patients

usually arrive during the afternoon hours when most beds are becoming available due to batch

discharge. As a result, we see a small proportion of patients from these admission sources been

placed off-service. In contrast, hospitals have less control over ED admissions. In addition, when

ED patients are delayed for admission, they occupy valuable resources in the ED. Therefore, we

estimate a more detailed model for the routing decisions of ED patients than for the patients from

other admission sources.

Specifically, for each sub-class within ED admissions, we estimate choice models that explicitly

take the admission delay and the preferences over different wards into account. The fitted model

provides insights into how much weight the bed management team places on different factors when
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making routing decisions and serves as the basis for the randomized routing policy; we provide

more details on the estimation for the focus-group patients in Section 4. It is important to note

that we do not impose causal interpretations on these estimated weights–i.e., we do not intend

to explain the routing decisions or impose a particular objective function for the decisions. Our

goal is to provide a simple descriptive decision rule which we can then vary to generate different

levels of off-service placement, and, after that, evaluate the tradeoff between admission delay and

off-service placement.

For patients from other admission sources (other than ED), we also use randomized routing

policies. Since these patients are irrelevant to the off-service placement and admission delay tradeoff,

we estimate the routing probabilities using the sample proportion of admissions to each ward. We

emphasize that even though, in the tradeoff analysis, we keep the routing probabilities of these

patients fixed, it is important to model them because they affect the ward’s occupancy level.

Outcome estimation. To quantify the effect of off-service placement on system performance, it

is important to estimate the causal effects of admission delay and off-service placement on the LOS

for ED admissions. Recall that we have three subclasses of patients within the ED admissions. We

perform the outcome analysis only for the focus-group patients for the following reasons. Because

the medical conditions of observational patients are relatively mild, off-service placement is less

likely to affect their LOS. Indeed, most of them undergo simple evidence-based protocols. Long-stay

patients account for less than 6% of overall admissions, and a relatively small proportion of them

are placed off-service. Moreover, their longer LOS is likely to be caused by rare medical conditions

or non-medical reasons, e.g., some discharges are delayed due to social reasons (Lim et al. 2006).

The challenge for the outcome estimation is the omitted variable bias. In particular, there are

unobserved patient characteristics, such as the severity of the patient’s medical condition, that

are correlated with both the routing decision and the outcome. We tackle this challenge using an

instrumental variable approach, for which we provide more details in Section 5. We emphasize that

it is important to estimate the causal effect of off-service placement on those off-service placed

patients’ LOS without bias. This is because that, to construct the tradeoff curve, one needs to

vary the level of off-service placement and evaluate its impact on the system performance of the

inpatient ward network. In other words, it is key to estimate the impact of off-service placement

on the LOS of the off-sevice placed patients as a first step, in order to analyze the overall tradeoff

between off-service placement and admission delay of the inpatient ward network.

Calibration results. The output from the calibrated stochastic model matches the empirical

performances remarkably well. Figure 4 plots the bed occupancy (utilization) for each ward and the

average occupancy across all wards from simulating the model and from data. The bed occupancy

is calculated by the daily average number of patients occupying a bed (all types of patients) divided
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by the number of beds for each ward. Figure 5a compares the time-dependent average admission

delay for the focus-group patients by their bed-request hours. Figure 5b compares the off-service

placement proportion in each specialty, as well as the average across all specialties for the focus-

group patients. For the simulation output in Figure 5a, an additional delay of one hour is added

to our simulation results to capture the extra amount of delay patients experience after a bed is

allocated. This “extra delay” is caused by delays in preparing beds and transporting patients from

the ED to the inpatient wards and is often referred to as post-allocation delay (Shi et al. 2016).
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Figure 4 Comparing bed occupancy rate from simulation output and empirical data.
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(b) Average and specialty-level off-service placement proportion

Figure 5 Comparing average admission delay and off-service placement proportion from simulation output and

empirical data. For plot (a), one-hour of extra “administrative” delay is included.

3.3. Comparison with stylized routing policies

In this section, we compare our estimated policy to other stylized routing policies. To make the

stylized policies competitive, we incorporate all the key factors identified from our choice model

estimation, such as load balancing, different preferences for different wards, and anticipation for

future bed availability, into an index-based routing policy. Our analysis shows that even with all

these complications, the stylized routing policies are still insufficient to capture the real system
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dynamics and match the empirical performances. This justifies the necessity of using a sophisticated

choice-model based routing policy, one of the main contributions of this paper.

More specifically, the index-based policies we considered are commonly used in the queueing

literature. Each medical specialty is assigned a preference list for different wards. In the basic

version, when a new patient arrives, we start from the most preferred ward. If there is an available

bed in that ward, we assign the patient to that bed; otherwise, we go sequentially down the

preference list until we find an available bed. If no bed is available when we reach the end of

the list, we keep the patient waiting. A potential problem with this basic index policy is that we

tend to place too many patients off-service. Under the occupancy level of our partner hospital

(88%), this policy would allow most patients to get a bed immediately upon arrival, which is not

consistent with the empirical average admission delays. To give enough benefit of the doubt to the

stylized routing policies, we consider two modifications to the basic index policy that incorporate

two important insights from our choice model estimation in Section 4.

• Load balancing: we impose a threshold U < 100% on the occupancy of off-service wards to

strengthen the “undesirability” of off-service placement. When searching through the prefer-

ence list, if the occupancy of a ward exceeds U , we will skip this ward and move on to the

next ward on the list.

• Time differentiation: we further impose two different thresholds, Um and U e, for the morning

period (7am-7pm) and the evening period (7pm-7am next day), respectively. Our choice model

estimation suggests that the off-service placement is used less in the morning due to the

anticipation of more beds becoming available soon (in early afternoon). Thus, we set Um <U e.

To calibrate the index-based policies, we use the baseline utility estimated from our choice model

to rank the wards for the preference list. This is also in accordance with the bed allocation guidelines

in our partner hospital. For the thresholds on occupancy, we fine-tune their values such that the

simulated performance metrics, such as admission delay, are close to the empirical values.

Figure 6 shows the average admission delay for the focus-group patients by their bed-request

hours, using the modified index-based policies with load balancing (a), and both load balancing

and time differentiation (b). We observe that without time differentiation, (a), the performance

curve constructed using the index-based policy has a completely different shape than the empirical

performance curve. In (b), after adding the time differentiation, the performance curve gets closer

to the empirical one, but it is still not as good as the curve constructed using our estimated policy

in Figure 5a. Moreover, the proportion of off-service placement in each ward using the index-

based policies also substantially deviates from the empirical one. That is because the occupancy

thresholds, even with time-differentiation, are not as dynamically adapted to the overall system

load as the choice model.
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and time differentiation

Figure 6 Average admission delay by bed-request hour.

We conclude this section with two remarks. First, in addition to the insufficiency we demonstrated

in Figure 6, we will later show, in Section 6.1.1, that the stylized routing policies also generate

different and potentially misleading tradeoff curves between admission delay and off-service place-

ment. Second, the improvement in calibration from the basic index policy in Figure 6a to Figure 6b

suggests that the insights from our choice model analysis can help derive better stylized policies.

4. Ward assignment decision

In this section, we investigate the determinants of the routing decisions using data for the focus-

group patients. We model the ward assignment decisions using a discrete choice model, and estimate

the importance of each determinant from the data. There are two objectives. One is to understand,

empirically, how important each potential determinant is, from the point of view of the decision

maker. The other is to estimate the routing policy for our stochastic model.

We first provide a brief description of the bed assignment process in our partner hospital. All bed

assignments in this hospital (including bed-requests from both ED patients and non-ED patients)

are managed by the central bed management unit. The unit has two shifts: a regular shift from

7am to 7pm, and a night shift from 7pm to 7am the next day. When the unit’s team receives a

bed request from ED, they will start searching for an appropriate bed (could be either primary or

non-primary) and make a tentative bed allocation. After the bed allocation is confirmed, the team

communicates with the ED and the transport team to physically move the patient to the allocated

bed. There are internal guidelines for the team to make bed assignments. We highlight two points

from the guidelines that motivate the setup of our choice model. First, the team members are

required to try their best to find a primary bed that matches the patient’s medical specialty; if no

primary bed is available, they may start searching for a non-primary bed. Second, the hospital has

an internal goal (also required by law) of not keeping patients waiting for more than six hours in

the ED. Thus, patients who have waited for a longer time are more likely to be placed off-service.
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4.1. Choice model

As described above, one objective of this study is to provide a model that captures the main

determinants of the ward assignment decision using data. In particular, we estimate a decision rule

that summarizes the behavior of the decision maker, which can then be applied to analyze the

tradeoff between off-service placement and admission delay in Section 6.

