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Motivated by the growing availability of advanced demand forecast tools, we study how to utilize future

demand information in designing routing strategies in queueing systems under demand surges. We consider

a parallel server system operating in a nonstationary environment with general time-varying arrival rates.

Servers are cross-trained to help non-primary customer classes during demand surges. However, such flex-

ibility comes with various operational costs, such as a loss of efficiency and inconvenience in coordination.

We characterize how to incorporate the future arrival information into the routing policy to balance the

tradeoff between various costs, and quantify the benefit of doing so. Based on transient fluid control analysis,

we develop a two-stage index-based look-ahead policy that explicitly takes the overflow costs and future

arrival rates into account. The policy has an interpretable structure, is easy to implement, and is adaptive

when the future arrival information is inaccurate. In the special case of the N-model, we prove that this

policy is asymptotically optimal even in the presence of certain prediction errors in the demand forecast. We

substantiate our theoretical analysis with extensive numerical experiments, showing that our policy achieves

superior performance compared to other benchmark policies (i) in complicated parallel server systems and

(ii) when the demand forecast is imperfect with various forms of prediction errors.

Key words : skill-based routing, demand surge, managing flexibility, transient queue, optimal control

theory, asymptotic analysis

1. Introduction

In service systems, there are typically multiple classes of customers with different service needs. It is

of critical importance for service operations management to allocate the proper amount of resources

to meet the needs of each class of customers. The resource allocation problem is particularly relevant

and challenging in a time non-stationary environment when certain classes of customers experience

demand surges, and yet their dedicated capacity cannot be scaled up quickly. Meanwhile, with the

recent advancement of statistical learning tools and the growing availability of data, many advanced

forecasting models have been developed to accurately predict future demand patterns and surges.

Take the COVID-19 pandemic as an example: researchers from different fields have worked together
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to develop prediction models of demand surges for different types of hospital resources (e.g., ICU

beds and ventilators). Figure 1 shows the prediction made on one index date (“today”), including

the realized demand (before today, with multiple demand surges) and the projected demand (after

today) for Intensive Care Unit (ICU) beds of COVID-19 patients in the US from Institute for

Health Metrics and Evaluation (2022). Yet, the majority of these prediction models do not provide

prescriptive solutions for the effective allocation of resources. Hospital management needs more

concrete decision support on how to translate the demand forecasts into determining whether

they have enough beds to accommodate the COVID-19 patients, and, if not, whether they should

use beds from other specialties, e.g., by postponing elective surgeries. More generally, there is a

pressing need to integrate demand forecasts in implementable resource allocation decision support

for various service operations applications. In this paper, we address this need by studying how to

utilize future demand information to design optimal routing strategies to deal with demand surges

in parallel server systems. We explicitly characterize how to incorporate future demand into the

routing decision – matching customers with proper resources – and quantify its benefit.

Figure 1 Demand for ICU beds for COVID-19 patients in the US, based on IMHE projection (Institute for Health

Metrics and Evaluation 2022).

We first elaborate on our modeling framework. In recent years, customer specialization has

become increasingly sophisticated with the trend of personalized service. To better serve customers’

different needs, it is common for service systems to have primary server pools, each dedicated to

serving a specific class of customers, with “servers” in that pool trained in skill sets tailored to

the primary customer class. For example, hospitals usually partition inpatient beds into different

specialty units and assign nurses trained to care for patients in that specialty. Call centers may

hire agents who speak different languages to serve customers with different language needs. In this

paper, we use servers to refer to the critical resources in service systems, such as staffed hospital

beds, call center agents, etc. While specialization for each class of customers has the obvious
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benefits of delivering high-quality services and improving customer experiences, it is also common

practice for service systems to cross-train servers so that they can serve non-primary customers

when necessary. The main reason is the presence of variability in demand. In particular, while

demand can change significantly from time to time, the capacity in each server pool is rather static,

since it takes time to train new staff or build new facilities.

We distinguish between two types of variabilities in demand: one is normal stochastic fluctuations

due to the randomness in customer arrivals and service requirements; the other is the unusual

increase in demand that can cause prolonged congestion in the system. The latter is often referred

to as a demand surge. To deal with the normal range of stochastic fluctuations in demand, a certain

degree of slackness is usually added in the capacity – employing the square-root staffing rule, where

the staffing level is set to meet the mean demand plus an uncertainty hedging term that is of the

square root order of the mean demand. This staffing principle is shown to be near-optimal for

systems operating in a stationary environment (Borst et al. 2004).

Demand surges happen infrequently, but can lead to severe congestion and service quality dete-

rioration. For example, the ongoing COVID-19 pandemic has put an enormous amount of stress

on healthcare delivery systems. A bad flu season or a mass casualty incident can cause a sud-

den increase in certain types of patients arriving at hospitals. Advancements in machine learning

and predictive analytics have significantly increased our ability to forecast some of these surges.

With the future demand information, system managers may proactively leverage partial flexibil-

ity in customer routing, that is, temporarily assigning customers experiencing demand surges to

non-primary servers, to effectively mitigate the effect of demand surges.

However, concrete decision rules are, in general, lacking to support the routing decision under

time-varying demand, especially when we need to carefully balance the benefits and costs associated

with using flexible resources. For example, in the hospital inpatient flow setting, flexibility comes

in the form of off-service placement – sending patients of a particular specialty to a non-primary

ward that is designated to treat a different specialty. While off-service placement can help achieve

better resource utilization, it can also lead to worse patient outcomes, including a longer length of

stay and higher readmission rate (Song et al. 2019). In addition, it may generate a greater workload

for nurses in the off-service ward due to multi-tasking (Best et al. 2015), and can create a sense of

unfairness among staff (Armony and Ward 2010). Similar tradeoffs between the benefits and the

costs of flexibility are also pervasive in other service systems. Examples include call centers (Aksin

et al. 2007), bike-sharing (Shu et al. 2013), and emergency departments (Song et al. 2015).

In this paper, we take an important first step to study how to leverage future demand information

to deal with temporary demand surges with (partial) flexibility. The goal is to design routing

policies that optimally balance the benefits and costs of flexibility. To model the typical service
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setting, we consider a queueing system with multiple classes of customers and multiple server pools.

Each class has its own dedicated pool of servers, which we refer to as its primary pool. When

the system is congested, customers can be assigned to certain non-primary pools. Such routing is

referred to as “overflow.” Decisions need to be made between routing a customer to the primary

pool or to the non-primary pool. The obvious benefit of overflow is to reduce congestion, captured

via the holding cost. Meanwhile, overflow is associated with the following costs:

1. Service slowdown: To capture the potential efficiency loss when customers are served in a

non-primary pool, the service rates are both class- and pool-dependent. For each class of customers,

the service rates in the non-primary pools are slower than that in the primary pool.

2. Overflow cost : Assigning customers to non-primary pools not only increases the service time,

but also imposes other inconvenience costs and/or costs caused by compromised service quality.

We model these costs through an overflow cost. That is, a penalty is charged for a customer that

is placed in a non-primary pool. We allow the overflow costs to be both class- and pool-dependent,

which can reflect heterogeneous levels of “utility” (or inconvenience cost) when assigning customers

from different classes to different server pools.

To model demand surges, we allow general time-varying arrival rates whereby one or more

customer classes may experience one or multiple demand surges within a certain time period.

Scenarios with multiple surges are of particular interest in light of the recent COVID-19 pandemic.

To understand the value of demand forecasts, we focus on the scenario where we have access to

future arrival rates, which may be subject to prediction errors.

Our objective for optimal routing is to minimize the cumulative holding (linear waiting) costs

and overflow costs until the demand surge is fully absorbed. The problem is challenging due to the

salient features in our model. Specifically,

1. The general time-varying arrival rate complicates the decision of when to initiate or stop over-

flow: it could be optimal to initiate before the queue builds up in anticipation of congestion caused

by a demand surge; or to end the overflow earlier, before the queue is depleted, in anticipation of

the end of a surge. The prediction error and multiple surges present further complications.

2. Because of service slowdown, a very aggressive overflow policy generates more workload, which

may lead to a higher holding cost than having no overflow.

3. In the presence of overflow costs, the optimal routing policy may not be work-conserving.

That is, when a class has a positive queue, even when the non-primary pools have extra capacity,

it may be better to keep those non-primary servers idle to avoid the overflow cost.

To sum up, the overflow cost and service slowdown, compounded with the general time-varying

arrival rates, make the routing decisions highly nontrivial. Unnecessary overflow can result in both

higher holding costs and higher overflow costs. These complications can cause existing well-known
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policies, such as the cµ-rule (Buyukkoc et al. 1985) or the maximum pressure policy (Dai and Lin

2005), to perform highly suboptimally. The non-stationarity and high dimensionality of the problem

also make many existing analytical and numerical tools inapplicable. To derive structural insights

into the routing problem, we take the fluid approximation approach. We formulate a transient

fluid control problem and derive closed-form index-based optimal policies using its dual. Our main

results and contributions are as follows:

I. Prescriptive framework. We are one of the first papers to prescribe how to incorporate

demand forecasts of time-varying arrival rates into real-time routing decisions in a multi-class,

multi-server system. Most existing papers on time-varying queues either assume that the time-

varying arrival rates are known and have some periodic patterns (Liu and Whitt 2011), or they

focus on capacity planning to hedge against the uncertain arrival rates (Bassamboo and Zeevi

2009). On the other hand, most demand forecasting works focus on the prediction side only; see,

for example, Ibrahim and L’Ecuyer (2013) for call center arrivals and Baas et al. (2021) for hospital

occupancy. Our paper bridges demand forecasts with a key operational decision: customer routing.

We explicitly characterize how to incorporate the demand forecast in the routing policy by solving

a transient fluid control problem. We then translate the fluid-based policy to the stochastic system

and provide the performance guarantee by proving its asymptotical optimality for a sequence of

properly scaled stochastic systems even when there are prediction errors, as long as the errors

are of a smaller order than the actual arrival rates. To the best of our knowledge, the asymptotic

optimality result in the presence of prediction errors in a time-nonstationary environment is novel.

II. Two-stage index-based policy using future demand information. Our main develop-

ment focuses on the N-model, a two-class model in which the primary pool for class 2 can provide

help to class 1 but not the other way around. The scheduling policy derived from the fluid control

can be summarized as a two-stage index-based look-ahead policy, which is highly interpretable

and easy to implement. In the first stage, we compare the hµ index, where h is the holding cost

and µ is the service rate, to decide which class can be prioritized. In the second stage, we look at

another index that combines the hµ index, the time it takes to empty the queues with a proper

set of resources, and the overflow costs to decide how long the overflow (if any) should last. The

calculation of the time to empty the queues is where the future arrival rate information is utilized.

The actual policy will be made precise in Section 3.

Interpreting our two-stage index-based look-ahead policy provides insights into the value of future

demand information and how to proactively prioritize different customers under demand surges.

In particular, based on the second-stage index, our policy suggests that other server pools may

start prioritizing the customer class that is about to experience a demand surge, even though this

class is not very congested yet. Similarly, when a customer class has a large queue, but the demand
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surge is about to dissipate, other server pools may stop helping this class in anticipation of the

upcoming drop in demand. This proactive nature of our policy is distinct from other well-known

policies that are agnostic to the arrival rate, such as the cµ rule and the maximum pressure policy.

In our numerical experiments, we demonstrate that the cµ rule or the maximum pressure policy,

even after adjustments to account for the overflow cost, can sway from performing reasonably well

to significantly worse depending on the arrival rate settings: in certain scenarios, the cost gap

between these policies and our proposed policy can exceed 100%, whereas our policy consistently

performs well across a large combination of parameter settings tested.

We stress that although it is somewhat expected that having future demand information is

beneficial, it is highly nontrivial to identify the proper form of incorporating it in the routing

decision. Our results show that one needs to compare the holding cost and overflow cost in proper

time scales and account for the externality of congestion (Naor 1969).

III. Pontryagin’s minimum principle. Due to the time nonstationarity and high dimension-

ality, the corresponding scheduling problem has not been well-studied in the literature. We derive

structural insights by studying the corresponding fluid transient control problem and its dual. In

particular, our index-based policy is derived using Pontryagin’s minimum principle, and the deriva-

tion involves non-trivial applications of the principle due to state constraints. The main difficulty

lies in coming up with the right dual variables. The problem is further complicated by the fact

that there are multiple customer classes and general time-varying arrival rates. By explicitly char-

acterizing the dual variables, we derive a two-stage index structure of the optimal policy. These

developments could shed light on other transient queueing control problems.

IV. Practical applicability to complex systems. For a scheduling policy to be useful in prac-

tice, it needs to be adaptable to (i) complicated network structures and (ii) imperfect demand

forecasts. For (i), we extend the fluid-control analysis beyond the N-model, and explicitly char-

acterize the optimal fluid-control policy for the X-model and some multi-class extensions of the

N-model. Based on the structure of optimal control in these models, we propose a two-stage index-

based look-ahead policy for general multi-class, multi-pool systems. We evaluate the performance

of this look-ahead policy in stochastic systems via simulation. We also compare the performance

of this heuristic policy to other benchmark policies, such as the cµ rule and the maximum pressure

policy, and show that our policy achieves superior performance for a wide range of parameters in

different network settings, including 5-by-5 systems that are parameterized based on the setting of

a hospital inpatient ward network.

For (ii), it is worth noting that our policy is adaptive by nature. In particular, the estimation

of the time to empty the queue can be easily updated based on the demand information available

and the observed queue length at each decision epoch. We discuss these extensions in Sections 3.2
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and 3.3. Furthermore, we substantiate our asymptotic optimality results, which require the predic-

tion errors to be of a smaller order than the arrival rates, with numerical evaluation in scenarios

where (1) the demand forecast has errors that increase over time and can correlate across different

time periods, (2) the forecast is only available up to a limited time window, and (3) the forecast has

a delay. Numerical results suggest that our proposed policy continues to perform well even when

the prediction errors are of a similar magnitude as the arrival rates. The index structure of our

proposed policy has built-in resilience to estimation errors. In particular, we note that a) our index

depends on the time to empty the queue, which in turn depends on the aggregated demand over

time – this quantity is more robust to errors than demand prediction at individual time epochs,

e.g., days, since the daily errors may cancel out when aggregating over multiple days; b) the index

is dynamically updated as the queue builds up or more information becomes available; c) the order

of the index determines the overflow action, so as long as the prediction errors do not change the

orders, our policy is not affected. The adaptiveness of our policy to complex systems, its robustness

to noisy arrival rate information, together with its simplicity, make it very appealing for imple-

mentation in real systems when demand surges are present. The comparison with other benchmark

policies also provides useful insights into managing systems under demand surges.

1.1. Paper Organization

The rest of the paper is organized as follows. We conclude this section with a brief review of the

literature. In Section 2, we introduce our main stochastic model, the N-model, and the associated

optimal routing problem. We study a deterministic fluid control problem in Section 3. We start with

a single demand surge and perfect future arrival rate information, and then introduce adaptations

for estimation errors, limited look-ahead time windows, and multiple surges. The fluid control

problem can be viewed as an approximation to the original stochastic problem. We establish the

asymptotic optimality of the policy derived from the fluid control for a sequence of stochastic

systems in Section 4. We study the optimal fluid control problem for several extended models and

propose a two-stage index-based look-ahead policy for general parallel-server systems in Section

5. We substantiate our theoretical analysis with extensive numerical experiments in Section 6. All

proofs are left to the Appendix and E-companion.

1.2. Literature Review

Our work is related mainly to four streams of literature: flexibility in service systems; skill-based

routing; optimal control theory in queueing; and scheduling with future demand information.

Flexibility in service systems. In the operations management literature, it is well-known that

resource pooling, sometimes through creating flexible resources, can drastically improve system

performance (Akşin and Karaesmen 2007, Graves and Tomlin 2003, Simchi-Levi and Wei 2012,
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Smith and Whitt 1981, van Mieghem 1998). Bassamboo et al. (2012) and Tsitsiklis and Xu (2012)

show that in a stationary environment, even a little flexibility can lead to substantial performance

gain. However, in recent years, a growing amount of research has also studied situations in which

pooling may not be as beneficial. This can be due to system architectures (Mandelbaum and

Reiman 1998), different priorities among different classes of jobs (Ata and Van Mieghem 2009),

efficiency loss due to multi-tasking (Pinker and Shumsky 2000), and agent incentives (Song et al.

2015), to name a few. Our work contributes to this line of literature by analyzing how resource

pooling should be utilized when overflow assignment is associated with a slowdown effect and

overflow costs in a time-nonhomogeneous environment.

Skill-based routing (SBR). There is a rich literature on SBR (Garnett and Mandelbaum 2000).

An exact analysis of SBR is usually analytically intractable due to the large state space and policy

space. Much of the SBR literature utilizes a heavy-traffic asymptotic framework to gain analytical

tractability. Our work relates to conventional heavy-traffic scaling. In this regime, van Mieghem

(1995) studies the scheduling problem of multi-class G/G/1 queues with convex holding costs and

establishes the asymptotic optimality of the generalized cµ rule. In the N-model setting, Harrison

(1998) shows that naive cµ-rule can lead to instability. A discrete-review policy is proposed for the

setting without overflow cost and shown to achieve asymptotically optimal performance in heavy

traffic. Bell andWilliams (2001) show that a threshold-based priority rule is asymptotically optimal.

Mandelbaum and Stolyar (2004) consider a general service system with multiple customer classes

and multiple types of flexible servers. They show that the generalized cµ-rule is asymptotically

optimal over all scheduling disciplines (preemptive and non-preemptive).

Apart from the cµ rule, the maximum pressure policy is another commonly used policy in SBR.

The maximum pressure policy takes the same form as the MaxWeight policy in parallel server

systems. Dai and Lin (2005) and Bramson et al. (2021) show that the maximum pressure policy

is throughput optimal. Dai and Lin (2008) further prove that with quadratic holding cost, the

maximum pressure policy is asymptotically optimal under the conventional heavy-traffic scaling for

some models. Stolyar (2004) establishes the asymptotic optimality of a general class of MaxWeight

policies with strongly convex holding costs. There is also rich literature on SBR in the many-server

asymptotic regimes; see Chen et al. (2020) for a survey. Our work focuses on optimal routing to deal

with demand surge, and our proposed policy is fundamentally different from the policies derived

for stationary settings in the literature. In particular, we explicitly characterize how future arrival

rates and overflow costs should be properly considered when making routing decisions.

Fluid transient control. Fluid approximation, which captures first-order system dynamics well

(Liu andWhitt 2011, Mandelbaum et al. 1998), is often used to analyze transient queueing behavior.

