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Stochastic gradient descent (SGD) is a powerful optimization technique that is particularly useful in online

learning scenarios. Its convergence analysis is relatively well understood under the assumption that the data

samples are independent and identically distributed (iid). However, applying SGD to policy optimization

problems in operations research involves a distinct challenge: the policy changes the environment and thereby

affects the data used to update the policy. The adaptively generated data stream involves samples that are

non-stationary, no longer independent from each other, and affected by previous decisions. The influence of

previous decisions on the data generated introduces bias in the gradient estimate, which presents a potential

source of instability for online learning not present in the iid case. In this paper, we introduce simple criteria

for the adaptively generated data stream to guarantee the convergence of SGD. We show that the convergence

speed of SGD with adaptive data is largely similar to the classical iid setting, as long as the mixing time of

the policy-induced dynamics is factored in. Our Lyapunov-function analysis allows one to translate existing

stability analysis of stochastic systems studied in operations research into convergence rates for SGD, and

we demonstrate this for queueing and inventory management problems. We also showcase how our result

can be applied to study the sample complexity of an actor-critic policy gradient algorithm.

1. Introduction

We consider the following stochastic optimization problem

min
θ∈Θ

ℓ(θ) =Eµθ
[L(θ, z)]. (1)

In (1), θ is a m-dimensional policy parameter that parametrizes a Markov chain with transition

kernel Pθ. The probability measure µθ is the unique invariant distribution of Pθ, and z ∼ µθ is a

random outcome. Here, the set Θ could either be a convex constraint set or Rm in the unconstrained

setting.

For example, when designing service systems, we are interested in finding the optimal pricing

and/or capacity sizing policies to strike a balance between revenue and service quality (Kim and

Randhawa 2018, Chen et al. 2023a). Here the policy parameter θ may consist of the price, which

affects the demand, and the capacity, which affects the service speed. Jointly, they control a Markov

chain Pθ that describes the queueing dynamics, and the service quality is often measured by the

steady-state average waiting time. Similarly, in inventory management, we are interested in finding

the optimal inventory ordering policy (e.g., base-stock level) to minimize the long-run average

holding and backlog costs (Huh et al. 2009, Zhang et al. 2020a). Here, the replenishment policy,
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indexed by θ, controls the dynamics of the inventory level, whose stationary distribution in turn

determines the long-run average costs. The stochastic optimization problem (1) also arises in

machine-learning applications, such as policy gradient-based reinforcement learning (Sutton and

Barto 2018, Agarwal et al. 2021), strategic classification with adaptive best response (Mendler-

Dünner et al. 2020, Li and Wai 2022), and adaptive experimental design with temporal carryovers

(Glynn et al. 2020, Hu and Wager 2022).

In many problems of practical interests, direct access to the distribution µθ may not be available.

Instead, at each time point t, we can apply a new candidate policy θt on the concurrent system

state zt−1 and obtain a new data point following

zt ∼ Pθt( · |zt−1). (2)

We will refer to this as the adaptive data setting. Instead of minimizing (1) using the true gradient

∇ℓ(θ), which relies on the unknown distribution µθ, one only has access to a gradient estimator

g(θt, zt) based on the adaptive data stream, which satisfies

Ez∼µθ
[g(θ, z)] =∇ℓ(θ). (3)

This resembles the problem setup for reinforcement learning (RL) (Sutton and Barto 2018), and

includes policy-gradient algorithms as a special case. However, the RL literature generally focuses

on a specific class of gradient estimators derived from the REINFORCE estimator (Williams 1992)

or the Q-function. In contrast, the adaptive data setting we consider is applicable for any gradient

estimator satisfying (3) and thereby covers a much larger range of gradient estimation strate-

gies (Mohamed et al. 2020), including infinitesimal perturbation analysis (IPA) (Heidelberger et al.

1988, Glasserman 1992) and general likelihood-ratio gradient estimation (Glynn 1990). These gra-

dient estimation strategies are outside the scope of the existing RL convergence analysis, but are

of particular relevance to operations research applications, such as queuing and inventory manage-

ment (see, e.g., Chen et al. (2023a), Huh et al. (2009)).

The core challenge of applying stochastic gradient descent (SGD) to the adaptive data setting is

that zt is not only determined by the current action θt but also depends on previous actions through

zt−1. As a result, using zt to form a stochastic gradient estimator g(θt, zt) leads to biased estimation

of the true gradient ∇ℓ(θt), as E[g(θt, zt)|zt−1] ̸=∇ℓ(θ) in general. If the effects of previous actions

persist in the system for a long time, the bias can be significant. SGD with biased gradients may

not be able to converge to the desired minimum (or even a small enough neighborhood of the

minimum).

Consider, for example, the optimal pricing problem in a GI/GI/1 queue, where the arrival rate is

determined by the price charged according to a demand function λ(p). Let Tt+1 denote the baseline
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interarrival time between the t-th and (t+1)-th arrivals, St denote the service time, andWt denote

the waiting time of customer t, i.e., the t-th arrival. For a fixed price p, by Lindley’s recursion,

{Wt : t≥ 0} is a Markov chain satisfying

Wt+1 =

(
Wt +St −

Tt+1

λ(p)

)+

.

Our goal is to choose the optimal price to maximize the revenue minus the long-run average cost

of waiting, or equivalently,

min
p

ℓ(p) =−
(
pλ(p)−hλ(p)Eπp [W ]

)
,

where πp denotes the steady-state distribution of the Markov chain {Wt : t≥ 0} with arrival rate

λ(p) and h denote the holding/waiting cost per unit time per customer. If we are to update the

price after each arrival and let pt denote the price charged for the t-th arrival, then the waiting

times satisfy

W̃t+1 =

(
W̃t +St −

Tt+1

λ(pt+1)

)+

,

which is a non-stationary Markov process due to varying pt’s.

Note that the waiting time W̃t is not only affected by pt, but also the previous prices charged, i.e.

ps for s < t, as they affect the current congestion level in the queue. As a result, E[W̃t] ̸=Eπpt
[Wt]

due to transient behavior of the Markov chain. In this case, using the current waiting time to

estimate the steady-state waiting time leads to a biased estimation of ∇ℓ(pt), which may derail

the convergence of the standard SGD updates to the optimal p∗. For example, if one sets very

low prices ps ≪ pt for s < t, the waiting time W̃t could be much larger than Eπpt
[Wt] due to the

congestion induced by high demands in previous periods (as result of the low prices ps’s). Since

W̃t will be an over-estimate of the stationary waiting time Eπpt
[Wt], using this estimate to update

the price could cause the new price pt+1 to be too high. The oscillations due to delayed feedback

can lead to instability as demonstrated in control theory.

Optimization algorithms that use data streams to sequentially update the solution are often

referred to as online algorithms. The convergence behavior of online algorithms using independent

and identically distributed (iid) data stream has been well studied in the literature (Robbins and

Monro 1951, Shapiro et al. 2021, Moulines and Bach 2011). More recent results have shown that

the iid requirement can be relaxed. Duchi et al. (2012), Agarwal and Duchi (2012), Sun et al. (2018)

study the performance of online learning algorithms on a dependent data stream. In particular,

they assume zk’s are generated from a fixed suitably ergodic Markov chain. But these results cannot

be applied to our problem directly, since they would require that the invariant distribution does

not depend on the policy θ. In contrast, in the service system design example discussed above, the
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price changes the transition dynamics of the queue, which changes the steady-state waiting time

distribution.

One indirect way to apply the existing results with iid data to the adaptive data setting is to

only update θ periodically, where the period (or batch size) B ∈N+ is set to be long enough such

that the data distribution is close to stationarity towards the end of the period. In other words,

for all t ∈ {0, ...,B − 1} we would maintain the same policy θ0 = ... = θB−1 in order for zB−1 to

resemble a draw from the stationary distribution µθ0 . This would allow for a good estimate of

∇θEµθ0
[L(θ0, z)], which would then be used to update the policy at time B. One may even specify a

schedule of batch sizes Bk to reliably control the non-stationarity induced by the actions (see, e.g.,

Chen et al. (2023a), Huh et al. (2009), Hu and Wager (2022)). However, reducing the frequency at

which the policy is updated curtails the adaptivity of the algorithm, exposing a potential trade-off

between adaptivity and bias from non-stationarity. Balancing this tradeoff would require carefully

choosing the batch size B. This may require detailed knowledge about the ergodicity property, e.g.,

the exact rate of convergence, of the underlying Markov chain which is unavailable or hard to get

in many applications. Overall, it is a priori unclear how the length of the period/batch size affects

the performance of the learning algorithm in the adaptive setting.

The papers Mendler-Dünner et al. (2020) and Drusvyatskiy and Xiao (2023) study stochastic

optimization when one can draw independent samples from the updated data distribution µθ. This

is similar to the periodic updating design discussed above, because, in most practical settings, one

can only generate independent samples from µθ by applying the same policy for a long enough

time, i.e., running the Markov chain under Pθ until it reaches stationarity.

In this paper, we study the convergence of SGD where only one sample or a minibatch of samples,

i.e., Bk’s being a fixed O(1) constant, is used at each iteration. Under certain ergodicity and

continuity conditions on the Markov transition kernels, we show that SGD with adaptive data can

achieve O((logT )2/
√
T ) convergence to a stationary point in the nonconvex case. In the convex

case, for projected SGD where the projection set is convex (can be Rd, which corresponds to the

case without projection), we show that it can achieve O((logT )4/
√
T ) convergence to the optimal

when l is convex, and O((logT )2/T ) convergence when l is strongly convex. These rates are similar

to the iid case (Shapiro et al. 2021). We also show how the mixing time of the underlying Markov

chains is incorporated into the convergence rate analysis. It is important to note that knowledge

of the mixing time is not necessary for the implementation of the SGD algorithm. Overall, our

results show that under the conditions we specify, non-stationarity induced by the policy updates

does not impose fundamental limitations on adaptivity.

Our finite-time convergence analysis for SGD with adaptive data can be applied to study a wide

range of problems of practical relevance. In particular, we demonstrate how the analysis can be
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applied to study online learning algorithms for service and inventory systems. As mentioned before,

our setting also covers policy-gradient approaches in RL, and we show how our analysis applies

to an actor-critic policy gradient algorithm. These examples demonstrate that the assumptions we

impose are easy to verify and widely applicable.

When applying SGD with adaptive data to service and inventory management problems, we

demonstrate how to construct gradient estimators using the sample path derivative, which can

be updated recursively. In particular, we augment the Markov chain to include both the original

Markov chain and a derivative process. This sample-path derivative construction utilizes devel-

opments in the simulation literature on infinitesimal perturbation analysis (IPA) (Heidelberger

et al. 1988, Glasserman 1992). However, in our applications of IPA, we need to establish stronger

ergodicity results than the standard convergence results in the literature.

The rest of the paper is organized as follows. We conclude this section with a review of the

literature to highlight our contribution. In Section 2, we present our main results – the finite-

time performance bounds for SGD with adaptive data in various settings, i.e., nonconvex, convex

with/without projection, and strongly convex with/without projection. In Sections 3 – 5, we demon-

strate how to apply the main results to study various online learning problems. We also discuss

how to apply the sample path derivative to construct gradient estimators in Sections 3 and 4.

Lastly, we conduct numerical experiments to demonstrate the performance of the SGD algorithm

with adaptive data in various applications in Section 6 and conclude in Section 7. All the proofs

are provided in the appendices.

Literature Review

In this paper, we study the convergence rate of the SGD updates with adaptive data:

θt+1 = θt − ηtg(θt, zt)

where zt ∼ Pθt(·|zt−1), g(θt, zt) is a gradient estimator, and we assume ∇l(θ) =Eµθ
[g(θ, z)]. As dis-

cussed above, motivated by different applications, most previous literature on SGD either assumes

iid data or dependent but non-adaptive data (see, e.g., (Moulines and Bach 2011, Ghadimi and

Lan 2013, Agarwal and Duchi 2012, Chen et al. 2023b)). Extending stochastic gradient/ stochastic

approximation algorithms to adaptive data is an active area of research (Benveniste et al. 2012).

When the data is drawn adaptively from a policy-dependent Markov chain, some simple gradient

estimators can suffer from estimation biases even when evaluated according to the corresponding

stationary distribution. Doucet and Tadic (2017) studies the asymptotic behavior of SGD with

a biased gradient estimator. Karimi et al. (2019), Li and Wai (2022), Roy et al. (2022) further

establishes non-asymptotic convergence results of SGD with adaptive data. They demonstrate how
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to apply the results to analyze the regularized online expectation maximization algorithm, policy

gradient method, and strategic classification. Recently, Li et al. (2023) demonstrate how to apply

the framework in (Benveniste et al. 2012, Karimi et al. 2019) to optimize the design of GI/GI/1

queues. Similar to (Karimi et al. 2019, Li and Wai 2022, Roy et al. 2022), our work also establishes

non-asymptotic performance bounds. However, we require a different set of assumptions that are

easier to verify and can be applied to many online learning problems in operations research. We

next discuss some key differences.

First, most of the previous works require the stochastic gradient estimator, g(θ, z), to be Lipschitz

continuous in θ (see, e.g., Assumptions 1 and 2 in Li and Wai (2022) and Assumption 2.4 in Roy

et al. (2022)). However, this assumption does not hold in many applications, e.g., when g(θ, z)

involves indicators. To handle this challenge, our results only require the population gradient ∇l(θ)

to be Lipschitz. This is a much weaker assumption since ∇l is the weighted average of g(θ, z)’s, and

its smoothness is in general satisfied (see, e.g., Proposition 2.1 of Roy et al. (2022)). Moreover, our

analysis leverages the recent developments in the perturbation theory for Markov chains (Rudolf

and Schweizer 2018) to explain why ∇l is Lipschitz in general.

Second, most of the existing works require finding the solution of a Poisson equation associated

with Pθ and g(θ, ·) and verifying certain continuity properties of the Poisson equation solution (see,

e.g., Assumptions A5 and A6 in (Karimi et al. 2019) and the development in (Li et al. 2023)). In

many applications, it is hard to find the solution to the Poisson equation. In particular, solving

the Poisson equation is as hard as solving the original problem. Our results do not require these.

The assumptions we impose are rather standard Markov chain mixing properties which are fairly

well known for many operations research applications.

Third, our work also provides a more complete picture of the convergence of SGD with adaptive

data (nonconvex, convex with/without projection, and strongly convex with/without projection),

while previous literature often analyzes convergence under only one or two settings. In addition,

with non-convex loss, the estimate (Corollary 1) in Li and Wai (2022) has a nonvanishing bias,

while Roy et al. (2022) gives only Õ(T−2/5) convergence rate, which is slower than the standard

Õ(T−1/2) rate. Our analysis combines Markov chain perturbation theory with IPA to achieve a

faster rate of convergence.

From the application perspective, our work is related to the online learning literature in oper-

ations research, especially in queueing and inventory systems. This has been an active area of

research. For example, Chen et al. (2023a) study learning pricing and capacity sizing in single

server queues, Krishnasamy et al. (2021), Zhong et al. (2022) study learning the scheduling policy

in multiclass queues. See Walton and Xu (2021) for a review of recent developments in learning

in stochastic networks. Huh et al. (2009), Zhang et al. (2020a) study learning the replenishment
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policy in lost sales inventory systems. Tang et al. (2023) study learning dual-index policies in dual

sourcing systems. Cheung et al. (2022) study learning how to allocate limited resources to het-

erogeneous customers. Our work complements these works by taking a closer look at how many

samples need to be collected before a policy update, i.e., how often the policy can be updated.

We provide easy-to-verify conditions under which updating the policy after each new sample or a

constant batch of samples leads to a near-optimal rate of convergence.

Our work is also related to the literature on policy gradient in reinforcement learning, especially

recent developments on sample complexity analysis of policy gradient algorithms (Wang et al.

2019, Zhang et al. 2020b, Xiong et al. 2021, Yuan et al. 2022, Xu et al. 2020). The convergence

of policy gradient with exact gradient information –thus eliminating approximation errors – has

been studied in several different settings (Mei et al. 2020, Agarwal et al. 2021, Xiao 2022, Bhandari

and Russo 2024). However, when implementing policy gradient methods, a key challenge is how to

estimate the gradient in a sample-efficient manner. For example, if we are to estimate the gradient

by sampling the trajectories of the MDP under the current policy πθ, what would be the horizon

for the trajectory (i.e., where to truncate since we cannot sample an infinite-horizon trajectory)

and how many trajectories do we need to sample? Note that in addition to the standard stochastic

noise, we also need to handle the bias due to truncation (i.e., the underlying Markov chain has not

reached stationarity yet). In this paper, we demonstrate how our finite-time convergence analysis

for SGD with adaptive data can be applied to study an actor-critic policy gradient algorithm,

where we use temporal difference learning (TD) to estimate the state-action value function/Q-

function under policy πθ. Our algorithm only requires one TD update in each iteration, which is

substantially less than what is required in Wang et al. (2019), Yuan et al. (2022), Xiong et al.

(2021), Xu et al. (2020). To achieve this, we study the Markov chain (st, at,Qt) induced by the

TD sampler with a constant learning rate, where st and at are the state and action visited and Qt

is the state-action value function (Q-function) at time t. We show that even though Qt does not

converge to the desired Q-function, i.e., the Q-function under policy πθ, Qt evaluated under the

corresponding stationary measure is equal to the desired Q-function.

The SGD-based methods/analyses have also been applied to conduct finite-time analysis of TD

algorithms (Bhandari et al. 2018, Dalal et al. 2018, Srikant and Ying 2019, Qu and Wierman 2020).

There, because the policy is fixed, i.e., the Markov chain dynamics is fixed, the data is Markovian

but not adaptive, which is similar to the setting studied (Duchi et al. 2012, Agarwal and Duchi

2012, Sun et al. 2018).

Notations

Let (Ω, d) denote a metric space for the data stream z. We denote ∥ · ∥ as the L2 norm. For a

transition kernel P , we write Pf(x) =
∫
P (x,dx′)f(x′), and we write the distribution of the Markov
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chain starting from x after n steps of transition as δxP
n. For a nonnegative sequence {at : t≥ 0}

and a nonnegative function f(t), we say at =O(f(t)) if there is a constant C so that at ≤ Cf(t)

for any t≥ 0. We also use the notation at = Õ(f(t)) when we ignore the logrighmic factors, e.g.,

when at = (f(t)(log f(t))k), we can write at = Õ(f(t)).

2. Main Results

To solve the stochastic optimization problem (1), we consider the SGD update:

θt+1 = θt − ηtĝt(θt, zt). (4)

We assume the data sequence comes from a Markov chain controlled by θt. In particular, we assume

there is a transition kernel Pθt on Ω such that

zt ∼ Pθt(·|zt−1).