We emphasize that we do not intend to recover causal parameters in this analysis. The reasons

are as follows. First, the decision maker’s objective is likely to be complex. Because we do not

directly observe that objective, we do not impose a precise objective function or cost function

and assume that the bed management team is making the optimal decisions given the objective

function. Second, conversations with the bed management team and the hospital management

team indicate that the decision makers are following simple ad-hoc rules in practice. Therefore, we

choose to use a simple multinomial logit model to capture these rules instead of estimating causal

parameters in a full structural model. Finally, this choice is consistent with the overall goal of the

paper. Our goal is to evaluate the impact of different off-service levels on the system level admission

delay, instead of providing an explanation to the observed off-service level in the data. As a result,

we only need a decision rule that captures the main determinants of the ward assignment decision,

which we can then apply in Section 6 to generate different levels of off-service placement.

We use the following discrete choice model to study the determinants of ward assignment deci-

sions. For patient i in specialty l, the “utility” (or incurred cost) uijlt for admitting her into ward

j in period t is

uijlt = αjl +X ′
itδjl +Z ′

jtγl +W ′
tηjl + εijlt, (1)

where we include waiting as one of the options j; Xit is a vector of patient characteristics that

could change over time; Zjt is a vector of ward characteristics that are also allowed to change over

time; ηjl is a vector of time fixed effects; and εijlt are i.i.d. type I extreme value errors. In our main

specification, Xit includes patient i’s triage classes, gender, and the amount of time patient i has

waited in the ED up to time t (Delay). Zjt includes three indicators for how busy ward j is at time

t: Busy 1 indicates whether the occupancy level of the current ward is above 99%; similarly, Busy

2 and Busy 3 indicate whether the occupancy level of the current ward is above 95% and 90%,

respectively. Wt includes two indicators for two time windows, Morning and Evening, defined as

7am to 12pm and 9pm to 6am, respectively. These capture the differences in the bed management

team’s behavior before and after 12 pm (when the discharge of most patients begins) and at night.

We allow all coefficients in Equation (1) to be specialty-specific.

Ward j belongs to the set of possible ward choices Cl, which is specific to the specialty l and

includes a waiting option (Wait). Specifically, we include a ward in the choice set if we observe in the
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data that more than 1% of type l patients are admitted to that ward. For each specialty l, without

loss of generality, we choose one ward l0 to be the reference ward – i.e., αjl0 = δjl0 = γl0 = ηjl0=0.

The admission probability of patient i in specialty l to ward j is

Pijlt =
exp(αjl +X ′

itδjl +Z ′
jtγl +W ′

tηjl)

1 +
∑

k∈Cl
exp(αkl +X ′

itδkl +Z ′
ktγl +W ′

tηkl)
. (2)

Each period t is two hours long. For patients who wait in the ED before being admitted to a

ward unit, we do not observe the time when a “Wait” decision is made, but only the time when

the admission decision is made. For those patients, we assume that a decision is made at their bed

request time, and every two hours after that. For instance, if a bed request is made for patient

i at 6am, and the patient is admitted into ward j at 9am, we assume that the bed management

team decided to make her wait at 6am and to admit her to ward j at 8am, but the actual transfer

takes place at 9am. In other words, for patients who wait less than two hours, we treat the waiting

time as “negligible.” We believe that this assumption is reasonable because previous studies in the

literature using the same dataset indicate that the time for preparing the bed and transporting

the patient could take up to two hours (Shi et al. 2016).

4.2. Estimation and results

We estimate the choice model for each patient’s specialty l separately, and summarize the estimation

results in Table 2. For each patient’s specialty l, the set of possible ward choices Cl is different.

We categorize the set of possible wards in Cl into primary and non-primary wards. As expected,

the choice-specific coefficients are similar for those wards in the same category for each specialty.

Therefore, for each specialty, we report the result for only one ward from each of the categories.

We use a non-primary ward in each specialty as the reference alternative, or outside option. As a

result, all estimated coefficients should be interpreted as relative to a non-primary ward. We report

the four most important findings from Table 2 and describe them below.

First, the intercept indicates the baseline utility that the bed management team receives from

keeping the patient waiting and admitting the patient into the primary ward, relative to admitting

the patient into a non-primary ward. The results suggest that the primary ward is, in general,

preferred to the non-primary ward. Waiting is also an attractive option since most primary wards

often have high occupancy.

Second, the coefficients on the busyness levels of the wards suggest how much the bed manage-

ment team takes into account current occupancy level of each ward when they make the assignment

decisions. The estimates show that, in general, the busier a ward is, the less likely it is that the

bed management team would assign the patient to that ward (Busy 1 is the busiest). This result

suggests that load balancing is an important concern in the ward assignment decisions.
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Third, the coefficients on Delay are, in general, negative and significant. This suggests that the

longer the patient waits, the less likely the patient is to wait more. Moreover, the longer the patient

waits, the more likely it is that the patient is going to be off-placed to a non-primary ward since

the primary wards are more likely to be very busy. Our finding is consistent with part of the bed

management team’s general objective to reduce patients’ admission delay.

Finally, the time of the day indicators are, in general, statistically significant. The evening

variable indicates the time period after the main discharge window in the hospital. During the

discharge period, most beds in preferred wards are assigned to patients as soon as or even before

they become available. In the evening period, after discharges, there are often few beds available in

primary wards. As expected, the primary wards generally have negative coefficients due to limited

bed availability. Waiting also has a negative and significant coefficient and often greater magnitude.

This is because the bed management team is aware that the number of discharges at night is

extremely low, which means that waiting is likely the least attractive option in this period. The

pattern in the morning period is the opposite because discharges will start after physicians check

on patients on their morning rounds and beds in primary wards will soon become available. As

a result, the coefficients of primary wards are positive and statistically significant. Moreover, in

anticipation of the discharge peak in the early afternoon, waiting is an attractive option in the

morning as well; that is, the coefficients of waiting are generally positive with higher magnitude

and statistical significance.

5. Outcome analysis

In this section, we estimate the causal effect of ED admission delay and off-service placement on

patient outcome for the focus-group patients. This allows us to provide a partial quantification

of the cost of off-service placement. From the operational perspective, we are especially interested

in the impact of off-service placement on patients’ LOS. In particular, patients are often placed

off-service during congested periods to reduce excessive delay. However, off-service patients may

require longer LOS’s, adding more workload to the already congested system. We emphasize that

the estimated effect in this section is only the immediate effect of off-service placement on the

misplaced patients. To assess the overall impact on the system, we need our stochastic model to

quantify how this immediate effect is propagated through the inpatient ward network.

We assume that different factors would affect the log of the medical LOS, log(dlos), through a

linear model:

log(dlos,i) = β0 +β11Oi +β12Di +Y ′
i β2 +T ′

iβ3 +C ′
iβ4 + εi + νi, (3)

where dlos,i is the medical length of stay for patient i. Oi is a binary variable for off-service place-

ment, with Oi = 1 denoting that the patient is assigned to a non-primary unit. Di is a binary
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Table 2 Determinants of ward assignment decisions

Cardio GenMed Surgical Neuro Gastro Resp Renal

Primary 2.454∗∗∗ 4.799 ∗∗∗ 1.662∗∗∗ 3.478∗∗∗ 3.847∗∗∗ 4.062∗∗∗ 4.924∗∗∗

(0.398) (0.576) (0.498) (0.848) (0.712) (0.830) (1.082)
Wait 3.310∗∗∗ 4.927∗∗∗ 3.075∗∗∗ 4.487 ∗∗∗ 3.659∗∗∗ 3.788∗∗∗ 4.714∗∗∗

(0.392) (0.576) (0.396) (0.830) (0.718) (0.840) (1.088)

Busy 1 -0.798∗∗∗ -1.226∗∗∗ -0.592∗∗∗ -0.222 0.266 -0.117 -0.332†

(0.126) (0.110) (0.135) (0.166) (0.200) (0.287) (0.180)

Busy 2 -0.577∗∗∗ -0.585∗∗∗ 0.086 -0.249† -0.736∗∗∗ -0.679∗∗ -0.178
(0.090) (0.067) (0.110) (0.135) (0.132) (0.237) (0.159)

Busy 3 -0.466∗∗∗ -0.310∗∗∗ 0.005 -0.371∗∗∗ -0.443∗∗∗ 0.004 -0.378∗∗

(0.069) (0.058) (0.083) (0.111) (0.101) (0.172) (0.133)
Delay×Prim -0.284∗∗ -0.442∗∗∗ -0.402∗∗∗ 0.002 -0.300∗∗∗ -0.602∗∗∗ -0.486∗∗