Maglaras (2000) and Bäuerle (2002) detail how to develop effective queueing control policies based
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on the optimal fluid control. Most of these “fluid-inspired” policies try to track the optimal fluid

trajectory in the original stochastic system. Similar ideas have also been applied to other online

resource allocation problems where probabilistic routing based on the fluid optimal solution has

been proposed (see, for example, Jasin and Kumar (2012), Stein et al. (2020)). Different from this

line of research, we employ optimal control theory to explicitly characterize an index structure for

the optimal fluid control; see Sethi and Thompson (2000) and Grass et al. (2008) for an overview

of optimal control theory. In particular, we leverage Pontryagin’s Minimum Principle (Hartl et al.

1995). Hampshire and Massey (2010) review several applications of optimal control theory to

dynamic rate queues. Compared to previous fluid-tracking policies, our policy has an interpretable

structure and is easy to implement in practice. Recently, Hu et al. (2019) apply Pontryagin’s

Minimum Principle to study the optimal scheduling of proactive service in systems with customer

deterioration. Ata and Peng (2020) leverage optimal control theory to study the optimal call-back

scheduling policy in call centers. The policy developed in their paper also has a look-ahead structure

that takes the future arrival rate into account. However, they focus on a single class of customers

and, thus, need only a single index. In contrast, we identify a two-stage index structure when

dealing with multiple classes of customers. The most relevant work is Chang et al. (2004), who

study scheduling policies in a two-class, single-server system. However, they do not incorporate the

overflow cost, and their analysis is limited to simple arrival patterns (high/low constant arrivals)

without considering possible prediction errors. Our analytical framework allows us to study general

time-varying arrivals and the tradeoff between holding and overflow costs.

The value of future demand information. Our analysis highlights the value of future arrival

rate information in transient control problems. A few recent works demonstrate the value of future

demand information in developing effective admission control or scheduling policies (Ata and Peng

2020, Delana et al. 2021, Xu and Chan 2016). These works require more detailed demand infor-

mation, including the actual arrival times and service times of customers. In contrast, our policy

requires only the average future demand (i.e., arrival rate), which can be estimated more easily

in practice. More importantly, we prove the asymptotic optimality of the fluid-based policy in the

N-model even when there are certain prediction errors. Predicted demand has been utilized to

optimize staffing decisions (see, e.g., Bassamboo and Zeevi (2009), Gurvich et al. (2010) for call

center staffing and Hu et al. (2021) for emergency department nurse staffing). Our work is different

from the above works in two main aspects. First, the above works study stationary performance

metrics while we focus on transient system dynamics. Second, routing decisions are fundamentally

different from staffing decisions as they happen at different time scales.
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2. Problem Formulation

To demonstrate our methodology and key insights, we use the N-model as our main model; other

network structures including the X-model and extensions of the N-model are studied in Section 5.

The N-model consists of two customer classes and two server pools. Customers in class i, i= 1,2,

arrive at the system according to a time-varying Poisson process with rate (λi(t))t≥0. Each class

has its own queue when waiting to get served and customers within the same class are served on

a first-come-first-served basis. Class 1 customers can be served by both pool 1 and pool 2 servers,

while class 2 customers can be served only by pool 2 servers. The number of servers in pool i is

si, i= 1,2. The service times are exponentially distributed with class-and-pool-dependent service

rates. In particular, if a class i customer is served by a server in pool j, the service rate is µij. We

assume that µ11 >µ12 to capture the efficiency loss of non-primary service. We also define µ21 = 0

to capture the service incompatibility in the N-model.

Let Xi(t) denote the number of class i customers in the system and Zij(t) denote the number

of class i customers in service in pool j at time t. Let Ai and Sij denote rate-1 Poisson pro-

cesses modeling the arrival and service processes, respectively. Then, the system dynamics can be

characterized via

X1(t) =X1(0)+A1

(∫ t

0

λ1(s)ds

)
−S11

(
µ11

∫ t

0

Z11(s)ds

)
−S12

(
µ12

∫ t

0

Z12(s)ds

)
,

X2(t) =X2(0)+A2

(∫ t

0

λ2(s)ds

)
−S22

(
µ22

∫ t

0

Z22(s)ds

)
,

where Z(t) = (Z11(t),Z12(t),Z22(t)), t ≥ 0, is determined by some routing policy. We consider

the class of preemptive Markovian policies, which can be viewed as a mapping from X(t) =

(X1(t),X2(t)) to Z(t) = (Z11(t),Z12(t),Z22(t)), where Z(t)∈N3
0 satisfies

Z11(t)≤ s1,Z12 +Z22(t)≤ s2,Z11(t)+Z12(t)≤X1(t),Z22(t)≤X2(t).

We consider non-anticipative policies that do not know the realizations of underlying stochastic

processes in the future, but we allow the policies to take future arrival rates (or estimated future

arrival rates) into account. Note that the arrival rates can be viewed as part of the system param-

eters. Let π denote a scheduling policy within the considered policy class. We use the superscript

π to denote the dependence of the system dynamics on the policy – e.g., Xπ and Zπ. We occa-

sionally suppress the superscript when it is clear from the context. We use the words “routing”

and “scheduling” interchangeably in the rest of the paper. Both refer to the action of matching

customers to servers, i.e., which available server (if any) a customer should be routed to or which

waiting customer (if any) an available server should serve next.
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Focusing on planning under demand surges, we consider time-varying arrival rates that can cause

one or more customer classes to experience surges in demand (arrivals). We assume that time 0 is

the beginning of the demand surge and the surge will last for a finite amount of time. In addition,

the surge is sufficiently large such that the total demand exceeds the total processing capacity

during the surge period (this will be made precise in Assumption 1 in the following section).

Figure 1 in Section 1 illustrates one example of demand surges in the COVID-19 context.

Our goal is to operate the system in the most cost-effective way so that it returns to the normal

state of operation after the demand surge. For the objective function, we consider two types of costs

related to the routing decisions: holding cost and overflow cost. We aim to find a routing policy

that minimizes the total cost of holding customers in the system and overflowing class 1 customers

to pool 2 over a properly defined planning horizon. Mathematically, we denote the holding cost for

class i customers as hi, i= 1,2, and the overflow cost for each class 1 customer in pool 2 as ϕ12.

The optimal routing problem is formulated as finding a policy π that minimizes

V π(x) =E
[∫ T

0

h1X
π
1 (t)+h2X

π
2 (t)+ϕ12Z

π
12(t)dt

∣∣∣ X(0) = x

]
. (1)

Here, the planning horizon T is deterministic and is a long enough time such that the system can

fully absorb the demand surge by time T , i.e., T is a time after the demand surge such that X1(T )

and X2(T ) are “small” with a high probability. (The definition of T and the interpretation of small

with a high probability will be made precise in Section 4.)

Solving (1) – i.e., finding a policy π to minimize V π(x) – analytically is intractable. Even solving

it numerically can be computationally prohibitive due to the large state space and policy space.

Thus, we take the approach of studying a corresponding deterministic fluid control problem, which

serves as a good approximation to (1).

3. Fluid Optimal Control

We first specify the deterministic fluid model q(t) = (q1(t), q2(t)) that resembles the stochastic

system described in Section 2. The arrival rates and service rates in the fluid model are the same

as those in the stochastic system. The dynamics of the fluid model are characterized via

q̇1(t) = λ1(t)−µ11z11(t)−µ12z12(t),

q̇2(t) = λ2(t)−µ22z22(t),

where q̇i(t) := dqi(t)/dt. The amount of service capacity assigned to each class in the fluid model,

z(t) = (z11(t), z12(t), z22(t))∈R+,3
0 , is determined by a fluid admissible control that satisfies

q1(t)≥ 0, q2(t)≥ 0, z11(t)≤ s1, z12(t)+ z22(t)≤ s2, z11(t)≥ 0, z12(t)≥ 0, z22(t)≥ 0.
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We denote the set of admissible controls at time t as Z(t). Note that the set of admissible controls

has to satisfy two state constraints: q1(t)≥ 0, q2(t)≥ 0. In particular, when q1(t) = 0, µ11z11(t) +

µ22z22(t)≤ λ1(t), and when q2(t) = 0, µ22z22(t)≤ λ2(t). When viewed as an approximation to the

stochastic system described in Section 2, the fluid model is known to be a good approximation when

the system is very congested or when the variability in the arrival rates dominates the stochastic

variation in the arrivals and services (see, for example, Liu and Whitt (2011), Maglaras (2000),

Yom-Tov and Mandelbaum (2014)). The fluid model can also be viewed as the limit of a sequence

of stochastic systems under the conventional scaling, in which we speed up the arrival and service

rates while keeping the number of servers constant (Chen et al. 2020, Iglehart and Whitt 1970).

We utilize this limit interpretation to establish asymptotic performance guarantees when applying

the scheduling policy derived based on the fluid model to the stochastic system in Section 4. We

interpret qi(t) as the amount of class i “fluid” in the system, and refer to q(t) = (q1(t), q2(t)) as the

fluid queue. zij(t)/sj can be interpreted as the proportion of time pool j capacity is allocated to

serve class i jobs in [t, t+ dt).

We impose the following assumptions on the arrival rate functions.

Assumption 1. The arrival rates λ1(t) and λ2(t) satisfy:

1. For i= 1,2, there exists κi ∈ [0,∞) such that λi(t)≥ siµii when t < κi and λi(t)< siµii when

t≥ κi, i.e., κi is the length of the demand surge for class i.

2. (λi(t))0≤t≤κi
’s are piecewise monotone with a finite number of pieces.

3.
∫∞
κi
(siµii −λi(t))dt=∞.

4. Given X(0) = x, for any t≤ κ1 ∨κ2, where κ1 ∨κ2 =max{κ1, κ2}, W (x, t)> 0, where

W (x, t) = inf
z
q1(t)+ q2(t)

s.t. q̇1(u) = λ1(u)−µ11z11(u)−µ12z12(u), q1(0) = x1

q̇2(u) = λ2(u)−µ22z22(u), q2(0) = x2

z(u)∈Z(u) for all u∈ [0, t].

(2)

Condition 4 in Assumption 1 indicates that the demand surge is large enough such that the fluid

queue cannot be emptied by any admissible control before κ1 ∨ κ2. It might be violated if the

demand surge for class 1 is small (λ1(t)< s1µ11 + s2µ12 for t < κ1) and pool 2 has a lot of spare

capacity (λ2(t)< s2µ22). In addition, note that Assumption 1 considers a single demand surge for

each class. We relax this assumption in Section 3.4 to consider multiple surges.

Remark 1 (Future information on arrival rates). In the baseline fluid analysis, we

assume the arrival rates {λi(t)}t≥0 are known exactly and fully. Later, we show adaptations of

the optimal policy to scenarios where (i) we only have access to estimated arrival rates (Section
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3.2), and (ii) we only have access to a limited look-ahead time window (Section 3.3). When trans-

lating the fluid control policy to the stochastic system, we will show that our proposed policy is

asymptotically optimal even when the arrival rates are estimated with certain errors (Section 4).

The fluid control problem corresponding to (1) is formulated as

inf
z

∫ σ

0

h1q1(t)+h2q2(t)+ϕ12z12(t)dt

s.t. q̇1(t) = λ1(t)−µ11z11(t)−µ12z12(t), q1(0) = x1

q̇2(t) = λ2(t)−µ22z22(t), q2(0) = x2

z(t)∈Z(t) for all t≥ 0,

(3)

where σ= inf{t≥ κ1∨κ2 : q1(t)+q2(t) = 0}. Note that under Assumption 1, with a proper schedul-

ing policy, the fluid queue will eventually hit zero and stay there. Thus, in this case, solving the

optimal fluid control problem with a fixed termination state, i.e., q1(t) = q2(t) = 0 in (3), is the

same as solving an optimal control with fixed planning horizon T when T is large enough.

Remark 2 (Surge scenarios). Our development applies to two types of surges. The first

(main) demand surge scenario is that for a certain period of time, the arrival rate is substantially

higher than the service capacity of the system, i.e, Condition 1 in Assumption 1. Examples include

demand for hospital resources during a bad flu season, and phone calls to an airline customer

contact center after widespread flight cancellations due to inclement weather. Note that this notion

of demand surge is different from system congestion caused by stochastic fluctuations of the arrivals

and services (i.e., even in a stationary system, we can have periods of time where the queue is

long, especially when the system is critically loaded). The second surge scenario is when the system

starts with an unusually large queue (backlog of demand) while the “future” arrival rates are at the

normal level, i.e., κi = 0 but max{q1(0), q2(0)}≫ 0. Examples include mass casualty incidents where

a large number of casualties arrive almost at once or during a very short period of time (Yom-Tov

and Mandelbaum 2014). Numerical examples in the main paper focus on the first scenario, and

those for the second scenario can be found in E-Companion(EC) 3.2.

For i= 1,2 and t≥ 0, define the function Gt
i :R+

0 →R+
0 as follows. For xi > 0,

Gt
i(xi) := inf

{
∆≥ 0 :

∫ t+∆

t

(siµii −λi(s))ds= xi

}
, (4)

and for xi = 0,

Gt
i(0) := lim

xi↓0
Gt

i(xi). (5)

We can interpret Gt
i(xi) as the time it takes to empty queue i after time t using only primary

resources, given that qi(t) = xi. For a fixed value of t, it is continuous and strictly increasing in xi.

Note that under (5), Gt
i(0) could be positive if there is an upcoming demand surge, and it is the
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time until the effects of the demand surge can be fully absorbed using only primary resources. The

next theorem characterizes the optimal scheduling policy for the fluid control problem.

Theorem 1 (Optimal control policy in N-model). Under Assumption 1, the optimal con-

trol for (3) takes the following form. Pool 1 serves as many class 1 customers as possible – i.e.,

z∗11(t) = s11{q1(t)> 0}+
(
s1 ∧

λ1(t)

µ11

)
1{q1(t) = 0}.

I. If h1µ12 ≥ h2µ22, pool 2 gives priority to class 1 when queue 1 is large enough relative to queue

2. In particular,

a. If h1µ12G
t
1(q1(t))>h2µ22G

t
2(q2(t))+ϕ12, pool 2 gives priority to class 1 – i.e.,

z∗12(t) = s21{q1(t)> 0}+
(
s2 ∧

λ1(t)− z∗11(t)µ11

µ12

)
1{q1(t) = 0}, and

z∗22(t) = (s2 − z∗12(t))1{q2(t)> 0}+
(
(s2 − z∗12(t))∧

λ2(t)

µ22

)
1{q2(t) = 0}.

b. Otherwise, pool 2 serves class 2 only – i.e.,

z∗12(t) = 0 and z∗22(t) = s21{q2(t)> 0}+
(
s2 ∧

λ2(t)

µ22

)
1{q2(t) = 0}.

II. If h1µ12 ≤ h2µ22, pool 2 gives priority to class 2 and helps class 1 only when q2(t) = 0 and

q1(t) is large enough. In particular,

a. If q2(t) = 0 and h1µ12G
t
1(q1(t))>ϕ12, pool 2 provides partial help to class 1 – i.e.,

z∗12(t) = (s2 − z∗22(t))1{q1(t)> 0}+
(
(s2 − z∗22(t))∧

λ1(t)− z∗11(t)µ11

µ12

)
1{q1(t) = 0}, and

z∗22(t) = s2 ∧
λ2(t)

µ22

.

b. Otherwise, pool 2 serves class 2 only – i.e.,

z∗12(t) = 0 and z∗22(t) = s21{q2(t)> 0}+
(
s2 ∧

λ2(t)

µ22

)
1{q2(t) = 0}.

The proof for Theorem 1 is in Appendix B. It utilizes Pontryagin’s Minimum Principle. The

indices are derived based on the dual functions which are also known as the adjoint vectors. The

optimal control specified in Theorem 1 can be summarized as a two-stage index-based look-ahead

policy. In the first stage, we compare the hµ index to decide whether pool 2 should prioritize

class 1, or only partially help when there is spare capacity. In particular, if h1µ12 > h2µ22, pool 2

may prioritize class 1; otherwise, pool 2 prioritizes its own class and may provide partial help to

class 1. Then, in the second stage, we decide how long pool 2 should help class 1 (either through

full prioritization or partial help), by comparing h1µ12G
t
1(q1(t))−ϕ12 with h2µ22G

t
2(q2(t)); help is

provided only when the former index is larger than the latter. The Gt
i(·) term is the “look-ahead”

component as it takes the future demand into account. In what follows, we refer to the scenario in

which pool 2 prioritizes class 1 as providing full help to class 1, and the scenario in which pool 2

serves class 1 only when there is spare capacity as providing partial help to class 1.
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3.1. Interpretation of the Two-Stage Policy

3.1.1. Leveraging future arrival information The optimal policy depends on Gt
i(qi(t)),

the time to empty the queue, which requires one to look ahead and take the future arrival rate

into account. In particular, we note that (a) when class 1 is not very congested but is about to

experience a demand surge, pool 2 may already start to prioritize class 1 in anticipation of the

upcoming demand surge; (b) when class 1 has a large queue, but the demand surge is about to

dissipate, pool 2 may decide to stop serving class 1 in anticipation of the upcoming drop in demand.

Figure 2 provides a demonstration of the role of the future arrival rate here. In this example, we set

κ1 = 20 and κ2 = 10. For t≤ 10, class 1 is experiencing a moderate demand surge with λ1(t) = 1.5;

for t∈ (10,20], class 1 is experiencing a more severe demand surge with λ1(t) = 2. We observe that

at time 0, even though class 2 is more congested than class 1 – i.e., q2(0) = 2 while q1(0) = 0 –

we still choose to prioritize class 1 in pool 2 – i.e., z12(0) = 4. This corresponds to scenario (a) as

we are anticipating a demand surge for class 1. We also observe scenario (b), that is, even though

the demand surge for class 1 ends at time 20, pool 2 stops prioritizing class 1 at time 15.8 – i.e.,

z12(t) = 0 for t≥ 15.8.

Even in the case of constant arrival rates, our policy takes the arrival rates into account by

considering the difference between the arrival rate and the service capacity. In this case, Gt
i(xi) =

xi
siµii−λi

for xi ≥ 0. The optimal scheduling policy is similar to the maximum pressure policy but

takes the slack capacity siµii −λi into account.
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Figure 2 Optimal trajectory of the N-model. (Parameter setting: s1 = 3, s2 = 4, µ11 = µ22 = 0.25, µ12 = 0.18,

h1 = 1.5, h2 = 1, ϕ12 = 1, λ1(t) = 1.5× 1{0 ≤ t ≤ 10}+ 2× 1{10 < t ≤ 20}+ 0.5× 1{t > 20}, λ2(t) =

1×1{0≤ t≤ 10}+0.6×1{t > 10}, q1(0) = 0 and q2(0) = 2).
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3.1.2. The effect of overflow costs As discussed in the introduction, though it seems intu-

itive that one should use future arrival information when available, it is nontrivial to identify the

proper form of incorporating this information, especially when there are costs associated with flex-

ibility. We discuss in this section the importance of comparing the overflow cost and the holding

cost at the right scale in routing decisions.