For each given θ, Pθ generates an ergodic Markov chain with invariant measure µθ. In addition, we

assume there is a stochastic gradient estimator g(θ, zt) satisfying

∇ℓ(θ) =Eµθ
[g(θ, z)].

We will discuss how to find such a gradient estimator using the sample path derivative in Sec-

tions 3 and 4 for some examples. Note that g(θ, zt) is unbiased only under the corresponding

invariant measure. Due to the transience and non-stationarity of the underlying Markov chain,

E[g(θt, zt)|θt, zt−1] ̸= ∇ℓ(θt) in general. Meanwhile, to accommodate more general settings, we

assume ĝt(θ, zt) in (4) is only an approximation of g(θ, zt) with diminishing errors.

We make the following assumptions.

Assumption 1. Pθ’s have a common Lyapunov function V ≥ 1 where

PθV (z)≤ ρV (z)+K,

for some ρ ∈ (0,1) and K ∈ (1,∞). In addition, Pθ’s are Wasserstein contractive with respect to

the metric d on Ω, i.e., for any x, y ∈Ω,

d(δxP
n
θ , δyP

n
θ )≤Kρnd(x, y).

Assumption 2. There exists L> 0 such that

∥∇ℓ(θ)−∇ℓ(θ′)∥ ≤L∥θ− θ′∥,

∥g(θ, z)− g(θ, z′)∥ ≤Ld(z, z′),

and

d(δxPθ, δxPθ′)≤L∥θ− θ′∥V (x).
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Assumption 3. There exists M ∈ (0,∞), such that

∥g(θ, z)∥ ≤MV (z),∥ĝt(θ, z)∥ ≤MV (z), and ∥∇l(θ)∥ ≤M.

Assumption 4. There exits C > 0, such that for any t≥ 0,

P t
θV (z)≤C(V (z)4 +1).

Note that a sufficient condition for Assumption 4 is that V (z)4 is also a Lyapunov function.

Assumption 5. There exists a stochastic sequence et with E[e2t ]<∞, such that

∥g(θ, zt)− ĝt(θ, zt)∥ ≤ et.

For the ease of exposition, we also introduce the concept of mixing time.

Definition 1. The Markov chain Pθ has a mixing time τ <∞ if for any z ∈Ω,

d(δzP
τ
θ , µθ(·))≤

1

4
V (z).

Assumption 1 requires that the underlying Markov chains are suitably ergodic. This assumption

ensures that the stationary distribution µθ is well defined and the Markov chain converges to

stationarity sufficiently fast. In particular, the existence of the Lyapunov function implies that the

dynamics return to the “center” of the state space regularly and the length of the excursions from

the center can be properly controlled. Note that by Harris’ ergodic theorem, the existence of the

Lyapunov function together with a uniform “minorization” condition localized to the interior of a

level set implies geometric ergodicity and thus Wasserstein contraction under an appropriate metric

(Roberts and Rosenthal 1997). This Markov chain convergence framework has been well-studied

in the literature (Meyn and Tweedie 2012). For many existing models, e.g., queueing models,

inventory models, etc, Assumption 1 has already been verified.

The first condition in Assumption 2 requires ∇l to be Lipschitz continuous, which is satisfied

in many applications. This condition is weaker and more applicable than requiring g(θ, z) to be

Lipschitz continuous in θ (see Proposition 2.1 of Roy et al. (2022)). For example, g(θ, z) is not

Lipschitz in θ if g(θ, z) = 1{z ≤ θ}. We also require g(θ, z) to be Lipschitz continuous in z, but have

some flexibility in choosing the metric d. In particular, by choosing an appropriate d, this condition

is easily satisfied in many applications. For example, if we consider the total variation distance,

d(z, z′) = 2 ·1{z ̸= z′}, then this condition will be a consequence of Assumption 3. Lastly, we require

δxPθ to be Lipschitz continuous in θ. Note that this condition is for the one-step transition kernel,

which is easy to verify in practice. By Markov chain perturbation theory, the Lipschitz continuity
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of the one-step transition kernel together with the ergodicity condition, i.e, Assumption 1, implies

the Lipschitz continuity of the corresponding stationary measure (Rudolf and Schweizer 2018).

Assumptions 3 and 5 are boundedness assumptions, which are weaker than those for gradient

algorithms with Markovian or adaptive data streams in the literature (Sun et al. 2018, Karimi

et al. 2019). In particular, we only require g(θ, z) to be bounded by MV (z), instead of M .

Nonconvex case: We have the following convergence result for a general loss function l.

Theorem 1. Suppose Assumptions 1 – 5 hold. The iterates according to (4) satsifies

min
0≤t<T

E∥∇ℓ(θt)∥2 =O

(
1∑T−1

t=0 ηt

(
τ logT + τ logT

T−1∑
t=0

η2t +
1√
T

T−1∑
t=0

ηt +
T−1∑
t=0

ηtEet

))
,

where O hides a polynomial of M and L. If we fix ηt = η0t
−1/2 for some η0 > 0, and assume

Eet =O(1/
√
t), we can further simplify the bound to

min
0≤t<T

E∥∇ℓ(θt)∥2 =O
(
τ(logT )2/

√
T
)
.

Theorem 1 implies that the SGD updates can achieve an O(τ(logT )2/
√
T ) convergence to a

stationary point, which is similar to the O(log(T )/
√
T ) convergence in Theorem 2 of (Karimi et al.

2019), for which they also establish a matching lower bound. Here, we explicitly characterize how

the mixing time affects the convergence rate. The convergence results in (Karimi et al. 2019) have

an extra asymptotic bias term which does not arise in our setting since our result works under a

different set of assumptions and a more refined gradient estimator.

Convex case: For general (constrained) convex optimization, we consider a projected SGD

update:

θt+1 =PΘ(θt − ηtĝt(θt, zt)), (5)

where Θ is a properly defined convex set, and PΘ is the associated projection. The set Θ can be the

constrained set for constrained optimization, or Rm in the unconstrained setting. The projection

allows us to relax Assumptions 1 – 5 such that they only need to hold for θ ∈Θ.

Define the weighted average of the iterates as

θ̄T =
1∑T−1

t=0 ηt

T−1∑
t=0

ηtθt.

Theorem 2. Suppose Assumptions 1 – 5 hold under the restriction that θ ∈Θ.

1. If ℓ is convex and E[et] =O(1/
√
t), by setting the step size as ηt = η0/

√
t, the weighted average

of iterates according to (5) satisfy

Eℓ(θ̄T )− ℓ(θ∗) =O
(
τ 2(logT )4/

√
T
)
,

where O hides a polynomial of M and L.
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2. If ℓ is strongly convex with a convexity constant c and E[e2t ] =O(1/t), by setting the step size

as ηt = 2η0/(ct) for t≥ 1 with η0 > 2, the iterates according to (5) satisfy

E∥θT − θ∗∥2 =O
(
τ(logT )2/T

)
,

where O hides a polynomial of M and L.

Theorem 2 indicates that when ℓ is strongly convex, we achieve O(τ(logT )2/T ) convergence rate,

which is similar to the O(1/T ) convergence rate established in Thereom 1 of (Li and Wai 2022).

In what follows, we will demonstrate how to apply Theorems 1 and 2 to various applications. In

particular, we will show that the assumptions required in the theorems are satisfied and easy to

verify in many online learning problems in operations research. We will also discuss an extension

to an actor-critic policy gradient algorithm.

3. Inventory Control with Stock-Out Damping

We consider the problem of selecting a base-stock level in a single-product multi-period inventory

system with endogenous demand. Motivated by recent empirical findings, demand is temporarily

reduced whenever a stock-out occurs (Anderson et al. 2006). We model demand as a Markovian

autoregressive process subject to a dampening effect when demand exceeds the base-stock level:

Dt+1 = (αmin{Dt +ut+1, θ}+(1−α)m+ ϵt+1)
+, (6)

where ϵt
iid∼ N(0, σ2), ut

iid∼ N(0, σ2), ut is independent of ϵt, and (·)+ = max{·,0}. The goal is to

select the base-stock level θ ∈Θ := [0, θ̄], for any finite upper bound θ̄ > 0, to minimize the underage

and overage costs under the stationary distribution induced by θ:

min
θ∈Θ

ℓ(θ) :=Eµθ

[
h(θ−Dt)

+ + b(Dt − θ)+
]

(7)

Note that the base-stock level endogenously affects the demand dynamics and we write Dt(θ) to

mark the dependence explicitly when necessary. To obtain an appropriate gradient estimator, we

consider taking a pathwise derivative of Dt(θ):

Lt+1(θ) :=
dDt+1(θ)

dθ
=

∂

∂Dt

(αmin{Dt(θ)+ut+1, θ}+(1−α)m+ ϵt+1)
+dDt(θ)

dθ

+
∂

∂θ
(αmin{Dt(θ)+ut+1, θ}+(1−α)m+ ϵt+1)

+

=α1{Dt+1(θ)> 0}1{Dt(θ)+ut+1 ≤ θ}Lt(θ)

+α1{Dt+1(θ)> 0}1{θ <Dt(θ)+ut+1}

This gives us a recursive way to update Lt, i.e.,

Lt+1(θ) = 1{Dt+1(θ)> 0}α (1{Dt(θ)+ut+1 > θ}+1{Dt(θ)+ut+1 ≤ θ}Lt(θ)) .
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Consider the augmented Markov chain Zt(θ) = (Dt(θ),Lt(θ)). Our next result shows that Zt(θ)

is well defined with a proper stationary distribution.

Lemma 1. For any θ ∈ Θ, the pathwise derivative Lt(θ) exists and the Markov chain Zt(θ) =

(Dt(θ),Lt(θ)) converges in distribution to Z∞(θ) = (D∞(θ),L∞(θ)) as t→∞ with

∇ℓ(θ) =E [(h1{D∞(θ)< θ}− b1{D∞(θ)≥ θ}) (1−L∞(θ))] .

Based on Lemma 1, we have the following gradient estimator:

g(θ,Zt) = (h1{Dt < θ}− b1{Dt ≥ θ}) (1−Lt) . (8)

The SGD update using the gradient estimator defined in (8) with step-size ηt then takes the form

θt+1 =PΘ (θt − ηtg(θt,Zt)) .

Theorem 3. Suppose the objective function (7) is convex and let θ∗ be the minimizer. Then,

using the gradient estimator g(θ,Zt) defined in (8) with step-size ηt = η0t
−1/2, the average SGD

iterate θ̄T satisfies

E[ℓ(θ̄T )− ℓ(θ∗)] =O
(
τ 2(logT )4/

√
T
)
,

where τ is an upper bound of the mixing time of the augmented Markov chain Zt(θ) for θ ∈Θ.

Moreover, if the objective function is strongly convex with a convexity constant c, by setting the

step size as ηt = 2η0/(ct) for t≥ 1 with η0 > 2, we have

E[∥θT − θ∗∥2] =O
(
τ(logT )2/T

)
.

Note that the existing approaches, i.e., those in (Li and Wai 2022, Roy et al. 2022), require

Lipschitzness of the gradient estimator g in both θ and z under the Euclidean distance, which

does not hold in this example. In contrast, our framework only requires Lipschitzness of ∇ℓ(θ) in

θ. While the gradient estimator is highly non-smooth, the averaged gradient is Lipschitz. In fact,

the Lipschitzness of ∇ℓ(θ) is a direct consequence of the Lipschitzness of the transition kernel Pθ,

as we show in the proof of Theorem 3. At a high level, our framework reveals that randomness

in the transition dynamics implicitly smooths the gradient estimator, enabling a greater range of

gradient estimators while maintaining convergence guarantees.
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4. Pricing and Capacity Sizing in Single-Server Queue

We consider the problem of pricing and capacity sizing in a single-server queue, as studied in Chen

et al. (2023a). Consider a GI/GI/1 queue, i.e., a single-sever queue with generally distributed

interarrival times and service times. The interarrival times and service times are scaled by the

arrival rate and service rate respectively. The arrival rate is determined by the price charged

according to a known demand function λ(p) for feasible prices p∈ [p, p̄]. The service provider also

selects the service rate µ∈ [µ, µ̄], which incurs a service cost c(µ) per unit of time. Let Tt+1 denote

the baseline interarrival time between the t-th and (t+1)-th arrivals, St denote the baseline service

time, andWt denote the waiting time of customer t. For given µ and p, the system dynamics follow

Wt+1 =

(
Wt +

St

µ
− Tt+1

λ(p)

)+

. (9)

Let Θ = [µ, µ̄]× [p, p̄] denote the feasible set of service rates and prices. The goal of the service

provider is to select (µ,p) ∈ Θ to maximize expected net profit, which is the long-run average

revenue minus the service cost and holding cost:

max
(µ,p)∈Θ

V (µ,p) := pλ(p)− c(µ)−h0E[Q∞(µ,p)], (10)

where Q∞(µ,p) is the stationary queue length (number of people waiting in the system) under

(µ,p), and h0 is the per-unit-time per-customer holding cost (cost of waiting). By Little’s law, the

maximization problem in (10) is equivalent to the following minimization problem involving the

stationary waiting time W∞(µ,p) under (µ,p):

min
(µ,p)∈Θ

ℓ(µ,p) := h0λ(p)

(
E [W∞(µ,p)]+

1

µ

)
+ c(µ)− pλ(p) (11)

To obtain an appropriate gradient estimator, we consider taking a pathwise derivative ofWt(µ,p).

Define

Lµ,t+1(µ,p) :=
∂Wt+1(µ,p)

∂µ
=

(
∂Wt(µ,p)

∂µ
− St

µ2

)
1{Wt+1(µ,p)> 0}

Lp,t+1(µ,p) :=
∂Wt+1(µ,p)

∂p
=

(
∂Wt(µ,p)

∂p
+

Tt

λ(p)2
λ′(p)

)
1{Wt+1(µ,p)> 0}

For the augmented Markov chain (Wt,Lµ,t,Lp,t), by verifying the conditions in Glasserman (1992),

we can show that Lµ,t and Lp,t are well-defined, the Markov chain (Wt,Lµ,t,Lp,t) converges to a

unique stationary distribution, and

E[Lµ,∞(µ,p)] =
∂E[W∞(µ,p)]

∂µ
, E[Lp,∞(µ,p)] =

∂E[W∞(µ,p)]

∂p
.

Indeed, this has been studied in Chen et al. (2023a). For the single-server queue, we can achieve

further simplification of the derivative processes by considering a simpler augmented Markov chain
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Zt = (Wt,Xt), where Xt denotes the server’s busy time seen by the t-th arrival. In particular, the

dynamics of Zt are as follows:

Wt+1 =

(
Wt +

St

µ
− Tt

λ(p)

)+

Xt+1 =

(
Xt +

Tt

λ(p)

)
1{Wt+1 > 0}.

Lemma 5 in Chen et al. (2023a) shows that

∂

∂p
ℓ(µ,p) =−λ(p)− pλ′(p)+h0λ

′(p)

(
E[W∞(µ,p)]+E[X∞(µ,p)]+

1

µ

)
∂

∂µ
ℓ(µ,p) = c′(µ)−h0

λ′(p)

µ

(
E[W∞(µ,p)]+E[X∞(µ,p)]+

1

µ

)
.

(12)

Based on (12), we define

g(µ,p,Zt) = (gp(µ,p,Zt), gµ(µ,p,Zt)),

where

gp(µ,p,Zt) =−λ(p)− pλ′(p)+h0λ
′(p)

(
Wt +Xt +

1

µ

)
,

gµ(µ,p,Zt) = c′(µ)−h0

λ′(p)

µ

(
Wt +Xt +

1

µ

)
.

(13)

Then, the SGD update for θt = (µt, pt) with the gradient estimator (13) and step-size ηt takes the

form

θt+1 =PΘ (θt − ηtg(θt,Zt)) .

To prove the convergence of the SGD update, we impose some regularity conditions on the

functions λ and c and the distributions of the baseline interarrival time and service time, T and S.

Assumption 6. For the demand and cost functions we have:

(i) The constraint set Θ= [p, p]× [µ,µ] is such that λ(p)<µ.

(ii) λ(p)∈C2 on [p, p] and non-increasing in p.

(iii) c(µ)∈C2 on [µ,µ] and non-decreasing in µ.

Assumption 7. The baseline service time S and inter-arrival time T are iid respectively and

(i) There exists α∗ > 0 such that E[e4α∗S]<∞ and E[e4α∗T ]<∞.

(ii) There exist 0<α2 <α1 <min{α∗/µ,α∗/λ(p)} such that

E
[
e
4α1

T
µ

]
E
[
e
−4(α1−α2)

S
λ(p)

]
< 1.

(iii) The density functions of T and S, which are denoted as fT and fS respectively, are contin-

uously differentiable. In addition, there exist c,D1,D2 > 0 and k ∈N+ such that for all x≥ c
min{µ,λ} ,∣∣ d

dx
log fT (x)

∣∣≤D1+D2|x|k and
∣∣ d
dx

log fS(x)
∣∣≤D1+D2|x|k. Lastly, fS(µx)≤C(fS(µx)+ fS(µ̄x))

for µ∈ [µ, µ̄] and fT (λx)≤C(fT (λx)+ fT (λ̄x)) for λ∈ [λ, λ̄].
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Assumption 7 requires S and T to be sufficiently light-tailed and their density functions are smooth

enough. Commonly used service and interarrival time distributions, such as exponential, Erlang,

Weibull(λ,k) with k≥ 1, etc. satisfy Assumption 7. For example, the Weibull(1, k), k≥ 1, satisfies

that for x≥ 1:
d

dx
log f(x) =

d

dx

[
k logx−xk

]
≤ k+ k|x|k−1.

In addition, for µ∈ [µ, µ̄],

f(µx)≤
(
µ̄

µ

)k−1

(fT (λx)+ fT (λ̄x)).

Under Assumptions 6 and 7, we can verify the conditions of Theorem 2 (Assumptions 1 – 5

restricted to θ ∈Θ), which leads to the following theorem.

Theorem 4. Suppose Assumptions 6 and 7 hold. Suppose the objective (11) is convex and let

(µ∗, p∗) be the global minimum. Then, using the gradient estimator g(µ,p, zt) defined in (13) with

step-size ηt = η0t
−1/2, the average SGD iterate θ̄T = (µ̄T , p̄T ) satisfies

E[ℓ(µ̄T , p̄T )]− ℓ(µ∗, p∗) =O
(
τ 2(logT )4/

√
T
)
,

where τ is an upper bound of the mixing time of the augmented Markov chain Zt(θ) for θ ∈Θ.

Moreover, if the objective function is strongly convex with a convexity constant c, by setting the

step size as ηt = 2η0/(ct) for t≥ 1 with η0 > 2, we have

E∥θT − θ∗∥2 =O
(
τ(logT )2/T

)
.