(0.094) (0.066) (0.076) (0.170) (0.122) (0.159) (0.148)
Delay×Wait -0.850∗∗∗ -0.858∗∗∗ -0.935∗∗∗ -0.438∗ -0.830∗∗∗ -0.875∗∗∗ -0.955∗∗∗

(0.095) (0.069) (0.067) (0.168) (0.126) (0.169) (0.153)
Evening×Prim -0.352 -1.557∗∗∗ -0.667∗∗∗ -1.123∗ -0.521 -1.321∗∗ -0.394

(0.305) (0.239) (0.246) (0.492) (0.431) (0.626) (0.577)
Evening×Wait -1.294∗∗∗ -2.064∗∗∗ -1.220∗∗∗ -1.696∗∗∗ -1.303∗∗ -2.236∗∗∗ -1.366∗

(0.302) (0.240) (0.202) (0.468) (0.436) (0.646) (0.592)

Morning×Prim 2.595∗∗∗ 1.263∗ 1.310∗∗∗ 1.775† 2.513∗ - 1.946∗

(0.754) (0.498) (0.391) (1.069) (1.058) (0.824)
Morning×Wait 3.437∗∗∗ 1.919∗∗∗ 2.273∗∗∗ 2.071 3.303∗∗ - 2.884

(0.754) (0.499) (0.353) (1.062) (1.060) (0.829)

No. of obs. 3369 4826 2623 1444 1967 757 1368
Log-Likelihood -4810.8 -5962.1 -3746.1 -2237.6 -2158.2 -804.13 -1328.5

Pseudo R2 0.132 0.102 0.080 0.100 0.113 0.081 0.106
† : 0.05 < p≤ 0.1,∗ : 0.01 < p≤ 0.05, ∗∗ : 0.001 < p≤ 0.01, ∗ ∗ ∗ : p≤ 0.001
The standard errors are reported in parentheses.

variable for admission delay. Specifically, Di = 1 denotes that the admission delay is longer than

four hours, with admission delay calculated as the time between when the decision to hospitalize

the patient is made and when the patient is admitted into an inpatient ward unit. We choose a

binary variable because we expect that the admission delay is likely to have a nonlinear effect on

patient outcome. We test different threshold values for Di in the online supplement. To differentiate

this binary variable with the continuous admission delay, we refer to Di as ‘ED delay’ for the rest

of this section. Yi is a vector of patient characteristics, including age, gender, ED triage score and

medical specialty. Ti is a vector of variables related to admission and discharge times, including a

binary indicator of whether the admission is in the evening (defined as 6pm to 6am the next day), a

binary indicator of whether the admission is during the weekend, and the day of week on which the

patient is discharged. Ci is a vector of variables capturing the system congestion and the physician

workload during a patient’s LOS. It includes the average occupancy of the assigned unit during the

patient’s LOS (DestAvgOccu), the attending physician’s normalized workload during the patient’s

LOS (PhyAvgLoad), and the attending physician’s normalized workload the day before discharge

(PhyMinus1Load). Here, the workload is defined as the number of patients that the attending

physician is treating, and the normalization is to divide the workload by the average workload of

that physician in the entire year. εi is an error term that captures the effect of unobserved variables
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that are correlated with both the LOS and the routing decision (i.e., Oi and Di). νi is an error

term that is uncorrelated with the observable variables.

In addition, we have a smaller dataset (five months of patient data) that contains more detailed

patient diagnostic information. This includes primary and secondary DRG codes, number of oper-

ations, etc. Based on the additional information, we calculate the number of diagnostic codes, the

number of operations and the van Walraven score (van Walraven et al. 2009). We include these

comorbidity-related variables in Yi as additional patient features when using the smaller dataset.

The goal is to provide a more complete analysis (see Model 3 in Table 4).

5.1. Estimation strategy

The key estimation challenge comes from the εi term. We first note that the routing decisions are

likely to be endogenous: some aspects of patient severity (e.g., complication of the case), which

are not fully captured in the data, are likely to affect both the routing decision and patient LOS.

For example, the bed management unit is more likely to keep a less complicated patient waiting

or place her off-service, while a less complicated patient is also more likely to have a shorter LOS.

If we are to estimate (3) directly, the εi term is likely to impose a negative estimation bias for β11

and β12 – i.e., we underestimate the effect of off-service placement and ED delay on LOS.

To solve the problem of omitted variable bias, we apply an instrumental variable (IV) approach.

The IVs we propose are the primary ward occupancy and the hospital occupancy one hour before

the admission hour. In particular, we define

Zi1 =

{
1, if primary ward occupancy > 0.97 one hour before the admission hour,
0, otherwise,

and Zi2 is the average occupancy across all 13 wards one hour before the admission hour. Note that

we also tried other thresholds for Zi1, such as 0.95 and 0.99. The details can be found in the online

supplement. The main insight is that the primary ward occupancy is likely to have a nonlinear

effect on the off-service placement decision.

The first-stage and reduced-form regression equations take the form

Ôi = βO
0 +βO

11Zi1 +βO
12Zi2 +Y ′

i β
O
2 +T ′

iβ
O
3 +C ′

iβ
O
4 + εOi ,

D̂i = βD
0 +βD

11Zi1 +βD
12Zi2 +Y ′

i β
D
2 +T ′

iβ
D
3 +C ′

iβ
D
4 + εDi ,

log(dlos,i) = β0 +β11Ôi +β12D̂i +Y ′
i β2 +T ′

iβ3 +C ′
iβ4 + εi + νi. (4)

A valid IV needs to satisfy two conditions: (C1) It must be correlated with the off-service

placement decision Oi and/or ED delay Di; (C2) It has no direct effect on dlos,i other than through

the the off-service placement decision Oi and/or ED delay Di, conditional on the other covariates.

We next discuss the validity of our IVs with respect to the two conditions.



21

When deciding whether to route a patient to her primary unit, the bed management unit needs to

balance the benefit of primary admission with the opportunity cost of admitting a more complicated

patient in the future. This tradeoff is especially relevant when the primary ward occupancy is high;

thus, when it is high, the patients are more likely to be placed in off-service units. We use an

indicator function to capture the business level of the primary ward since the effect of primary

ward occupancy on off-service placement is highly nonlinear.

The overall hospital busyness level will likely affect both the routing decision and the ED delay.

For ED delay, the more crowded the hospital is, the longer the delay is likely to be. The reason

is twofold. First, it is hard to find a bed for the patient, as most wards are busy. Second, the

transportation staff and other resources that are shared across different specialties are also likely

to be busy, leading to longer delay.

Table 3 summarizes the estimation results from the first-stage linear regressions. Note that

although Oi (Off-service) and Di (ED delay) are binary variables, we use linear probability models

for simplicity and interpretability, as well as for the correctness of inference in the second stage.

We observe that the two IVs are positively correlated with the off-service placement decision and

are very significant. The second IV is also positively correlated with ED delay.

Table 3 Fitted results for first-stage regression

Variables Off-service ED Delay
(SE) (SE)

PriAdmOccuHigh 0.139 *** −0.012
(0.011) (0.011)

HospAdmOccu 1.619 *** 0.619 ***
(0.096) (0.090)

R2 0.268 0.044
No. of obs. 8642 8642

+ : 0.05 < p≤ 0.1,∗ : 0.01 < p≤ 0.05,∗∗ : 0.001 < p≤ 0.01, ∗ ∗ ∗ : p≤ 0.001.

The standard errors are reported in parentheses.

Next, we discuss the exclusion restrictions. System-level busyness measures have often been used

as IVs in hospital settings (Chan et al. 2016, Song et al. 2018). The exclusion restriction relies

on the randomness in patient arrivals. One potential concern is that ward occupancy may affect

patient LOS directly (KC and Terwiesch 2009, 2012). Therefore, we control for the attending

physician’s workload during both the patient’s stay and the day before discharge (PhyAvgLoadi

and PhyMinus1Loadi). We also control for the average occupancy of the assigned (destination)

ward during the patient’s stay (DestAvgOccui). Lastly, we focus on patients who spend at least

two days in the hospital (dlos > 2), which helps further reduce the correlation between the load

an hour before admission and the load during the patient’s entire hospital stay. As the occupancy

level typically varies on the time scale of hours, we observe a very low correlation between our IVs

and each of the covariates listed above (PhyAvgLoad, PhyMinus1Load, DestAvgOccu).
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5.2. Estimation results

The estimation results of the two-stage least squares regression (2SLS) decribed in Equation (4)

are reported in Table 4. We also report the results from the direct estimation of (3) (Model 1).