Our fluid-control policy shows that, when having a positive overflow cost, we should compare

the per customer overflow cost to the holding cost over a time interval that is determined by the

time it takes to empty the queue. To see this, we rewrite the condition for Case I in the following

equivalent form:

h1G
t
1(q1(t))−

ϕ12

µ12

>h2G
t
2(q2(t))

µ22

µ12

. (6)

Similarly, in Case II, we check the condition h1G
t
1(q1(t))> ϕ12/µ12. Here, ϕij/µij corresponds to

the expected overflow cost for a class i customer completing service in pool j (with 1/µij being

the average service time), while hiG
t
i(qi(t)) corresponds to the expected holding cost accumulated

till the queue is depleted using primary resources only. In other words, the cost comparison needs

to account for the future impact of the routing action via the accumulated holding cost over a

look-ahead time window. Note that for a (virtual) customer joining the queue at time t, hiG
t
i(qi(t))

also measures the queueing externality cost of this customer – i.e., the additional holding cost it

imposes on the entire system (Ata and Peng 2020).

We note that this cost comparison is in contrast to comparing both costs (overflow and holding)

at the myopic cost-rate level. For the cost rate, when using pool 2 to serve class 1 customers, the

holding cost decreases at rate h1µ12, while the overflow cost increases at rate ϕ12µ12. If we compare

the instantaneous cost rate, we should check whether

h1µ12 −ϕ12µ12 >h2µ22

to decide if pool 2 should prioritize class 1. This myopic rule corresponds to themodified cµ rule that

we consider in the numerical experiments in Section 6. This myopic rule can result in significantly

worse performance than our proposed policy in many settings, which suggests that we should look

beyond the instantaneous cost reduction rate and consider overflow versus holding cost from the

system perspective, i.e., how the overflow decision impacts the future system congestion.

3.2. Adaptivity to Estimation Errors

In this section, we consider the case where we only have access to estimated arrival rates. In

particular, the estimated arrival rate for class i takes the form λ̃i(t) = λi(t) + ϵi(t) where λi(t) is

the true arrival rate and ϵi(t) is the prediction error.
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We propose to use the same two-stage policy. The estimation error affects the performance of

the policy because the look-ahead function is now calculated based on the estimated arrival rate:

G̃t
i(xi) = inf

{
∆≥ 0 :

∫ t+∆

t

(siµii − λ̃i(s))ds= xi

}
for xi > 0. In this case, if h1µ12 ≥ h2µ22, pool 2 decides whether to help class 1 by checking whether

h1µ12G̃
t
1(q1(t))−ϕ12 >h2µ22G̃

t
2(q2(t)).

When ϵi(t) is small, we expect G̃t
i(xi) to be close to Gt

i(xi), and our policy should perform

well. This intuition will be made rigorous when translating the fluid policy back to the stochastic

systems. In particular, we will show in Section 4 that under suitable conditions on the estimation

error ϵi(t), the policy based on G̃t
i(xi) is asymptotically optimal in the stochastic systems. We

substantiate this analytical result with numerical results in Section 6, where we show the robust

performance of our policy under various forms of prediction errors.

3.3. Adaptivity to Limited Look-ahead Windows

In this section, we consider the restriction of having only a limited look-ahead time window.

Specifically, we assume that at time t, only the future arrival rate up to time t+W is known. The

constant W ≥ 0 controls the amount of future information available: W = 0 corresponds to a case

with no future arrival rate information;W =∞ corresponds to knowing the full future information.

With a limited look-ahead window, we adapt our policy as follows. We define the nominal arrival

rate as the arrival rate after the end of the demand surge, i.e., the arrival rate in “normal” times.

This nominal rate is assumed to be a constant that is less than the service capacity. Then, we can

calculate Ĝt
i’s using the nominal arrival rates outside the prediction time window. In particular,

Ĝt
i(xi) = inf

{
∆≥ 0 :

∫ t+∆

t

(siµii − λ̂i(s))ds= xi

}
,

where λ̂i(s) = λi(s) for t ≤ s < t+W and λ̂i(s) = λ0
i for s ≥ t+W , with λ0

i being the nominal

arrival rate. For example, when W = 0, Ĝt
i(qi(t)) = qi(t)/(siµii − λ0

i ). In Section 6.3.2, we test the

performance of our proposed policy with varying values of W in the stochastic system. We observe

that our policy achieves good performance even with a relatively small look-ahead time window.

3.4. Adaptivity to Multiple Surges

Our analytical framework applies to very general arrival rates, including scenarios with multiple

demand surges. In this section, we show an example in which class 1 experiences two demand

surges, as characterized in Assumption 2.

Assumption 2. The arrival rates λ1(t) and λ2(t) satisfy:

1. For class 1, there exist constants 0<κa <κb <κc such that λ1(t)≥ s1µ11 for t∈ [0, κa]
⋃
[κb, κc]

and λ1(t)< s1µ11 otherwise. For class 2, λ2(t)< s2µ22 for all t≥ 0.
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2. (λ1(t))0≤t≤κc is piecewise monotone with a finite number of pieces.

3.
∫∞
0
(s1µ11 −λ1(t))dt=∞.

4. Given X(0) = x, for any t∈ [0, κa)
⋃
(κb, κc), W (x, t)> 0, where W (x, t) is defined in (2).

We redefine σ = inf{t > κc : q1(t) + q2(t) = 0}. The following theorem shows that the optimal

control in this two-surge setting takes exactly the same form as before, with Gt
i defined in (4).

Theorem 2 (Optimal control under two demand surges). Under Assumption 2, the

optimal control for (3) takes the following form. Pool 1 serves as many class 1 customers as pos-

sible. Moreover:

I. If h1µ12 ≥ h2µ22, pool 2 gives priority to class 1 when h1µ12G
t
1(q1(t))> h2µ22G

t
2(q2(t)) + ϕ12;

otherwise, pool 2 serves class 2 only.

II. If h1µ12 ≤ h2µ22, pool 2 gives priority to class 2 and will help class 1 when q2(t) = 0 and

h1µ12G
t
1(q1(t))>ϕ12; otherwise, pool 2 serves class 2 only.

The proof of Theorem 2 is in the E-companion, and follows a similar framework to that of

Theorem 1. The actual helping behavior of the policy characterized in Theorem 2 depends on

the length of the interval between the two demand surges. We illustrate the idea via a numerical

example: Class 2 has a constant arrival rate λ2(t)≡ 0.6, while the arrival rate for class 1 follows

λ1(t) =


2, 0≤ t < 30,

0.5, 30≤ t < 30+K,

2, 30+K ≤ t < 60+K,

0.5, t≥ 60+K.

In particular, there are two demand surges for class 1, and the length of the interval between the

two surges is K, which we vary in the experiments plotted in Figure 3. When K is small – i.e.,

K = 10 in case (a) – the two demand surges are so close to each other that neither queue can be

emptied before the beginning of the second demand surge, and we observe a single helping interval

as in the single demand surge setting. When K is moderate – i.e., K = 30 in case (b) – the two

demand surges are far enough apart for the class 1 queue to be emptied by the time the second

demand surge begins, but not far enough apart for the class 2 queue to be emptied then. In this

case, there are two helping intervals. Finally, when K is large – i.e., K = 60 in case (c) – both

queues can be emptied before the start of the second demand surge. In this case, the two demand

surges can be decomposed into two single-demand surge periods.

We conclude by remarking that our optimal control policy has the same structure in both the

single-surge and multi-surge settings. This is very appealing for practical implementation because

one can implement the same policy but adjust the estimation of the G values as more information

about the future arrival rates becomes available. We also note that even if the second surge were
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(c) K = 60

Figure 3 Optimal trajectory of the N-model when the duration between the two demand surges changes. (h1 =

1.5, h2 = 1, ϕ12 = 1, s1 = 3, s2 = 4, µ11 = µ22 = 0.25, µ12 = 0.18, q1(0) = q2(0) = 0, λ1(t) = 2× 1{0 ≤ t <

30}+0.5×1{30≤ t < 30+K}+2×1{30+K ≤ t < 60+K}+0.5×1{t≥ 60+K}, λ2(t) = 0.6.)

not foreseen at the time of the first surge (i.e., the initial policy calculation assumes a single surge),

our policy can quickly adapt to the information on the second surge when it becomes available, as

the G values can be easily updated in real-time. We substantiate this point with more numerical

results in Section 6.3.2 when dealing with two demand surges and limited look-ahead windows.

4. Asymptotic Optimality

In this section, we translate the optimal control defined in Theorem 1 to the original stochastic

system introduced in Section 2. We prove that the translated policy is asymptotically optimal along

a properly scaled sequence of stochastic systems.

To specify the sequence of stochastic systems, we first elaborate on the planning horizon T in (1).

The idea is to have a long enough time such that the system can get back to the normal state of

operation by then. For tractability, we adopt a deterministic planning horizon for the stochastic

system. Given the initial state X(0) = x, we define the planning horizon T = T (x) based on the

fluid dynamics. Consider a fluid system in which pool 2 fully prioritizes class 1 as long as the class 1

queue is non-empty. Specifically, we define qo(t) = (qo1(t), q
o
2(t)) with q

o(0) = x that satisfies

q̇o1(t) = (λ1(t)− s1µ11 − s2µ12)1{qo1(t)> 0}+(λ1(t)− s1µ11 − s2µ12)
+1{qo1(t) = 0},

q̇o2(t) = λ2(t)−
(
s2 −

(λ1(t)− s1µ11)
+

µ12

)+

µ221{qo1(t) = 0}.
(7)

Define

τ o1 (x) = inf {t≥ κ1 : q
o
1(t) = 0} and τ o2 (x) = inf {t≥ κ2 : q

o
2(t) = 0} ,

which corresponds to the time by which the class i queue should be emptied if pool 2 prioritizes

class 1 all the time. Note that G0
1(x1)≥ τ o1 (x) and G

0
2(x2)≤ τ o2 (x). Then, we can define

T (x) =max{G0
1(x1),G

0
2(x2), τ

o
1 (x), τ

o
2 (x)}=max{G0

1(x1), τ
o
2 (x)}.
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Note that T (x) can be interpreted as the time by which the fluid queue will be emptied under any

reasonable scheduling policy. This is because the class 1 queue should be emptied by time G0
1(x1)

even if pool 2 does not help class 1, and the class 2 queue should be emptied by time τ o2 (x) even

if pool 2 prioritizes class 1 all the time.

We now specify the setup to establish asymptotic optimality. Consider a sequence of systems

indexed by n. The number of servers is fixed along the sequence. We speed up time and scale down

space by n. Specifically, for the n-th system, the arrival rate at time t is λn
i (t) = nλi(t) for class i

and the service rate is nµij. We use the superscript n to denote quantities related to the n-th

system. For example, Xn(t) = (Xn
1 (t),X

n
2 (t)) denotes the number of customers in the n-th system;

Zn(t) = (Zn
11(t),Z

n
12(t),Z

n
22(t)) denotes the number of customers in service from each class in each

pool at time t. For a given “base” starting state x, we assume that Xn(0) = nx. We also define the

fluid-scaled queue length process as

X̄n(t) =
1

n
Xn(t).

A scheduling policy πn = {πn
t : t≥ 0} for the n-th system maps the state of the system to the

allocation of servers – i.e., Zn(t) = πn
t (X

n(t)). As discussed in Section 2, the admissible controls

are preemptive and non-anticipative, but we have access to some estimated arrival rate Λn
i (t) for

each class i. The server allocation policies satisfy the following conditions:

Zn
11(t)+Zn

12(t)≤Xn
1 (t), Z

n
22(t)≤Xn

2 (t),Z
n
11(t)≤ s1, Z

n
12(t)+Zn

22(t)≤ s2, Z
n(t)∈N3

0.

For the n-th system, the optimal scheduling problem is formulated as finding a policy that

minimizes the cumulative holding and overflow costs over [0, T (x)]. In particular, we want to find

a policy πn that minimizes the following fluid-scaled objective:

inf
πn
V̄ n,πn

(x) = inf
πn

E

[∫ T (x)

0

(
h1

n
Xn,πn

1 (t)+
h2

n
Xn,πn

2 (t)+ϕ12Z
n,πn

12 (t)

)
dt
∣∣∣Xn(0) = nx

]

= inf
πn

E

[∫ T (x)

0

(
h1X̄

n,πn

1 (t)+h2X̄
n,πn

2 (t)+ϕ12Z
n,πn

12 (t)
)
dt
∣∣∣Xn(0) = nx

]
.

Note that the holding costs and the overflow cost are scaled differently in V̄ n,πn
(x) to have a

meaningful comparison. Specifically, the holding costs are scaled by n – i.e., hn
i = hi/n – while the

overflow cost is unscaled. This is because the queue length processes scale with n (as the speed

at which arrivals and departures happen scales with n) while the number of servers does not, i.e.,

Xn,πn

1 (t) =O(n) while Zn,πn

12 (t) =O(1). To interpret Zn,πn

12 (t), we note that the number of servers

does not scale with n, so Zn,πn

12 (t)/s2 can be interpreted as the fraction of time pool 2 servers are

allocated to serve class 1 customers in [t, t+ dt). A similar scaling is used in Bäuerle (2000).
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We next translate the optimal fluid policy to the corresponding stochastic systems. Recall that for

the n-th system, the true arrival rate for class i follows λn
i (t) = nλi(t). We assume the corresponding

estimated arrival rate takes the form Λn
i (t) = nλi(t) +En

i (t), where E
n
i (·) is the estimation error

term. We impose the following assumptions on En
i (·):

Assumption 3. En
i (·) is a stochastic process satisfying En

i (·)/n → 0 u.o.c. almost surely as

n→∞, i.e., P (En
i (·)/n→ 0 u.o.c. as n→∞) = 1. In addition, for large enough n, Λn

i (·) satisfies

items 1 and 3 in Assumption 1.

Under Assumption 3, the uncertainty of the arrival rate is of a smaller order than the arrival

rate itself. This is a common assumption in the literature on arrival rate uncertainty, see, e.g.,

Bassamboo et al. (2010), Maman et al. (2009).

For the n-th system, we use the look-ahead function based on the estimated arrival rate:

G̃t
i,n(xi) = inf

{
∆≥ 0 :

∫ t+∆

t

(sinµii −Λn
i (s))ds= xi

}
for xi > 0. The scheduling policy {ν̃n}n≥1 is defined as follows. For the n-th system: pool 1 serves

class 1 customers as much as possible. Consider the case h1µ12 >h2µ22. If

h1µ12G̃
t
1,n(X

n
1 (t))−ϕ12 >h2µ22G̃

t
2,n(X

n
2 (t)) (8)

at time t, pool 2 gives preemptive priority to class 1; otherwise, pool 2 serves class 2 only. The case

for h1µ12 ≤ h2µ22 is similar. That is, if

h1µ12G̃
t
1,n(X

n
1 (t))−ϕ12 > 0 (9)

at time t, pool 2 serves both classes but gives preemptive priority to class 2; otherwise, pool 2

serves class 2 only. When implementing the policy, G̃t
i,n(X

n
i (t)) is supposed to be calculated at

every decision epoch (when there is an arrival or a departure). We make two remarks about its

calculation. First, G̃t
i,n(X

n
i (t)) can be easily calculated numerically, especially when the arrival rate

is piecewise linear. Second, G̃t
i,n(xi) is continuous in t and xi, and the policy only changes when

the inequality (8) or (9) changes sign. Thus, we may not need to update this calculation very

frequently in implementation.

The following theorem shows that {ν̃n}n≥1 is asymptotically optimal. Let V̄ ∗(x) denote the

optimal objective value of the corresponding fluid control problem (3).

Theorem 3 (Asymptotic optimality). Under Assumptions 1 and 3, for any sequence of

admissible controls {πn}n≥1,

lim inf
n→∞

V̄ n,πn

(x)≥ V̄ ∗(x).

For the sequence of systems under policy {ν̃n}n≥1,

lim
n→∞

V̄ n,ν̃n(x) = V̄ ∗(x).
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The proof of Theorem 3 is in Appendix C. To incorporate the prediction error in the asymptotic

optimality result, we leverage the continuity properties of the look-ahead function Gt
i. This theorem

suggests that when applied to stochastic systems, the two-stage index-based look-ahead policy

achieves near-optimal performance when the initial queue and/or the demand surge is large. Note

that our asymptotic optimality result requires the estimation error to be of a smaller order than

the arrival rate (Assumption 3). This indicates that if the estimation error is small relative to the

actual arrival rate, the proposed policy achieves near-optimal performance. In Section 6, we go

beyond this theoretical result and numerically investigate the performance of our policy with more

general forms of prediction errors. Numerical results show that even though the performance of

our algorithm deteriorates as the prediction accuracy decays, it performs competitively compared

to benchmark policies that are agnostic to future arrival information. This benefits from the index

structure of our policy, which has some built-in resilience to perturbations. First, calculating Gt
i

requires us to integrate the arrival rates over a period of time. The estimation error at individual

times s may cancel out when aggregated over a period of time. Second, as long as the estimation

errors do not reverse the order of the second-stage indices, the same policy will be implemented in

the stochastic system at a given time t.

5. Beyond the N-Model

In this section, we study three models beyond the N-model, which helps us design a heuristic

policy for general multi-class multi-pool systems. The three models are i) the X-model; ii) the

many-help-one extended N-model (exN1), i.e., many server-pools can serve class 1; and iii) the

one-helps-many extended N-model (exN2), i.e., pool 1 can serve many classes. See Figure 4 for a

pictorial illustration of these models together with the N-model. Note that the exN2-model covers

the commonly-studied M-model as a special case when we set the holding cost h1 = 0.

For the three models, we focus on the fluid optimal control. Moreover, when presenting the

results, we focus on emphasizing the key difference between these models and the N-model. By

comparing the X-model with the N-model, we highlight the effect of cross-training. By comparing

the extended N-models with the two-class N-model, we generate insights into how the policy

changes when facing multiple classes of customers or multiple pools of servers. These insights lead

us to propose a heuristic policy for general multi-class multi-pool systems in Section 5.3.

General notation for fluid control. Consider I classes of customers and I server pools. We

assume class i fluid flows into the system at rate λi(t) and flows out at rate
∑

j µijzij(t), where

µij is the service rate of pool j servers working on class i jobs, and zij(t) is a positive real number

denoting the service capacity from pool j allocated to serve class i fluid at time t. Note that if
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(a) N-model (b) X-model (c) exN1-model (d) exN2-model

Figure 4 Queueing models with partial flexibility

µij = 0, class i customers and pool j servers are not compatible. Let qi(t) ∈ [0,∞) denote the

amount of class i fluid in the system at time t. Then,

q̇i(t) = λi(t)−
I∑

j=1

µijzij(t).

A fluid scheduling policy π specifies the service capacity allocation z(t) = (zij(t) : i, j = 1, · · · , I),
where z(t)∈Z(t), and

Z(t) =

{
z(t) : zij(t)≥ 0, i, j = 1, · · · , I,

∑
i

zij(t)≤ sj, j = 1, · · · , I, qi(t)≥ 0, i= 1, . . . , I

}
.