The online learning algorithm proposed by Chen et al. (2023a) achieves a regret that is loga-

rithmic in the number of customers assuming ℓ is strongly convex, and Theorem 4 yields a similar

regret. However, their algorithm requires calibrating the number of customers seen before making

a gradient update. The algorithm we consider does not require such calibration, i.e., we can update

the parameter after each arrival. For this specific example, our convergence result is similar to the

one developed in (Li et al. 2023). However, the development in (Li et al. 2023) requires verifying

the Lipchitz continuity of the corresponding Poisson equation solution, which is more involved.

5. Application to policy gradient in reinforcement learning

We consider the classic Markov decision process (MDP) with a finite state space S, a finite action

space A, a collection of transition probabilities {P (·|s, a)}(s,a)∈S×A, and an initial distribution ρ(·).
The policy is parameterized by θ where πθ(a|s) denote the probability of taking action a when

in state s. We focus on the infinite-horizon discounted cost formulation with the discount factor

γ ∈ (0,1):

min
θ
ℓ(θ) :=Eθ

ρ

[
∞∑
t=0

γtc(st, at)

]
, (14)
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where c(s, a) is the expected instantaneous cost incurred by taking action a at state s.

When applying policy gradient to solve (14), the gradient can be expressed as (Sutton and Barto

2018)

∇ℓ(θ) =
∑
s,a

νθ(s, a)Qθ(s, a)∇θ logπ
θ(a|s) (15)

where Qθ is the state-action value function under policy πθ,

νθ(s, a) =
1

1− γ

∞∑
t=0

Eθ
ρ[γ

t1st=s,at=a]

is the state-action occupancy measure, which can also be viewed as the stationary distribution of

the Markov chain with transition kernel

Pθ((s, a), (s′, a′)) := (1− γ)ρ(s′)πθ(a′|s′)+ γP (s′|s, a)πθ(a′|s′).

In general, ℓ(θ) is a non-convex function of θ. Recent works have shown that under certain regularity

conditions, any stationary point of the policy gradient loss function is globally optimal (Agarwal

et al. 2021, Bhandari and Russo 2024, Wang et al. 2019). For instance, for finite state and action

MDPs with natural parameterization, Bhandari and Russo (2024) show that ℓ(θ) has no suboptimal

stationary point. In addition, (Agarwal et al. 2020) show that ∇ℓ(θ) is Lipschitz continuous.

From the gradient formula (15), we can take Qθ(s, a)∇θ logπ
θ(a|s) as a gradient estimator.

However, if (s, a)’s are not sampled from νθ(s, a), the gradient estimator is biased. In addition,

Qθ(s, a) also needs to be estimated. One way to overcome the challenge is to simulate the Markov

chain under policy πθ for a long enough time so that we get an accurate enough estimate Qθ

and the distribution of (st, at) is close enough to νθ(s, a). This idea has been employed in the

literature (see, e.g., Wang et al. (2019), Xu et al. (2020), Xiong et al. (2021)). In this section,

we are interested in understanding how adaptive the policy gradient algorithm can be while still

achieving fast convergence to a stationary point.

We consider an actor-critic scheme where we update the state-action value function using the

following temporal-difference (TD) update:

Qt+1(st, ât) =Qt(st, ât)+α[c(st, ât)−Qt(st, ât)+ γQt(s
′
t+1, a

′
t+1)]

Qt+1(s, a) =Qt(s, a) for (s, a) ̸= (st, ât),
(16)

where ât is sampled uniformly at random from A, and (s′t+1, a
′
t+1) is a random state generated

from Pθt((st, ât), ·), independent of (st+1, at+1), which is generated from Pθt((st, at), ·). Denote

Zt = (st, at,Qt).

We first establish the ergodicity property of the Markov chain Zt = (st, at,Qt) under a fixed policy

πθ. In particular, given Zt, Zt+1 is generated as follows: Sample ât uniformly at random from A.
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Sample (st+1, at+1) from Pθt((st, at), ·), and independently, sample (s′t+1, a
′
t+1) from Pθt((st, ât), ·).

Update Qt+1 according to (16).

For a Markov chain st with a finite state space S and a unique stationary distribution ν. Let

κs = inf{t≥ 0 : st = s}. We define the hitting time (Levin and Peres 2017) as

thit = max
s,s′∈S

Es[κs′ ].

In addition, recall that under the total variation distance ∥·∥TV, the mixing time of st, tmix, satisfies

max
s∈S

∥P tmix
s − ν∥TV ≤ 1

4
.

Proposition 1. For a fixed value of θ (i.e., under a fixed policy πθ), suppose st is a finite-state

Markov chain with a mixing time tmix under the total variation distance and a finite hitting time

thit. In addition, suppose Qt(s, a)≤M for some M <∞. Then, the triad Zt = (st, at,Qt) induced

by the TD sampler is a Markov chain with an ϵ-mixing time, η̄ϵ, satisfying

η̄ϵ ≤
| log(ϵ/(8M +4))|

| log(1/4)|
tmix

+max

{
| log(ϵ/(4M))|

| log(1−α+αγ)|
,12| log(ϵ/(8M +4))|

}
(1+ thit)|A|

|S||A|−1∑
k=1

1

k

under the distance

d̃(Z, Z̃) = 1s=s̃,a=ã + ∥Q− Q̃∥∞.

Proposition 2. Under the assumptions of Proposition 1, for α in the TD sampler takes value

outside a finite set of values, the invariant distribution of the triad Zt = (st, at,Qt), µ
θ, satisfies

Eµθ [1st=s,at=a] = νθ(s, a), Eµθ [Qt(st, at)|st = s, at = a] =Qθ(a, s).

We note from Propostion 2 that Qt+1 does not converge to Qθ even if (st, at)’s are generated

under πθ. Instead, (st, at,Qt) will be a Markov chain with the stationary measure µθ satisfying

Eµθ [Qt(st, at)|st = s, at = a] =Qθ(s, a).

Based on Propositions 1 and 2, Zt generated under a fixed policy πθ is a properly defined ergodic

Markov chain with stationary distribution µθ, where µθ satisfies

Eµθ [Qt(st, at)∇θ logπ
θ(at|st)] =

∑
s∈S,a∈A

νθ(s, a)Qθ(s, a)∇θ logπ
θ(a|s).

This indicates that we only need “one transition” for each policy update. Algorithm 1 summarizes

our actor-critic scheme.

We next establish the convergence of Algorithm 1. We first introduce some assumptions about

the MDP.
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Algorithm 1: Actor-critic based policy gradient

1 Initialize s0, a0,Q0, θ0. Set t= 0. ;

2 Sample ât uniformly at random from A. Sample (st+1, at+1) and (s′t+1, a
′
t+1) as two

independent samples from Pθt((st, at), ·) and Pθt((st, ât), ·) respectively. Set

Qt+1(st, ât) =Qt(st, ât)+α[c(st, ât)−Qt(st, ât)+ γQt(s
′
t+1, a

′
t+1)]

Qt+1(s, a) =Qt(s, a) for (s, a) ̸= (st, ât),

and θt+1 = θt − ηtQt+1(st+1, at+1)∇θ logπ
θt(at+1|st+1) ;

3 Set t= t+1. If t < T , go back to Step 2; otherwise, output θ̄T

Assumption 8. The instantaneous costs are bounded, i.e., |c(s, a)| ≤M , almost surely. Q0 is

initialized such that ∥Q0∥∞ ≤M/(1− γ).

Assumption 9. The initial distribution ρ(s)> 0 for all s∈ S.

Assumption 10. For all θ ∈Θ and all a∈A and s∈ S, ∇θ logπθ(a|s) is bounded and Lipschitz

continuous in θ, i.e. there exists R,L∈ (0,∞) such that for any θ, θ′ ∈Θ,

||∇θ logπθ(a|s)|| ≤R, ||∇θ logπθ(a|s)−∇θ′ logπθ′(a|s)|| ≤L||θ− θ′||.

Assumption 8 is a mild assumption since the state and action spaces are finite, and this assump-

tion is standard in the literature (see, e.g., Assumption 1 in Mei et al. (2020)). Assumption 9 ensures

sufficient exploration of the state space and is also a standard assumption for the convergence

analysis of vanilla policy gradient (see, e.g., Assumption 2 in Mei et al. (2020)). Assumption 10

is a regularity condition on the score function that prevents the policy gradient estimator from

having an infinite variance and is a standard assumption in the analysis of policy gradient under

estimated gradients (see, e.g., Assumption 3.1 in Zhang et al. (2020b)). This is naturally satisfied

under the softmax parameterization π(a|s)∝ exp(θs,a) with Θ being a bounded subset of R|S||A|.

Theorem 5. Suppose Assumptions 8-10 hold. Consider step size ηt = η0/
√
t and let θt denote

the policy parameters under Algorithm 1. Then

min
0≤t<T

E∥∇ℓ(θt)∥2 =O
(
τ(logT )2/

√
T
)
.

where τ is the mixing time of Zt = (st, at,Qt) and is O
(

|A|mins∈S ρ(s)−1

1−γ

)
.

Theorem 5 indicates that Algorithm 1 is able to attain an ϵ-stationary point with O(ϵ−2 log(1/ϵ))

samples. This order bound also depends polynomially on |S|, |A|, and 1
1−γ

, and we omit the full

dependence on these terms here (more details can be found in the proof of Theorem 5 in Appendix

D.2).
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Let T denote the total number of iterations. For a similar Õ(1/
√
T ) convergence, Wang et al.

(2019) requires running O(T 8) steps in the TD update to estimate the Q-function in each iteration

and the ability to sample from (s, a) from vθ(s, a) directly. In particular, for a policy πθ, they

approximate the gradient using

1

B

B∑
k=1

Q̂θ(s̃k, ãk)

where Q̂θ is estimated by running TD under πθ for O(T 8) steps and (s̃k, ãk), k = 1, . . . ,B are B

iid samples drawn from vθ. When using the REINFORCE gradient estimator, Yuan et al. (2022)

requires running the Markov chain under policy πθ for O(log(1/T )) steps in each iteration and the

overall sample complexity is Õ(ϵ−4). Meanwhile, we would also like to acknowledge that Wang et al.

(2019), Yuan et al. (2022) study more complicated settings than the tabular setting we study here.

For example, Wang et al. (2019) considers using neural networks to approximate the policies and

the state-action value functions. Yuan et al. (2022) considers different and more general regularity

conditions than what we assume in this section. Our sample complexity results are comparable to

some of the best-known sample complexity results for policy gradient algorithms. In particular,

Xiong et al. (2021) establishes an Õ(ϵ−2) complexity for an Adam-type policy gradient algorithm,

which requires sampling a long enough trajectory under a policy π to estimate the corresponding

Q-function. Xu et al. (2020) establishes an Õ(ϵ−2) complexity for a mini-batch actor-critic policy

gradient algorithm. Unlike these works, we do not assume that the Markov chain on the states

induced by the policy is uniformly ergodic across policies, which is a strong assumption that is

difficult to verify. Rather, we use the regenerations induced by the discount factor γ to control the

mixing rate, which allows our analysis to be applied to a wider range of problems.

6. Numerical Experiments

Motivated by our theoretical results, we proceed to empirically study the performance of the

SGD algorithm with adaptive data. Specifically, for the policy optimization examples considered

in Sections 3 - 5, we examine how the adaptivity of the algorithm affects performance by varying

the batch size: the number of data points collected before updating the policy parameters.

We observe broadly that even in the fully adaptive setting where policy parameters are updated

after every data point, i.e., the batch size is 1, SGD can achieve an equivalent rate of convergence

to larger-batch variants, which is consistent with our theoretical results. This holds even for highly

non-stationary environments where the policy parameters change the environment quite a bit and

convergence to stationarity is slow. Nevertheless, a carefully chosen larger batch size can provide

small improvements in convergence speed in some cases (likely by improving the constant term),

especially if the step sizes are tuned appropriately. Above all, our results show that under the
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ergodicity and smoothness conditions characterized in our theoretical analysis, in non-stationary,

adaptive environments, SGD is robust to the level of adaptivity and the convergence speed is

largely similar to the iid setting.

For the following numerical results, we compare the performance of batch sizes B ∈ {1,10,100}.

We index the number of data points by t∈N+. For each example, we test out a step-size schedule

ηt ∝ t−1/2 with iterate averaging θ̄t and average the performance across 100 independent runs of

the algorithm. For the queuing and inventory examples, we also look at the loss of θt under the

step-size schedule ηt ∝ t−1. We plot the performance as a function of the number of data samples

rather than SGD iterations. In this setting, running the algorithm with a larger batch size will

have identical θt across multiple data points until an update of the policy is made.

6.1. Inventory Control with Stock-Out Damping

We empirically test the performance of the adaptive SGD algorithm for the inventory control

problem discussed in Section 3. Recall that in this problem, demand is endogenously affected by

the base-stock level θ. We consider a setting where the newsvendor loss is parameterized by an

overage cost of h = 1, an underage cost of b = 10 and the demand process has a demand drift

term m= 5 and a noise level σ= 1.0. We consider two values of the AR(1) parameter, α= 0.8 and

α= 0.9, to compare performance across relatively low and high levels of non-stationarity/mixing

rate. Note that α also calibrates the degree to which θ affects the dynamics, with α= 0 involving

zero damping of the demand from stockouts.

We compare the SGD algorithm with step sizes scaled by the batch size B across different batch

sizes for the two settings of α in Figure 1. We compare two versions of the SGD algorithm, one

with step-size schedule ηt ∝ t−1/2 and with iterate averaging; the other with ηt ∝ t−1 and without

iterate averaging. We find that for both α = 0.8 and α = 0.9, the fully adaptive SGD algorithm

(B = 1) achieves an equivalent rate of convergence as larger batch variants, with the large batch

sizes performing better (as the step sizes are scaled with the batch size). Interestingly, both the

t−1/2 and t−1 step-sizes empirically achieve a convergence rate of 1/t (indicated by the dotted

black line). In addition, while we observe that convergence of SGD is slower for the larger value of

α= 0.9, because the underlying Markov chain mixes slower in this case and the base-stock policy

has a greater impact on the dynamics, the overall rate of convergence resembles the rate observed

for α= 0.8. This provides numerical evidence that when the conditions of Theorem 1 are satisfied,

the performance of SGD in the adaptive environment resembles that in the iid setting.
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Figure 1 Inventory control with stock-out damping (overage cost b= 10, underage cost h= 1, and noise level

σ= 1.0). The dotted line indicates 1/t convergence rate in all plots. (Top) Newsvendor loss gap for the

SGD iterates with AR(1) parameter α = 0.8. (Top Left) Step-size schedule ηt = 2Bt−1 across batch

sizes B ∈ {1,10,100}. (Top Right) Step size schedule ηt = 2Bt−1/2 with iterate averaging. (Bottom)

Newsvendor loss gap for the SGD iterates with AR(1) parameter α = 0.9. (Bottom Left) Step-size

schedule ηt = 2Bt−1. (Bottom Right) Step-size schedule ηt = 2Bt−1/2 with iterate averaging.

6.2. Pricing and Capacity Sizing in Single-Server Queue

We consider the pricing and capacity sizing problem studied in Section 4. Following the numerical

example described in Chen et al. (2023a), we consider an M/M/1 queue where arrivals to the

queue follow a Poisson process with rate λ(p) = nλ0(p) with n> 0 and

λ0(p) =
exp(a− p)

1+ exp(a− p)

for some a > 0. The service time is exponentially distributed and the service rate µ entails a

quadratic cost c(µ) = c0µ
2 with c0 > 0. There is a holding cost h0 > 0. In this simple example, the

pricing and capacity sizing problem (10) can be written in closed form as

max
p,µ∈Θ

{
npλ0(p)− c0µ

2 −h0

λ(p)/µ

1−λ(p)/µ

}
. (17)

We set n= 10, a= 4.1, c0 = 0.1, h0 = 1, and the step-size parameter η0 = 1.
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The joint pricing and capacity sizing problem (17) is known to be strongly convex. As in the

inventory example, we evaluate two versions of the SGD algorithm, one with step-size schedule

ηt ∝ t−1/2 and with iterate averaging; the other with step-size schedule ηt ∝ t−1 and without iterate

averaging. Figure 2 displays the performance for both versions of the algorithm. As predicted by

our theoretical results, across all batch sizes, step-size schedule ηt = 1/
√
t with iterate averaging

achieves an O(t−1/2) convergence. Whereas step-size schedule ηt = 1/t without iterate averaging

achieves an O(t−1) convergence.

Figure 2 Pricing and capacity sizing in the single server queue. (Left) Last iterate loss gap for the SGD iterates

with ηt = 1/t across batch sizes B ∈ {1,10,100}. The dotted line displays the convergence rate of t−1.

(Right) Loss gap for the average iterate with ηt = 1/
√
t. The dotted line displays the convergence rate

of t−1/2.

We also see in our experiments that instabilities can appear under adaptive feedback if the

assumptions for Theorem 2 are not satisfied. For example, Figure 3 compares the empirical con-

vergence of SGD with step-size schedule ηt = 1/
√
t, without versus with averaging, and without

projection. Note that the two scenarios are outside the scope of our theoretical results because we

do not project the parameters to the set in which the queue will be uniformly stable. We observe

in the left panel of Figure 3 that without projection and iterate averaging, the adaptive algorithm

can be highly unstable. For example, when B = 1, the cost/loss oscillates between 10 and 104. In

the right panel, with iterate averaging, the algorithm converges at rate t−1/2. The instabilities in

the left panel are a result of the bias incurred by the adaptive feedback. Intuitively, instabilities

emerge because the algorithm lowers the service capacity without fully anticipating the increase

in congestion that this will incur, since it takes time for customers to arrive. Waiting for more

customers to arrive before updating parameters allows the algorithm to better gauge congestion,

which leads to better performance for larger batch variants. Averaging or smaller step size, i.e.,
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t−1, can help smooth things in this case and lead to more stable learning. Overall, this demon-

strates that features of the algorithm such as projection, iterate averaging, and small and properly

decreasing step sizes, which are usually benign for the empirical performance of SGD with iid data,

can be crucial for stable convergence in the adaptive setting.

Figure 3 Pricing and capacity sizing in the single server queue. (Left) Loss gap for the SGD iterates without

projection and without iterate averaging with ηt = 1/
√
t across batch sizes B ∈ {1,10,100}. (Right)

Loss gap for the SGD iterates without projection but with iterate averaging and ηt = 1/
√
t. The dotted

line displays the convergence rate of t−1/2.

6.3. Policy Gradient in Reinforcement Learning

We evaluate the performance of the actor-critic algorithm (Algorithm 1) in simple tabular RL

examples. We consider a direct softmax parameterization of the policy over all states and actions,

i.e. θ ∈R|S|×|A| and

πθ(a|s) =
exp(θs,a)∑
a∈A exp(θs,a)

.