When comparing Model 1 to Model 2, we observe that neglecting the endogeneity of the routing

decision introduces substantial negative bias – e.g., −0.004 versus 0.172, for off-service placement

on log(dlos). After correcting for the omitted variable bias using IV, we find a significant positive

effect of off-service placement on log(dlos) for the patients who are placed off-service. With an

average LOS of four days, off-service placement increases dlos by 0.75 days, on average. However,

we find no statistically significant effect of ED delay on log(dlos). One explanation is that patients

who are admitted to inpatient wards are, in general, not in urgent or critical conditions. Given

that care has already been provided in the ED, delay in admission to the inpatient wards would

not have a significant impact on their outcome. Indeed, even for certain ICU patients, previous

work has shown that ED delay does not have an effect on their LOS (Chan et al. 2016).

Model 3 is fitted using the smaller dataset, in which we have more comorbidity information.

We observe estimates for β11 and β12 that are similar to those in Model 2. We also note that, as

expected, the variables related to comorbidity have a significant positive impact on LOS.

Table 4 2SLS models with different covariates

Variables Model 1 Model 2 Model 3
OLS 2SLS 2SLS

(without IV) (with IV) (with IV)

OffService (Fitted) −0.004 0.172 * 0.207 *
(0.011) (0.069) (0.089)

EDDelay (Fitted) −0.024 + −0.157 −0.240
(0.012) (0.271) (0.423)

van Walraven Score – – 0.006 ***
(0.002)

No. of codes – – 0.027 ***
(0.002)

No. of ops. – – 0.107 ***
(0.014)

No. of obs. 8642 8642 4311
+ : 0.05 < p≤ 0.1,∗ : 0.01 < p≤ 0.05, ∗∗ : 0.001 < p≤ 0.01, ∗ ∗ ∗ : p≤ 0.001.

The robust standard errors are reported in parentheses.

6. The tradeoff between admission delay and off-service placement

To evaluate the tradeoff between admission delay and off-service placement, we vary the coefficients

in the estimated choice model to generate different preferences for off-service placement in patient

routing decisions and to evaluate their impact on system performance using our model. In other

words, we vary the level of off-service placement that the hospital is willing to tolerate, and compute

the implied average admission delay in the system taking into account the impact of off-service
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slowdown on the entire inpatient ward network. Using the results, we construct a tradeoff curve

(or efficiency frontier) that describes the full set of options of the off-service placement proportion

and the average admission delay combinations that hospital managers face.

In the rest of this section, we first provide a detailed description about the construction of the

tradeoff curves. We also highlight the substantial differences between the tradeoff curve derived

using our estimated patient routing policy and that derived from the stylized policies commonly

adopted in the literature. We emphasize that the differences in the tradeoff curves also lead to

significant differences in the implied managerial insights. Second, we deviate from the current op-

erations of our partner hospital – where there is a substantial mismatch between capacity and

demand across specialties – and show that the general shape of the tradeoff curve remains similar

under a more balanced capacity allocation. Importantly, by comparing different capacity realloca-

tion strategies, we highlight the impact of network structure on the tradeoff between admission

delay and off-service placement. Finally, we discuss the impact of the slowdown effect on the shape

and location of the tradeoff curves. Our results show that the slowdown effect can reduce, and

sometimes completely cancel out, the benefit of capacity pooling. It is, thus, important for man-

agers to understand where their hospital currently stands on the tradeoff curve to evaluate whether

or not more off-service placements are beneficial.

6.1. The construction of the tradeoff curve

To construct the efficiency frontier, we first multiply the estimated coefficients of Delay×Wait and

Delay×Prim for all specialties in the choice model by a common factor c1 and vary the value of

c1 to allow different preferences of the bed management team for off-service placement. As both

coefficients are negative in the estimated choice model, when we increase c1, the preference for

waiting and for assigning the patient to the primary ward becomes weaker. In other words, we

increase the hospital’s willingness to place the patient off-service, conditional on all the other

determinants in the model. Then, for a given c1, we use the new patient-routing policy function

and our stochastic network model to simulate the inpatient flow; based on this, we evaluate the

off-service placement proportion and the average admission delay in the network. In subsequent

analyses, we refer to the baseline case as the current state of our partner hospital – i.e., the system

performance under the originally estimated choice models, where c1 = 1. Note that we apply c1 for

the choice models we estimated for all ED admissions. For the rest of this section, we report the

performance measures for the focus group only. The performance changes for the other two groups

of ED patients (short-stay observational and long-stay) are similar. On the other hand, as we do

not change the routing policy for the other sub-classes of patients, such as Elec, ICU, etc., the

performance measures, mainly the off-service placement proportion, for these groups of patients

stay the same.
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Figure 7 shows the tradeoff curve between average admission delay (x-axis) and off-service place-

ment proportion (y-axis) for the focus group, where the multiplier c1 varies between 0.05 and 32.

When c1 = 0.05, on the extreme right end of the tradeoff curve, the hospital has a strong prefer-

ence for placing patients in the primary ward. In this case, the off-service placement proportion is

reduced from 24% in the baseline scenario to 21%. However, the cost of this reduction is a 56%

increase in the average admission delay, from 1.42 hours in the baseline case to 2.21 hours. On

the extreme left end of the curve, when c1 = 32, the hospital has a strong preference for off-service

placement. In this case, the off-service placement proportion is 47%, but the average admission

delay is shortened to 1.07 hours.

The curve illustrates that, when the hospital is operating on the right end of the curve – i.e.,

when the average admission delay is high and the off-service placement is low – a small increase

in the off-service placement proportion can lead to a substantial reduction in admission delay. In

other words, off-service placement is a highly effective control for managing patient waiting time

in the network in this region.

Meanwhile, the benefit of off-service placement diminishes quickly as we move towards the left

end of the curve and the off-service proportion increases. For example, in the baseline scenario,

increasing the off-service proportion further does not help the hospital improve the average ad-

mission delay significantly. In other words, off-service placement is no longer an effective tool to

manage delay in the network.

Figure 7 The tradeoff curve

Figure 8 Comparison between estimated choice

model policy and index policy

Importantly, the curve provides hospital managers with the full set of possible choices in terms of

the combinations of off-service placement proportion and average admission delay in the inpatient

ward network. In addition, instead of imposing a particular objective for the hospital managers,

the curve allows them to choose the appropriate tradeoffs for different scenarios.
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6.1.1. Comparison to tradeoff curve using index policy To emphasize the benefit of our

proposed data-driven approach, we compare the tradeoff curves derived using our estimated policy

from the choice model and the index-based policies introduced in Section 3.3. The dashed curve in

Figure 8 corresponds to the tradeoff curve derived by using a stylized index-based routing policy.

Note that we incorporate both the load balancing and the time of day effect in this policy. We

incrementally change the utilization thresholds Um and U e to generate different levels of off-service

placement proportions in the system. We also compute the corresponding average admission delays

using our simulation model. The solid curve is the tradeoff curve derived using our estimated choice

model.

There are two main differences between the two curves. First, the tradeoff curve for the index-

based policy lies above the curve for the estimated choice model. In other words, for any given level

of off-service placement proportion, the index-based policy leads to a much higher average admission

delay than the estimated choice model policy does. This is because, as described in Section 3.3,

the index-based routing policy is not flexible enough to dynamically adjust the thresholds with the

overall workload of the system. Second, the dashed curve has a more linear, flatter shape than the

solid curve, especially in the region where the off-service placement proportion is relatively high.

In particular, the slope of the solid curve around the current state of the hospital (the baseline) is

about four times the slope of the dashed curve. This finding suggests that the index-based policy

does not do a good job capturing the diminishing returns in terms of the reduction in the average

admission delay when increasing the off-service placement proportion. The reason is that the index

policy simply reduces the occupancy thresholds for admitting patients across all wards, but ignores

the delicate interplay between off-service placement and other determinants of the routing decision.

For example, as the estimated choice model suggests, when the occupancy of a ward increases, the

disutility of the off-service placement in that ward increases in a nonlinear fashion. The higher the

occupancy of a ward, the less likely it is that an off-service patient will be placed in that ward.

The index policy is not flexible enough to capture this nonlinear relationship and, thus, predicts a

more linear tradeoff between the off-service placement proportion and the admission delay. More

importantly, it may mislead hospital managers to overinvest in reducing off-service placement and,

thus, suffer excess admission delay.

6.2. Capacity reallocation and network effect

In the previous section, we investigated the tradeoff between admission delay and off-service place-

ment by plotting the tradeoff curve under the current operations of our partner hospital. We

acknowledge that the shape of the curve relies heavily on the operations of the particular hospital.