Similar to the N-model, we allow the policies to use the future arrival rate information.

For arrival rates, we consider the scenario in which each class may experience a demand surge

that lasts for a finite amount of time; the extension to multiple surges can be done similarly as

in Section 3.4. Let κi denote the demand surge period for class i and κ̄=max1≤i≤I κi. Based on

a set of assumptions that are similar to Assumption 1 (see Assumption 4 in Appendix A for a

full specification of the assumptions for general multi-class multi-pool systems), we define σ =

inf {t≥ κ̄ :
∑

i qi(t) = 0}, which can be interpreted as the time to fully absorb the demand surge.

Class i fluid in the system incurs a cost of hi per unit job per unit of time. In addition, routing

fluid from class i to pool j incurs an overflow cost of ϕij per unit job per unit time, with ϕii = 0

by convention. Then, the fluid optimal control problem takes the form:

inf
z

∫ σ

0

I∑
i=1

hiqi(t)+
I∑

i=1

I∑
j=1

ϕijzij(t)dt

s.t. qi(0) = xi, q̇i(t) = λi(t)−
I∑

j=1

µijzij(t), i= 1, · · · , I

z(t)∈Z(t) for all t≥ 0.

(10)

We also define Gt
i(xi) as in (4), now for i= 1, . . . , I.

Summary of the optimal policy structure. For the more general models studied in this

section, the optimal policy follows a similar two-stage structure as in the N-model. That is, in the
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first stage, we decide, based on the hµ index, whether a certain pool is going to fully prioritize

some non-primary class or just provide partial help. In the second stage, we decide how long the

full- or partial-help lasts. The main difference from the N-model is that, when deciding how long

the “help” will last in the second stage, we compare the time it takes to empty the queues not only

using their primary resources, but also taking into account the help they may receive from other

pools or the help their primary pools may provide to other classes. This idea will be made more

precise in the subsequent sections.

5.1. X-Model

The X-model has a similar network structure except that help can happen in both ways. In par-

ticular, pool 1 can serve class 2 at rate µ21 > 0 while pool 2 can serve class 1 at rate µ12 > 0.

We assume that µ11 >µ12 and µ22 >µ21 to reflect the slowdown effect. Following the development

of the N-model, we first compare the hµ index. Note that there are four possible cases in total.

Without loss of generality, we consider two possible cases (the other two cases can be implied from

Cases I and II by swapping the class indices):

I. h1µ12 > h2µ22, which implies that h2µ21 < h1µ11. In this case, pool 2 gives priority to class 1

when class 1 has a large enough backlog compared to class 2. When pool 1 empties the class 1

queue, it may provide partial help to class 2 if class 2 has a large enough backlog.

II. h1µ12 <h2µ22 and h2µ21 <h1µ11. In this case, when pool i, i= 1,2, empties its own class, it

may provide partial help to the other class if the other class has a large enough backlog.

The key difference between the X-model and the N-model comes up in Case I when deciding

how long pool 2 will help class 1. In the X-model, because pool 1 can later help back class 2 –

i.e., pool 1 can provide partial help to class 2 when the class 1 queue empties – the period during

which pool 2 prioritizes class 1 can be longer than that in an otherwise identical N-model.

To characterize the full helping period in Case I for the X-model, we define P t(q(t)) as the length

of the partial helping period for pool 1 to class 2:

P t(q) = inf
{
u≥ 0 : h2µ21G

t+Gt
1(q1)+u

2 (q̃2(t+Gt
1(q1)+u))≤ ϕ21

}
,

where for q̃, its dynamic follows: q̃(t) = q; for s ∈ (t, t+Gt
1(q1(t))), pool 1 serves class 1 only; for

s ≥ t+Gt
1(q1(t)), pool 1 provides partial help to class 2. The condition h2µ21G

t+Gt
1(q1)+u

2 (q̃2(t+

Gt
1(q1)+u))≤ ϕ21 in the definition of P t(q) follows the same rationale as the condition in Case IIa

of Theorem 1. When this condition is satisfied, pool 1 stops providing partial help to class 2. We

define Ḡt
X,2(q(t)) as the time to empty queue 2 when accounting for the partial help from pool 1:

Ḡt
X,2(q(t)) =Gt

2(q2(t))1{P t(q(t)) = 0}+
(
Gt

1(q1(t))+P t(q(t))+
ϕ21

h2µ21

)
1{P t(q(t))> 0}.
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The first term in the definition of Ḡt
X,2(q(t)) corresponds to the case when queue 2 does not receive

any partial help from pool 1 and it is the same as in the N-model. The second term corresponds to

the case when there is partial helping. Note that Gt
1(q1(t)) is the time to empty queue 1 (before any

partial helping can start), P t(q(t)) is the partial helping period, and ϕ21/(h2µ21) is the remaining

time to empty queue 2 using only pool 2, which can be seen from the condition in the definition

of P t(q). The following theorem characterizes the optimal scheduling policy for the X-model.

Theorem 4 (Optimal control policy in X-model). For the X-model, under Assumption 4,

the optimal control for (10) takes the following form.

I. If h1µ12 >h2µ22, pool 1 prioritizes class 1.

ia. If Gt
1(q1(t)) = 0 and h2µ21G

t
2(q2(t))>ϕ21, pool 1 provides partial help to class 2.

ib. Otherwise, pool 1 serves class 1 only.

For pool 2,

iia. If

h1µ12G
t
1(q1(t))>h2µ22Ḡ

t
X,2(q(t))−h2µ22

µ12µ21

µ11µ22

P t(q(t))+ϕ12, (11)

pool 2 gives priority to class 1.

iib. Otherwise, pool 2 serves class 2 only.

II. If h1µ12 <h2µ22 and h2µ21 <h1µ11, each pool prioritizes its own class. For i= 1,2, if

Gt
i(qi(t)) = 0 and hjµjiG

t
j(qj(t))>ϕji, j ̸= i,

pool i provides partial help to class j; otherwise, pool i serves class i only.

Similar to the optimal policy for the N-model, the optimal control for the X-model characterized

in Theorem 4 also takes the future arrival rate information into account, and the policy has a

two-stage index structure. The main difference, though, is in Case I.iia. As Ḡt
X,2(q(t))≤Gt

2(q2(t)),

h2µ22Ḡ
t
X,2(q(t))−h2µ22

µ12µ21

µ11µ22

P t(q(t))+ϕ12 ≤ h2µ22G
t
2(q2(t))+ϕ12.

This implies that in the X-model, because pool 1 can help back class 2 later, pool 2 may provide

more help to class 1 initially than in the N-model. We elaborate on this further in EC.2.

5.2. Extended N-models

In this section, we discuss the main insights from the optimal policies for the two extended N-

models: many-help-one (exN1) and one-helps-many (exN2) models. To keep the discussion concise,

we delay the full characterization of the optimal policies to Appendix A.

For the exN1-model, the optimal policy still has a two-stage index-based look-ahead structure

(see Theorem 5 in Appendix A). In the first stage, we decide which class to prioritize based on
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the hµ index. In the second stage, we decide how long the full or partial help will last by taking

future arrival rate information into account. The main difference between the exN1-model and the

N-model lies in the second stage. Consider the scenario where h1µ12 > h2µ22 and h1µ13 > h3µ33,

i.e., both pool 2 and pool 3 will give strict priority to class 1 if the class 1 queue is large enough.

When pool 2 determines how long it will help class 1, it also needs to take into account the help

that class 1 can receive from pool 3, in which case pool 2 may provide less help to class 1 than in a

similar N-model. To demonstrate this, Figure 5 compares the optimal trajectory of an exN1-model

(plot a) with the optimal trajectory of a similar N-model (plot b). In particular, the two models

share the same parameters for the first two classes. The only difference is that the exN1-model has

an extra class, class 3, and an extra server pool, pool 3. See the caption of Figure 5 for details of

the numerical setting. For the exN1-model, we observe that both pools provide full help to class 1

at the beginning. Pool 2 stops helping class 1 at t= 3.5 in the exN1-model. In contrast, pool 2 stops

helping class 1 at t= 6.1 in the N-model. This is because in the exN1-model, class 1 can also get

help from pool 3, and when pool 2 decides how much to help class 1, it also takes this extra help

from pool 3 into account. Lastly, we note that with the extra help from pool 3, the exN1-model is

able to empty the class 1 queue faster than the N-model can.
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Figure 5 Optimal trajectory of the exN1-model versus the N-model. (s1 = s2 = 2, λ1 = λ2 = 0.3, µ11 = µ22 = 0.25,

µ12 = 0.2, ϕ12 = 1, h1 = 1.5, h2 = 1, q1(0) = 10, q2(0) = 5. For the exN1-model, s3 = 2, λ3 = 0.3, µ33 =

0.25, µ13 = 0.18 ,ϕ13 = 1, h3 = 1, and q3(0) = 3.)

For the exN2-model, the optimal policy again has a two-stage index-based look-ahead structure

(see Theorem 6 in Appendix A). The key difference between the exN2-model and the N-model again

lies in the second stage. Consider the scenario where h2µ21 >h3µ31 >h1µ11, i.e., pool 1 prioritizes

classes 2 and 3 when there are large enough backlogs in these two classes compared to class 1.

When deciding between classes 2 and 3, class 2 enjoys a higher priority. In the second stage, when
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pool 1 determines how long it will help class 2, it also needs to consider the help it can provide to

class 3, in which case pool 1 may provide less help to class 2 than in a similar N-model.

5.3. A Heuristic Two-Stage Index-Based Policy for Multi-class Multi-pool Systems

Based on the results from the X-model and the two extended N-models, we observe that the

structure of the optimal policy remains similar to that of the N-model. Thus, we propose the

following two-stage index-based look-ahead policy for more-general I-by-I networks.

First stage. Denote the set of classes that pool j can serve as Ij, which is sorted by the hµ-index.

That is, for class k(i) in the ith position in set Ij, its hµ-index is larger than that of class k(i+1)

in the (i+1)th position – i.e., hk(i)µk(i),j >hk(i+1)µk(i+1),j. The primary class j is in the set Ij, and

we denote its position as ℓj.

• For class k(i)∈ Ij with i < ℓj, pool j provides full help (strict priority) to class k(i) if the help

is initiated according to the second-stage criteria.

• For class k(i) ∈ Ij with i > ℓj, pool j provides partial help (help only when there is extra

capacity after serving its own class) if the help is initiated according to the second-stage criteria.

Second stage. At any time t, for each pool j, we decide which class in Ij it should help according

to the following criteria. Set a tuning parameter θ > 0.

• For classes k(i)’s with i < ℓj, let class k(i
∗) be the first class for which

θhk(i∗)µk(i∗),jG
t
k(i∗)(qk(i∗)(t))−ϕk(i∗),j >hjµjjG

t
j(qj(t)). (12)

Pool j provides full help to class k(i∗) if there exists such k(i∗).

• If none of the full helping is initiated and qj(t)> 0, pool j serves class j only;

• If none of the full helping is initiated and qj(t) = 0, for classes k(i)’s with i > ℓj, let k(i
∗) be

the first class for which

θhk(i∗)µk(i∗),jG
t
k(i∗)(qk(i∗)(t))>ϕk(i),j. (13)

Pool j provides partial help to class k(i∗) if there exists such k(i∗).

To explain the rationale of the tuning parameter θ, we note that from the analysis of the X-

model and the extended N-models, depending on the system architecture, we may need to modify

Gt
i(qi(t))’s to take into account the help that pool i can provide to other classes or the help class i

can receive from other pools. This can be partially captured by the tuning parameter θ. When

θ > 1, we are doing more aggressive overflow than in the N-model; when θ = 1, it is equivalent

to the optimal N-model policy; when θ < 1, we are doing more conservative overflow than in the

N-model. We show, via extensive numerical experiments in Section 6, that the performance of the

heuristic policy is robust for θ close to 1, while a slight tuning down – i.e., setting θ= 0.8 – leads

to comparable or, in some cases, better performance than θ= 1.
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6. Numerical Experiments for General Stochastic Networks

The optimal control policies that we derived in prior sections are based on deterministic fluid

models. In this section, we study the performance of our derived policy – namely, the look-ahead

policy specified in Section 5.3, in the stochastic systems via simulation. We compare the perfor-

mance of our proposed policy to that of several well-established benchmark policies in both the

N-model and two more-general 5-by-5 networks. We demonstrate that, in the face of demand

surges, the performance of our look-ahead policy, even using imperfect estimation of arrival rates

(with time-varying and temporally-correlated prediction errors, a limited look-ahead time window,

or prediction delays), is superior to that of the cµ rule or the maximum pressure policy or their

adapted versions that account for the overflow costs. These numerical results suggest that the

insights generated from our fluid analysis of parsimonious models are robust and useful for routing

decisions in complex systems under various imperfect demand prediction scenarios.

To calibrate the simulation model, we consider settings motivated by hospital inpatient flow

(Shi et al. 2016). That is, in the multi-class, multi-pool parallel processing network, each class

corresponds to patients from a medical specialty, and each server pool corresponds to an inpatient

ward or several wards that are dedicated to a medical specialty. Unless otherwise specified, we

assume that each pool has a capacity of 20 – i.e., si = 20 for pool i, corresponding to 20 inpatient

beds. The primary service rates are µii = 0.25 for each class i, corresponding to an average service

time (length-of-stay) of four days. Moreover, we incorporate service slowdown – i.e., longer length-

of-stay when the patient is placed in a bed in a non-primary ward (Dong et al. 2019, Song et al.

2019). In particular, we assume that the overflow service rate is µij = 0.2 for i ̸= j, corresponding

to an average service time of five days. In what follows, we first present results for our main model

(N-model with perfect information) and then results for more complicated networks and imperfect

predictions.

6.1. Performance Comparison in N-model: Value of Proactive Routing

The baseline arrival rate setting that we test in the N-model follows

λ1(t) = 8×1{t < 40}+4×1{t≥ 40}

and λ2(t) = 3. That is, class 1 experiences a demand surge lasting κ1 = 40 days, while class 2 does

not experience a demand surge. The initial state is set as
(
X1(0),X2(0)

)
= (60,70).

Beyond this baseline setting, we test a large combination of settings by varying the following

parameters: (i) the surge arrival rate of class 1, max λ1(t) ∈ {6,8,10}; (ii) the arrival rate of class

2, λ2(t) = λ2 ∈ {3,3.5,4,4.5}; (iii) the surge duration κ ∈ [20,100]; (iv) the initial states X1(0) ∈

{40,60,80} and X2(0)∈ {70,90,110,130}. These parameter combinations lead to different levels of
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system congestion. In general, the system dynamics are closer to the fluid limit when the system

is more congested. Under a given congestion scenario, we fix the holding costs h1 = 1.5, h2 = 1 and

vary the overflow cost – namely, (i) ϕ12 = 2; (ii) ϕ12 = 10; and (iii) ϕ12 = 25. The holding costs

correspond to Case I of Theorem 1, where pool 2 may provide full help to class 1. We choose to

focus on this case since the resulting policy is less trivial than the partial helping case. In particular,

if the help is not exercised properly, it can lead to both a high overflow cost and a high holding cost.

We simulate 104 replications for each scenario (policy and system) to estimate the expected cost

and the corresponding standard error. Each replication contains 250 days. A common sequence of

random numbers is used when comparing different policies.

6.1.1. Benchmark policies We compare five scheduling policies: (i) our look-ahead policy

(Look-ahead); (ii) the classic cµ-rule (Cmu); (iii) the classic maximum pressure policy (MaxPres);

(iv) the modified cµ-rule that takes the overflow cost into account (ModCmu); and (v) the modified

maximum pressure policy that takes the overflow cost into account (ModMaxP).

For the modified cµ rule, we prioritize different classes according to the following index (from

high to low): hiµij−ϕijµij. Similarly, for the modified maximum pressure policy, we prioritize

different classes according to the following index (from high to low): hiXi(t)µij − ϕijµij, with

hiXi(t)µij being the index in the original maximum pressure policy. The intuition of adjusting the

original indices in both policies by the term ϕijµij is to maximize the instantaneous cost reduction

rate under the preemptive service setting (with µij being the rate of clearing a customer). As

discussed in Section 3, comparing our proposed policy with the modified maximum pressure policy,

the main difference is that the latter weights hiµij by Xi(t), while our policy weights hiµij by

Gt
i(Xi(t)), which takes future arrival rate information into account.

6.1.2. Robust performance Table 1 shows the cost comparison among the five policies in

the baseline setting. Our proposed look-ahead policy performs significantly better than the cµ and

the modified cµ rules. The maximum pressure policy and its modified version perform better than

the cµ rules but have a larger gap from our policy when ϕ is large, e.g., the gap is 15% when ϕ= 25.

To have a more complete picture of the our policy’s performance versus that of other benchmarks

beyond just the baseline setting, Figure 6 plots a histogram of the optimality gap among all the

tested combinations of arrival rates, initial states, and overflow costs, as specified earlier. The

optimality gap is defined as the relative cost difference between the investigated policy and the

best-performing policy in the corresponding parameter setting. It is clear from the figure that our

policy always performs the best or near the best (the optimality gap is within 5%) among all tested

parameter combinations. This demonstrates the robustness of our policy, which is an appealing

feature in practice. In contrast, other policies can perform well in some settings but poorly in
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Look-ahead MaxPres ModMaxP Cmu ModCmu

ϕ= 2 Holding 1.09 1.10 1.10 1.28 2.75
Overflow 0.14 0.13 0.13 0.17 0.00
Total 1.23 1.23 1.23 1.45 2.75
SE 0.003 0.003 0.003 0.004 0.008

ϕ= 10 Holding 1.10 1.10 1.11 1.28 2.75
Overflow 0.56 0.63 0.62 0.86 0.00
Total 1.67 1.74 1.73 2.14 2.75
SE 0.004 0.004 0.004 0.005 0.008

ϕ= 25 Holding 1.28 1.10 1.12 1.28 2.75
Overflow 1.00 1.58 1.50 2.14 0.00
Total 2.28 2.68 2.62 3.42 2.75
SE 0.005 0.005 0.005 0.007 0.008

Table 1 Expected total cost for the baseline N-model under different scheduling policies. The costs shown in

the table are in units of 104. “SE” stands for the standard error for the average total cost (holding + overflow).

Parameter setting: h= (1.5,1), ϕ12 = ϕ, λ2(t) = 3, λ1(t) = 8×1{t < 40}+4×1{t≥ 40}, X(0) = (60,70).

others. For example, the modified cµ policy tends to perform well when the surge arrival rate of

class 1 is smaller (e.g., 6) and not much overflow is needed; however, it results in significantly worse

performance when the surge arrival rate is large, and/or the initial queue length of class 1 is large.