Since the loss function ℓ(θ) =Eθ
ρ [
∑∞

t=0 γ
tc(st, at)] is not strongly convex in θ, we consider step size

schedule with ηt ∝ t−1/2 and iterate averaging. We set the discount factor γ = 0.8, the TD update

parameter α= 0.5, and the step-size schedule ηt = 2B/t−1/2, which scales linearly with the batch

size. We consider randomly generated MDPs with |S| = 5 states and |A| = 5 actions, and larger

instances with |S|= 10 states and |A|= 10 actions. For each instance type, we average performance

across 100 randomly generated MDPs by rescaling the cost in each MDP as

ℓ(θ̄t)− ℓ(θ∗)

ℓ(θ∗)
. (18)

Figure 4 displays the averaged scaled optimality gap (18) across different batch sizes. We observe

that the fully adaptive actor-critic algorithm, which updates the policy after only a single TD
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update to the Q-function, is able to achieve an almost identical convergence rate with variants

that perform multiple TD updates before updating the policy. This convergence rate is O(t−1/2)

as indicated by the black line.

Figure 4 Policy gradient for tabular MDPs. Dotted line indicates a t−1/2 convergence rate. (Left) Scaled loss gap

for the averaged SGD iterate for the reinforcement learning problem across batch sizes B ∈ {1,10,100}

for 100 randomly generated MDPs with |S| = |A| = 5. Step-size schedule is ηt = 2B/t−1/2. (Right)

Scaled loss gap for the averaged SGD iterates for the reinforcement learning problem for 100 randomly

generated MDPs with |S|= |A|= 10. Step-size schedule is ηt = 2B/t−1/2.

7. Conclusion

In this work, we study SGD with adaptive data, which arises in many online learning problems

in operations research. We provide easy-to-verify conditions under which the fully adaptive SGD

update achieves a similar convergence speed as the classical stationary setting. Our results provide

guidance and assurance as to how to choose the appropriate batch size in online learning problems

where stationary (long-run average) performance is involved. For example, we demonstrate how to

apply the results to study online learning algorithms for some service and inventory management

problems.

We conclude the paper with some remarks for future research. First, the conditions we required

in Theorems 1 and 2 are only sufficient conditions. It would be an interesting future research

direction to see both theoretically and empirically, whether similar convergence speeds hold under

more general conditions. In particular, while we think the ergodicity and smoothness conditions are

important for the convergence of the algorithm, it would be interesting to see if these conditions

only need to hold locally, i.e., around the optimal solution. Second, the upper bounds we established

in Theorems 1 and 2 are unlikely to be tight, especially regarding the logarithmic terms. We leave
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it as a future research direction to establish tight bounds. Lastly, from our numerical experiments,

even though the batch size does not affect the convergence rate of the algorithm, it can improve the

convergence speed through the constant term. It would be valuable to develop theoretical results

that can guide the choice of the optimal batch size.
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A. Proofs of Theorems 1 and 2

Define ηt:t+n :=
∑t+n−1

s=t ηs, η2t:t+n :=
∑t+n−1

s=t η2s , (V η)t:t+n =
∑t+n−1

s=t V (zs)ηs, (V η)2t:t+n =∑t+n−1

s=t V (zs)
2η2s and Pθm:n = PθmPθ1 . . . Pθn−1

. We also define the ϵ-mixing time τϵ as a time for

which under Assumption 1,

d(µθ, δzP
τϵ
θ )≤ ϵV (z). (19)

We first prove some auxiliary lemmas. These lemmas hold for both the unprojected and projected

updates, i.e., (4) and (5) respectively. For concision, we only list the assumptions for the unprojected

case. For the projected case, these assumptions are only required to hold for θ ∈Θ.

Lemma 2. If Pθ has a mixing time τ , then for τϵ = ⌈| log ϵ|/| log(1/4)|⌉τ , we have

d(δzP
τϵ
θ , µθ(·))≤ ϵV (z),

i.e., τϵ is an ϵ-mixing time.

Proof. For any function f with |f(z)| ≤ V (z) for all z, we define f0(z) := f(z)−
∑

z′ µθ(z
′)f(z′).

Note that
∑

z µθ(z)f0(z) = 0. We also define f1(z) :=Ezf0(zτ ). Note that∑
z

µθ(z)f1(z) =
∑
z

µθ(z)
∑
z′

Pz(zτ = z′)f0(z
′) =

∑
z′

µθ(z
′)f0(z

′) = 0
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and

|f1(z)|= |⟨δzP τ
θ −µθ, f(z

′)⟩| ≤ 1

4
V (z).

We can repeat the above procedure and define a sequence of fk’s. For fk(z) :=Ez[f0(zkτ )] for k≥ 2,

suppose |fk−1(z)| ≤ 1
4k−1V (z). Then, we have∑

z

µ(z)fk(z) =
∑
z

µθ(z)
∑
z′

Pz(zkτ = z′)f0(z
′) =

∑
z′

µθ(z
′)f0(z

′) = 0,

and

|fk(s)|=
1

4k−1

∣∣⟨δzP τ
θ −µθ,4

k−1fk−1(z
′)⟩
∣∣≤ 1

4k
V (z).

Let n= ⌈| log ϵ|/| log(1/4)|⌉. Then,

fn(z) =Ezf(zτϵ)−
∑
z′

µ(z′)f(z′) and |fn(z)| ≤
1

4n
V (z)≤ ϵV (z).

Since f is any function with |f(z)| ≤ V (z), we have d(δzP
τϵ
θ , µ(·))≤ ϵV (z).

Next

|Et⟨ḡ(θt)− g(θt, zt+τϵ), θt − θ∗⟩|

≤

∥∥∥∥∥∑
z′

(µ(z′)−Pzt(zt+τϵ = z′))g(θt, z
′)

∥∥∥∥∥∥θt − θ∗∥ by Cauchy-Schwarz inequality

≤ϵC0∥θt − θ∗∥ ≤ 2C0C1ϵ.

□

Lemma 3. Under Assumptions 3, the iterates satisfy

∥θt+n − θt∥ ≤M(V η)t:t+n.

Proof. We first note that for the unprojected cases, ∥θt+1−θt∥= ∥ηtĝt(θt, zt)∥. For the projected

case, since C is convex, ∥θt+1 − θt∥ ≤ ∥ηtĝt(θt, zt)∥. Thus,

∥θt+1 − θt∥ ≤ ∥ηtĝt(θt, zt)∥ ≤MV (zt)ηt.

Then,

∥θt+n − θt∥ ≤
t+n−1∑
k=t

∥θk+1 − θk∥ ≤M(V η)t:t+n.

□

Lemma 4. Under Assumptions 1 and 2, the following holds almost surely,

d(δxPθ0:n , δxP
n
θ0
)≤ LK2MV (x)

(1− ρ)2
(V η)0:n.
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Proof. First, let Π denote the optimal coupling between µ and ν under d. Then,

d(µP k
θ0
, νP k

θ0
)≤
∑
x,y

d(δxP
k
θ0
, δyP

k
θ0
)Π(x, y)

≤Kρk
∑
x,y

d(x, y)Π(x, y) =Kρkd(µ,ν).

Next,

d(µPθ, µPθ′)≤
∑
x

d(δxPθ, δxPθ′)µ(x)≤L∥θ− θ′∥
∑
x

V (x)µ(x).

We also note that

⟨δxPθ0:m , V ⟩ ≤ ρPθ0:m−1
V (x)+K

≤ ρmV (x)+ ρm−1K + · · ·+ ρK +K

≤ KV (x)

1− ρ
.

Lastly,

d(δxPθ0:n , δxP
n
θ0
)≤

n∑
m=2

d(δxPθ0:mP
n−m
θ0

, δxPθ0:m−1
P n−m+1

θ0
)

≤
n∑

m=2

Kρn−md(δxPθ0:m−1
Pθm−1

, δxPθ0:m−1
Pθ0)

≤
n∑

m=2

Kρn−mL∥θm−1 − θ0∥⟨δxPθ0:m−1
, V ⟩

≤
n∑

m=2

Kρn−mLM(V η)0:m−1

KV (x)

1− ρ
≤ LK2MV (x)

(1− ρ)2
(V η)0:n.

□

Similar to Lemma 4, we also have

Lemma 5. Under Assumptions 1 and 2,

d(δxPθ0:n , δxP
n
θn
)≤ LK2MV (x)

(1− ρ)2
(V η)0:n.

Proof. Define Pθm:m = I and P 0
θn

= I.

d(δxPθ0:n , δxP
n
θn
)≤

n∑
m=1

d(δxPθ0:mP
n−m
θn

, δxPθ0:m−1
P n−m+1

θn
)

≤
n∑

m=1

Kρn−md(δxPθ0:m−1
Pθm−1

, δxPθ0:m−1
Pθn)

≤
n∑

m=1

Kρn−mL∥θm−1 − θn∥⟨δxPθ0:m−1
, V ⟩

≤
n∑

m=1

Kρn−mLM(V η)m−1:n

KV (x)

1− ρ
≤ LK2MV (x)

(1− ρ)2
(V η)0:n.

□
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Lemma 6. Under Assumptions 1 and 2, we have

∥∇ℓ(θt)−Etg(θt, zt+τϵ)∥ ≤LϵV (zt−1)+
L2K2M

(1− ρ)2
ηt:t+τϵ(V (zt−1)+K)2.

Proof. Note that

∥∇ℓ(θt)−Etg(θt, zt+τϵ)∥

≤
∥∥⟨µθt − δzt−1

P τϵ
θt
, g(θt, · )⟩

∥∥+∥∥Et⟨δzt−1
Pθt:t+τϵ

− δzt−1
P τϵ

θt
, g(θt, · )⟩

∥∥
≤LϵV (zt−1)+

L2K2MV (zt−1)

(1− ρ)2
Et[(V η)t:t+τϵ ]

≤LϵV (zt−1)+
L2K2MV (zt−1)

(1− ρ)2
(V (zt−1)+K)ηt:t+τϵ

by Lemma 4, Kantorovich-Rubenstein duality, and the fact that V is a Lyapunov function. □

Lemma 7. Under Assumptions 1 and 2, we have

∥Et[∇ℓ(θt+τϵ)− g(θt+τϵ , zt+τϵ)]∥ ≤LϵV (zt−1)+
L2K2M

(1− ρ)2
ηt:t+τϵ(V (zt−1)+K)2.

Proof. Note that

∥Et[∇ℓ(θt+τϵ)− g(θt+τϵ , zt+τϵ)]∥

≤
∥∥∥⟨µθt+τϵ

− δzt−1
P τϵ

θt+τϵ
, g(θt+τϵ , · )⟩

∥∥∥+∥∥∥Et⟨δzt−1
Pθt:t+τϵ

− δzt−1
P τϵ

θt+τϵ
, g(θt+τϵ , · )⟩

∥∥∥
≤LϵV (zt−1)+

L2K2MV (zt−1)

(1− ρ)2
Et[(V η)t:t+τϵ ]

≤LϵV (zt−1)+
L2K2MV (zt−1)

(1− ρ)2
(V (zt−1)+K)ηt:t+τϵ

by Lemma 5, Kantorovich-Rubenstein duality, and the fact that V is a Lyapunov function. □

Lemma 8. Under Assumptions 3 and 2, the iterates satisfy the following

∥Et[g(θt, zt+τϵ)− g(θt+τϵ , zt+τϵ)]∥ ≤
(
2Lϵ+2

L2K2M

(1− ρ)2
ηt:t+τϵ +MLηt:t+τϵ

)
(V (zt−1)+K)2.

Proof. Note that

∥Et[g(θt, zt+τϵ)− g(θt+τϵ , zt+τϵ)]∥

≤∥Etg(θt, zt+τϵ)−∇l(θt)∥+ ∥Et[g(θt+τϵ , zt+τϵ)−∇l(θt+τϵ)]∥+ ∥Et∇l(θt+τϵ)−∇l(θt)∥

≤2LϵV (zt−1)+ 2
L2K2M

(1− ρ)2
ηt:t+τϵ(V (zt−1)+K)2 +ML(V (zt−1)+K)ηt:t+τϵ

by Lemmas 6 and 7. □

We are now ready to prove the main theorems.
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Proof of Theorem 1. Since θt+1 = θt − ηtĝt(θt, zt) and ∇ℓ(θ) is L-smooth,

ℓ(θt+1)≤ ℓ(θt)− ηt⟨∇ℓ(θt), ĝt(θt, zt)⟩+
L

2
η2t ∥ĝt(θt, zt)∥2.

The above inequality can be rearranged as

ηt⟨∇ℓ(θt),∇ℓ(θt)⟩ ≤ ℓ(θt)− ℓ(θt+1)+
L

2
η2tM

2V (zt)
2 + ηt⟨∇ℓ(θt)− ĝt(θt, zt),∇ℓ(θt)⟩.

Taking the sum over t, we have

T−1∑
t=0

ηt∥∇ℓ(θt)∥2 ≤ ℓ(θ0)+
1

2
LM 2(V η)20:T +

T−1∑
t=0

ηt⟨∇ℓ(θt)− ĝt(θt, zt),∇ℓ(θt)⟩.

We next establish an appropriate bound for ⟨∇ℓ(θt)− ĝt(θt, zt),∇ℓ(θt)⟩. Consider the decompo-

sition

⟨∇ℓ(θt)− ĝt(θt, zt),∇ℓ(θt)⟩

= ⟨g(θt, zt)− ĝt(θt, zt),∇ℓ(θt)⟩︸ ︷︷ ︸
(a)

+ ⟨g(θt+τϵ , zt+τϵ)− g(θt, zt),∇ℓ(θt)⟩︸ ︷︷ ︸
(b)

+ ⟨g(θt, zt+τϵ)− g(θt+τϵ , zt+τϵ),∇ℓ(θt)⟩︸ ︷︷ ︸
(c)

+ ⟨∇ℓ(θt)− g(θt, zt+τϵ),∇ℓ(θt)⟩︸ ︷︷ ︸
(d)

,

where zt+τϵ ∼ Pθt:t+τϵ
.

For (a), we have

|Et⟨g(θt, zt)− ĝt(θt, zt),∇ℓ(θt)⟩| ≤ ∥∇ℓ(θt)∥Et∥g(θt, zt)− ĝt(θt, zt)∥ ≤MEtet.

For (c), by Lemma 8, we have

|Et⟨g(θt, zt+τϵ)− g(θt+τϵ , zt+τϵ),∇ℓ(θt)⟩|

≤∥Et[g(θt, zt+τϵ)− g(θt+τϵ , zt+τϵ)]∥∥∇ℓ(θt)∥

≤M
(
2Lϵ+2

L2K2M

(1− ρ)2
ηt:t+τϵ +MLηt:t+τϵ

)
(V (zt−1)+K)2

≤M
(
2Lϵ+2

L2K2M

(1− ρ)2
τϵηt +MLτϵηt

)
(V (zt−1)+K)2.

For (d), following Lemma 6, we have

|Et[⟨∇ℓ(θt)− g(θt, zt+τϵ),∇ℓ(θt)⟩]|

≤∥Et[∇ℓ(θt)− g(θt, zt+τϵ)]∥∥∇ℓ(θt)∥

≤M
(
Lϵ+

L2K2M

(1− ρ)2
ηt:t+τϵ

)
(V (zt−1)+K)2

≤M
(
Lϵ+

L2K2M

(1− ρ)2
τϵηt

)
(V (zt−1)+K)2.
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Lastly, for (b), taking the sum over t, we have∣∣∣∣∣E
T−1∑
t=0

ηt⟨g(θt+τϵ , zt+τϵ)− g(θt, zt),∇ℓ(θt)⟩

∣∣∣∣∣
≤

∣∣∣∣∣E
T−1∑
t=τϵ

⟨g(θt, zt), ηt−τϵ∇ℓ(θt−τϵ)− ηt∇ℓ(θt)⟩

∣∣∣∣∣+
∣∣∣∣∣E

τϵ−1∑
t=0

⟨g(θt, zt), ηt∇ℓ(θt)⟩

∣∣∣∣∣
+

∣∣∣∣∣E
T+τϵ−1∑

t=T

⟨g(θt, zt), ηt−τϵ∇ℓ(θt−τϵ)⟩

∣∣∣∣∣
≤

∣∣∣∣∣E
T−1∑
t=τϵ

⟨g(θt, zt), ηt∇ℓ(θt−τϵ)− ηt∇ℓ(θt)⟩

∣∣∣∣∣+
∣∣∣∣∣E

T−1∑
t=τϵ

⟨g(θt, zt), (ηt−τϵ − ηt)∇ℓ(θt−τϵ)⟩

∣∣∣∣∣
+

∣∣∣∣∣E
τϵ−1∑
t=0

⟨g(θt, zt), ηt∇ℓ(θt)⟩

∣∣∣∣∣+
∣∣∣∣∣E

T+τϵ−1∑
t=T

⟨g(θt, zt), ηt−τϵ∇ℓ(θt−τϵ)⟩

∣∣∣∣∣
≤M 2LE

T−1∑
t=τϵ

ηtV (zt)(V η)t−τϵ:t +M 2(V (z0)+K)η0:τϵ

+M 2E(V η)0:τϵ +M 2(V (z0)+K)ηT−τϵ:T

≤M 2Lτϵ

T−1∑
t=0

E(V (zt)+K)2η2t +3M 2τϵ(V (z0)+K).

Putting the bounds for (a) – (d) together, we have∣∣∣∣∣E
T−1∑
t=0

ηt⟨∇ℓ(θt)− ĝt(θt, zt),∇ℓ(θt)⟩

∣∣∣∣∣
≤M

T−1∑
t=0

ηtEet +3M 2τϵ(V (z0)+K)+ 3MLϵ
T−1∑
t=0

ηtE(V (zt)+K)2

+

(
3
M 2L2K2

(1− ρ)2
τϵ +2M 2Lτϵ

) T−1∑
t=0

η2tE(V (zt)+K)2.

Thus,

T−1∑
t=0

ηtE∥∇ℓ(θt)∥2 ≤ℓ(θ0)+
1

2
LM 2(V η)0:T +

T−1∑
t=0

ηtE⟨ḡ(θt)− ĝt(θt, zt),∇ℓ(θt)⟩

≤ℓ(θ0)+ 3M 2τϵ(V (z0)+K)+M
T−1∑
t=0

ηtEet +3MLϵ
T−1∑
t=0

ηtE(V (zt)+K)2

+

(
3
M 2L2K2

(1− ρ)2
τϵ +2M 2Lτϵ

) T−1∑
t=0

η2tE(V (zt)+K)2.

For ϵ= 1/
√
T , τϵ =O(τ logT ). Let η̃t = ηt/η0:T . Then, we have

T−1∑
t=0

η̃tE∥∇ℓ(θt)∥2 =O

(
1

η0:T

(
τ logT + τ logTη20:T +

1√
T
η0:T +

T−1∑
t=0

ηtEet

))
.
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This implies that

min
0≤t<T

E∥∇ℓ(θt)∥2 =O

(
1

η0:T

(
τ logT + τ logTη20:T +

1

T
η0:T +

T−1∑
t=0

ηtEet

))
.