To make our findings more applicable to other hospital settings, we study how the tradeoff between
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admission delay and off-service placement changes when we deviate from the observed state of our

partner hospital. In particular, since there is substantial mismatch between capacity and demand

in our partner hospital, off-service placement is applied to cope with both capacity mismatch and

stochastic fluctuations in the system. In this section, we study how the tradeoff curve changes when

we reallocate the bed capacity across the specialties to better match capacity with demand. More

importantly, by comparing different capacity reallocation strategies and their resulting tradeoff

curves, we highlight the impact of the ward network structure on determining the tradeoff between

admission delay and off-service placement.

Under the current state of our partner hospital, Table 1 shows that Card and Gen Med are both

heavily overloaded, while Ortho is underutilized. To gain insights from a more balanced capacity

allocation across the specialties, we consider two simple reallocation strategies. First, we reallocate

25 beds from Ortho to Card, which reduces the nominal utilization of Card to 85%. In the second

strategy, we reallocate 25 beds from Ortho to Gen Med, which reduces the nominal utilization of

Gen Med to 87%. We compute the tradeoff curves under both scenarios and show the results in

Figure 9.

First, we find that, in both cases, the general shape of the tradeoff curve stays the same after

the capacity reallocation. That is, under balanced capacity allocation, hospital managers face a

similar tradeoff between admission delay and off-service placement. This is because, even without

capacity mismatch, hospital managers still rely on off-service placement to deal with the stochastic

fluctuations in the system. As a result, our findings in Section 6.1 apply to more general settings

in which the mismatch between capacity and patient demand across specialties is not as severe as

in our partner hospital. Notably, the return to off-service placement in terms of admission delay

reduction still diminishes quickly, as the off-service proportion increases, indicating the importance

for hospital managers to know where the current operation lies on the tradeoff curve.

Second, we observe that the two reallocation strategies lead to different tradeoff curves. In par-

ticular, in Figure 9b reallocating capacity to Gen Med leads to a more inward-positioned efficiency

frontier than reallocating capacity to Card, as shown in Figure 9a. This is because the network

effect of the two reallocation strategies differs. In particular, Gen Med wards are much better con-

nected than Card in the inpatient ward network. Gen Med wards often receive off-service patients

from other medical specialties, while Card wards rarely receive off-service patients. As a result,

the 25 beds assigned to Gen Med provide additional benefits to other specialties on the network

because Gen Med can now accept more off-service patients. Thus, reallocating beds to Gen Med

leads to a greater improvement of the efficiency curve.

Figure 9a also shows that, as the off-service placement proportion increases to above 30%, the

tradeoff curve starts to bend – i.e., the average admission delay increases as the off-service pro-

portion further increases. This is the result of reallocating capacity to the less-connected Card
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(a) Reallocate capacity to Card (b) Reallocate capacity to Gen Med

Figure 9 Tradeoff curves for different allocation strategies

wards interacting with the off-service slowdown effect. In particular, the additional beds assigned

to Card wards provide little benefit to other wards through the network since Card wards rarely

receive off-service patients. Meanwhile, the effect of the longer LOS of off-service patients in other

wards is propagated through the inpatient ward network, generating higher overall workload to the

system – i.e., higher system congestion. We postpone the more detailed discussion of the impact

the off-service slowdown on the tradeoff curve to the next subsection.

We conclude this section with a brief summary of managerial insights. Better matching capacity

and demand between specialties can substantially improve the efficiency frontier of the off-service

placement proportion and the average admission delay. When reallocating capacity from the un-

derloaded specialty to the overloaded specialty, it is important to take the network structure into

account when off-service placement is present. We use the example of Card and Gen Med wards to

show that it is more beneficial to allocate capacity to wards of well-connected specialties, as they

receive more off-service patients. This results in greater benefit to other specialties and the overall

system.

6.3. The off-service slowdown and the tradeoff curve

We analyze the impact of the off-service slowdown on the tradeoff curve in this section. Off-service

placement is employed as a control to reduce excess admission delay in general. However, since off-

service patients have longer LOS, it leads to higher overall workload for the system, which, in turn,

may block the admission of future patients. In other words, it may offset some of the benefits of

resource pooling generated by off-service placement. More importantly, this effect of the off-service

slowdown can spread through the inpatient ward network. This requires a complete analysis of the

entire network, which can not be achieved without our modeling framework.

In this section, we first analyze the effect of the off-service slowdown in the setting of our partner

hospital. Then, we investigate the problem in more general settings that are closer to the scenarios
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in other large hospitals studied in the literature. Finally, we study the effect of off-service slowdown

at the specialty level, which highlights the interplay between the slowdown effect and the network

effect.

6.3.1. The off-service slowdown in our partner hospital Figure 10a plots the tradeoff

curves for different values of the slowdown factor β11, defined in Equation (4). The parameter β11 is

estimated for our partner hospital to be around 0.17. A similar magnitude of the slowdown factor

is also observed in a large US teaching hospital (Song et al. 2018). To understand the effect of

off-service slowdown on the tradeoff curve, we investigate two additional scenarios: one in which

β11 = 0, which indicates zero slowdown; and one in which β11 = 0.25, which is the estimated value for

some specialties with a larger slowdown effect in our partner hospital (see the online supplement).

Since the three tradeoff curves in Figure 10a are very close to each other, the slowdown factor

seems not to play an important role in determining the tradeoff curve. This can be due to two fac-

tors. First, the overall utilization of our partner hospital is 87%, which is relatively low. Therefore,

the additional workload generated by off-service patients may not be substantial enough to affect

the tradeoff curve. Second, the group of patients who potentially experience off-service slowdown

(the focus group) accounts for only 33% of the total patient population we model. The magnitude

of the effect may not be big enough in our partner hospital due to the relatively small size of the

focus group.

6.3.2. The off-service slowdown in more general settings Given that the utilization

and the proportion of the focus group in other hospitals studied in the literature are generally

higher (Copenhaver et al. 2019, Song et al. 2018), we deviate from the operating environment of

our partner hospital by increasing the utilization and the proportion of patients who are subject

to off-service slowdown in the system, which provides a more general analysis of the impact of the

slowdown factor.

First, in Figure 10b, we increase the proportion of focus-group patients from 33% in the baseline

case to 45%. The three curves in the figure correspond to different values of the slowdown factor. We

observe that when the off-service placement proportion is small, there is still not much difference

among the three curves because not many patients are affected by off-service slowdown. However,

when the off-service proportion is large, we start seeing bigger differences among the three curves.

In particular, for α= 0.25, when the off-service placement proportion is high (> 40%), we see no

improvement in admission delay when further increasing the off-service placement proportion. In

fact, the average admission delay even increases slightly.

Second, compared with Figure 10b, we increase the utilization of the system in Figure 10c

from 87% to 94%, while keeping the focus-group patient population at 45%. We observe that the
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(a) Different slowdown factors (b) Focus group 45%

(c) Focus group 45%, increase load (d) Tradeoff curves for Card and Resp; Focus group 45%,

slowdown factor 0.25.

Figure 10 The tradeoff curve between the average admission delay and the off-service proportion under

different values of the slowdown factor and proportions of focus group.

slowdown factor has a bigger impact on systems with a heavier load. In particular, as the off-

service placement proportion increases, the reduction in admission delay diminishes much more

significantly compared to that in Figure 10b. Moreover, the two tradeoff curves with positive β11

start to bend when the off-service placement is above 35%. This suggests that, in this region, the

negative effect of off-service placement on the admission delay, or the higher overall workload on

the system generated by the off-service slowdown, completely cancels out the benefit of resource

pooling. In other words, the off-service placement can no longer be employed as a control to reduce

excess admission delays. In those cases, it is critical for managers to know where the current hospital

operation lies on the tradeoff curve in order to avoid inappropriate management decisions.

6.3.3. The interaction of off-service slowdown and network effect To further investi-

gate the negative effect of off-service slowdown on the average admission delay, we construct the

tradeoff curves with a high slowdown effect, β11 = 0.25, at the specialty level. Figure 10d plots the
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tradeoff curves for two specialties: Card and Resp. We set the focus group of patients who are

subject to the off-service slowdown to be 45%. This corresponds to the scenario for the dashed line

in Figure 10b. Figure 10d shows that there are significant differences in the tradeoff curves between

Card and Resp. In particular, Resp suffers heavily from the negative effect of off-service placement

on admission delay when the off-service proportion is above 18%. This is because Resp wards re-

ceive a large number of off-service patients from other specialties. When the off-service proportion

increases, the Resp wards are heavily affected by the higher workload generated by the longer LOS

of the off-service patients. Moreover, this higher workload also leads to more Resp patients being

blocked from admission into their primary ward and, thus, being placed off-service, which further

increases the workload of the overall system. This snowball effect leads to a substantial negative

effect of off-service placement on admission delay, as shown in Figure 10d. On the other hand, Card

wards play a completely different role on the inpatient ward network: they rarely receive off-service

patients and, thus, are less affected by off-service slowdown. More specifically, many Card patients

may be placed in off-service wards (large off-service proportion), but the capacity saving is not used

to help other specialties. In other words, patients in the Card wards are mainly primary patients

and do not experience any off-service slowdown effect. As a result, Card wards are not affected as

much as Resp wards by the slowdown effect.