On the other hand, the two maximum pressure policies tend to have a better performance when

the system is congested. However, their performance deteriorates when (i) the surge period is short

(e.g., 20), but the initial queue length is high, (ii) the surge period is long, but the initial queue

length is low, or (iii) pool 2 has less slackness in general. This is because the maximum pressure

policy will help class 1 when its current queue length is large compared to the class 2 queue without

looking into the future – this could be unnecessary (as in (i)), or too late (as in (ii)), or hurting

class 2 too much (as in (iii)). Overall, the maximum pressure policies are reactive while our policy

is more proactive, for which we take a deeper dive in Section 6.1.3.
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Figure 6 Histogram of the optimality gap. Parameter setting combinations are described in the main text.
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6.1.3. Reactive versus proactive: the value of future information The modified max-

imum pressure policy is the best-performing benchmark policy in Table 1, i.e., it performs better

than other benchmark policies in most scenarios tested in Figure 6. From this, it may appear

that knowing the future arrival information is not as beneficial as one would expect. However, a

closer investigation into different arrival rate settings reveals that this is not true – not considering

future arrival information in a time-nonstationary setting can result in much worse performance.

For illustration, consider the following arrival rate setting as an example:

λ1(t) =

{
8, t < 40

1, t≥ 40
and λ2(t) =

{
3, t < 40

4.5, t≥ 40.

That is, the arrival rate of class 1 drops sharply once the demand surge is over, while the arrival

rate of class 2 increases slightly at the same time. All other parameters are the same as in the

baseline setting. In Figure 7 we compare two sample paths when ϕ= 2, one under our policy and

the other under the modified maximum pressure policy.

Figure 7 Sample path comparison between our proposed policy (left) and the modified maximum pressure policy

(right). (λ1(t) = 8×1{t < 40}+1×1{t≥ 40}, λ2(t) = 3×1{t < 40}+4.5×1{t≥ 40}. Other parameters

are the same as the baseline with ϕ= 2.)

We see that under the modified maximum pressure policy, pool 2 helps class 1 throughout the

demand surge period (till t= 40). This is because class 1 has a large queue and the policy is reacting

to this. In contrast, under our policy, pool 2 proactively stops helping class 1 much sooner (around

t= 8). This is because our policy anticipates that the class 1 arrival rate will soon drop to 1, so that

not much help is necessary. This early stopping also takes into account the information that the

class 2 arrival rate will soon increase to 4.5. We see from the rest of the trajectories that our policy

achieves a much lower holding cost for class 2, while having only a slightly higher holding cost for

class 1. On the other hand, the modified maximum pressure policy provides too much help (from
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pool 2) to class 1, which results in the class 2 queue building up to a high value (around 100) at

t= 40; from then on pool 2 has little slackness and it takes a long time to reduce the class 2 queue.

For the parameter setting in Figure 7, the average costs are 1.11× 104 under our policy versus

1.68×104 under the modified maximum pressure policy – 50% higher than ours. This performance

gap further enlarges to over 150% as ϕ increases to 25. More generally, the maximum pressure

policies can perform much worse than our policy as λ2(t) gets closer to 5 after the demand surge

of class 1 is over, due to over-helping. This indicates that the performance of “arrival-agnostic”

policies can vary a lot depending on the arrival rate patterns, which highlights the value of our

look-ahead policy in a nonstationary environment.

Other variants of index adjustment. We remark that the adjustments to the cµ and maximum

pressure policies are heuristic. It is possible to motivate other heuristics such as adjusting by ϕij

or ϕij/µij instead of ϕijµij. However, if we use ϕij or ϕij/µij, the index would be sensitive to the

time unit we choose, because these terms will scale differently with µij than hiµij. In this case, by

choosing seconds versus hours to be the time unit, the resulting policy can vary drastically from

zero overflow to full-sharing. The main takeaway is that the optimal format to incorporate the

overflow costs is highly nontrivial. The performance can be arbitrarily bad when using the wrong

format, highlighting the necessity of properly comparing the overflow cost with the holding cost

and rigorously deriving optimal routing policies in the presence of demand surges.

6.2. Extensions to General Multi-class Multi-pool Systems

In this section, we test our proposed heuristic policy as given in Section 5.3. In the interest of space,

we focus on the results for two 5-by-5 networks. (See EC.3.2. for additional numerical experiments

for the X-model, which shows that our heuristic policy has a performance comparable to that of

the optimal fluid-translated policy.) For the 5-by-5 networks, we compare the performance of the

heuristic look-ahead policy with that of other modified benchmark policies since the optimal policy

is unknown (prohibitive to get) in this setting.

We set the holding costs to be (1.5,1,1,1.5,1). The overflow costs ϕ are the same for all overflow

assignments. We consider two arrival rate settings. For the first setting, the arrival rates are

λ1(t) =

{
12, t < 40

4.5, t≥ 40
and λ4(t) =

{
8, t < 40

4, t≥ 40
, (14)

for Classes 1 and 4 respectively, and the arrival rates for other classes are constants: λ2(t) = 3,

λ3(t) = 4, λ5(t) = 3, i.e., Classes 1 and 4 experience demand surges while the others do not. For

the second setting, the arrival rates for classes 1 and 2 are

λ1(t) =

{
12, t < 40

2, t≥ 40
and λ2(t) =

{
3, t < 40

4.5, t≥ 40
(15)
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respectively, while the arrival rates for the other classes are the same as in the first setting, including

the surge for class 4. The two arrival rate settings are chosen to be consistent with those used in

the N-model experiments. We consider two network structures as depicted in Figure 8. The first

network has a closed-chain structure, which is a commonly advocated flexibility architecture in

supply chain and manufacturing applications (Simchi-Levi and Wei 2012, Tekin et al. 2002).

(a) Network I (b) Network II

Figure 8 Two network structures. Classes 1 and 4 have demand surge in both arrival rate settings.

Table 2 compares the cost under our policy and two of the most competitive benchmark policies

for different problem instances. The look-ahead policy is our proposed heuristic policy with θ= 0.8

– a 20% tuning down on G. We find that this tuning parameter performs very well across all

experiments. Thus, we recommend this policy for practical use.1 We observe that our proposed

policy again performs the best in both network structures and both arrival rate settings. The

modified cµ rule does not overflow, and thus performs the worst in the first arrival rate setting.

The modified maximum pressure policy tends to perform better in the first arrival rate setting,

showing a similar performance to that of our policy when ϕ= 2; however, when ϕ= 10 or 25, the

modified maximum pressure policy results in a much higher overflow cost than our policy does.

This is despite the fact that it incorporates overflow costs. The modified maximum pressure policy

shows an even larger performance gap from our policy in the second arrival rate setting. Similar to

what we explained in Section 6.1.3, this is because the maximum pressure policy does not account

for the future arrival rate information, and ends up providing too much help during the demand

surge, which hurts the class 2 queue.

6.3. Impact of Prediction Error in Arrival Rates

In Section 4, we have analytically studied the effects of prediction errors in the N-model. In this

section, we numerically investigate the effect of prediction errors in the stochastic system. Through-

out this section, we assume there is a known constant nominal arrival rate, which is the arrival

1 Tuning, in general, improves the cost from the untuned version by 0.5% to 4%; see EC.3.2. for the detailed results
for the X-model and the 5-by-5 network.
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Look-ahead ModMaxP ModCmu Look-ahead ModMaxP ModCmu
Network Structure I Network Structure I
Arrival Rate Setting I Arrival Rate Setting II

ϕ= 2 Holding 3.21 3.27 11.08 3.00 4.26 5.94
Overflow 0.52 0.59 0.00 0.29 0.29 0.00
Total 3.73 3.87 11.08 3.29 4.55 5.94
SE 0.007 0.007 0.014 0.005 0.008 0.010

ϕ= 10 Holding 3.45 3.27 11.08 3.36 4.22 5.94
Overflow 2.05 2.75 0.00 0.89 1.42 0.00
Total 5.50 6.03 11.08 4.25 5.64 5.94
SE 0.008 0.009 0.014 0.006 0.009 0.010

ϕ= 25 Holding 4.29 3.31 11.08 4.20 4.14 5.94
Overflow 3.57 6.27 0.00 1.10 3.46 0.00
Total 7.86 9.58 11.08 5.31 7.61 5.94
SE 0.012 0.013 0.014 0.007 0.010 0.010

Network Structure II Network Structure II
Arrival Rate Setting I Arrival Rate Setting II

ϕ= 2 Holding 3.00 3.27 11.08 2.93 3.69 5.94
Overflow 0.48 0.42 0.00 0.25 0.34 0.00
Total 3.48 3.69 11.08 3.18 4.03 5.94
SE 0.005 0.007 0.014 0.005 0.008 0.010

ϕ= 10 Holding 3.07 3.27 11.08 3.15 3.64 5.94
Overflow 1.98 2.06 0.00 0.93 1.68 0.00
Total 5.05 5.34 11.08 4.09 5.33 5.94
SE 0.007 0.008 0.014 0.006 0.009 0.010

ϕ= 25 Holding 3.57 3.27 11.08 4.19 3.55 5.94
Overflow 3.77 5.03 0.00 1.11 4.05 0.00
Total 7.34 8.31 11.08 5.30 7.61 5.94
SE 0.009 0.010 0.014 0.007 0.010 0.010

Table 2 Simulation costs for the 5-by-5 model. The costs shown in the table are in units of 104. “SE” stands

for the standard error for the total cost. Parameter setting: h= (1.5,1,1,1.5,1), si = 20, µii = 0.25, µij = 0.2 and

ϕij = ϕ for i ̸= j and X(0) = (30,40,50,60,70). Arrival rate settings I and II are given in (14) and (15) respectively.

rate during the normal days (non-surge period), denoted as λ0
i . We focus on larger values of ϕ, i.e.,

ϕ = 10,25. We compare the performance of our policy with two of the most competitive bench-

marks: the modified maximum pressure policy and the modified cµ rule.

6.3.1. Error in estimation We consider two (true) arrival rate settings, one specified in

Table 1 and the other in Figure 7. We assume that the arrival rate for class 2 is known, but the

arrival rate for class 1 suffers from prediction error during the surge. That is, at a decision time t,

the estimated arrival rate for the future is λ̃1(s|t) = λ1(s) + ϵ1(s|t) for t≤ s≤ κ1 and λ̃1(s|t) = λ0
1

for s > κ1. To reflect the fact that forecasts tend to be more accurate for the near future than for

the distant future, we allow ϵ1(s|t) to grow in magnitude with time. We also allow correlations in

ϵ1(s|t)’s across different time periods.

Specifically, we define a sequence of random variables {Rk : k≥ 1} with R1 ∼N(0,1), and Rk =

ρRk−1 +
√
1− ρ2νk for k ≥ 2, where νk’s are independent and identically distributed standard
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normal. The estimated rate is λ̃1(s|t) = λ1(s)+
√
ℓ⌈(s− t)/ℓ⌉R⌈(s−t)/ℓ⌉ at decision time t, where ℓ is

the interval for discretization and ⌈·⌉ is the ceiling function. In the experiments, we set ℓ= 5. This

form of estimated arrival rates is motivated by autoregressive models and deep latent Gaussian

models (Tzen and Raginsky 2019). Note that the standard deviation of the estimation error can

be as large as
√
40, which is of the same order as the true arrival rate. In other words, the setting

goes beyond the analytical setting in Section 4. When ρ < 0, successive Rk values are negatively

correlated, in which case the errors tend to cancel out each other when integrating the arrival

rates to calculate G̃t
1, leading to a more accurate estimate of Gt

1. When ρ> 0, successive Rk values

are positively correlated, and there is less of a cancellation effect when calculating G̃t
1. Thus, as ρ

increases, we would expect a less accurate estimate of Gt
1.

Table 3 summarizes the simulation results when using the estimated arrival rates with different

values of ρ in our look-ahead policy. As expected, the performance of our look-ahead policy tends

to deteriorate as ρ increases. (The differences are quite small though.) Nevertheless, our policy

performs better than the modified maximum pressure policy (best benchmark policy) in the first

arrival rate setting, and comparable to or better than the modified cµ rule (best benchmark policy)

in the second arrival rate setting. Importantly, the robust performance of our policy is in contrast

to the swaying performance of the two benchmark policies: they could perform well in one setting

but poorly in another.

The good performance of our policy, even under the presence of large prediction errors, benefits

from two aspects of our policy. First, taking a closer look at the look-ahead function G̃t
i, we note that

even though λ̃i(s) can be far from λi(s) for some s, as long as
∫ t+∆

t
λ̃i(s)ds is close to

∫ t+∆

t
λi(s)ds,

G̃t
i will be close to Gt

i. When taking the integration, some of the estimation errors may cancel

out. Second, G̃t
i is dynamically updated as the queue builds up and as more information becomes

available. This helps dynamically adjust the policy to respond to the load of the system.

6.3.2. Limited look-ahead time window We next study the impact of a limited look-ahead

time window. Using the same notation introduced in Section 3.3, we assume that for a given time

window W , at time t, only the future arrival rate up to time t+W is known. We test the settings

with two demand surges, where a limited look-ahead time may have a larger impact on performance

than the single-surge setting since the policy might not be able to anticipate the second demand

surge when planning during the first demand surge.

We consider two arrival rate settings similar to those studied in Table 3, except that we break

the initial demand surge into two separate surges. Table 4 summarizes the simulation results under

these two arrival rate settings, with the detailed arrival rates specified in the caption. We test three

different values of W : 0,5, and 10. Note that these time windows are smaller than or equal to the
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ρ -1 0 1 MMP MC -1 0 1 MMP MC
Arrival Rate Setting I Arrival Rate Setting II

ϕ= 10 Holding 1.104 1.105 1.107 1.108 2.754 1.111 1.110 1.120 1.543 1.282
Overflow 0.567 0.569 0.569 0.619 0.000 0.119 0.120 0.118 0.449 0.000
Total 1.671 1.674 1.676 1.727 2.754 1.229 1.230 1.238 1.992 1.282
SE 0.004 0.004 0.004 0.004 0.008 0.002 0.002 0.002 0.006 0.002

ϕ= 25 Holding 1.258 1.251 1.260 1.118 2.754 1.278 1.278 1.252 1.466 1.282
Overflow 1.034 1.054 1.054 1.504 0.000 0.007 0.007 0.050 1.061 0.000
Total 2.292 2.305 2.314 2.622 2.754 1.285 1.284 1.302 2.527 1.282
SE 0.005 0.005 0.005 0.005 0.008 0.002 0.002 0.002 0.006 0.002

Table 3 Simulation costs for the N-model when using our policy with ρ between -1 and 1, modified maximum

pressure policy (‘MMP’), and modified cµ policy (‘MC’). The costs shown in the table are in units of 104. “SE”

stands for the standard error for the total cost. Parameter setting: h= (1.5,1), ϕ12 = ϕ, X(0) = (60,70). The first

arrival setting is the same as that in Table 1 and the second the same as that in Figure 7.

length of the interval between the two demand surges, so that the policy does not “know” about the

second demand surge during the first one. To implement the look-ahead policy, we use the adapted

policy introduced in Section 3.3, i.e., when the arrival rate information is not available, we use the

nominal rate λ0
i . AsW increases, more of the arrival rate information is available for surge planning,

and, hence, the value of Ĝt
1(X1(t)) increases. Consequently, more help is offered, which explains

why the overflow cost increases while the holding cost generally decreases. W =∞ refers to the

full information case. As expected, the total cost generally decreases with W , but the performance

change is quite small. It is worth noting that our policy, even with a small value of W , generally

performs much better than the two benchmark policies. These numerical results demonstrate that

our policy is robust to limited future arrival rate information in different parameter settings, which

is very desirable for practical implementations.

W 0 5 10 ∞ MMP MC 0 5 10 ∞ MMP MC
Arrival Rate Setting I Arrival Rate Setting II

ϕ= 10 Holding 1.011 0.999 0.992 1.002 0.995 2.553 1.045 1.019 0.979 0.902 1.080 1.049
Overflow 0.537 0.543 0.549 0.563 0.598 0.000 0.003 0.023 0.052 0.111 0.361 0.000
Total 1.549 1.543 1.542 1.565 1.593 2.553 1.048 1.041 1.031 1.013 1.442 1.049
SE 0.004 0.004 0.004 0.004 0.004 0.007 0.002 0.002 0.002 0.002 0.004 0.002

ϕ= 25 Holding 1.270 1.237 1.215 1.152 1.006 2.553 1.049 1.049 1.049 1.049 1.030 1.049
Overflow 0.896 0.920 0.939 1.000 1.452 0.000 0.000 0.000 0.000 0.000 0.841 0.000
Total 2.166 2.158 2.154 2.152 2.458 2.553 1.049 1.049 1.049 1.049 1.871 1.049
SE 0.005 0.005 0.005 0.005 0.005 0.007 0.002 0.002 0.002 0.002 0.005 0.002

Table 4 Simulation costs for the N-model when using our policy with a limited prediction window

W = 0,5, and 10. The costs shown in the table are in units of 104. “SE” stands for the standard error for the

total cost. Parameter setting: h= (1.5,1), ϕ12 = ϕ, X(0) = (60,70). For arrival rate setting I,

λ1(t) = 8×1{t < 20}+4×1{20≤ t < 30}+8×1{30≤ t < 50}+4×1{t≥ 50} and λ2(t) = 3. For arrival rate setting

II, λ1(t) = 8×1{t < 20}+1×1{20≤ t < 30}+8×1{30≤ t < 50}+1×1{t≥ 50} and

λ2(t) = 3×1{t < 20}+4.5×1{20≤ t < 30}+3×1{30≤ t < 50}+4.5×1{t≥ 50}.
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6.3.3. Prediction delay In practice, it is possible that there is a delay (time lag) in the

estimated arrival rate, e.g., when the arrival rate is estimated based on the historical average. To

examine the impact of a potential prediction delay on the performance of our algorithm, we assume

for a given delay d, at a decision time t < d, the predicted future arrival rate is the constant nominal

arrival rate, i.e., λ̃1(s|t) = λ0
1 for s≥ t. At a decision time t≥ d, the predicted future arrival rate

is λ̃1(s|t) = λ1(s− d) for s≥ t, i.e., there is a constant lag of d between the predicted arrival rate

and the actual arrival rate. In this case, there is a delay of d to detect the start and the end of the

demand surge.

We consider a piecewise-linear arrival rate function for class 1:

λ1(t) = (5+0.25t)×1{t < 20}+(10− 0.3(t− 20))×1{20≤ t < 40}+4×1{t≥ 40} (16)

and λ2(t) = 3. All other parameters are the same as in the baseline setting. We test the performance

of our look-head policy under different values of d and the results are summarized in Table 5.