□

Before we prove Case 1 of Theorem 2, we provide a bound for E∥θt− θ∗∥2 first. Note that when

Θ is bounded, ∥θt − θ∥2 is bounded. We will show in Lemma 9 that even when Θ is not bounded,

we can still establish appropriate bounds for E∥θt − θ∗∥2.

Lemma 9. Assume l is convex and Eet = O(1/
√
t). Let ηt = η0/

√
t. There exists a constant

C ∈ (0,∞), such that for any fixed T > 0, we have

E∥θT − θ∗∥2 ≤C2

(
∥θ0 − θ∗∥+ τϵ logT +

1√
T

√
t+(V (z0)+K)2

)2

,

for t≤ T .

Proof. Let ϵ= 1/
√
T . Then τϵ =O(τ logT ).

By the convexity of Θ and the fact that θ∗ ∈Θ, we have

∥θt+1 − θ∗∥2 ≤ ∥θt − θ∗ − ηtĝt(θt, zt)∥2

≤ ∥θt − θ∗∥2 +2ηt⟨ĝt(θt, zt), θ∗ − θt⟩+ η2tM
2V (zt)

2

= ∥θt − θ∗∥2 +2ηt⟨∇ℓ(θt), θ∗ − θt⟩+ η2tM
2V (zt)

2 +2ηt⟨ĝt(θt, zt)−∇ℓ(θt), θ∗ − θt⟩

≤ ∥θt − θ∗∥2 + η2tM
2V (zt)

2 +2ηt⟨ĝt(θt, zt)−∇ℓ(θt), θ∗ − θt⟩,

since ℓ is convex. By induction, we have

∥θt − θ∗∥2 ≤ ∥θ0 − θ∗∥2 +M 2(V η)20:t +2
t−1∑
s=0

ηs⟨ĝs(θs, zs)−∇ℓ(θs), θ∗ − θs⟩

Next, note that

⟨∇ℓ(θs)− ĝs(θs, zs), θs − θ∗⟩

= ⟨g(θs, zs)− ĝs(θs, zs), θs − θ∗⟩︸ ︷︷ ︸
(a)

+ ⟨g(θs+τϵ , zs+τϵ)− g(θs, zs), θs − θ∗⟩︸ ︷︷ ︸
(b)

+ ⟨g(θs, zs+τϵ)− g(θs+τϵ , zs+τϵ), θs − θ∗⟩︸ ︷︷ ︸
(c)

+ ⟨∇ℓ(θs)− g(θs, zs+τϵ), θs − θ∗⟩︸ ︷︷ ︸
(d)

,

We shall bound each of the terms in the decomposition. For (a), we have

ηs|Es⟨g(θs, zs)− ĝs(θs, zs), θs − θ∗⟩| ≤ηs∥Es[g(θs, zs)− ĝs(θs, zs)]∥∥θs − θ∗∥

≤ηsEses∥θs − θ∗∥.



35

For (c), by Lemma 8, we have

ηs|Es⟨g(θs, zs+τϵ)− g(θs+τϵ , zs+τϵ), θs − θ∗⟩|

≤ηs∥Es[g(θs, zs+τϵ)− g(θs+τϵ , zs+τϵ)]∥∥θs − θ∗∥

≤ηs
(
2Lϵ+2

L2K2M

(1− ρ)2
ηs:s+τϵ +MLηs:s+τϵ

)
(V (zs−1)+K)2∥θs − θ∗∥.

For (d), by Lemma 6, we have

ηs |Es⟨∇ℓ(θs)− g(θs, zs+τϵ), θs − θ∗⟩|

≤ ηs

(
Lϵ+

L2K2M

(1− ρ)2
ηs:s+τϵ

)
(V (zs−1)+K)2∥θs − θ∗∥.

Lastly, for (b), taking the sum over s, we have∣∣∣∣∣E
t−1∑
s=0

ηs⟨g(θs+τϵ , zs+τϵ)− g(θs, zs), θs − θ∗⟩

∣∣∣∣∣
≤

∣∣∣∣∣E
t−1∑
s=τϵ

⟨g(θs, zs), ηs(θs−τϵ − θs)⟩

∣∣∣∣∣+
∣∣∣∣∣E

t−1∑
s=τϵ

⟨g(θs, zs), (ηs−τϵ − ηs)(θs−τϵ − θ∗)⟩

∣∣∣∣∣
+

∣∣∣∣∣E
τϵ−1∑
s=0

ηs⟨g(θs, zs), θs − θ∗⟩

∣∣∣∣∣+
∣∣∣∣∣E

t+τϵ−1∑
s=t

ηs−τϵ⟨g(θs, zs), θs−τϵ − θ∗⟩

∣∣∣∣∣
≤E

t−1∑
s=τϵ

M 2V (zs)ηs(V η)s−τϵ:s +ME
t−τϵ−1∑
s=0

η3sτϵ∥θs − θ∗∥V (zs+τϵ)

+ME
τϵ−1∑
s=0

ηsV (zs)∥θs − θ∗∥+ME
t−1∑

s=t−τϵ

ηsV (zs+τϵ)∥θs − θ∗∥

Putting the bounds for (a) to (d) together, we have∣∣∣∣∣E
t−1∑
s=0

ηs⟨∇ℓ(θs)− ĝs(θs, zs), θs − θ∗)⟩

∣∣∣∣∣
≤

t−1∑
s=0

ηsEesE∥θs − θ∗∥+M 2τϵ

t−1∑
s=τϵ

η2sE(V (zs)+K)2

+Mτϵ

t−1∑
s=1

η3sE(V (zs)+K)2∥θs − θ∗∥+M

τϵ−1∑
s=0

ηsEV (zs)∥θs − θ∗∥

+M
t−1∑

s=t−τϵ

ηsEV (zs)∥θs − θ∗∥+3Lϵ
t−1∑
s=0

ηsE(V (zs)+K)2∥θs − θ∗∥

+

(
3
ML2K2

(1− ρ)2
τϵ +MLτϵ

) t−1∑
s=0

η2sE(V (zs)+K)2∥θs − θ∗∥.

Next, we prove the result by induction. Suppose for s≤ t,

E∥θs − θ∗∥2 ≤C2
(
∥θ0 − θ∗∥+ τϵ log t+ ϵ

√
s+(V (z0)+K)2

)2
.
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Then, since E(V (zs−1)+K)2∥θs−1 − θ∗∥ ≤
√

E(V (zs)+K)4
√

E∥θs − θ∗∥2∣∣∣∣∣E
t−1∑
s=0

ηs⟨∇ℓ(θs)− ĝs(θs, zs), θs − θ∗)⟩

∣∣∣∣∣
≤

t−1∑
s=0

ηsEesC(∥θ0 − θ∗∥+ τϵ log t+ ϵ
√
s+(V (z0)+K)2)+M 2τϵ

t−1∑
s=τϵ

η2sE(V (zs)+K)2

+Mτϵ

t−1∑
s=1

η3s
√
E(V (zs)+K)4C(∥θ0 − θ∗∥+ τϵ log t+ ϵ

√
s+(V (z0)+K)2)

+M

τϵ−1∑
s=0

ηs
√

EV (zs)2C(∥θ0 − θ∗∥+ τϵ log t+ ϵ
√
s+(V (z0)+K)2)

+M
t−1∑

s=t−τϵ

ηs
√

EV (zs)2C(∥θ0 − θ∗∥+ τϵ log t+ ϵ
√
s+(V (z0)+K)2)

+ 3Lϵ
t−1∑
s=0

ηs
√
E(V (zs)+K)4C(∥θ0 − θ∗∥+ τϵ log t+ ϵ

√
s+(V (z0)+K)2)

+

(
3
ML2K2

(1− ρ)2
τϵ +MLτϵ

) t−1∑
s=0

η2s
√
E(V (zs)+K)4C(∥θ0 − θ∗∥+ τϵ log t+ ϵ

√
s+(V (z0)+K)2)

≤C ′(∥θ0 − θ∗∥+ τϵ log t+(V (z0)+K)2)C(τϵ log t+ ϵ
√
t+(V (z0)+K)2)

where C ′ is a constant that does not depend on C. Thus,

E∥θt − θ∗∥2 ≤ ∥θ0 − θ∗∥2 +M 2 log t(V (z0)+K)2

+C ′C(∥θ0 − θ∗∥+ τϵ log t+(V (z0)+K)2)(τϵ log t+ ϵ
√
t+(V (z0)+K)2)

≤C2(∥θ0 − θ∗∥+ τϵ log t+ ϵ
√
t+(V (z0)+K)2)2

□

Proof of Case 1 of Theorem 2. By the convexity of Θ and the fact that θ∗ ∈Θ, we have

∥θt+1 − θ∗∥2 ≤ ∥θt − θ∗ − ηtĝt(θt, zt)∥2

= ∥θt − θ∗∥2 +2ηt⟨ĝt(θt, zt), θ∗ − θt⟩+ η2t ∥ĝt(θt, zt)∥2

≤ ∥θt − θ∗∥2 +2ηt⟨ĝt(θt, zt), θ∗ − θt⟩+ η2tM
2V (zt)

2.

Therefore,

⟨ĝt(θt, zt), θ∗ − θt⟩ ≥
1

2ηt
(∥θt+1 − θ∗∥2 −∥θt − θ∗∥2)− 1

2
ηtM

2V (zt)
2.

Next, by the convexity of ℓ,

ℓ(θ∗)− ℓ(θt)≥ ⟨∇ℓ(θt), θ∗ − θt⟩

= ⟨ĝt(θt, zt), θ∗ − θt⟩+ ⟨∇ℓ(θt)− ĝt(θt, zt), θ
∗ − θt⟩

≥ 1

2ηt
(∥θt+1 − θ∗∥2 −∥θt − θ∗∥2)− 1

2
ηtV (zt)

2M 2 + ⟨∇ℓ(θt)− ĝt(θt, zt), θ
∗ − θt⟩.
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This leads to

1

η0:T

T−1∑
t=0

ηt(ℓ(θt)− ℓ(θ∗))≤ 1

2η0:T
∥θ0 − θ∗∥2 + 1

2
M 2 (V η)

2
0:T

η0:T

+
1

η0:T

T−1∑
t=0

ηt⟨∇ℓ(θt)− ĝt(θt, zt), θt − θ∗⟩

From the proof of Lemma 9, for ϵ= 1/
√
T , τϵ =O(τ logT ), we have∣∣∣∣∣E

T−1∑
t=0

ηt⟨∇ℓ(θt)− ĝt(θt, zt), θt − θ∗⟩

∣∣∣∣∣
≤C ′(∥θ0 − θ∗∥+ τϵ logT +(V (z0)+K)2)C(τϵ logT + ϵ

√
T +(V (z0)+K)2).

Then,

1

η0:T

T−1∑
t=0

ηt(ℓ(θt)− ℓ(θ∗))

≤∥θ0 − θ∗∥2

η0:T
+

M 2

2η0:T

T−1∑
t=0

η2tEV (zt)
2

+
C ′C

η0:T
(∥θ0 − θ∗∥+ τϵ logT +(V (z0)+K)2)(τϵ logT + ϵ

√
T +(V (z0)+K)2)

=O

(
1√
T
+

logT√
T

+
τ(logT )2√

T
+
τ 2(logT )4√

T

)
For θ̄T = 1

η0:T

∑T−1

t=0 ηtθt, by the convexity of ℓ, we have

Eℓ(θ̄T )− ℓ(θ∗)≤ 1

η0:T

T−1∑
t=0

ηt(ℓ(θt)− ℓ(θ∗)) =O
(
τ 2(logT )4/

√
T
)
.

□

We next present an auxiliary result about our choice of step size in the strongly convex case.

Lemma 10. If ηt = 2η0/(ct) and η0 > 2, we have exp(− 1
2
cηt+1:T )ηt is increasing in t.

Proof. Through induction, we only need to show that exp
(
− 1

2
cηt+1

)
ηt ≤ ηt+1, which is equiva-

lent to showing

exp(−1

2
cηt+1)≤

t

t+1
,

which is true with ηt+1 ≥ 4
c(t+1)

. □

Proof of Case 2 in Theorem 2. First, note that

∥θt+1 − θ∗∥2 = ∥θt − ηtĝ(θt, zt)− θ∗∥2

≤ ∥θt − θ∗∥2 − 2⟨θt − θ∗, ĝ(θt, zt)⟩ηt +M 2η2tV (zt)
2.
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Consider the following decomposition of ĝ(θt, zt):

ĝ(θt, zt) = [ĝ(θt, zt)− g(θt, zt)]︸ ︷︷ ︸
(a)

+[g(θt, zt)− g(θt+τϵ , zt+τϵ)]︸ ︷︷ ︸
(b)

+[g(θt+τϵ , zt+τϵ)− g(θt, zt+τϵ)]︸ ︷︷ ︸
(c)

+ [g(θt, zt+τϵ)−∇ℓ(θt)]︸ ︷︷ ︸
(d)

+∇ℓ(θt)︸ ︷︷ ︸
(e)

.

We next bound the inner product of each part in (20) with θ∗ − θt, except for part (b). Part (b)

will be treated separately later.

For (e), since ℓ is strongly convex with convexity constant c

−⟨∇ℓ(θt), θt − θ∗⟩ ≤−c∥θt − θ∗∥2.

For (a), under Assumption 5,

−⟨ĝ(θt, zt)− g(θt, zt), θt − θ∗⟩ ≤ 1

c
∥ĝ(θt, zt)− g(θt, zt)∥2 +

1

4
c∥θt − θ∗∥2

≤ 1

c
e2t +

1

4
c∥θt − θ∗∥2.

For (c), following Lemma 8, we have

−Et⟨g(θt+τϵ , zt+τϵ)− g(θt, zt+τϵ), θt − θ∗⟩

≤1

c
∥Et[g(θt+τϵ , zt+τϵ)− g(θt, zt+τϵ)]∥2 +

1

4
c∥θt − θ∗∥2

≤1

c

(
2Lϵ+2

L2K2M

(1− ρ)2
ηt:t+τϵ +MLηt:t+τϵ

)2

(V (zt−1)+K)4 +
1

4
c∥θt − θ∗∥2.

For (d), following Lemma 6, we have

−Et⟨g(θt, zt+τϵ)−∇ℓ(θt), θt − θ∗⟩

≤1

c
∥Etg(θt, zt+τϵ)−∇ℓ(θt)∥2 +

1

4
c∥θt − θ∗∥2

≤1

c

(
Lϵ+

L2K2M

(1− ρ)2
ηt:t+τϵ

)2

(V (zt−1)+K)4 +
1

4
c∥θt − θ∗∥2

≤2

c
L2ϵ2(V (zt−1)+K)4 +

2

c

L4K4M 2

(1− ρ)4
τ 2ϵ η

2
t (V (zt−1)+K)4 +

1

4
c∥θt − θ∗∥2

Putting together the bounds for parts (a), (c), (d), and (e), we have

Et∥θt+1 − θ∗∥2 ≤
(
1− 1

2
cηt

)
∥θt − θ∗∥2 +M 2η2tV (zt)

2 +
2

c
ηte

2
t

+
2

c

(
18L2ϵ2ηt +2L2M 2τ 2ϵ η

3
t +18

L4K4M 2

(1− ρ)4
τ 2ϵ η

3
t

)
(V (zt)+K)4

− 2ηtEt⟨g(θt, zt)− g(θt+τϵ , zt+τϵ), θt − θ∗⟩.

Define ηT :T = 0. Then,

E∥θT − θ∗∥2 ≤ exp

(
−1

2
cη0:T

)
∥θ0 − θ∗∥2 +

T−1∑
t=0

exp

(
−1

2
cη(t+1):T

)
M 2η2tV (zt)

2
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+
2

c

T−1∑
t=0

exp

(
−1

2
cη(t+1):T

)
(18L2ϵ2ηtE(V (zt)+K)4 + ηtEe2t )

+
2

c

T−1∑
t=0

exp

(
−1

2
cη(t+1):T

)(
2L2M 2τ 2ϵ η

3
t +18

L4K4M 2

(1− ρ)4
τ 2ϵ η

3
t

)
E(V (zt)+K)4

−2
T−1∑
t=0

exp

(
−1

2
cη(t+1):T

)
ηtE⟨g(θt, zt)− g(θt+τϵ , zt+τϵ), θt − θ∗⟩︸ ︷︷ ︸

(f)

.

Lastly, we develop a proper bound for (f). We first re-arrange the summation as

− 2
T−1∑
t=τϵ

〈
exp

(
−1

2
cη(t+1):T

)
ηt(θt − θ∗)− exp

(
−1

2
cη(t+1−τϵ):T

)
ηt−τϵ(θt−τϵ − θ∗), g(θt, zt)

〉
︸ ︷︷ ︸

(f1)

− 2

τϵ−1∑
t=0

exp

(
−1

2
cη(t+1):T

)
ηt⟨g(θt, zt), θt − θ∗⟩︸ ︷︷ ︸

(f2)

+2
T−1∑

t=T−τϵ

exp

(
−1

2
cη(t+1):T

)
ηt⟨g(θt+τϵ , zt+τϵ), θt − θ∗⟩︸ ︷︷ ︸

(f3)

For (f1), we have∣∣∣∣−〈exp(−1

2
cη(t+1):T

)
ηt(θt − θ∗)− exp

(
−1

2
cη(t+1−τϵ):T

)
ηt−τϵ(θt−τϵ − θ∗), g(θt, zt)

〉∣∣∣∣
≤
∣∣∣∣exp(−1

2
cη(t+1):T

)
ηt⟨θt − θt−τϵ , g(θt, zt)⟩

∣∣∣∣
+

∣∣∣∣〈(exp(−1

2
cη(t+1):T

)
ηt − exp

(
−1

2
cη(t+1−τϵ):T

)
ηt−τϵ

)
(θt−τϵ − θ∗), g(θt, zt)

〉∣∣∣∣
≤M 2 exp

(
−1

2
cη(t+1):T

)
ηtV (zt)(V η)t−τϵ:t

+

(
exp

(
−1

2
cη(t+1):T

)
ηt − exp

(
−1

2
cη(t+1−τϵ):T

)
ηt−τϵ

)
∥θt−τϵ − θ∗∥MV (zt).

Since,

ηt−τϵ:t ≤
η1:τϵ
ητϵ

ηt ≤ τϵ log τϵηt.