To support the above argument and highlight the effect of the off-service slowdown, we perform

a detailed analysis of the Resp ward NW44 when β11 = 0.25 vs. β11 = 0. When β11 = 0.25, if we

increase the overall off-service proportion from 26% to 46% by adjusting c1, the proportion of

off-service patients in NW44 increases from about 30% to more than 60%. Due to the off-service

slowdown, the occupancy rate of NW44 increases to 94%. This higher occupancy rate results in

more Resp patients blocked from admission to NW44 and placed off-service. The average admission

delay for Resp patients increases to 1.05 hours, and the off-service proportion increases to 42%.

By contrast, when β11 = 0, if we increase the overall off-service proportion from 26% to 46%, the

occupancy of NW44 remains at 85%. The average admission delay for Resp patients is as low as

0.70 hour, and the off-service proportion for Resp patients is 38%.

To summarize, by conducting the specialty-level analysis when the slowdown effect is high,

we find that some specialties can be so heavily affected by off-service slowdown that the bene-

fit of resource pooling is completed canceled out by the higher overall workload. This leads to

higher admission delay when the off-service placement proportion further increases beyond a cer-

tain threshold. We also find that there is a large heterogeneity across specialties in terms of how

the off-service slowdown affects the tradeoff curve. These findings highlight the importance of the

interplay between the inpatient ward network effect and the off-service slowdown effect. The find-

ings also illustrate the importance of plotting the tradeoff curves using the empirical and modeling
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tools we proposed in this paper for hospital managers to make intelligent decisions on managing

congestion in the inpatient flow.

7. Conclusion

In this paper, we build a high-fidelity stochastic model to quantify the tradeoff between off-service

placement and admission delay in inpatient wards. We note that, even though off-service placement

can help create more resource pooling in the network of inpatient wards, the effect is diminishing.

Moreover, off-service slowdown can offset the benefit of resource pooling when the off-service pro-

portion is high. We also study the impact of the network structure on the tradeoff, and propose

capacity reallocation strategies to improve the efficiency frontier.

In this paper, we developed a methodology framework by building a high-fidelity stochastic model

to capture the underlying physics of patient-flow dynamics, and using choice model and outcome

analysis to tackle several model estimation challenges. This framework can be applied to other

health care delivery systems. For example, Chan et al. (2016) estimate the causal effect of waiting

on ICU patient outcomes. If we combine that with ICU admission/scheduling policies estimated

from the data and a stochastic model describing patient-flow dynamics through the ICU, we can

provide a reliable evaluation of improvement strategies there. Similar examples can be found in

KC and Terwiesch (2017) for surgical scheduling, Song et al. (2015) for ED case management, and

Chan et al. (2018) for step-down units.

Our work in this paper had some limitations. First, in our partner hospital, we rarely observed

patients being moved back to their primary units after they had been placed off-service initially.

The reason is that transferring patients between wards can be cost-inefficient ( staff to transfer the

patient, bed cleaning, etc.); impose safety concerns, such as discontinuity of care due to patient

handover; and can hurt patient experience in the hospital. While many hospitals in the U.S. and

Europe follow a similar practice of not transferring patients from the off-service unit back to the

primary unit when a bed becomes available, we are also aware that a subset of hospitals do transfer

patients. For hospitals that frequently practice “transfer-back,” our analysis does not directly apply.

New routing policies need to be estimated in those settings.

Second, due to the weather conditions in Singapore, patient arrivals in our partner hospital

do not exhibit significant seasonality patterns. For other hospitals, at which patient arrivals do

experience strong seasonality, one can do a separate estimation and simulation for each season.

The potential improvement strategies may also be dependent on seasonality effects.
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This document serves as an Online Appendix for the main paper. Section 1 provides more details
about the dataset we obtained from our partner hospital. Section 2 provides more details of the
stochastic model including how we populate the model parameter. Robustness analysis for the choice
model estimation and outcome analysis are provided in Section 3 and 4 respectively.

1 Data description

Our data comes from a large teaching hospital in Singapore, spanning from January 1 to December
31, 2010. The total number of patient admissions is 92081. To study inpatient ward management, we
use a subset of the total patient admissions where we exclude admissions to non-inpatient wards and
certain highly specialized specialties. In particular, we exclude patients who only visited outpatient
centers such as dental clinics, outpatient surgery wards, endoscopy center. We also exclude patients
from Obstetrics and Gynaecology (OB/GYN), Oncology, and specialties with a very small inpatient
volume such as Dental and Eye. The reason we exclude OB/GYN and Oncology is that their patients
population are very di�erent from other specialties. These patients require highly specialized treat-
ment and care. Thus, there is little interaction between these two specialties and other specialties,
i.e. these patients are rarely placed o�-service, and their primary wards rarely receive o�-service
placements from other specialties. Lastly, we exclude patients who were admitted to private wards.
Admissions to these private wards require more expensive private insurance (instead of the universal
insurance provided by the government). In addition, these wards usually have much lower occupancy.

Our selected sample contains 34030 patient admission records (93.2 admissions per day on average)
from eight specialties to thirteen inpatient wards. The eight specialties are General Medicine (Gen
Med), Gastroenterology (Gastro), Neurology (Neuro), Renal Disease (Renal), and Respiratory (Resp),
Surgery (Surg), Cardiology (Card), and Orthopedic (Ortho). The �rst four specialties all belong to
the Medicine cluster. The 13 specialties have di�erent sizes of practice, with Card being the largest
(19.8 admissions per day on average) and Resp being the smallest (4.8 admissions per day on average).
See Table 1 in the main paper for a summary of the load of di�erent specialties. Patients in this sample
are admitted from �ve di�erent sources: Emergency Department (ED), Elective (Elec), Intensive Care
Unit (ICU), Transfer (Trans), and Others (e.g., same-day admissions who go through surgery �rst
and then admitted to inpatient wards). Note that we count each transfer as a separate admission
record. As shown in Figure 1 of the main paper, the majority (53%) of patients are admitted from ED
� we refer to them as �ED admissions� in the rest of this document. This is mostly due to the public
health care structure in Singapore: our partner hospital is state-owned, whose primary objective is to
treat the patients with the greatest needs. As a result, the elective surgery waiting lists are usually
exceptionally long. Many patients who wish to receive surgery or treatment in a short period of time
would rather visit the ED instead of waiting on the elective list. Such phenomena have been discussed

1



(a) ED admissions (b) Non-ED admissions

Figure 1: Hourly admission rates for di�erent hours of the day

extensively in countries and regions with similar public funded health care systems, such as Canada,
U. K., etc. [1, 2].

1.1 Patient-level information

For each admission to the inpatient wards, we have the following information in our data set.

• Patient characteristics: These include age, gender, ED triage score (for ED admissions only),
medical specialty, primary diagnosis and billing code, admission source , admission ward ID, at-
tending physician ID, etc.

• Time stamps for in-hospital activities: These include admission to a ward, transfer between
wards, discharge from a ward, bed request and ED discharge (for ED admissions only).

Based on these information, we can calculate workload related measures. These include the
occupancy of di�erent wards at the hourly level, the attending physician's workload at the daily level.
We can also calculate patient-level performance measures, such as the admission delay (for ED
admissions only) � de�ned as the time between the bed-request time and the ward admission time,
whether the patient is placed o�-service, etc.

1.2 Time-dependent inpatient �ow dynamics

The hospital operations in a highly non-stationary environment. Understanding the time-dependent
system dynamics is important to model the inpatient �ow.

Figure 1 shows the number of admissions to wards in each hour for the �ve largest specialties
(Card, Ortho, Surg, Gen Med and Gastro) for ED admissions (2a) and non-ED admissions (2b). We
can see that the admission rates are time-varying, and the variability patterns for ED admissions
and non-ED admissions are di�erent. In particular, non-ED admissions are mostly clustered in the
afternoon when beds are becoming available after the block discharges as demonstrated in Figure
4(b) in the main paper.

Figure 2 summarizes the average admission delay (a) and o�-service placement proportion (b) by
patients' bed request hours for all ED admissions. We observe that these performance measures varies
a lot for di�erent hours of the day. This is mostly due to the special discharge pattern in the hospital.
As seen from Figure 4(b) in the main paper, most discharges take place in the afternoon and there
are almost no discharges late at night or early in the morning. Thus, we observe that patients who
request beds in the morning experience a longer waiting time on average. We also observe that the
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Figure 2: Time-dependent performance by bed-request hour for ED admissions.

bed management team places a higher proportion of patients o�-service in the late night and early
morning (9pm to 7am) hours, while during the day, the o�-service proportion is much lower.