We observe that the performance of the look-ahead policy deteriorates as d increases. We tend

to do more overflow as d increases, because the delay causes the system to continue to overflow

for longer than it would otherwise. When ϕ = 10, the look-ahead policy performs better than

the modified maximum pressure policy (best benchmark) when d≤ 5. However, when d≥ 10, the

modified maximum pressure policy performs slightly better. When ϕ= 25, the look-ahead policy

performs better than the modified cµ rule (best benchmark) when d≤ 20. Only when d= 30 does

the look-ahead policy perform slightly worse than the modified cµ rule. Overall, when the overflow

cost is large (so that balancing between the cost and benefit from overflow is critical), our policy is

more robust and preferred, even if there may be a large prediction delay. When the overflow cost

is small yet there is a concern for large prediction delays, the arrival-agnostic policies could be a

better choice.

d 0 1 5 10 15 20 30 MMP MC

ϕ= 10 Holding 0.854 0.854 0.859 0.870 0.890 0.915 0.948 0.848 2.018
Overflow 0.462 0.467 0.493 0.526 0.557 0.586 0.615 0.530 0.000
Total 1.316 1.321 1.352 1.396 1.448 1.501 1.563 1.378 2.018
SE 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.007

ϕ= 25 Holding 1.031 1.017 0.961 0.919 0.913 0.908 0.902 0.855 2.018
Overflow 0.751 0.771 0.879 0.987 1.040 1.096 1.255 1.282 0.000
Total 1.781 1.788 1.840 1.906 1.954 2.004 2.156 2.137 2.018
SE 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.007

Table 5 Simulation costs for the N-model when using our policy with prediction delay d between 0 and 30. The

costs shown in the table are in units of 104. “SE” stands for the standard error for the total cost. Parameter

setting: h= (1.5,1), ϕ12 = ϕ, X(0) = (60,70), λ1(t) is as in (16), λ2(t) = 3.
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7. Conclusion

In this paper, we study how to leverage demand forecasts in designing the optimal routing policy

for systems with partial flexibility under demand surges. Our model incorporates salient features of

service systems, such as general time-varying arrival rates with possibly multiple surges, efficiency

loss and inconvenience costs associated with overflow, and various service compatibility architec-

tures (e.g., the N- and X-models). These features make our research problem highly nontrivial. We

characterize how to properly incorporate demand forecasts that are potentially imperfect into the

routing policies. We study transient fluid control for the N-model, the X-model, and two exten-

sions of the N-model, and we explicitly characterize the optimal control. All of these fluid-based

policies have a two-stage index-based structure with a look-ahead component that takes future

arrival rates into account. Based on the insights from the fluid analysis, we propose a two-stage

index-based look-ahead policy for general stochastic systems. Via extensive simulation results, we

quantify the value of future arrival rate information and show that our policy is able to achieve

superior performance to other benchmark policies in various parallel server networks. In particular,

our policy is robust under various scenarios of prediction errors, due to the built-in resilience of

the index structure.

Several future extensions may be considered. One is to jointly optimize the system’s architectural

design and the real-time routing policy, e.g. N-model versus X-model (see EC.2. for more discus-

sions). Another is to study the effect of more general prediction errors. Our theoretical analysis

assumes the prediction error is of a smaller order than the arrival rate. Our numerical experiments

show that our policy performs well even with relatively large prediction errors, benefiting from the

built-in resilience of the index structure. Investigating how to optimally adjust the routing policy

to account for various forms of prediction errors would be an interesting future research direction.
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Appendix A: Full Characterization of Optimal Policies for Extended N-Models

In this section, we provide the full characterization of the optimal scheduling polices for the two extended

N-models discussed in Section 5. We make the following assumptions about the arrival rate functions.

Assumption 4. The arrival rate functions λi(t), i= 1, · · · , I satisfy:

1. λi(t)≥ siµii when t < κi and λi(t)< siµii when t≥ κi.

2. (λi(t))0≤t≤κi
is piecewise monotone with a finite number of pieces.

3.
∫∞
κi
(siµii −λi(t))dt=∞.

4. Given X(0) = x, for any 0≤ t≤ κ̄, W (x, t)> 0, where

W (x, t) = inf
z

I∑
i=1

qi(t)

s.t. q̇i(s) = λi(s)−
I∑

j=1

µijzij(s), qi(0) = xi, i= 1, · · · , I,

I∑
i=1

zij(s)≤ sj , j = 1, · · · , I,

qi(s)≥ 0, i= 1, · · · , I, zij(s)≥ 0, i, j = 1, · · · , I.
The proofs of the results in this section are in the E-companion.

A.1. Many-Help-One Extended N-Model

In this section, we consider a 3-by-3 model in which pools 2 and 3 can help class 1, while pool 1 can serve

only class 1 (see Figure 4(c) for a pictorial illustration). We refer to this model as the exN1-model.

Following the development of the N-model, we first compare the hµ index. Without loss of generality, we

consider three possible cases:

I. h1µ12 >h2µ22 and h1µ13 >h3µ33. In this case, pool j, j = 2,3 gives priority to class 1 when class 1 has

a large enough backlog compared to class j.

II. h1µ12 <h2µ22 and h1µ13 >h3µ33. In this case, pool 3 gives priority to class 1 when class 1 has a large

enough backlog compared to class 3. Pool 2 provides partial help to class 1 after the class 2 queue empties

and when class 1 has a large enough backlog.

III. h1µ12 < h2µ22 and h1µ13 < h3µ33. In this case, pool j, j = 2,3, provides partial help to class 1 after

class j queue empties and when class 1 has a large enough backlog.

The key difference between the exN1-model and the N-model is that when pool j, j = 2,3 is determining

how long it will help class 1, it also needs to take into account the help class 1 can receive from pool k,

k= 2,3, k ̸= j. To make this notion more precise, we introduce the following notation. Define Ḡt
exN1,1,j(q(t))

as the time it takes pool 1 to empty queue 1 while taking into account the help it can receive from pool j.

We first consider the second server pool – i.e., j = 2.

For Case I, let F t
2(q(t)) denote the full helping period for pool 2 to class 1:

F t
2(q) = inf

{
u≥ 0 : h1µ12G

t+u
1 (q̃1(t+u))≤ h2µ22G

t+u
2 (q̃2(t+u))+ϕ12

}
,

where, for q̃: q̃(t) = q; for s≥ t, pool 1 serves class 1 only; pool 3 serves class 3 only; and pool 2 prioritizes

class 1. Then,

Ḡt
exN1,1,2(q) = F t

2(q)+G
t+F t

2(q)
1 (q̃1(t+F t

2(q))).
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In Cases II and III, let P t
2(q(t)) denote the partial help period for pool 2 to class 1:

P t
2(q) = inf

{
u≥ 0 : h1µ12G

t+Gt
2(q2)+u

1 (q̃1(t+Gt
2(q2)+u))≤ ϕ12

}
,

where, for q̃ with q̃(t) = q, pool 1 serves class 1 only and pool 3 serves class 3 only for all times s≥ t, while

pool 2 serves queue 2 only for times between t and t+Gt
2(q2), and provides partial help to class 1 for times

s≥ t+Gt
2(q2). Then,

Ḡt
exN1,1,2(q) =Gt

2(q2)+P t
2(q)+G

t+Gt
2(q)+P t

2(q)
1 (q̃1(t+Gt

2(q)+P t
2(q))).

Note that G
t+Gt

2(q)+P t
2(q)

1 (q̃1(t+Gt
2(q)+P t

2(q))) =
ϕ12

h1µ12
if P t

2(q)> 0.

We next consider the third server pool – i.e., j = 3. In Cases I and II, let F t
3(q(t)) denote the full helping

period for pool 3 to class 1:

F t
3(q) = inf

{
u≥ 0 : h1µ13G

t+u
1 (q̃1(t+u))≤ h3µ33G

t+u
3 (q̃3(t+u))+ϕ13

}
,

where, for q̃, q̃(t) = q, for s≥ t, pool 1 serves class 1 only; pool 2 serves class 2 only; and pool 3 prioritizes

class 1. Then,

Ḡt
exN1,1,3(q) = F t

3(q)+G
t+F t

3(q)
1 (q̃1 (t+F t

3(q))) .

In Case III, let P t
3(q(t)) denote the partial helping period for pool 3 to class 1:

P t
3(q) = inf

{
u≥ 0 : h1µ13G

t+Gt
3(q3)+u

1 (q̃1(t+Gt
3(q3)+u))≤ ϕ13

}
,

where, for q̃: q̃(t) = q; for s ≥ t, pool 1 serves class 1 only, and pool 2 serves class 2 only; between t and

t+Gt
3(q3), pool 3 serves class 3 only; for s≥ t+Gt

3(q3), pool 3 provides partial help to class 1. Then,

Ḡt
exN1,1,3(q) =Gt

3(q3)+P t
3(q)+G

t+Gt
3(q)+P t

3(q)
1 (q̃1(t+Gt

3(q)+P t
3(q))).

Similar to before, G
t+Gt

3(q)+P t
3(q)

1 (q̃1(t+Gt
3(q)+P t

3(q))) =
ϕ31

h3µ31
if P t

3(q)> 0.

Note that when pool j prioritizes class 1, it is possible that q1(t) = 0, in which case, it may no longer be

feasible to have z1j(t) = sj . To simplify the analysis, we will make the following assumption, which ensures

that q1(t)> 0 when pool 2 or 3 prioritizes class 1.

Assumption 5. For t < κ1, λ1(t)> s1µ11 + s2µ12 + s3µ13.

The following theorem characterizes the optimal scheduling policy for the exN1-model.

Theorem 5. For the exN1-model, under Assumptions 4 and 5, the optimal control for (10) takes the

following form. Pool 1 serves as many class 1 customers as possible.

I. If h1µ12 >h2µ22 and h1µ13 >h3µ33, for pool 2,

iia. If
h2µ22G

t
2(q2(t))+ϕ12

h1µ12
≥ h3µ33G

t
3(q3(t))+ϕ13

h1µ13
and

h1µ12Ḡ
t
exN1,1,3(q(t))>h2µ22G

t
2(q2(t))+ϕ12, (17)

pool 2 gives priority to class 1.
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iib. Otherwise, if
h2µ22G

t
2(q2(t))+ϕ12

h1µ12
<

h3µ33G
t
3(q3(t))+ϕ13

h1µ13
and

h1µ12G
t
1(q1(t))>h2µ22G

t
2(q2(t))+ϕ12, (18)

pool 2 gives priority to class 1.

iic. Otherwise, pool 2 serves class 2 only.

For pool 3,

iiia. If
h3µ33G

t
3(q3(t)+ϕ13

h1µ13
≥ h2µ22G

t
2(q2(t)+ϕ12

h1µ12
and

h1µ13Ḡ
t
exN1,1,2(q(t))>h3µ33G

t
3(q3(t))+ϕ13, (19)

pool 3 gives priority to class 1.

iiib. Otherwise, if
h3µ33G

t
3(q3(t)+ϕ13

h1µ13
<

h2µ22G
t
2(q2(t)+ϕ12

h1µ12
and

h1µ13G
t
1(q1(t))>h3µ33G

t
3(q3(t))+ϕ13, (20)

pool 3 gives priority to class 1.

iiic. Otherwise, pool 3 serves class 3 only.

II. If h1µ12 <h2µ22 and h1µ13 >h3µ33, pool 2 prioritizes class 2.

iia. If

Gt
2(q2(t)) = 0 and h1µ12Ḡ

t
exN1,1,3(q(t))>ϕ12, (21)

pool 2 provides partial help to class 1.

iib. Otherwise, pool 2 serves class 2 only.

For pool 3,

iiia. If

h1µ13Ḡ
t
exN1,1,2(q(t))>h3µ33G

t
3(q3(t))+ϕ13, (22)

pool 3 prioritizes class 1.

iiib. Otherwise, pool 3 serves class 3 only.

III. If h1µ12 < h2µ22 and h1µ13 < h3µ33, both pool 2 and pool 3 prioritize their primary classes, respec-

tively. For pool 2,

iia. If

Gt
2(q2(t)) = 0, and h1µ12Ḡ

t
exN1,1,3(q(t))>ϕ12, (23)

pool 2 provides partial help to class 1.

iib. Otherwise, pool 2 serves class 2 only.

For pool 3,

iiia. If

Gt
3(q3(t)) = 0 and h1µ13Ḡ

t
exN1,1,2(q(t))>ϕ13, (24)

pool 3 provides partial help to class 1.

iiic. Otherwise, pool 3 serves class 3 only.
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To provide more intuition behind Theorem 5, let us consider the case where the conditions of I.iia. hold.

The inequalities of I. involve the hµ index, under which we show that pool j, j = 2,3, should provide full help

to class 1 if help is initiated. This is consistent with the first stage of the optimal policy for the N-model.

The first inequality in iia. says that the “tolerance” level of overflow to pool 3 is higher than that of pool

2, noting that the index mimics condition (6) if we consider pool 1 and pool 2 (or pool 1 and pool 3) as a

sub-system. This second-stage condition indicates that pool 3 will help class 1 longer than pool 2.

It is worth repeating that the key difference between the exN1-model and the N-model lies in the second

stage; we need to compare only the hµ index in the first stage, even when there are more than two classes.

Under iia., when pool 2 determines how long it will help class 1, it also needs to take into account the help

that class 1 can receive from pool 3, as formalized by (17).

Comparing the exN1-model to the N-model, we note that Ḡt
exN1,1,3(q(t))≤Gt

1(q1(t)). This implies that in

the exN1-model, because pool 3 can also help class 1, pool 2 may provide less help to class 1 than in the

N-model. Similar observations hold for the other cases, as well.

A.2. One-Helps-Many Extended N-Model

In this section, we consider a 3× 3 model in which pool 1 can serve classes 1, 2 and 3, while pools 2 and

3 can serve only their corresponding primary class (see Figure 4(d) for a pictorial illustration). We refer to

this model as the exN2-model.

Following the development of the N-model, we first compare the hµ index. Without loss of generality, we

consider three possible cases:

I. h2µ21 > h3µ31 > h1µ11. In this case, pool 1 prioritizes classes 2 and 3 when there are large enough

backlogs in these two classes compared to class 1. When deciding between classes 2 and 3, class 2 enjoys

higher priority over class 3.

II. h2µ21 >h1µ11 >h3µ31. In this case, pool 1 prioritizes class 2 when there is a large enough backlog in

class 2. Pool 1 can provide partial help to class 3 after the class 1 queue empties and when class 3 has a

large enough backlog.

III. h1µ11 >h2µ21 >h3µ31. In this case, pool 1 provides only partial help to classes 2 and 3 after the class

1 queue empties and when there are large enough backlogs in the two classes. When deciding between classes

2 and 3, class 2 enjoys higher priority over class 3.

The key difference between the exN2-model and the N-model is that when pool 1 is determining how long

it will help class i, i= 2,3, it also needs to take into account the help it can provide to class k, k= 2,3, k ̸= i.

To make this notion more precise, we introduce the following notation.

In Case I, let F t(q(t)) denote the length of the full helping period for pool 1 to class 3:

F t(q) = inf
{
u≥ 0 : h3µ31G

t+u
3 (q̃3(t+u))≤ h1µ11G

t+u
1 (q̃1(t+u))+ϕ31

}
,

where for q̃: q̃(t) = q; for s≥ t, pool 1 prioritizes class 3. Let Ḡt
exN2,1(q(t)) denote the time it takes to empty

queue 1 given that it may provide some help to class 3:

Ḡt
exN2,1(q) = F t(q(t))+G

t+F t(q)
1 (q̃1(t+F t(q))).
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In Cases II and III, let P t(q(t)) denote the length of pool 1’s partial helping period to class 3:

P t(q) = inf
{
u≥ 0 : h3µ31G

t+Gt
1(q1)+u

3 (q̃3(t+Gt
1(q1)+u))≤ ϕ31

}
,

where, for q̃: q̃(t) = q, between t and Gt
1(q1), pool 1 serves class 1 only; and for s > t+Gt

1(q1), pool 1 provides

partial help to class 3.

Note that when pool 1 gives priority to class i, it is possible that q2(t) = 0, in which case, it may no longer

be feasible to have z21(t) = s1. To simplify the analysis, we will make the following assumption, which ensures

that qi(t)> 0 when pool 1 gives priority to class i, i= 2,3.

Assumption 6. For i= 1,2 and t < κi, λi(t)> s1µi1 + siµii.

The following theorem characterizes the optimal scheduling policy for the exN2-model.

Theorem 6. For the exN2-model, under Assumptions 4 and 6, the optimal control for (10) takes the

following form. Pools 2 and 3 serve their primary classes as much as possible.

I. If h2µ21 >h3µ31 >h1µ11,

a. If

h2µ21G
t
2(q2(t))>h1µ11Ḡ

t
exN2,1(q(t))+ (h3µ31 −h1µ11)F

t(q(t))+ϕ21, (25)

pool 1 gives priority to class 2.

b. Otherwise, if

h3µ31G
t
3(q3(t))>h1µ11G

t
1(q1(t))+ϕ31, (26)

pool 1 gives priority to class 3.

c. Otherwise, pool 1 serves class 1 only.

II. If h2µ21 >h1µ11 >h3µ31,

a. If

h2µ21G
t
2(q2(t))>h1µ11G

t
1(q1(t))+h3µ31P

t(q(t))+ϕ21, (27)

pool 1 gives priority to class 2.

b. Otherwise, if Gt
1(q1(t)) = 0 and h3µ31G

t
3(q3(t))>ϕ31, pool 1 provides partial help to class 3.

c. Otherwise, pool 1 serves class 1 only.

III. If h1µ11 >h2µ21 >h3µ31,

a. If

Gt
1(q1(t)) = 0 and h2µ21G

t
2(q2(t))>h3µ31P

t(q(t))+ϕ21, (28)

pool 1 provides partial help to class 2.

b. Otherwise, if Gt
1(q1(t)) = 0 and h3µ31G

t
3(q3(t))>ϕ31, pool 1 provides partial help to class 3.

c. Otherwise, pool 1 serves class 1 only.

To provide more intuition behind Theorem 6, let us consider Case I. In the first stage, pool 1 prioritizes

classes 2 and 3 when there are large enough backlogs in these two classes compared to class 1. When deciding
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between classes 2 and 3, class 2 enjoys a higher priority than class 3. The key difference between the exN2-

model and the N-model again lies in the second stage. In particular, when pool 1 is determining how long it

will help class 2, it also needs to consider the help it can provide to class 3, as formalized by (25).

Comparing the exN2-model to the N-model, we note that Ḡt
exN2,1(q(t))≥Gt

1(q1(t)), and

h1µ11Ḡ
t
exN2,1(q(t))+ (h3µ31 −h1µ11)F

t(q(t))+ϕ21 ≥ h1µ11G
t
1(q1(t))+ϕ21.

Because pool 1 can also help class 3 in the exN2-model, it provides less help to class 2 than in an otherwise

similar N-model.