M 2 exp

(
−1

2
cη(t+1):T

)
EηtV (zt)(V η)t−τϵ:t

≤M 2 exp

(
−1

2
cη(t+1):T

)
C(V (z0)

2 +K)τϵ log τϵη
2
t

Next, note that

T−1∑
t=τϵ

(
exp

(
−1

2
cη(t+1):T

)
ηt − exp

(
−1

2
cη(t+1−τϵ):T

)
ηt−τϵ

)
E∥θt−τϵ − θ∗∥MV (zt)
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≤M
T−1∑
t=τϵ

(
exp

(
−1

2
cη(t+1):T

)
ηt − exp

(
−1

2
cη(t+1−τϵ):T

)
ηt−τϵ

)√
E∥θt−τϵ − θ∗∥2

√
EV (zt)2

≤MC(V (z0)
2 +1)

{
T−τϵ−1∑
t=τϵ

(√
E∥θt−τϵ − θ∗∥2 −

√
E∥θt − θ∗∥2

)
exp

(
−1

2
cη(t+1):T

)
ηt

−
τϵ−1∑
t=1

exp

(
−1

2
cη(t+1):T

)
ηt
√
E∥θt − θ∗∥2 +

T−1∑
t=T−τϵ

exp

(
−1

2
cη(t+1):T

)
ηt
√
E∥θt−τϵ − θ∗∥2

}

≤MC(V (z0)
2 +1)

{
T−τϵ−1∑
t=τϵ

ηT
√

E∥θt−τϵ − θt∥2 −
τϵ−1∑
t=1

exp

(
−1

2
cη(t+1):T

)
ηt
√

E∥θt − θ∗∥2

+
T−1∑

t=T−τϵ

ηT
√
E∥θt−τϵ − θ∗∥2

}
since exp

(
− 1

2
cηt+1:T

)
ηt ≤ ηT

≤MC(V (z0)
2 +1)

{
ηT

T−τϵ−1∑
t=τϵ

√
E(M(V η)t−τϵ:t)

2 −
τϵ−1∑
t=1

exp

(
−1

2
cη(t+1):T

)
ηt
√
E∥θt − θ∗∥2

+ηT

T−1∑
t=T−τϵ

√
E∥θt−τϵ − θ∗∥2

}

=MC(V (z0)
2 +1)

{
MCτϵηTη0:T−2τϵ(V (z0)

2 +1)1/2 −
τϵ−1∑
t=1

exp

(
−1

2
cη(t+1):T

)
ηt
√

E∥θt − θ∗∥2

+ηT

T−1∑
t=T−τϵ

√
E∥θt−τϵ − θ∗∥2

}
.

For (f2), we have ∣∣∣∣∣−
τϵ−1∑
t=0

exp

(
−1

2
cη(t+1):T

)
ηtE⟨g(θt, zt), θt − θ∗⟩

∣∣∣∣∣
≤M

τϵ−1∑
t=0

exp

(
−1

2
cη(t+1):T

)
ηtEV (zt)∥θt − θ∗∥

≤M
τϵ−1∑
t=0

exp

(
−1

2
cη(t+1):T

)
ηt
√
EV (zt)2

√
E∥θt − θ∗∥2

≤MC(V (z0)
2 +1)

τϵ−1∑
t=1

exp

(
−1

2
cη(t+1):T

)
ηt
√

E∥θt − θ∗∥2.

Similarly, for (f3), we have∣∣∣∣∣
T−1∑

t=T−τϵ

exp

(
−1

2
cη(t+1):T

)
ηtE⟨g(θt+τϵ , zt+τϵ), θt − θ∗⟩

∣∣∣∣∣
≤MC(V (z0)

2 +1)ηT

T−1∑
t=T−τϵ

√
E∥θt − θ∗∥2.

Putting the bounds of (f1) – (f3) together, we have

E∥θT − θ∗∥2
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≤ exp

(
−1

2
cη0:T

)
∥θ0 − θ∗∥2

+
T−1∑
t=0

exp

(
−1

2
cη(t+1):T

)(
M 2η2tEV (zt)

2 +M 2C(V (z0)
2 +K)τϵ log τϵη

2
t

)
+

2

c

T−1∑
t=0

exp

(
−1

2
cη(t+1):T

)
(18L2ϵ2ηtE(V (zt)+K)4 + ηtEe2t )

+
2

c

T−1∑
t=0

exp

(
−1

2
cη(t+1):T

)(
2L2M 2τ 2ϵ η

3
t +18

L4K4M 2

(1− ρ)4
τ 2ϵ η

3
t

)
E(V (zt)+K)4

+2M 2C2(V (z0)
2 +1)2τϵηTη0:T−2τϵ +2MηT

T−1∑
t=T−2τϵ

√
E∥θt − θ∗∥2.

Since ηt = 2η0/(ct) for some η0 > 0, exp
(
− 1

2
cη(t+1):T

)
≤
(

t
T

)2
. In addition, since Ee2t =O(1/t), we

have

E∥θT − θ∗∥2 ≤ 1

T 2
∥θ0 − θ∗∥2

+
T−1∑
t=0

t2

T 2

4η20
c2t2

(
M 2EV (zt)

2 +M 2C(V (z0)
2 +K)τϵ log τϵ

)
+

2

c

T−1∑
t=0

t2

T 2

2η0
ct

(18L2ϵ2E(V (zt)+K)4 +Ee2t )

+
2

c

T−1∑
t=0

t2

T 2

8η30
c3t3

(
2L2M 2τ 2ϵ +18

L4K4M 2

(1− ρ)4
τ 2ϵ

)
E(V (zt)+K)4

+8M 2C2(V (z0)
2 +1)2τϵ

η20
c2T

logT +2MηT

T−1∑
t=T−2τϵ

√
E∥θt − θ∗∥2

≤ 1

T 2
∥θ0 − θ∗∥2 +C1τϵ

logT

T
+C2ϵ

2 +C3τϵ
logT

T
+C4

1

T

T−1∑
t=T−2τϵ

√
E∥θt − θ∗∥2,

where C1,C2,C3,C4 are some suitably defined constants that do not depend on T .

Next, we prove by induction. Suppose for t < T ,

E∥θt − θ∗∥2 ≤C

(
τϵ
log t

t
+ ϵ2

)
.

Then

E∥θT − θ∗∥2 ≤C

(
τϵ
logT

T
+ ϵ2

)
.

Lastly, set ϵ= 1√
T
. Then, τϵ =O(τ logT ) and

E∥θT − θ∗∥2 =O

(
τ
(logT )2

T

)
.

□
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B. Proofs of the results in Section 3
B.1. Proof of Lemma 1

Our proof is based on the development in Glasserman (1992), who establish sufficient conditions

for the derivative process to be well-defined, converge to a unique stationary distribution, and be

an unbiased estimator of d
dθ
E[D∞(θ)] at stationarity.

Let

ϕ(Dt, ut+1, ϵt+1;θ) = (αmin{Dt +ut+1, θ}+(1−α)m+ ϵt+1)
+

Then, Dt+1 = ϕ(Dt, ut+1, ϵt+1;θ), where ut’s and ϵt’s are iid respectively, and

Lt+1 = 1{Dt+1 > 0}α (1{θ <Dt +ut+1}+1{Dt +ut+1 ≤ θ}Lt) .

Let Gϕ ⊆R4 be defined as the set where ϕ is continuously differentiable. It follows that Gϕ is the

complement R4\Cϕ where Cϕ is

Cϕ = {a, b, c, θ : αmin{a+ b, θ}+(1−α)m+ c= 0}∪ {a, b, c, θ : a+ b= θ}.

Note that for any θ and t, P((Dt, ut+1, ϵt+1, θ)∈Gϕ) = 1 since ut+1 and ϵt+1 have densities on R.

By Lemma 2.1 of Glasserman (1992), it follows that Dt(θ) is differentiable with probability 1 for

any θ ∈Θ and t≥ 0, and so the derivative process Lt exists.

Moreover, note that ϕ is Lipschitz in a, b, c, θ with Lipschitz constant 1 and for all t,

E [Dt] =E
[
(αmin{Dt−1 +ut+1, θ}+(1−α)m+ ϵt+1)

+
]

≤E
[
(αθ+(1−α)m+ ϵt+1)

+
]
<∞.

By Lemma 2.3 of Glasserman (1992), we have that E[Dt(θ)] is differentiable in θ for all t and

d
dθ
E[Dt(θ)] =E[ d

dθ
Dt(θ)] :=E[Lt(θ)].

Finally, it remains to show that d
dθ
E[D∞(θ)] =E[L∞(θ)]. We first verify the conditions in Theorem

4.1 of Glasserman (1992), which guarantees that Lt has a stationary distribution. First, we have that

(ϵt, ηt) is a stationary sequence as they are iid. Second, for any θ ∈Θ, the stationary distribution

of Dt(θ) exists (see the proof of Theorem 3) and we can consider a stationary process D̃t where D̃0

is drawn from the stationary distribution of Dt(θ). Note that using the same sequence of (ϵt, ut)’s,

the processes Dt and D̃t will couple whenever both are equal to zero, which will happen almost

surely, since at every t, the probability of hitting zero is at least Φ̄
(
θ̂/σ

)
, where θ̂= αθ̄+(1−α)m

and Φ̄(x) is the tail cumulative distribution function of the standard Normal distribution. Finally,

we have that for all θ ∈Θ

P
(
∂

∂d
ϕ(D̃0, u1, ϵ1;θ) = 0

)
> 0,
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This is because the derivative ∂
∂d
ϕ(D̃0, u1, ϵ1;θ) will be zero whenever αmin{D0 + u1, θ} + (1 −

α)m+ ϵ1 = 0, which happens with probability at least Φ̄
(
θ̂/σ

)
. By Theorem 4.1 of Glasserman

(1992), for any θ ∈Θ, (Dt(θ),Lt(θ)) converges in distribution to (D∞(θ),L∞(θ)). Since L∞(θ) is

bounded, it follows that E [Lt(θ)]→E[L∞(θ)] as t→∞.

Next, note that ϕ is Lipschitz in a, b, c, θ with Lipschitz constant 1. E[Dt(θ)]<∞ and E[Lt(θ)]<

∞ for any t. Moreover, L̄t(θ) :=
1
n

∑t

s=1Ls(θ)≤ 1 almost surely, which implies that for c > 1

sup
t

∫ θ̄

0

|L̄t(θ)|1{L̄t(θ)> c}dθ= 0.

Then, by Theorem 5.1 of Glasserman (1992), we have

E[L∞(θ)] =
d

dθ
E[D∞(θ)].

□

B.2. Proof of Theorem 3

We prove Theorem 3 by verifying that the conditions in Thereom 2 hold for the augmented Markov

chain Zt = (Dt,Lt). We use the following for the choice of the Lyapunov function and the metric

over z = (d, l)∈Ω:

V (d,x) = 1+1{d> 0 or l > 0};

d(z, z′) = 2 · 1{z ̸= z′}.

We first show that V and V 4 are both valid Lyapunov functions, and Zt satisfies Wasserstein

contraction with respect to the metric d(z, z′), i.e., the total variation distance. In particular, we

shall verify Assumptions 1 and 4 holds for Zt.

Lyapunov function. The key observation is that for any θ ∈Θ, C = {d= 0, l= 0} is a recurrent

aperiodic atom of the Markov chain. This is because it is possible to reach zero demand with

probability at least Φ̄
(
θ̂/σ

)
. Then,

E[V (D1,L1]−V (d0, l0)

=E[1+ 1{D1 > 0 or L1 > 0}]− (1+1{d0 > 0 or l0 > 0})

≤E[1+ 1− 1{D1 = 0}]− (1+1{d0 > 0 or l0 > 0})

≤− Φ̄
(
θ̂/σ

)
+1− 1{d0 > 0 or l0 > 0})

≤− Φ̄
(
θ̂/σ

)
(1+1{d0 > 0 or l0 > 0})+ 1

=− Φ̄
(
θ̂/σ

)
V (d0, l0)+ 1.

This simple That V (d, l) is a Lyapunov function.

Since V (d,x)4 = 1+ 15 · 1{d > 0, x < 1} this implies that V (d,x)4 is also a Lyapunov function.

We have thus verified Assumption 4.
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Wasserstein ergodicity. Let ν(·) = Φ̄
(
θ̂/σ

)
δ(0,0)(·) where δ(0,0) is the delta measure on (0,0). By

construction, ν(0,0)> 0. In addition, we have for any z ∈Ω,

Pz(Dt = 0,Lt = 0)≥ Φ̄
(
θ̂/σ

)
Thus, Zt satisfies the Doeblin’s condition. By Theorem 16.2.4 of Meyn and Tweedie (2012), we

have

sup
z∈Ω

||δzP n
θ −πθ||TV ≤

(
1− Φ̄

(
θ̂/σ

))n

.

We next Assumption 2, i.e., the Lipschitz continuity properties.

Lipschitzness of the transition kernel. We would like to show that Pθ is Lipschitz in θ with respect

to the total variation distance. To simplify the notation, we write Zt =Zt(θ) and Z
′
t =Zt(θ

′). Since

D1 = (αmin{d0 +u1, θ}+(1−α)m+ ϵ1)
+,

D′
1 = (αmin{d0 +u1, θ

′}+(1−α)m+ ϵ1)
+

and

L1 = 1{D1 > 0}α (1{d0 +u1 > θ}+1{d0 +u1 ≤ θ}l0) ,

L′
1 = 1{D′

1 > 0}α (1{d0 +u1 > θ}+1{d0 +u1 ≤ θ′}l0) .

we have

sup
|f |≤1

|E [f(D1,L1)− f(D′
1,L

′
1)] |

(a) = sup
|h|≤1

|Eh(ϵ1 +αθ,u1 − θ)−Eh(ϵ1 +αθ′, u1 − θ′)|

=dTV ((ϵ1 +αθ,u1 − θ), (ϵ1 +αθ′, u1 − θ′))

(b)≤dTV (ϵ1 +αθ, ϵ1 +αθ′)+ dTV (u1 − θ, η1 − θ′)

(c)≤2|θ− θ′|
σ

.

For (a), we use the fact that any bounded function f of the update can be rewritten as a bounded

function h of ϵ1+αθ and η1 − θ. For (b), we use the independence of u1 and ϵ1 to bound the total

variation of the pair (ϵ1 + θ,u1 − θ) by total variation of the marginals. The inequality (c) follows

from a standard upper bound on the total variation between two normal distributions. The above

bound implies

sup
z∈Ω

||δzPθ − δzPθ′ ||TV ≤ 2

σ
|θ− θ′|.
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Lipschitzness of the gradient. We can show that ∇ℓ(θ) is Lipschitz in θ as a consequence of

Theorem 3.1 of Rudolf and Schweizer (2018), which shows that Lipschitzness of the transition

kernel, which we have established above, implies Lipschitzness of the stationary distribution under

the total variation distance:

∥µθ −µθ′∥TV ≤ α/σ

Φ̄
(
θ̂/σ

)2 ∥θ− θ′∥.

g(θ,Zt) = (b1{Dt > θ}−h1{Dt < θ}) (1+Lt)

Since ∇ℓ(θ) =Eµθ
[(b1{Dt > θ}−h1{Dt < θ}) (1+Lt)], ∇ℓ(θ) is Lipschitz.

In addition, we note that since |g(θ, z)| ≤ 2max{h, b},

∥g(θ, z)− g(θ, z′)∥ ≤ 4max{h, b}1{z ̸= z′}.

Lastly, we verify Assumption 3

Bounded functions and gradient For the objective function, we have

ℓ(θ)≤ θ̄+m+5σ.

For the gradients, we have

∇ℓ(θ)≤ 2max{h, b}

and

|g(θ, z)| ≤ 2max{h, b}

for any θ ∈Θ. □

C. Proof of Theorem 4

We prove Theorem 4 by verifying that the conditions in Theorem 2 hold for the augmented Markov

chain Zt = (Wt,Xt).

We first verify Assumptions 1 and 4, which requires establishing the Lyapunov drift conditions

and Wasserstein contraction of Pθ for θ ∈Θ. Let

V (w,x) = eα1w+α2x

for 0<α2 <α1 <min{α∗/µ,α∗/λ(p)}, where α∗, α1, α2 are defined in Assumption 7.

Lemma 11 (Lyapunov drift condition). There exists ρ∈ (0,1) such that

sup
θ∈Θ

PθV (w0, x0)≤ ρV (w0, x0)+ 1

and

sup
θ∈Θ

PθV (w0, x0)
4 ≤ ρV (w0, x0)

4 +1.
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Proof. Let W0 and X0 be the current waiting time and server’s busy time respectively, and

Y = S/µ−T/λ(p) be the increment brought by the next customer.

E[eα1W1+α2X1 ] =E
[
e
α1(W0+Y )++α2

(
X0+

T
λ(p)

)
1{(W0+Y )+>0}

]
≤E

[
e
(
α1(W0+Y )+α2(X0+

T
λ(p)

)
)
1{(W+Y )+>0}

]
+E[1{(W +Y )+ = 0}]

≤E
[
e
α1(W0+Y )+α2(X0+

T
λ(p)

)
]
+1

= eα1W0+α2X0E
[
e
α1

S
µ+(α2−α1)

T
λ(p)

]
+1.

By Assumption 7, there exists 0<α2 <α1 <α
∗ to be small enough so that

E
[
e
4α1

S
µ

]
E
[
e
−4(α1−α2)

T
λ(p)

]
< 1,

which is possible because λ(p)<µ. By the convexity of h(x) = x4 and Jensen’s inequality, we have:

E
[
e
α1

S
µ

]4
E
[
e
−(α1−α2)

T
λ(p)

]4
≤E

[
e
4α1

T
µ

]
E
[
e
−4(α1−α2)

S
λ(p)

]
< 1

Let ρ=E[eα1
S
µ ]E[e−(α1−α2)

T
λ(p) ]. This condition implies that

PθV (w0, x0)≤ ρV (w0, x0)+ 1.

Similarly (by repeating the same arguments), we can show that

PθV (w0, x0)
4 ≤ ρV (w0, x0)

4 +1.