2 Stochastic model

In this section, we provide the details of our stochastic network model. We build a multi-class multi-
pool queue with time-varying arrival rates. Key components in our model include choice-model based
routing and two-time scale service time.

In this model, there are J = 13 server pools, representing the 13 inpatient wards in our partner
hospital. Pool j has Nj servers (beds), which are estimated from the data; see Table 1 in the main
paper. There are I = 8 customer classes, representing the 8 medical specialties. Under each specialty,
we further divide patients into S = 7 sub-classes:

1. Focused group ED patients: patients who are admitted from ED and have a LOS between 2
and 7 days. We call this group the focused group because these are the patients we focus on
when changing routing policies. We also focus on estimating the impact of o�-service placement
on patient's LOS for this group only. This group constitutes 63% of the ED admissions and
33% of all the admissions we consider.

2. Observational ED patients: patients who are admitted from ED and have a short LOS (0 or 1
day). These patients have relatively mild medical conditions. Indeed, most of them undergo
simple evidence-based protocols. This group constitutes 26% of the ED admissions and 14% of
all the admissions we consider.

3. Long-stay ED patients: patients who are admitted from ED and have a long LOS: more than
7 days. This group constitutes 11% of the ED admissions and 5.8% of all then admissions we
consider.

4. Elective patients: patients who are admitted through elective referrals. They account for 14%
of all the admissions we consider.

5. ICU patients: patients admitted/transferred from ICU. They account for 9% of all the admis-
sions we consider.

6. Other patients: patients who are admitted from other sources such as same day surgery. They
account for 7% of all the admissions we consider.
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7. Transfer patients: patients who are initially admitted from ED to wards but later have in-
hospital transfer (mostly between the ICU and wards). This group constitutes 17% of all the
admissions we consider.

We assume the arrival process of each specialty i (i = 1, . . . , 8) and subclass s (s = 1, . . . , 7)
follows a time-inhomogeneous Poisson process with its corresponding arrival rate function λi,s(t). To
capture the hour of the day e�ect, we assume the λi,s(t) is periodic function with period equal to 1
day. For ED patients, we use the bed-request time as the arrival time. For non-ED patients, we use
their admission time as the arrival time.

While the arrival rate is rather straightforward to estimate, the calibration of the routing policy
and the service times are more involved. We next elaborate on each of them.

2.1 Ward assignment

We �t a ward assignment policy for each specialty and each subclass of patients from data. We use
di�erent strategy for di�erent subclasses.
For ED admissions, we �t a choice model for each subclass. We refer to Section 4 in the main
paper for details of the choice model. To reduce simulation noise, we impose a 0.15 cuto� for the
p-value when using the �tted choice model coe�cients, i.e., if the p-value is larger than 0.15, we set
the coe�cient to be 0. We also tested other cuto� values and found the results are quite robust to
di�erent reasonable cuto� values.

We denote the choice probability for specialty i subclass s at time t as

pi,s(t) =
(
p0i,s(t), p

1
i,s(t), . . . , p

J
i,s(t)

)
.

Here, choice j, j = 1, . . . , J , corresponds to ward j, and choice j = 0 corresponds to the waiting
option. For patient l of specialty i and subclass s, at the decision epoch t, we calculate the set of
probabilities {pji,s(t)} from the �tted choice model, with the following information gathered at t from
the simulation model:

• zjt, the utilization of each ward j = 1, . . . , J at time t; the utilization for the waiting option is
always set to be 0;

• xlt, the amount of time that the patient has waited till t;

We then generate a decision from the choice set {0, 1, . . . , J} according to the probability pi,s(t).
If the waiting option is chosen, the patient waits in a bu�er dedicated to her specialty and

subclass; otherwise, she is admitted to the chosen ward j. There is a little caveat here we need to
take special care of. That is assigning a patient to a full ward. We �rst note that this only happens
very occasionally. Speci�cally, the negative coe�cient associated with high ward utilization in the
choice model leads to very small probabilities of assigning a patient to a full ward. When this does
happen, to ensure the simulated ward assignments are consistent with the choice model, we allow
employing �surge capacities� in assigned ward. Surge capacities such as trolley beds not uncommon in
practice and are indeed used in our partner hospital. Furthermore, the simulation results show that
the average bed utilization for each ward from our stochastic model matches the empirical utilization
well (see Figure 5 in the main paper).

Lastly, we discuss how the decision epochs for each patients are speci�ed. Each patient gets two
types of decision epochs: The �rst type is a set of pre-speci�ed epochs, which are 0, 2, 4, . . . , hours
from the patient's bed-request time (arrival time). These decision times are chosen to be consistent
with the estimation of the choice model. The second type of are epochs triggered by the decision
times of other patients. Speci�cally, when a patient is at her decision epoch of the �rst type, we also
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trigger a decision epoch for all other patients who are of the same specialty, same subclass, and arrive
before this patient. In this case, we generate a decision for each of these patients in the sequence of
their arrival times. The second type of decision times are added to capture the preference of staying
close to First-in-First-out for fairness.

For non-ED admissions, we use randomized ward assignment policy according to their empirical
ward-assignment distribution �tted from data. We note that these patients do not have a waiting
option. This is because most of these admissions are scheduled. In particular, these patients often
arrive in the afternoon hours when peak discharge takes place. Thus, very few of them have to wait.
In addition, we also do not have waiting time information for these patients. We do note �t a choice
model for these sub-classes as we will not change their bed-assignment decisions when constructing
the trade-o� curve. Indeed, for non-ED admissions, we do not face as much a trade-o� between
admission delay and o�-service placement as those ED admissions.

2.2 Service time

When a patient is admitted to a ward, she stays in the ward until being discharged or transferred.
The LOS of the patient is referred to as the service time in the simulation model.

We employ a two time-scale (day versus hour) service time model. Speci�cally, for each patient,
we generate dlos and hdis upon her admission:

• dlos is the integer number of days the patient stay in the ward. It counts the number of 10am's
the patient spent in the ward.

• hdis is the discharge delay. It is the time between 10 am on the day of discharge and the actual
departure time of the patient.

Patient departures are then generated as the follows: at 10am each day (the end of rounding in our
partner hospital), we check all patients who are currently in service. If the number of days she spent
(from the admission day till today) reaches dlos, this patient will be discharged that day, after a delay
of hdis hours; otherwise, the patient stays in service.

We estimate the distribution of dlos for each specialty and subclass separately. The dlos for the
focused group patients is �tted using a subset of data as detailed below to account for the o�-service
slowdown. The dlos for each of the other sub-classes is �tted from all admissions in that specialty
and subclass. This is because for these sub-classes, we will not change their bed assignment decisions
when constructing the trade-o� curve. In addition, for some sub-classes, e.g. the observational ED
patients, we suspect that o�-service placement will not have a big impact on their LOS.
Incorporate o�-service slowdown. We note from our outcome analysis in Section 5 of the main
paper that o�-service placement is associated with a longer dlos for the focused group patients.

To account for the o�-service slowdown, for the focused group patients, we �t a baseline dlos
distribution for each specialty using data from patients who are admitted to their primary ward only.
For each patient, we �rst generate a dlos from the baseline distribution. If she is admitted to the
primary ward, we keep that dlos; if she is placed o�-service, we adjust the dlos as follows

• We calculate d̃los = dlos · exp(β11).

• To ensure that the adjusted dlos remains an integer, we set it equal to bd̃losc+1 with probability
p = d̃los − bd̃losc, where bxc denotes the largest integer that is less than or equal to x; and we
set it equal to bd̃losc with probability 1− p.

The distribution of hdis is �tted using data across all patients. This is because we see little
heterogeneity among di�erent specialties or admission sources in the discharge delay distribution.
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3 Robustness check of the choice model

In this section, we test two alternative speci�cations of the choice model. In the �rst speci�cation, we
include an additional feature, Wkend, which is an indicator withWkend = 1 if the patient is admitted
during the weekend. For the second speci�cation, we leverage the smaller dataset (5-month) which
contains more detailed patient diagnostic information. In this speci�cation, in addition to Wkend, we
also include the van Walraven score (vanWal) which is a comorbidity score calculated based on the
detailed diagnostic information. The estimation results are summarized in Table 1. We observe that
the estimated preferences for di�erent options are very close to those presented in Table 2 in the main
paper, suggesting the robustness of our estimation. In particular, in addition to baseline preference,
we also have similar magnitude of load-balancing (i.e. the parameters for Busy 1,2,3), the tendency
to avoid delay (i.e. the parameters for Delay×Option), and time-of the day e�ect (the parameters for
Evening×Option and Morning×Option).