Appendix B: Proof of Optimal Fluid Control Results

The proof of Theorem 1 and subsequent fluid optimal control results (Theorems 4 - 6) utilize Pontryagin’s

Minimum Principle. In its most standard version, Pontryagin’s Minimum Principle provides a list of necessary

conditions satisfied by any optimal solution to the optimal control problem. In this section, we first introduce

a special sufficient version of Pontryagin’s Minimum Principle. We then demonstrate how it can be applied

to prove Theorem 1. The proofs of the other results (Theorems 4 - 6) follow similar lines of analysis and are

provided in the E-companion.

B.1. Pontryagin’s Minimum Principle

To state the result in a general form that can be applied to all our subsequent analysis, we first introduce

some notation.

Consider a system with I classes of customers, i.e., q = (q1, . . . , qI) and z = (zij , i, j = 1, . . . , I). Let

F (q, z) =
∑I

i=1 hiqi+
∑

j ̸=i
ϕijzij denote the instantaneous cost function. Let q̇i(t) = fi(q, z, t) and f(q, z, t) =

(f1(q, z, t), . . . , fI(q, z, t)). We also define gi(q) = −qi and g(q) = (g1(q), . . . , gI(q)). Lastly, let lij(z) = −zij ,
l̃j(z) =

∑I

i=1 zij − sj , and l(z) = (lij(z), l̃j(z), i, j = 1, . . . , I). Consider a general optimal control problem

inf
z

∫ ∞

0

F (q(t), z(t))dt

s.t. q̇(t) = f (q(t), z(t), t) , q(0) = q0

g(q(t))≤ 0

l(z(t))≤ 0

(29)

Note that under the assumption that
∫∞
κi
(siµii − λi(t))dt = ∞ for i = 1, . . . , I, the queue will eventually

hit zero and stay there. After this hitting time, F (q(t), z(t)) = 0. Thus, even though we define (29) as an

infinite horizon problem, it is the same as a finite horizon problem where the planning horizon is long enough

(possibly depending on the initial condition) that the queue reaches zero by the end of the planning horizon.

Let p(t) = (p1(t), . . . , pI(t)) ∈ RI denote the adjoint vector. Let η(t) = (η1(t), . . . , ηI(t)) ∈ RI and ξ(t) =

(ξij(t), ξ̃j(t), i, j = 1, . . . , I) ∈ RI2+I denote the Lagrangian multipliers for the state and control constraints

respectively. Define the Hamiltonian H as

H(q(t), z(t), p(t), t) = F (q(t), z(t))+ p(t)T f (q(t), z(t), t)

and the augmented Hamiltonian L as

L(q(t), z(t), p(t), η(t), γ(t), ξ(t), t) =H(q(t), z(t), p(t), t)+ η(t)T g(q(t))+ ξ(t)T l(z(t))

The following sufficient conditions are adapted from Theorems 8.2 and 8.4 in Hartl et al. (1995) for (29).
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Theorem 7 (Arrow-type sufficient condition). Let (q∗, z∗) be a feasible pair for the optimal control

problem (29). Assume that there exists a piecewise continuously differentiable function p∗(t) : [0,∞)→RI and

piecewise continuous functions η∗ : [0,∞)→ RI and ξ∗ : [0,∞)→ RI2+I , such that the following conditions

hold almost everywhere:

1. Ordinary Differential Equation condition:

q∗(0) = q0, q̇∗(t) = f (q∗(t), z∗(t), t) (ODE)

2. Adjoint Vector condition:

ṗ∗(t) =−∇qL(q
∗(t), z∗(t), p∗(t), η∗(t), ξ∗(t), t) (ADJ)

3. Minimization condition:

H(q∗(t), z∗(t), p∗(t), t) =min
z

{H(q∗(t), z(t), p∗(t), t)} (M)

4. Augmented Hamiltonian condition:

∇zL(q
∗(t), z∗(t), p∗(t), η∗(t), ξ∗(t), t) = 0. (AH)

5. Transversality condition:

lim
t→∞

p∗(t)(q(t)− q∗(t))≥ 0 (T)

for any feasible state trajectory q.

6. Complementarity condition:

η∗(t)≥ 0, η∗(t)T g(q∗(t)) = 0

ξ∗(t)≥ 0, ξ∗(t)T l(z∗(t)) = 0
(C)

7. Jump condition: At every point β of discontinuity of p∗, there exists an ω∗(β)∈RI such that

p∗(β−) = p∗(β+)+ω∗(β)T∇qg(q
∗(β))

ω∗(β)≥ 0, ω∗(β)T g (q∗(β)) = 0.
(J)

8. Hamiltonian condition (H): If the minimized Hamiltonian H(q∗(t), z∗(t), p∗(t), t) is convex in q∗(t) for

all (p∗(t), t), the pure state constraint g(q(t)) is quasiconvex in q(t), and the control constraint l(z(t)) is

quasiconvex in z(t).

Then, (q∗, z∗) is an optimal pair.

B.2. Optimal control for the N-Model under single demand surge

In this section, we provide the proof of Theorem 1. The basic strategy is to construct a feasible pair (q∗, z∗)

and verify that the assumptions in Theorem 7 hold. Note that condition (T) holds trivially in our case

because p∗(t)≥ 0, q∗(t) = 0 for t large enough, and for any feasible state trajectory, q(t)≥ 0. In fact, p∗(t) = 0

for large enough t in our case, which again ensures condition (T) holds.

We first prove an auxiliary lemma.

Lemma 1. Under Assumption 1 and the control characterized by Theorem 1, let τ1 = inf{t≥ 0 :Gt
1(q1(t)) =

0}. ψ(t) is monotonically decreasing in t for t≤ τ1 and ψ(t)< 0 for t > τ1.
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Proof. Take Gt
i(qi(t)) as a function of t. Note that when class i (i = 1,2) is only served by pool i and

Gt
i(qi(t))> 0, Gt

i(qi(t)) decreases at rate 1 until it hits zero. When pool 2 provides help to class 1, Gt
1(q1(t))

decreases at rate at least 1, while Gt
2(q2(t)) decreases at rate at most 1. Since h1µ12 > h2µ22, ψ(t) keeps

decreasing in t until Gt
1(q1(t)) hits zero. After Gt

1(q1(t)) hits zero, say at time τ1, it stays at zero for t≥ τ1.

Since Gt
2(q2(t))≥ 0, ψ(t)< 0 for t≥ τ1. □

Proof of Theorem 1. In this case,

H(q(t), z(t), p(t), t) =h1q1(t)+h2q2(t)+ϕ12z12(t)

+ p1(t) (λ1(t)−µ11z11(t)−µ12z12(t))+ p2(t) (λ2(t)−µ22z22(t))

and

L(q(t), z(t), p(t), η(t), ξ(t), γ(t), t) =H(q(t), z(t), p(t))− η1(t)q1(t)− η2(t)q2(t)

− ξ11(t)z11(t)− ξ12(t)z12(t)− ξ22(t)z22(t)

+ γ1(t)(z11(t)− s1)+ γ2(t)(z12(t)+ z22(t)− s2).

We next verify the sufficient conditions listed in Theorem 7.

Case I: h1µ12 ≥ h2µ22. In this case, the policy is that pool 2 gives priority to class 1 for a time

τ∗ = inf{t≥ 0 : h1µ12G
t
1(q1(t))−ϕ12 ≤ h2µ22G

t
2(q2(t))} (30)

assuming the inequality in case (Ia) holds initially, and τ∗ = 0 otherwise. After this τ∗ units of time, pool 2

stops helping class 1. To see this, note that since h1µ12 ≥ h2µ22 and ψ(t), if the inequality in case (Ia) does

not hold at some t′, it also does not hold at all subsequent t≥ t′.

Under the policy characterized in Case I, the times to deplete the two queues are

τ∗
1 = τ∗ +Gτ∗

1 (q∗1(τ
∗)), τ∗

2 = τ∗ +Gτ∗

2 (q∗2(τ
∗)). (31)

Then, we consider the following queue length trajectory:

q∗1(t) =


q1 +

∫ t

0
(λ1(s)− s1µ11 − z∗12(s)µ12)ds, t∈ [0, τ∗),

q∗1(τ
∗)+

∫ t

τ∗
(λ1(s)− s1µ11)ds, t∈ [τ∗, τ∗

1 ),

0, t∈ [τ∗
1 ,∞),

q∗2(t) =


q2 +

∫ t

0
(λ2(s)− z∗22(s)µ22)ds, t∈ [0, τ∗),

q∗2(τ
∗)+

∫ t

τ∗(λ2(s)− s2µ22)ds, t∈ [τ∗, τ∗
2 ),

0, t∈ [τ∗
2 ,∞).

Note that it may be that z∗12(t) < s2 for t ∈ [0, τ∗], if q1(t) = 0 and λ1(t) < s1µ11 + s2µ12. In this case,

z∗22(t) = s2 − z∗12(t) (since q2(t) > 0 by assumption). However, it is always the case that z∗11(t) = s1 for

t∈ [0, τ∗], since either (i) q1(t)> 0 or (ii) q1(t) = 0 and t < κ1, so that λ1(t)≥ s1µ11.

Assuming τ∗ > 0, we now partition the interval [0, τ∗) into subintervals I1, · · · , In where n≥ 1, Ii = [Vi−1, Vi)

and 0 = V0 <V1 < · · ·<Vn = τ∗, as follows. In the interior t∈ (Vi−1, Vi) of each subinterval, either (i) q1(t)> 0

and q2(t) > 0, in which case we say that Ii is an interior subinterval, or (ii) q1(t) = 0 and q2(t) > 0, in

which case we say that Ii is a boundary subinterval. Note that it is not possible that q1(t)> 0 and q2(t) = 0

in some subinterval, because z∗22(t) = 0 during this time and λ2(t) > 0. The subintervals I1, · · · , In do not

necessarily alternate between interior and boundary subintervals: it is possible that Ik and Ik+1 are both

interior subintervals, with q1(t) hitting zero at the single point Vk.
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We next define the adjoint vector

p∗2(t) =

{
h2(τ

∗
2 − t), t∈ [0, τ∗

2 ),

0, t∈ [τ∗
2 ,∞),

and

p∗1(t) =

{
h1(τ

∗
1 − t), t∈ [τ∗, τ∗

1 ),

0, t∈ [τ∗
1 ,∞).

For t < τ∗, with p∗1(Vn) = p∗1(τ
∗) defined, moving backwards in time, we recursively define p∗1(t) for t∈ [0, Vn).

We will do this in such a way that (i) the jumps of p∗1, if any, occur only when q∗1(t) = 0 and the jumps are

positive; (ii) in any interior subinterval Ii,

p∗1(t)µ12 −ϕ12 − p∗2(t)µ22 ≥ 0; (32)

and (iii) in any boundary subinterval Ii,

p∗1(t)µ12 −ϕ12 − p∗2(t)µ22 = 0. (33)

Note that p∗1(τ
∗)µ12 −ϕ12 − p∗2(τ

∗)µ22 = 0 if τ∗ > 0.

More specifically, suppose p∗1(Vk) has been defined for some k, with p∗1(Vk)µ12 −ϕ12 − p∗2(Vk)µ22 ≥ 0. If Ik

is an interior subinterval, we set

p∗1(t) = h1(Vk − t)+ p∗1(Vk)

for t ∈ [Vk−1, Vk). That is, p
∗
1 is continuous at Vk and has slope −h1 in the subinterval Ik. Thus, p

∗
1(t)µ12 −

ϕ12 − p∗2(t)µ22 has slope h2µ22 − h1µ12 ≤ 0, which implies that p∗1(Vk−1)µ12 −ϕ12 − p∗2(Vk−1)µ22 ≥ 0. If Ik is

a boundary subinterval, we set p∗1(Vk−1) = p∗2(Vk−1)µ22/µ12+ϕ12/µ12 and p∗1(t) = p∗1(Vk−1)− h2µ22

µ12
(t−Vk−1)

for t∈ (Vk−1, Vk). That is, p
∗
1 has a jump at Vk and has slope −h2µ22

µ12
in the subinterval Ik. This ensures that

ϕ12−p∗1(t)µ12 =−p∗2(t)µ22 everywhere in Ik. The size of the jump at Vk is p∗1(Vk)−p∗2(Vk)µ22/µ12−ϕ12/µ12 ≥
0, which is non-negative because p∗1(Vk)µ12−ϕ12−p∗2(Vk)µ22 ≥ 0. This way, we have defined p∗1 for t∈ [0, τ∗)

that satisfies conditions (i), (ii) and (iii).

Lastly, define the multipliers

η∗1(t) =


0, t∈ Ik and Ik is an interior subinterval,

h1 − h2µ22

µ12
, t∈ Ik and Ik is a boundary subinterval,

0, t∈ [τ∗, τ∗
1 ),

h1, t∈ [τ∗
1 ,∞),

η∗2(t) =

{
0, t∈ [0, τ∗

2 ),

h2, t∈ [τ∗
2 ,∞),

γ∗
1(t) =

{
p∗1(t)µ11, t∈ [0, τ∗

1 ),

0, t∈ [τ∗
1 ,∞),

γ∗
2(t) =


p∗1(t)µ12 −ϕ12, t∈ [0, τ∗)

p∗2(t)µ22, t∈ [τ∗, τ∗
2 ),

0, t∈ [τ∗
2 ,∞),
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ξ∗12(t) =

{
0, t∈ [0, τ∗),

ϕ12 − p∗1(t)µ12 + p∗2(t)µ22, t∈ [τ∗,∞),

ξ∗22(t) =

{
p∗1(t)µ12 −ϕ12 − p∗2(t)µ22, t∈ [0, τ∗),

0, t∈ [τ∗,∞),

and ξ∗11(t) = 0 for all t≥ 0. Note that if τ∗ > 0, p∗1(t)µ12 − ϕ12 − p∗2(t)µ22 ≥ 0 for t ∈ [0, τ∗), and p∗1(t)µ12 −
ϕ12 − p∗2(t)µ22 ≤ 0 for t∈ [τ∗,∞). Thus, ξ∗12 and ξ∗22 are non-negative.

The conditions (ODE), (ADJ), (J), and (H) are straightforwardly verified, i.e., by construction.

For (C), we only need to check that when z∗22(t)> 0 in a boundary subinterval [Vk−1, Vk), ξ
∗
22(t) = 0. This

holds because of (33). (Note that z∗22(Vk) = 0.)

For (AH), we have that

∇z11L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t)) =−p∗1(t)µ11 + γ∗

1(t)− ξ∗11(t) = 0

because ξ∗11(t) = 0 and γ∗
1(t) = p∗1(t)µ11. Next,

∇z22L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t)) =−p∗2(t)µ22 + γ∗

2(t)− ξ∗22(t) = 0

because ξ∗22(t) = γ∗
2(t)− p∗2(t)µ22 for t∈ [0, τ∗), and ξ∗22(t) = 0 and γ∗

2(t) = p∗2(t)µ22 for t≥ τ∗. Finally,

∇z12L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t)) = ϕ12 − p∗1(t)µ12 + γ∗

2(t)− ξ∗12(t) = 0

because ξ∗12(t) = 0 and γ∗
2(t) = p∗1(t)µ12 −ϕ12 for t∈ [0, τ∗), and ξ∗12(t) = ϕ12 − p∗1(t)µ12 + γ∗

2(t) for t≥ τ∗.

Lastly, for (M), it is easy to see that z∗11(t) should always be maximal. Note that even when q∗1(t) = 0

for some t < τ∗, (M) follows because under the constraint that z∗11(t)µ11 + z∗12(t)µ12 ≤ λ1(t), the coefficients

of z∗11(t) and z∗12(t) are −p∗1(t)µ11 and ϕ12 − p∗1(t)µ12. For t < τ∗, the coefficients of z∗12(t) and z∗22(t) are

respectively ϕ12 − p∗1(t)µ12 and −p∗2(t)µ22. Since p
∗
1(t)µ12 −ϕ12 ≥ p∗2(t)µ22, it is optimal to have z∗12(t) being

maximal. When t≥ τ∗, p∗1(t)µ12 −ϕ12 ≤ p∗2(t)µ22, and so it is optimal to have z∗22(t) being maximal. This in

turn implies z∗12(t) = 0 for t∈ [τ∗, τ∗
2 ) is optimal (pool 2 has no spare capacity to help class 1). When t≥ τ∗

2 ,

ϕ12 − p∗1(t)µ12 ≤ 0, so again z∗12(t) = 0 is optimal.

Case II: h1µ12 < h2µ22. Let τi = G0
i (qi(0)) for i = 1,2. In this case, the policy is that each pool serves

only its own class for t ∈ [0, τ2). Under Assumption 1, τ2 ≥ κ2. Thus, λ2(t)< s2µ22 and q2(t) = 0 for t≥ τ2.

Then, pool 2 gives partial help to class 1 for t∈ [τ2, τ2 + τ∗), where

τ∗ = inf{t≥ 0 : h1µ12G
τ2+t
1 (q1(τ2 + t))≤ ϕ12}.

If h1µ12G
τ2
1 (q1(τ2)) ≤ ϕ12, τ

∗ = 0. For t ≥ τ2 + τ∗, the inequality in (IIa) does not hold. Thus, each pool

serves its own class only.

Note that if τ1 ≤ τ2, we have τ
∗ = 0, which will be discussed below. Suppose for now τ1 > τ2. Let τ

∗
1 = τ2+

τ∗+Gτ2+τ∗

1 (q∗1(τ2+τ
∗)) be the time at which queue 1 empties. Note that if τ∗ > 0, then h1µ12G

τ2+τ∗

1 (q1(τ2+

τ∗)) = ϕ12 by continuity, so that τ∗
1 = τ2+τ

∗+ ϕ12

h1µ12
. Then, we consider the following queue length trajectory:

q∗1(t) =


q1 +

∫ t

0
(λ1(s)− s1µ11)ds, t∈ [0, τ2),

q∗1(τ2)+
∫ t

τ2
(λ1(s)− s1µ11 − (s2 −λ2(s)/µ22)µ12)ds, t∈ [τ2, τ2 + τ∗),

q∗1(τ2 + τ∗)+
∫ t

τ2+τ∗(λ1(s)− s1µ11)ds, t∈ [τ2 + τ∗, τ∗
1 )

0, t∈ [τ∗
1 ,∞),

q∗2(t) =

{
q2 +

∫ t

0
(λ2(s)− s2µ22)ds, t∈ [0, τ2),

0, t∈ [τ2,∞).
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Note that the expression for q∗2(t) holds because, under Assumption 1, queue 2 will only be emptied once. Also,

Assumption 1 implies that q∗1(t)> 0 for t ∈ [τ2, τ2 + τ∗), so that z∗12(t) = s2 − λ2(s)/µ22 and z∗11(t) = s1µ11.

Finally, Assumption 1 implies that q∗1(t)> 0 for t ∈ [0, τ2), except possibly for an initial interval containing

0 in which λ1(t) = s1µ11 if q1(0) = 0. Thus, z∗11(t) = s1µ11 for t∈ [0, τ2).