□

The above Lyapunov drift condition (Lemma 11) implies for β = 1
2
(1− ρ) and a set

C = {z ∈R2 : V (z)≤ 1/β},

we have, by Lemma 15.2.8 of Meyn and Tweedie (2012),

PθV (z)−V (z)≤−βV (z)+1C(z). (20)

Consider the metric

dV (z, z
′) := (V (z)+V (z′))1{z ̸= z′} (21)

Lemma 12 (Wasserstein contraction). There exists K ∈ (0,∞) and ρ ∈ (0,1) such that for

all t∈N,

sup
θ∈Θ

sup
z,z′∈Ω

||P t
θ(z, ·)−P t

θ(z
′, ·)||V

dV (z, z′)
≤Kρt
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Proof. Let 0 := (0,0), which is a recurrent atom for the Markov chain Zt = (Wt,Xt). Let τ0

denote the first return time to 0, i.e.,

τ0 = inf{t≥ 1 :Zt = 0},

and πθ,0 denote the probability of 0 under the stationary measure of Zt. We first note the fol-

lowing bound on the generating function of the distance to the stationary distribution, which was

developed in Proposition 4.2 of (Baxendale 2005), for any r > 1,

∞∑
t=1

rt||P t
θ(z, ·)−µθ||V ≤Ez

[
τ0∑
t=0

V (Zt)r
t

]
+E0

[
τ0∑
t=0

V (Zt)r
t

]
Ez[r

τ0 ]− 1

r− 1

+Ez[r
τ0 ]E0

[
τ0∑
t=0

V (Zt)r
t

] ∣∣∣∣∣
∞∑
t=1

(P t
θ(0,0)−πθ,0)r

t

∣∣∣∣∣
+

E0 [
∑τ0

t=0 V (Zt)r
t] + rE0 [

∑τ0
t=0 V (Zt)]

r− 1

Since V (z)≥ 1, we have Ez[r
τ0 ]≤Ez [

∑τ0
t=0 V (Zt)r

t]. Theorem 15.2.5 of Meyn and Tweedie (2012)

shows that the geometric drift condition (20) implies a bound on the generating function of V (Zt).

In particular, for any r ∈ (1, (1−β)−1), let ε= r−1 − (1−β)> 0. Then,

Ez

[
τ0∑
t=0

V (Zt)r
t

]
≤ (rε)−1V (z)+ ε−1Ez

[
τ0∑
t=0

1C(Zt)r
t

]

≤ (rε)−1V (z)+
rε−1

r− 1
sup
z∈C

Ez [r
τ0 ] .

In what follows, we first develop a bound for supθ∈Θ supz∈C Ez [r
τ0 ]. We write τ0(θ) and Y (θ) =

S/µ−T/λ(p) to mark dependence of the distribution of τ0 and Y (θ) on θ explicitly. Conditional on

that Z0 ∈C, the maximum workload isW0 =
1
α1

log 1
β
. Meanwhile, by coupling, for any fixed starting

workload w0 and (µ,p), τ0(µ,p)≤st τ0(µ,p). Above all, we can bound τ0(θ) by the first return time

to zero of a random walk starting from 1
α1

log 1
β
and with increments distributed as Y (µ,p). For this

random walk, let τ̃0 denote its first return time to 0. Then, there exists κ> 1 such that Ez [κ
τ̃0 ]<∞

for all z ∈C. Let r̄=min{κ, (1−β)−1 − ε} for any fixed ε > 0. Let K̄ =E 1
α1

log 1
β

[
r̄τ0(µ,p)

]
. Then,

sup
θ∈Θ

sup
z∈C

Ez [r
τ0 ]≤ K̄ and sup

θ∈Θ

sup
z∈C

Ez

[
τ0∑
t=0

V (Zt)r̄
t

]
≤ K̄V (z). (22)

We next bound |
∑∞

n=1(P
n
θ (0,0)−πθ,0)r

n| following the construction in Theorem 3.2 of Baxendale

(2005). The sequence P n
θ (0,0) can be seen as a renewal process with increment distribution bn :=

P0(τ0 = n). The key conditions required for bounding
∑∞

n=1 |P n
θ (0,0) − πθ,0|rn uniformly across

θ ∈Θ are some bounds for bn. First, note that

∞∑
n=0

bnr̄
n =E0[r̄

τ0 ]≤ K̄.
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In addition,

b1 = P0(τ0 = 1)= P
(
S

µ
− T

λ(p)
≤ 0

)
≥ P

(
S

µ
− T

λ(p)
≤ 0

)
=: β

By Theorem 3.2 of Baxendale (2005), the radius of convergence of
∑∞

t=1 |P t
θ(0)−πθ,0|rt is at least

R1 > 1, where

R1 :=

{
r ∈ (1, r̄) :

r− 1

r(log r̄/r)2
=

e2β

8 K̄−1
r̄−1

}
.

Then, for any r≤R1, there exists K1 that only depends on r,β, r̄, K̄ such that

sup
θ∈Θ

∣∣∣∣∣
∞∑
t=1

|P t
θ(0,0)−πθ,0|rt

∣∣∣∣∣≤K1 (23)

Putting the two bounds (22) and (23) together, taking any r̂ < R1, there exists K2 depending

only on κ,β, K̄,K1, r̄, ϵ such that

sup
θ∈Θ

∑
n

r̂t||P t
θ(z, ·)−µθ||V ≤K2V (z)

This implies that there exists ρ< 1
r̂
< 1 and a constant K such that

sup
θ∈Θ

∥P t
θ(z, ·)−µθ∥V ≤KρtV (z),

which implies

sup
θ∈Θ

sup
z∈Ω

||P t
θ(z, ·)−µθ||V
V (z)

≤Kρt.

By Lemma 3.2 of Rudolf and Schweizer (2018), this further implies

sup
θ∈Θ

sup
z,z′∈Ω

||P n
θ (z, ·)−P n

θ (z
′, ·)||V

dV (z, z′)
≤Kρt.

□

We next verify Assumption 2, i.e., the smoothness of the one-step transition kernel and the

gradients.

Lemma 13 (Lipschitz continuity of the one-step transition kernel). There exists a con-

stant Γ∈ (0,∞) such that for all z ∈R2
+

d(δzP
n
θ , δzP

n
θ′)≤ Γ||θ− θ′||V (z)

Proof. Let C be a generic constant whose value may change from line to line. By Assumption 7,

S and T have C1 densities. The density of S/µ is µfS(µx) and the density of T/λ(p) is λ(p)fT (λ(p)x).

A key property we require is that these densities are sufficiently smooth in µ and λ(p) respectively,

i.e., Assumption 7 (iii).
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Consider a fixed starting state z0 = (w0, x0). Let ϕθ be the joint probability density function of

(w0 +
S
µ
− T

λ(p)
, x0 +

T
λ(p)

) for θ= (µ,p). By the law of the unconscious statistician, we have

Eδz0Pθ
[f(W1,X1)] =

∫
R

∫
R
[f(w,x)1{w> 0}+ f(0,0)1{w≤ 0}]ϕθ(w,x)dwdx

Then, for any measurable f with |f | ≤ V , we have

|Eδz0Pθ
[f(W1,X1)]−Eδz0Pθ′

[f(W1,X1)]|

=

∣∣∣∣∫
R

∫
R
f(w,x)1{w> 0}ϕθ(w,x)dwdx−

∫
R

∫
R
f(w,x)1{w> 0}ϕθ′(w,x)dwdx

∣∣∣∣
+

∣∣∣∣∫
R

∫
R
f(0,0)1{w≤ 0}ϕθ(w,x)dwdx−

∫
R

∫
R
f(0,0)1{w≤ 0}ϕθ′(w,x)dwdx

∣∣∣∣
≤
∫
R

∫
R
V (w,x)|ϕθ(w,x)−ϕθ′(w,x)|dwdx (24)

+

∣∣∣∣P(w0 +
S

µ
− T

λ(p)
≤ 0

)
−P

(
w0 +

S

µ′ −
T

λ(p′)
≤ 0

)∣∣∣∣ (25)

We first bound (24). Note that∫
R

∫
R
V (w,x)|ϕθ(w,x)−ϕθ′(w,x)|dwdx

=

∫
R

∫
R
eα1w+α2x|ϕθ(w,x)−ϕθ′(w,x)|dwdx

=eα1w0+α2x0

∫
R

∫
R
eα1w+α2x|ψθ(w,x)−ψθ′(w,x)|dwdx,

where for the last equation, we take a change of variables and ψθ is the joint density of (S
µ
−

T
λ(p)

, T
λ(p)

), i.e.,

ψθ(w,x) = µfS(µ(w+x)) ·λ(p)fT (λ(p)x)

by independence of fS and fT . To be more concise, in what follows we denote λ= λ(p) and λ′ =

λ(p′). Next, ∫ ∞

0

∫
R
eα1w+α2x|ψθ(w,x)−ψθ′(w,x)|dwdx

=

∫ ∞

0

∫ ∞

−x

eα1w+α2x|µfS(µ(w+x))λfT (λx)−µ′fS(µ
′(w+x))λ′fT (λ

′x)|dwdx

≤
∫ ∞

0

∫ ∞

−x

eα1w+α2x|µfS(µ(w+x))−µ′fS(µ
′(w+x))| ·λfT (x)dwdx (26)

+

∫ ∞

0

∫ ∞

−x

eα1w+α2x|λfT (λx)−λ′fT (λ
′x)| ·µ′fS(µ

′(w+x))dwdx (27)

Since fS and fT are C1, by the mean-value theorem applied pointwise, we have

|µfS(µx)−µ′fS(µ
′x)| ≤LS(x)|µ−µ′|

|λfT (λx)−λ′fT (λ
′x)| ≤LT (x)|λ−λ′|,
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where

LS(x) = sup
µ∈[µ,µ̄]

∣∣∣∣ ddµµfS(µx)
∣∣∣∣

LT (x) = sup
λ∈[λ(p),λ(p)]

∣∣∣∣ ddλλfT (λx)
∣∣∣∣ .

Note that

LS(x) = sup
µ∈[µ,µ̄]

|fS(µx)+µxf ′
S(µx)|

≤K1{0≤ x≤ c}+ sup
µ∈[µ,µ̄]

[(
1+x

∣∣∣∣ ddx log fS(µx)

∣∣∣∣)fS(µx)1{x≥ c}
]

≤K1{0≤ x≤ c}+ sup
µ∈[µ,µ̄]

[
(1+D1(µx)+D2(µx)

k+1)fS(µx)
]

≤K1{0≤ x≤ c}+(1+D1(µ̄x)+D2(µ̄x)
k+1) sup

µ∈[µ,µ̄]

fS(µx)

In the first inequality, we use the Weierstrass theorem to obtain an upper bound for fS and f ′
S

over [0, µ̄c] with the assumption that fS ∈ C1. For the second inequality, we use Assumption 7 (iii)

to bound the log-derivative. Then, for (26), we have∫ ∞

0

∫ ∞

−x

eα1w+α2x|µfS(µ(w+x))−µ′fS(µ
′(w+x))| ·λfT (λx)dwdx

=

∫ ∞

0

∫ ∞

0

eα1(w−x)+α2x|µfS(µw)−µ′fS(µ
′w))| ·λfT (λx)dwdx

≤Cλ|µ−µ′| ·
∫ ∞

0

∫ ∞

0

eα1w+(α2−α1)xLS(w)λfT (λx)dwdx

≤Cλ|µ−µ′| ·
∫ ∞

0

∫ ∞

0

eα1wLS(w)λfT (λx)dwdx.

since α2 <α1. For the above integral to be finite, it is sufficient to show that L(w) is exponentially

integrable. ∫ ∞

0

eα1wLS(w)dw

≤
∫ ∞

0

eα1wK1{0≤w≤ c}+ eα1w(1+D1(µ̄w)+D2(µ̄w)
k+1) sup

µ∈[µ,µ̄]

fS(µw)dw

≤Kceα1c +

∫ ∞

0

eα1w(1+D1(µ̄w)+D2(µ̄w)
k+1) sup

µ∈[µ,µ̄]

fS(µw)dw <∞

Thus, there exists C ′ ∈ (0,∞), such that∫ ∞

0

∫ ∞

−x

eα1w+α2x|µfS(µ(w+x))−µ′fS(µ
′(w+x))| ·λfT (λx)dwdx≤C ′|µ−µ′|.
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Following similar arguments, we can bound (27) as∫ ∞

0

∫ ∞

−x

eα1w+α2x|λfT (λx)−λ′fT (λ
′x)| ·µ′fS(µ

′(w+x))dwdx

≤C|λ−λ′|
∫ ∞

0

∫ ∞

0

eα1w+(α2−α1)xLT (x) ·µ′fS(µ
′w)dwdx

≤C|λ−λ′|
∫ ∞

0

eα1w ·µ′fS(µ
′w)

∫ ∞

0

LT (x)dxdw

≤C|λ−λ′|
(∫ ∞

0

eα1wµ′fS(µ
′w)dw

)
·

[
Kc+

∫ ∞

0

(1+D1(λ̄x)+D2(λ̄x)
k+1) sup

λ∈[λ,λ̄]

fT (λx)dx

]
≤C ′|λ−λ′|

where C ′ ∈ (0,∞) since λfT (λx) and µ
′fS(µ

′w) have finite moment-generating functions.

We next bound (25). Let hθ denote the density of S
µ
− T

λ
. hθ is Lipschitz since it is a convolution

of Lipschitz densities:

hθ(x) =

∫ ∞

0

µfS(µ(x+ t))λfT (λt)dt

Then, ∣∣∣∣P(Sµ − T

λ
≤−w0

)
−P

(
S

µ′ −
T

λ′ ≤−w0

)∣∣∣∣
≤
∫ −w0

−∞
|hθ(x)−hθ(x)|dx

=

∫ −w0

−∞

∣∣∣∣∫ ∞

0

µfS(µ(x+ t)) ·λfT (λt)dt−
∫ ∞

0

µ′fS(µ
′(x+ t)) ·λ′fT (λ

′t)dt

∣∣∣∣dx
≤
∫ −w0

−∞

∫ ∞

0

|µfS(µ(x+ t))−µ′fS(µ
′(x+ t))|λfT (λt)dtdx

+

∫ −w0

−∞

∫ ∞

0

|fT (λt)− fT (λ
′t)|µ′fS(µ

′(x+ t))dtdx

≤|µ−µ′|
∫ −w0

−∞

∫ ∞

0

LS(x+ t)λfT (λt)dtdx

+ |λ−λ′|
∫ −w0

−∞

∫ ∞

0

LT (t)µ
′fS(µ

′(x+ t))dtdx

≤C(|µ−µ′|+ |λ−λ′|).

using the previous bounds for LS(x) and LT (t). □

Lemma 14 (Smoothness of the gradients). There exists a constant L∈ (0,∞) such that

∥∇ℓ(µ,p)−∇ℓ(µ,p)∥ ≤L (|µ−µ′|+ |p− p′|) ,

∥g(µ,p, z)− g(µ,p, z′)∥ ≤LdV (z, z
′).



52

Proof. Recall the characterization of ∇l and g in (12) and (13). For the first bound, we first note

that under Assumption 6, c′′ and λ′′ are uniformly bounded. Second, the Lipschitz continuity of

E[W∞(µ,p)] has been established in Lemma 4 of Chen et al. (2023a). We next establish the Lipschitz

continuity of E[X∞(µ,p)]. For this, we leverage the result from Rudolf and Schweizer (2018), which

shows that Lipschitzness of the one-step transition function and Wasserstein ergodicity implies the

Lipschitzness of the stationary distribution. In particular, by Theorem 3.1 of Rudolf and Schweizer

(2018),

dV (Z∞(θ),Z∞(θ′))≤ KΓ

(1− ρ)2
∥θ− θ′∥

where Γ is the Lipschitz constant for the one-step transition kernel:

Γ = sup
z

sup
θ,θ′

dV (δzPθ, δPθ′)

V (z)∥θ− θ′∥
,

which was established in Lemma 13, ρ is the Lyapunov drift in Lemma 11 and the Wasserstein

contraction rate in Lemma 12, andK is the constant term in the Wasserstein contraction in Lemma

12. Since X ≤Aeα1W+α2X for some constant A∈ (0,∞) large enough, we have

|E[X∞(θ)−X∞(θ′)]| ≤AdV (Z∞(θ),Z∞(θ′))

≤A
KΓ

(1− ρ)2
∥θ− θ′∥.

For the second bound, since g is linear in z and there exists L large enough so that

∥z− z′∥1 ≤ (|w|+ |x|+ |w′|+ |x′|)1{z ̸= z′}

≤L
(
eα1|w|+α2|x| + eα1|w′|+α2|x′|

)
1{z ̸= z′},

we have ∥g(µ,p, z)− g(µ,p, z′)∥ ≤Ld(z, z′). □

We next verify Assumption 3, i.e., bounds of the gradients.

Lemma 15 (Bounds of the gradients). There exists M ∈ (0,∞), such that ∥g(µ,p, z)∥ ≤

MV (z) and ∥∇ℓ(µ,p)∥ ≤M .

Proof. Since ex ≤ 1+x, under Assumption 6, there exists M > 0, such that

gp(µ,p, z) =−λ(p)− pλ′(p)+h0λ
′(p)

(
w+x+

1

µ

)
≤M exp(α1w+α2x)

and

gµ(µ,p,Zt) = c′(µ)−h0

λ′(p)

µ

(
Wt +Xt +

1

µ

)
≤M exp(α1w+α2x)
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Next, since E[W∞(µ,p)] <∞ and E[X∞(µ,p)] <∞, under Assumption 6, there exists M > 0,

such that

∂

∂p
ℓ(µ,p) =−λ(p)− pλ′(p)+h0λ

′(p)

(
E[W∞(µ,p)]+E[X∞(µ,p)]+

1

µ

)
≤M

and
∂

∂µ
ℓ(µ,p) = c′(µ)−h0

λ′(p)

µ

(
E[W∞(µ,p)]+E[X∞(µ,p)]+

1

µ

)
≤M.

□

Lastly, since we can sample directly from g, no further approximation, ĝt, is needed, i.e., Assump-

tion 5 holds trivially. This concludes the proof of Theorem 3.

D. Proofs of the results in Section 5
D.1. Proofs of Propositions 1 and 2

We first present and prove some auxiliary lemmas.

Let τcov be the first time at which st have visited all the states. Then we define define the cover

time (Levin and Peres 2017) as

tcov =max
s∈S

Ex[τcov].

Note that from Theorem 11.2 in (Levin and Peres 2017)

tcov ≤ thit

|S|−1∑
k=1

1

k
.

Similarly, we define t̂hit and t̂cov as the hitting time and cover time of the finite-state Markov chain

(st, ât) respectively.

Lemma 16. Suppose the Markov chain st has a finite hitting time thit. Then, the cover time of

the Markov chain (st, ât) satisfies

t̂cov ≤ (1+ thit)|A|
|S||A|−1∑

k=1

1

k

Proof. Define κ̂s,â =min{t≥ 0 : st = s, ât = â}. Consider two arbitrary states (s, â) and (s′, â′)

and we are interested in bounding Es,â[κ̂s′,â′ ]. Let ζ0 = 0, and ζk, k≥ 1 be the sequence of stopping

time defined as ζk = inf{t > ζk−1 : st = s′}. We also write ∆ζk = ζk+1 − ζk. Since ât are sampled

uniformly at random from A, independent of st, we have

κ̂s′,â′
d
=

N∑
k=1

∆ζk,

where N is a Geometric random variable with probability Of success 1/|A| and is independent of

∆ζk. In addition, note that Es[∆ζ1]≤ thit and Es′ [∆ζk]≤ 1+ thit for k≥ 2. Then,

Es,â[κ̂s′,â′ ]≤E[N ](1+ thit) = (1+hhit)|A|.
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Thus, t̂hit ≤ (1+ thit)|A|. Then, the bound for the cover time follows from Theorem 11.2 in (Levin

and Peres 2017). □

Lemma 17. For a sequence of stopping times {τk}k≥0 with N(t) = supk{τk ≤ t}, if there exists

t0 > 0, such that Pt(N(t+ t0)>N(t))≤ 1
2
, then

Pτ0(τK − τ0 > 12Kt0)≤ exp(−K).