Table 1: Robust check: determinants of ward assignment decisions

1 year dataset 5 month dataset
Card GenMed Surg Card GenMed Surg

Primary 2.165∗∗∗ 4.948∗∗∗ 1.650∗∗ 2.329∗∗∗ 5.464∗∗∗ 3.751∗∗∗

(0.405) (0.586) (0.504) (0.670) (1.142) (1.019)
Wait 3.267∗∗∗ 5.157∗∗∗ 3.186∗∗∗ 3.281∗∗∗ 5.696∗∗∗ 4.964∗∗∗

(0.398) (0.586) (0.402) (0.658) (1.146) (0.961)
Busy 1 -0.767∗∗∗ -1.246∗∗∗ -0.590∗∗∗ -1.051∗∗∗ -0.967∗∗∗ -0.912∗∗∗

(0.126) (0.109) (0.136) (0.186) (0.165) (0.193)
Busy 2 -0.571∗∗∗ -0.637∗∗∗ -0.064 -0.460∗∗ -0.493∗∗∗ 0.134

(0.090) (0.066) (0.111) (0.141) (0.102) (0.176)

Busy 3 -0.450∗∗∗ -0.308∗∗∗ 0.046 -0.549∗∗∗ -0.316∗∗∗ -0.267†

(0.070) (0.057) (0.083) (0.112) (0.087) (0.140)
Delay×Prim -0.245∗∗ -0.459∗∗∗ -0.405∗∗∗ -0.247∗ -0.608∗∗∗ -0.544∗∗∗

(0.095) (0.067) (0.077) (0.123) (0.111) (0.155)
Delay×Wait -0.843∗∗∗ -0.880∗∗∗ -0.957∗∗∗ -0.885∗∗∗ -1.016∗∗∗ -1.140∗∗∗

(0.096) (0.069) (0.068) (0.127) (0.115) (0.152)

Evening×Prim -0.398 -1.569∗∗∗ -0.674∗∗ -0.404 -1.504∗∗∗ -0.784†

(0.306) (0.239) (0.247) (0.423) (0.408) (0.476)
Evening×Wait -1.309∗∗∗ -2.080∗∗∗ -1.205∗∗∗ -1.539∗∗∗ -2.237∗∗∗ -1.168∗∗

(0.303) (0.240) (0.202) (0.420) (0.412) (0.442)

Morning×Prim 2.544∗∗∗ 1.274∗ 1.421∗∗∗ 1.948∗ 1.264† 2.483∗

(0.755) (0.498) (0.392) (0.795) (0.689) (1.123)
Morning×Wait 3.413∗∗∗ 1.920∗∗∗ 2.316∗∗∗ 2.944∗∗∗ 1.770∗ 3.381∗∗

(0.754) (0.499) (0.354) (0.793) (0.692) (1.105)
Wkend×Prim 1.074∗ -0.192 -0.003 1.232∗ -0.052 -0.391

(0.420) (0.243) (0.269) (0.566) (0.449) (0.624)

Wkend×Wait 0.235 -0.460† -0.371 0.320 -0.221 -0.534
(0.421) (0.245) (0.230) (0.567) (0.452) (0.593)

vanWal×Prim -0.049 0.101† 0.112
(0.039) (0.057) (0.125)

vanWal×Wait -0.014 0.102† 0.085
(0.039) (0.057) (0.122)

No. of obs. 3369 4826 2623 1456 2082 1038
Log-Likelihood -4768 -6364.1 -3704.2 -1918.1 -2623.3 -1369
Pseudo R2 0.140 0.109 0.091 0.171 0.103 0.109

+ : 0.05 < p ≤ 0.1, ∗ : 0.01 < p ≤ 0.05, ∗∗ : 0.001 < p ≤ 0.01, ∗ ∗ ∗ : p ≤ 0.001.
The standard errors are reported in parentheses.
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4 Robustness check of the outcome analysis

In this section, we present some of robustness checks for the causal e�ects of ED delay and o�-service
placement on patient's medical LOS.

4.1 Specialty level e�ect

In this section, we compare the e�ects of ED delay and o�-service placement on patient's LOS across
di�erent medical specialties. Table 2 compares the estimation results for the Med cluster (including
four medicine specialties) and the Surg specialty. We combine all the medicine specialties to reduce
the estimation error. We �rst observe that ED delay still doesn't have a signi�cant e�ect on patient's
LOS. On the other hand, o�-service placement has quite di�erent e�ects for patients of di�erent
specialties. Surgical patients su�er more from being placed o�-service, i.e. their increase in LOS is
the larger.

Table 2: E�ects of ED Delay and o�-service placement for di�erent clusters of patients

Variables Med Surg

O�Service (�tted) 0.206 * 0.262 **
(0.097) (0.098)

EDDelay (�tted) −0.423 −0.577
(0.330) (0.487)

No. of obs 5621 1377
+ : 0.05 < p ≤ 0.1, ∗ : 0.01 < p ≤ 0.05, ∗∗ : 0.001 < p ≤ 0.01, ∗ ∗ ∗ : p ≤ 0.001.

The robust standard errors are reported in parentheses.

4.2 Instrumental variable

In this section, we conduct two sets of sensitivity analysis. Firs, we test di�erent threshold values
for PriAdmOccuHigh. The results are summarized in Table 3. We notice that the occupancy level
of the primary ward has a highly nonlinear e�ect on the o�-service placement decision. When the
primary ward occupancy is below a certain level, i.e. 0.8, the chances of placing a patient o�-service
is almost negligible, while when the primary ward occupancy grows beyond a certain level, i.e. 0.95,
the o�-service placement rate increases very fast as the occupancy level further increases.

Table 3: Di�erent threshold values for the instrumental variable

Variables Threshold=0.99 Threshold=0.95

O�Service (�tted) 0.238 * 0.006
(0.098) (0.103)

EDDelay (�tted) −0.385 0.417
(0.370) (0.416)

PriAdmOccuHigh for O�Service 0.142 *** 0.137 ***
(0.016) (0.010)

No. of obs 8642 8642
+ : 0.05 < p ≤ 0.1, ∗ : 0.01 < p ≤ 0.05, ∗∗ : 0.001 < p ≤ 0.01, ∗ ∗ ∗ : p ≤ 0.001.

The robust standard errors are reported in parentheses.

We also test di�erent cuto� values for for ED Delay. The results are summarized in 4. We observe
that the estimated o�-service slowdown is quite robust to reasonable threshold values for ED Delay.
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Table 4: Di�erent threshold values for the ED Delay

Variables Threshold = 3 hours Threshold = 5 hours

O�Service (�tted) 0.186 * 0.185 *
(0.089) (0.086)

EDDelay (�tted) −0.150 −0.316
(0.259) (0.545)

No. of obs 8642 8642
+ : 0.05 < p ≤ 0.1, ∗ : 0.01 < p ≤ 0.05, ∗∗ : 0.001 < p ≤ 0.01, ∗ ∗ ∗ : p ≤ 0.001.

The robust standard errors are report in parentheses.

4.3 Control for other covariates

In this section, we test a few other model speci�cations to estimate the e�ect of o�-service place-
ment on patient's LOS. In particular, we include di�erent combinations of covariates related to the
destination ward's occupancy and the attending physician's workload. These include the average
occupancy of the destination ward during the patient's LOS (DestAvgOccu), the average workload
the of attending physician during the patient's LOS (PhyAvgLoad), and the average workload of the
attending physician the day before the patient's discharge (PhyMinus1Load). Estimation results are
summarized in Table 5. We observe that the estimation results are quite robust across di�erent choice
of these covariates. Model III is the model we adopt in the main paper.

Table 5: 2SLS models with di�erent covariates

Variables Model I Model II Model III

O�Service (Fitted) 0.192 ** 0.183 ** 0.172 *
(0.072) (0.069) (0.069)

EDDelay (Fitted) −0.003 −0.071 -0.157
(0.254) (0.273) (0.271)

DestAvgOccu � 0.323 ** 0.321 **
(0.116) (0.115)

PhyAvgLoad � � 0.134 ***
(0.012)

PhyMinus1Load � � −0.128 ***
(0.011)

No. of obs 8642 8642 8642
+ : 0.05 < p ≤ 0.1, ∗ : 0.01 < p ≤ 0.05, ∗∗ : 0.001 < p ≤ 0.01, ∗ ∗ ∗ : p ≤ 0.001.

The robust standard errors are report in parentheses.
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