Proof. Without loss of generality, we assume τ0 = 0. Let Am = 1N(mt0)>N((m−1)t0). Then,

E(m−1)t0Am = P(m−1)t0(N(mt0)>N((m− 1)t0))≥ 1/2.

Next note that N(12Kt0)≥
∑12K

m=1Am and |Am −E(m−1)t0Am|< 1. Then,

Pτ0(τK − τ0 > 12Kt0) =P(N(12Kt0)<K)

≤P

(
12K∑
m=1

Am <K

)

≤P

(
12K∑
m=1

(Am −E(m−1)t0Am)<K − 12K
1

2

)

≤ exp

(
− (−5K)2

2× 12K

)
by Azuma’s inequality

≤ exp(−K).

□

Lemma 18. Given two matrices A and B, if det(A+αB) = 0 for all α, then there exist nonzero

W0 and W1 such that that AW0 = 0 and AW1 +BW0 = 0.

Proof. Let A=UΛV T denote the singular value decomposition of A. Suppose the first r entries

of Λ are zero. Let C =UTBV . We write

Λ=

[
0 0
0 Λ4

]
, C =

[
C1 C2

C3 C4

]
where Λ4 is invertible. Then, there exists α0 such that for all α≤ α0, [Λ4 +αC4]

−1 exists and its

L2 norm is smaller than a constant. Moreover,

0 = det(A+αB) = det(Λ+αC) = det(Λ4 +αC4)det(αC1 −α2C2[Λ4 +αC4]
−1C3).

This implies that

det(C1 −αC2[Λ4 +αC4]
−1C3) = 0,

which further implies det(C1) = 0. Let w0 be a nonzero r-dimensional vector such that C1w0 = 0.

Next let w1 =−Λ−1
4 C3w0 which is a n−r dimensional vector. Next, extend w0,w1 to an n-dimension

vector w̄0 = [wT
0 ,0, . . . ,0]

T , w̄1 = [0, . . . ,0,wT
1 ]

T . Let Wi = V w̄i, i= 0 and 1, then

AW0 =UΛV TV w̄0 = 0, AW1 =UΛV TV w̄1 =U [0, (Λ4w1)
T ]T
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BW0 =UCV TV w̄0 =U [0, (C3w0)
T ]T ,

which leads to our conclusion. □

Proof of Proposition 1. Consider running two coupled Zt and Z̃t under π
θ, where Z̃0 ∼ µθ, and

the transition is coupled so that

(ât, at, st+1, s
′
t+1, a

′
t+1) = (˜̂at, ãt, s̃t+1, s̃

′
t+1, ã

′
t+1)

if st = s̃t. First, there exists a stopping time τ0 :=min{t≥ 0 : st = s̃t}, since st is ergodic under πθ.

Note that under the coupling, (st, ât, at) = (s̃t, ˜̂at, ãt) for t≥ τ0. In addition,

P
(
τ0 ≥

| log(ϵ/(8M +4))|
| log(1/4)|

tmix

)
≤ ϵ

4(2M +1)
.

Let ∆t :=Qt − Q̃t. Then, for t≥ τ0,

∆t+1(st, ât) = (1−α)∆t(st, ât)+ γα∆t(s
′
t+1, a

′
t+1).

Consider a sequence of covering times, {τk}k≥1, where τk is the time it takes (st, ât) to visit all the

state-action pairs at least k times:

τk =min{t > τk−1 s.t. for any (s, a)∈ S ×A there is a u∈ (τk−1, t] s.t. su = s, âu = a} .

We next use induction to show that

∥∆t∥∞ ≤ (1− (1− γ)α)k−1∥∆τ0∥∞, ∀τk < t≤ τk+1.

The claim holds trivially when k= 0. Suppose it is true for τk, then for τk < t< τk+1, we first note

that if (s, a) ̸= (st, ât), ∆t+1(s, a) =∆t(s, a). If (s, a) = (st, ât),

∆t+1(s, a)≤ (1−α+αγ)∥∆t∥∞

This indicates that ∥∆t+1∥∞ ≤ ∥∆t∥∞. Thus,

∆t+1(s, a)≤ (1−α+αγ)∥∆t∥∞ ≤ (1−α+αγ)∥∆τk∥∞.

This further indicates that when all state-action pairs are visited at least once after τk, We have

∥∆τk+1
∥∞ ≤ (1−α+αγ)∥∆τk∥∞.

Next, let N(t) = supk{τk ≤ t}. Recall that t̂cov is the cover time of the Markov chain (st, ât).

Since Et[τN(t)+1 − t]≤ t̂cov,

t̂cov ≥
∑

k>2t̂cov

kPt(τN(t)+1 − t= k)≥ 2t̂covPt(τN(t)+1 − t > 2t̂cov),
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which implies that

Pt(τN(t)+1 − t > 2t̂cov)≤
1

2
and Pt(N(t+2t̂cov)>N(t))≥ 1

2
.

Then, by Lemma 17, P((τK − τ0)≥ 12Kt̂cov)≤ e−K . Since d̃(Z, Z̃)≤ 1+2M and ∥∆τ0∥∞ ≤ 2M , for

any

η̄ϵ ≥
| log(ϵ/(8M +4))|

| log(1/4)|
tmix +max

{
| log(ϵ/(4M))|

| log(1−α+αγ)|
,12| log(ϵ/(8M +4))|

}
t̂cov,

we have

d(Zη̄ϵ , Z̃η̄ϵ)≤(2M +1)P
(
τ0 >

| log(ϵ/(8M +4))|
| log(1/4)|

tmix

)
+(2M +1)P(τK − τ0 ≥ 12| log(ϵ/(8M +4))|t̂cov)

+ 2M(1− (1− γ)α)
| log(ϵ/(4M))|
| log(1−α+αγ)|

≤(2M +1)
ϵ

4(2M +1)
+ (2M +1)

ϵ

4(2M +1)
+

ϵ

4M
2M ≤ ϵ.

Lastly, by Lemma 16, t̂cov ≤ (1+ thit)|A|
∑|S||A|−1

k=1 1/k. □

Proof of Proposition 2. The first claim is due to the fact that xt = (st, at) is a Markov chain

with invariant measure νθ.

For the second claim, to simplify the notation, we denote x, y as two state-action pairs. Let

W (y,x) :=
1

νθ(x)

∑
Q

µθ(x,Q)Q(y), (28)

which can be seen as an |S||A|-dimensional vector.

For fixed x and y, we consider a test function G(Q,s, a) = Q(y)1(s,a)=x. Under the invariant

measure, we should have

Ezt∼µθ [G(Qt+1, st+1, at+1)] =Ezt∼µθ [G(Qt, st, at)]

=
∑
Q

µθ(x,Q)Q(y) = νθ(x)W (y,x). (29)

For clarity with notation, let y= (sy, ay) and let x̃= (s̃, ã). Let â denote the random action sampled

for the TD learning step (sampled uniformly at random from A. We can expand the one-step
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expectation as

Ezt∼νθ [G(Qt+1, st+1, at+1)]

=
∑
x̃,Q

µθ(xt = x̃,Qt =Q)
[
(1s̸̃=sy +1s̃=syP(â ̸= ay))Pθ(x̃, x)Q(y)

+ 1s̃=syP(â= ay)Pθ(y,x)((1−α)Q(y)+αr(y)+αγEθ[Q(s′t+1, a
′
t+1)])

]
=
∑
x̃,Q

µθ(x̃,Q)Pθ(x̃, x)Q(y)

−α
1

|A|
∑

x̃:s̃=sy

∑
Q

µθ(x̃,Q)Pθ(x̃, x)
[
Q(y)− r(y)− γ

∑
x′

Pθ(y,x′)Q(x′)
]

=
∑
x̃

νθ(x̃)W (y, x̃)Pθ(x̃, x)

−α
1

|A|
∑

x̃:s̃=sy

νθ(x̃)Pθ(x̃, x)
[
W (y, x̃)− r(y)− γ

∑
x′

Pθ(y,x′)W (x′, y)
]

(30)

Putting (29) and (30) together, we have

νθ(x)W (y,x)

=
∑
x̃

νθ(x̃)W (y, x̃)Pθ(x̃, x)

−α
1

|A|
∑

x̃:s̃=sy

νθ(x̃)Pθ(x̃, x)
[
W (y, x̃)− r(y)− γ

∑
x′

Pθ(y,x′)W (x′, y)
] (31)

By enumerating all possible x, y combinations, we have a system of |S × A|2 linear equations.

Then, it suffices to show this linear equation system has a unique solution W and verify that

W (y,x) =Qθ(y) is a solution.

To show the solution is unique, we note that the system of linear equations can be written as

AW −αBW = αb,

where A,B are |S ×A|2 × |S ×A|2 matrices, and b is an |S ×A|2-dimensional vector. For such a

system to have multiple solutions, f(α) := det(A− αB) has to be zero. Note that since A− αB

is linear in α, f(α) is a polynomial function of α. This implies that f(α) either has finitely many

roots or f(α) ≡ 0. If f(α) ≡ 0, then there exist nonzero W0 and W1 such that AW0 = 0 and

AW1 +BW0 = 0 (see Lemma 18). AW0 = 0 implies that for all x, y,

νθ(x)W0(y,x)−
∑
x̃

νθ(x̃)W0(y, x̃)Pθ(x̃, x) = 0,

which indicates that W0(y,x) =W0(y, x̃) for all x̃. We write W0(y) :=W0(y,x). We plug this into

the second equation AW1 +BW0 = 0, and obtain for all x, y
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νθ(x)W1(y,x)−
∑
x̃

νθ(x̃)W1(y, x̃)Pθ(x̃, x)

+
1

|A|
∑

x̃:s̃=sy

νθ(x̃)Pθ(x̃, x)
[
W0(y)− γ

∑
x′

Pθ(y,x′)W0(x
′)
]
= 0

For each fixed y, we sum the equations above for all x and obtain

1

|A|
νθs (sy)[W0(y)− γ

∑
x′

Pθ(y,x′)W0(x
′)] = 0.

This gives

W0(y) = γ
∑
x′

Pθ(y,x′)W0(x
′).

Let y= argmaxxW0(x), then we have W0(y)≡ 0, which is a contradiction.

We next verify that W (y,x) =Qθ(y) is a solution. Since

νθ(x) =
∑
x̃

νθ(x̃)Pθ(x̃, x) and Qθ(y) = r(y)+ γ
∑
x′

Pθ(y,x′)Qθ(x′),

we have

νθ(x)Qθ(y) =
∑
x̃

νθ(x̃)Qθ(y)Pθ(x̃, x)

−α
1

|A|
∑

x̃:s̃=sy

νθ(x̃)Pθ(x̃, x)
[
Qθ(y)− r(y)− γ

∑
x′

Pθ(y,x′)Qθ(x′)
] (32)

Lastly, note that

Eµθ [Q(st, at)∇θπ
θ(at|st)] =

∑
s,a

νθ(s, a)Eµθ [Q(st, at)|st = s, at = a]∇θπ
θ(a|s)

=
∑
s,a

νθ(s, a)Qθ(s, a)∇θπ
θ(a|s).

□

D.2. Proof of Theorem 5

We proceed to verify that the assumptions required in Theorem 1 hold for the actor-critic update

in Algorithm 1.

First, it is worth noting that under Assumption 8, if Q0 is initialized to be ∥Q0∥∞ ≤ M
1−γ

, then

∥Qt∥∞ ≤ M
1−γ

almost surely for all t, under any policy πθ.
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Lyapunov Function. For the Markov chain Zt = (st, at,Qt). we denote P̃θ as its transition kernal.

Since there are finitely many states and actions and ∥Qt∥∞ ≤ M
1−γ

almost surely, we can construct

a Lyapunov function for which the drift inequality holds trivially:

V (z) = 1+ ∥Q∥∞

The corresponding drift inequality is

P̃θV (z)≤ 1+
M

1− γ

where ρ = 0 and K = 1 + M
1−γ

. We have thus verified the first part of Assumption 1. Similarly,

Assumption 4 also holds trivially.

Wasserstein Ergodicity. For z = (s, a,Q), we consider the metric

d̃(z, z̃) = 1(s,a)̸=(s̃,ã) + ∥Q− Q̃∥∞. (33)

We next show that for any θ ∈Θ and any z and z̃,

d(δzP̃t
θ, δz̃P̃t

θ)≤ (8M +4)rt

where

r= exp

{
−
(

1

log(1/γ)
+

(
1

log(1/(1−α+αγ))
+ 12

)
(1− γ)mins ρ(s)+ 1

(1− γ)mins ρ(s)
|A|(1+ log(|S||A|))

)−1
}
,

(34)

which verifies the second part of Assumption 1.

We first bound the mixing time and hitting time of st, which we denote as tmix and thit. Recall

that st is a finite-state Markov chain with the transition kernel

P̄θ(st+1|st) := γ
∑
at∈A

P (st+1|st, at)πθ(at|st)+ (1− γ)ρ(st+1).

Note that st satisfies a strong version of Doeblin’s condition: for any states s0, s∈ S,

P̄θ(s|s0)≥ (1− γ)ρ(s).

Let ν̄θ denote the stationary distribution of st. Since 1 − (1 − γ)
∑

s ρ(s) = 1 − (1 − γ) = γ, by

Theorem 16.2.4 in Meyn and Tweedie (2012), we have

||δ(s)P̄n
θ − ν̄θ||TV ≤ γn,

which is uniform across all policy parameters θ. As a result, the mixing time tmix of st satifies

tmix ≤ log(1/4)/ log(1/γ).
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For the hitting time, we have for any s0, s∈ S,

Es0 [κs]≤
1

(1− γ)ρ(s)
.

Thus, thit ≤ 1/((1− γ)mins ρ(s)).

Given the bounds for tmix and thit, by Proposition 1, we have that the ϵ-mixing time of Zt satisfies

η̄ϵ ≤
| log(ϵ/(8M +4))|

| log(1/4)|
log(1/4)

log(1/γ)
+max

{
| log(ϵ/(4M))|

| log(1−α+αγ)|
,12| log(ϵ/(8M +4))|

}
×
(
1+

1

(1− γ)mins ρ(s)

)
|A|

|S||A|−1∑
k=1

1

k

≤| log(ϵ/(8M +4))|
| log(1/γ)|

+max

{
| log(ϵ/(4M))|

| log(1−α+αγ)|
,12| log(ϵ/(8M +4))|

}
× (1− γ)mins ρ(s)+ 1

(1− γ)mins ρ(s)
|A|(1+ log(|S||A|))

≤
(
log

1

ϵ
+ log(8M +4)

)
×
(

1

log(1/γ)
+

(
1

log(1/(1−α+αγ))
+ 12

)
(1− γ)mins ρ(s)+ 1

(1− γ)mins ρ(s)
|A|(1+ log(|S||A|))

)
=

(
log

1

ϵ
+ log(8M +4)

)
1

log(1/r)
.

Thus, given t, we can achieve d(Zt, Z̃t)≤ ϵtd̃(z, z̃), where ϵt = (8M +4)rt, since η̄ϵt ≤ t.

Lipschitz Gradients and Transition Kernel. To verify Assumption 2, we first show that the tran-

sition kernel is Lipschitz according to the metric (33):

d̃(δzP̃θ, δzP̃θ̃)≤ (1+ γ∥Q∥∞)R|A|∥θ− θ̃∥.

Under Assumption 10, the action probabilities are Lipschitz:

|πθ(at+1|st+1)−πθ̃(at+1|st+1)|

≤
(
sup
θ′∈Θ

∥∇θπ
θ′(at+1|st+1)∥

)
∥θ− θ̃∥

≤
(
sup
θ′∈Θ

∥πθ′(at+1|st+1)∇θ logπ
θ′(at+1|st+1)∥

)
∥θ− θ̃∥

≤R∥θ− θ̃∥.

Next note that

d(δzP̃θ, δz′P̃θ) =∥δzPθ − δz′Pθ∥TV +E[∥Q1 − Q̃1∥∞],

where Q1 and Q̃1 are properly coupled. We can bound the total variation term using the Lipschitz-

ness of the policy, i.e.,

∥δzPθ − δzPθ̃∥TV =
1

2

∑
(s1,a1)∈S×A

|P (s1|s0, a0)πθ(a1|s1)−P (s1|s0, a0)πθ̃(a1|s1)|
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≤1

2
|A|R∥θ− θ̃∥.

We next bound the difference for the Q-function. Note that starting from the same Q-function Q0,

a′0, which is sampled uniformly at random from A, can be coupled and are thus identical under πθ

and πθ̃. In addition, s′1 which is sampled according to P (·|s0, a′0) can also be coupled and are thus

identical under πθ and πθ̃. Then, the only thing that differs between πθ and πθ̃ is the next action

a′1 in the Q-update, i.e., a′1 ∼ πθ(·|s′1) versus ã′1 ∼ πθ̃(·|s′1). Under the coupling described above, we

have

E[∥Q1 − Q̃1∥∞] =αγE[|Q0(s
′
1, a

′
1)−Q0(s

′
1, ã

′
1)|]

≤αγ∥Q0∥∞
1

2
|A| ·R∥θ− θ̃∥,

since Q0 is bounded function of (s, a).

Finally, we show that ∇ℓ(θ) is also Lipschitz. Recall that µθ denotes the stationary distribution

of Zt under π
θ. By Assumption 1, which we have already verified, and the Lipschitzness of δzP̃θ

verified above, we can apply Theorem 3.1 of Rudolf and Schweizer (2018), which gives us

d(µθ, µθ̃)≤ R|A|(8M +4)

(1− r)(1− γ)
∥θ− θ̃∥

where r is the geometric rate of Wasserstein ergodicity in (34). Since Qt(st, at)∇θ logπ
θ(at|st) is

Lipschitz with respect to the metric d̃(z, z̃), the above bound for d(µθ, µθ̃) implies that ∇ℓ(θ) is

Lipschitz with Lipschitz constant

R|A|(8M +4)

(1− r)(1− γ)
=O

(
1

(1− γ)3

)
.

Note that this matches the dependence on γ for the Lipschitz constant of ∇ℓ(θ) in Zhang et al.

(2020b).

Bounded Gradients. For g(θ, z) =Q(st, at)∇θ logπ
θ(at|st), we have

∥g(θ, z)∥ ≤R(1+ ∥Q∥∞).

In addition,

∇ℓ(θ)≤ M

1− γ
.

We have thus verified Assumption 3. □
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