Next, define the adjoint vectors

p∗1(t) =

{
h1(τ

∗
1 − t), t∈ [0, τ∗

1 ),

0, t∈ [τ∗
1 ,∞),

p∗2(t) =


h2(τ2 − t)+h1

µ12

µ22
τ∗, t∈ [0, τ2),

h1
µ12

µ22
(τ2 + τ∗ − t), t∈ [τ2, τ2 + τ∗),

0, t∈ [τ2 + τ∗,∞).

Lastly, define the multipliers

η∗1(t) =

{
0, t∈ [0, τ∗

1 ),

h1, t∈ [τ∗
1 ,∞),

η∗2(t) =


0, t∈ [0, τ2),

h2 −h1
µ12

µ22
, t∈ [τ2, τ2 + τ∗),

h2, t∈ [τ2 + τ∗,∞);

γ∗
1(t) =

{
p∗1(t)µ11, t∈ [0, τ∗

1 ),

0, t∈ [τ∗
1 ,∞),

γ∗
2(t) =

{
p∗2(t)µ22, t∈ [0, τ2 + τ∗),

0, t∈ [τ2 + τ∗,∞);

ξ∗12(t) =


ϕ12 − p∗1(t)µ12 + p∗2(t)µ22, t∈ [0, τ2),

0, t∈ [τ2, τ2 + τ∗),

ϕ12 − p∗1(t)µ12, t∈ [τ2 + τ∗,∞);

and ξ∗11(t) = ξ∗22(t) = 0 for all t≥ 0. Note that η∗2(t)≥ 0 because h2µ22 ≥ h1µ12 by assumption. In addition,

because h1µ12 ≤ h2µ22, ξ
∗
12(t) = ϕ12 − h1µ12(τ

∗
1 − t) + h2µ22(τ2 − t) + h1µ12τ

∗ is non-increasing on [0, τ2). If

τ∗ > 0, ξ∗12(t)→ 0 as t→ τ2 because h1µ12(τ
∗
1 − τ∗ − τ2) = ϕ12. If τ

∗ = 0, ξ∗12(t)→ ϕ12 −h1µ12G
τ2
1 (q1(τ2))≥ 0

as t→ τ2. Thus,

ϕ12 −h1µ12(τ
∗
1 − t)+h2µ22(τ2 − t)+h1µ12τ

∗ ≥ 0 (34)

and ξ∗12(t)≥ 0.

The conditions (ODE), (ADJ), (C), (J), and (H) are verified straightforwardly by construction. For (AH),

∇z11L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t)) =−p∗1(t)µ11 + γ∗

1(t)− ξ∗11(t) = 0

because ξ∗11(t) = 0 and γ∗
1(t) = p∗1(t)µ11. Similarly,

∇z22L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t)) =−p∗2(t)µ22 + γ∗

2(t)− ξ∗22(t) = 0

because ξ∗22(t) = 0 and γ∗
2(t) = p∗2(t)µ22. Finally,

∇z12L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t)) = ϕ12 − p∗1(t)µ12 + γ∗

2(t)− ξ∗12(t)
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For t ≥ τ2 + τ∗, ϕ12 − p∗1(t)µ12 + γ∗
2(t)− ξ∗12(t) = 0 because the γ∗

2(t) = 0 and ξ∗12(t) = ϕ12 − p∗1(t)µ12. For

t∈ [τ2, τ2 + τ∗),

ϕ12 − p∗1(t)µ12 + p∗2(t)µ22 = ϕ12 −h1µ12 ((τ
∗
1 − t)− (τ2 + τ∗ − t)) = ϕ12 −h1µ12G

τ2+τ∗

1 (q∗1(τ2 + τ∗)) = 0.

Finally, for t∈ [0, τ2), ϕ12 − p∗1(t)µ12 + γ∗
2(t)− ξ∗12(t) = 0 because ξ∗12(t) = ϕ12 − p∗1(t)µ12 + γ∗

2(t).

Lastly, for (M), it is easy to see that z∗11(t) should always be maximal. The coefficients of z∗12(t) and z
∗
22(t)

are respectively ϕ12 − p∗1(t)µ12 and −p∗2(t)µ22. When t ∈ [0, τ2), p
∗
1(t)µ12 − ϕ12 ≤ p∗2(t)µ22 (see (34)), and it

can be verified that the inequality holds for all other t with equality for t∈ [τ2, τ2 + τ∗). Thus, it is optimal

to have z∗22(t) being maximal for t≥ 0. When t < τ2, q
∗
2(t)> 0, and so z∗12(t) = 0 is optimal (there is no spare

capacity for pool 2 to help class 1). When t ∈ [τ2, τ2 + τ∗), ϕ12 − p∗1(t)µ12 ≤ 0, so it is optimal to maximize

z∗12(t) in the sense of partial sharing, i.e. z∗12(t) = s2 − z∗22(t). When t≥ τ2 + τ∗, ϕ12 − p∗1(t)µ12 ≥ 0, so it is

optimal to have z∗12(t) = 0. This completes the proof. □

Appendix C: Proof of Asymptotic Optimality

In this section, we provide the proof of Theorem 3. Lemma 2 establishes the first part of the theorem. For

the second part of the theorem, we take the following steps:

1. We first show in Theorem 8 that there exists a fluid limit under any admissible control.

2. We then show in Theorem 9 that the fluid limit under the fluid translated control {ν̃n}n≥1 follows the

optimal fluid trajectory given in Section 3.

3. The key to verifying Theorem 9 is the continuity in the G and G̃ factors, which is established in Lemma 3

and Lemma 4, respectively.

For notational convenience, we define the scaled version of the estimated arrival rate:

λ̃n
i (t) :=

Λn
i (t)

n
= λi(t)+ ϵni (t), where ϵ

n
i (t) =En

i (t)/n.

Then, we can rewrite G̃t
i,n(nxi) as G̃

t
i,n(nxi) = inf

{
∆≥ 0 :

∫ t+∆

t
(siµii − λ̃n

i (s))ds= xi

}
. With a little abuse

of notation, we redefine the input of the function as xi, instead of nxi, i.e.,

G̃t
i,n(xi) = inf

{
∆≥ 0 :

∫ t+∆

t

(siµii − λ̃n
i (s))ds= xi

}
. (35)

We start from proving the following lemma, which establishes the results in the first part of Theorem 3.

Lemma 2. For any admissible control πn for system n, V̄ n,πn
(x)≥ V̄ ∗(x).

Proof. We suppress the superscript πn from the corresponding processes to simplify the notation. Let

gni (t, x) = λn
i (t)−

∑
j(π

n
t (x))ijnµij for t∈ [0, T (x)], x∈N2

0. Note that

Mi(·) :=Xn
i (·)−nxi −

∫ ·

0

gni (s,X
n(s))ds

is a zero-mean martingale by the Dynkin formula. Taking expectation gives

Eπ[X
n
i (t)] = nxi +

∫ t

0

Eπ[g
n
i (s,X

n(s))]ds= nxi +

∫ t

0

(
nλi(s)−n

∑
j

Eπ[Z
n
ij(s)]µij

)
ds (36)

for t∈ [0, T (x)].



Author: Optimal Routing under Demand Surges
54 00(0), pp. 000–000, © 0000 INFORMS

Consider the (fluid) policy u: ut(Eπ[X
n(t)/n]) = Eπ[Z

n(t)], i.e., if at time t we have q(t) = Eπ[X
n(t)/n],

then z(t) = Eπ[Z
n(t)]. ut(x) for other values of t and x can be defined arbitrarily. Note that for each j,∑

i zij(t) =
∑

iE[Zn
ij(t)]≤ sj , and (36) implies that

0≤Eπ[X
n
i (t)/n] = xi +

∫ t

0

(
λi(s)−

∑
j

Eπ[Z
n
ij(s)]µij

)
ds

for t∈ [0, T (x)]. Thus, u is an admissible control for the fluid problem and the corresponding fluid dynamics

take the form:

qi(t) =Eπ[X
n
i (t)/n], zij(t) =Eπ[Z

n
ij(t)] for t∈ [0, T (x)].

Then,

V̄ n,πn

(x) =Eπ

[∫ T (x)

0

(∑
i

hi

n
Xn

i (t)+
∑
i ̸=j

ϕijZ
n
ij(t)

)
dt

]

=

∫ T (x)

0

(∑
i

hiqi(t)+
∑
i ̸=j

ϕijzij(t)

)
dt

≥ V̄ ∗(x). □

To prove the second part of Theorem 3, we first introduce a notion of a fluid limit and show in Theorem 8

below that there exists a fluid limit under any admissible control. Let Ȳ = (Ȳ11, Ȳ12, Ȳ22), where

Ȳ n
ij (t) =

∫ t

0

Zn
ij(s)ds

is the total amount of time spent by pool j servers on class i customers up to time t.

Theorem 8. There exists almost surely a subsequence {nk : k ∈ N} such that (X̄nk , Ȳ nk)→ (X̄, Ȳ ) uni-

formly on compact intervals (u.o.c.) as n→∞. Moreover, (X̄, Ȳ ) is Lipschitz continuous and satisfies

(a) X̄(0) = x, X̄(t)≥ 0 for t≥ 0;

(b) X̄i(t) = X̄i(0)+
∫ t

0
λi(s)ds−

∑
j
Ȳij(t)µij;

(c) Ȳ (·) is non-decreasing with Ȳij(0) = 0;

(d)
∑

i
(Ȳij(t)− Ȳij(s))≤ sj(t− s) for j = 1,2 and 0≤ s < t.

Proof. By Strong Law of Large Numbers, the scaled number of arrivals

Ān
i (t) :=

1

n
Si

(∫ t

0

λn
i (s)ds

)
=

1

n
Si

(
n

∫ t

0

λi(s)ds

)
,

where Si is a rate-1 Poisson process, satisfies

Ān
i (t)→

∫ t

0

λi(s)ds

uniformly on compact sets (u.o.c.) as n→∞. The rest of the proof follows from Theorem 6.5 in Dai and

Harrison (2020). □

From Theorem 8, there exists a fluid limit for the sequence of systems under the fluid translated control

{ν̃n}n≥1 of Theorem 3. We next show that any fluid limit of the sequence of systems under policy {ν̃n}n≥1

is equal to the optimal fluid trajectory. Let (q∗, y∗) denote the optimal fluid trajectory, i.e., (q∗, z∗) is as

defined in Theorem 1 and y∗ij(t) =
∫ t

0
z∗ij(s)ds.
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Theorem 9. Let (X̄, Ȳ ) = (X̄1, X̄2, Ȳ11, Ȳ12, Ȳ22) be a fluid limit for the sequence of systems under policy

{ν̃n}n≥1. Then, (X̄, Ȳ ) = (q∗, y∗).

Before we prove Theorem 9, we first present two auxiliary lemmas that will be used in the proof.

Lemma 3. If t 7→ x̄i(t) is continuous, t 7→Gt
i(x̄i(t)) is also continuous.

Proof. We will show that t 7→Gt
i(x) is continuous for any fixed x≥ 0. To simplify notation, let ai(t) =

siµii −λi(t). Fix t > 0 and let ϵ > 0 be an arbitrarily small constant.

Case I: t > κi. We may assume that t− ϵ > κi. Note that
∫ t+Gt

i(x)

t−δ
ai(s)ds≥ x if δ≤ ϵ. Thus,

Gt−δ
i (x)≤Gt

i(x)+ δ≤Gt
i(x)+ ϵ.

Next, note that ξ1(δ) :=
∫ t−δ−ϵ+Gt

i(x)

t−δ
ai(s)ds is a continuous function of δ. As ξ1(0)< x, there exists δ1 > 0

such that for all 0≤ δ < δ1, ξ1(δ)<x. Thus,

Gt−δ
i (x)≥Gt

i(x)− ϵ.

Above all, for 0≤ δ < ϵ∧ δ1, |Gt−δ
i (x)−Gt

i(x)|< ϵ, i.e., we have left-continuity.

For the right continuity, we first note that for 0≤ δ < ϵ,
∫ t+Gt

i(x)

t+δ
ai(s)ds < x. Thus,

Gt+ϵ
i (x)>Gt

i(x)− δ >Gt
i(x)− ϵ.

Next, note that ξ2(δ) :=
∫ t+δ+Gt

i(x)+ϵ

t+δ
ai(s)ds is a continuous function of δ. As ξ2(0)> x, there exists δ2 > 0

such that for all 0≤ δ < δ2, ξ2(δ)>x. Thus,

Gt+δ
i (x)≤Gt

i(x)+ ϵ.

Above all, for 0≤ δ < ϵ∧ δ2, |Gt+δ
i (x)−Gt

i(x)|< ϵ, i.e., we have right-continuity.

Case II: t < κi. Note that for 0≤ δ≤ κi − t,
∫ t+Gt

i(x)

t+δ
ai(s)ds≥ x. Thus,

Gt+δ
i (x)≤Gt

i(x)− δ≤Gt
i(x).

Next, note that ξ3(δ) =
∫ t+Gt

i(x)−ϵ/2

t+δ
ai(s)ds is a continuous function of δ. As ξ3(0)< x, there exists δ3 > 0,

such that for 0≤ δ≤ δ3 ξ3(δ)<x Thus,

Gt+δ
i (x)≥Gt

i(x)− ϵ/2− δ.

Above all, for 0≤ δ≤ δ3 ∧ ϵ/2, |Gt+δ
i (x)−Gt

i(x)|=Gt
i(x)−Gt+δ

i (x)≤ ϵ, i.e., we have right-continuity.

For the left continuity, we first note that for 0≤ δ≤ κi − t,
∫ t+Gt

i(x)

t−δ
ai(s)ds≤ x. Thus,

Gt−δ
i (x)≥Gt

i(x)+ δ≥Gt
i(x).

Next, note that ξ4(δ) :=
∫ t+Gt

i(x)+ϵ/2

t−δ
ai(s)ds is a continuous function of δ. As ξ4(0)> x, there exists δ4 > 0

such that for 0≤ δ≤ δ4, ξ4(δ)>x Thus,

Gt−δ
i (x)≤Gt

i(x)+ ϵ/2+ δ.

Above all, for 0≤ δ≤ δ4 ∧ ϵ/2, |Gt−δ
i (x)−Gt

i(x)|=Gt−δ
i (x)−Gt

i(x)≤ ϵ, i.e., we have left-continuity.

Case III: t= κi. The right-continuity follows the right-continuity argument of case I and the left-continuity

follows the left-continuity argument of case II.

The proof that t 7→Gt
i(q̄i(t)) is continuous in t follows similarly. □
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For the next lemma, recall the definition of G̃t
i,n(x) in (35).

Lemma 4. If X1(t) is bounded on [0, κ1], X
n
1 (t)≥ 0 and Xn

1 (t)→X1(t) uniformly on t∈ [0, κ1], then

G̃t
1,n(X

n
1 (t))→Gt

1(X1(t))

uniformly on t∈ [0, κ1] as n→∞. The same is true on the interval [κ1,A] for any A>κ1. The same is also

true for class 2 on any closed bounded interval.

Proof of Lemma 4. Note that the assumptions imply that there exist N0 > 0 and B > 0 such thatXn
1 (t)≤

B for all n>N0 and all t∈ [0, κ1]. Let α> 0 (we use α instead of ϵ to avoid confusion with the error function

ϵn(·)). It suffices, then, to show that there exist N1 > 0 and δ > 0 such that

|Gt
1(x1)− G̃t

1,n(x2)| ≤ α

for all n>N1, t∈ [0, κ1] and 0≤ x1, x2 ≤B and |x1 −x2| ≤ δ.

Note that because Gt
1(B) is a continuous function of t, Gt

1(x) is bounded, say by C, for t ∈ [0, κ1] and

0≤ x≤B. Let

D(α) = inf
0≤s≤C

∫ κ1+s+α

κ1+s

(s1µ11 −λ1(u))du.

Note that D(α)> 0 because s1µ11 >λ1(u) for u> κ1.

Now, observe that∫ t+Gt
1(x1)+α

t

(s1µ11 −λ1(u)− ϵn1(u))du

≥
∫ t+Gt

1(x1)+α

t

(s1µ11 −λ1(u)− |ϵn1(u)|)du

=

∫ t+Gt
1(x1)

t

(s1µ11 −λ1(u))du+

∫ t+Gt
1(x1)+α

t+Gt
1(x1)

(s1µ11 −λ1(u))du−
∫ t+Gt

1(x1)+α

t

|ϵn1(u)|du

≥x1 +D(α)− (C +α) sup
t≤u≤t+C+α

|ϵn1(u)|

≥x1 +D(α)/2

for n>N2 large enough, since ϵn(·)→ 0 u.o.c. by assumption. Therefore, if x2 <x1 +D(α)/2, then

G̃t
1,n(x2)<G

t
1(x1)+α.

Next, observe that∫ t+Gt
1(x1)−α

t

(s1µ11 −λ1(u)− ϵn1(u))du

≤
∫ t+Gt

1(x1)−α

t

(s1µ11 −λ1(u)+ |ϵn1(u)|)du

=

∫ t+Gt
1(x1)

t

(s1µ11 −λ1(u))du−
∫ t+Gt

1(x1)

t+Gt
1(x1)−α

(s1µ11 −λ1(u))du+

∫ t+Gt
1(x1)−α

t

|ϵn1(u)|du

≤x1 −D(α)+ (C −α) sup
t≤u≤t+C−α

|ϵn1(u)|

≤x1 −D(α)/2
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for n>N2 large enough, as before. Therefore, if x2 >x1 −D(α)/2, then

G̃t
1,n(x2)>G

t
1(x1)−α.

(We have assumed above that t+Gt
1(x1)−α≥ κ1, since otherwise it is trivial that G̃t

1,n(x2)>G
t
1(x1)−α.)

Hence, if |x2 −x1|<D(α)/2, then

|Gt
1(x1)− G̃t

1,n(x2)| ≤ α

for n>N2, as required. The proof for [κ1,A] and for class 2 are similar. □

Proof of Theorem 9. We divide the analysis into two cases.

Case I: h1µ12 > h2µ22. Let T1 ≥ 0 be the time that pool 2 stops helping class 1 under the optimal fluid

control. That is,

h1µ12G
t
1(q

∗
1(t))−ϕ12 >h2µ22G

t
2(q

∗
2(t))

for t∈ [0, T1) and

h1µ12G
t
1(q

∗
1(t))−ϕ12 <h2µ22G

t
2(q

∗
2(t))

for t > T1.

Supppose T1 > 0, so that h1µ12G
T1
1 (q∗1(T1))− ϕ12 = h2µ22G

T1
2 (q∗2(T1)). We partition [0, T1) into finitely

many subintervals [Vi, Vi+1) (i= 0, · · · , n) such that 0 = V0 < · · ·< Vn+1 = T1, and on each open subinterval

t ∈ (Vi, Vi+1), either q
∗
1(t) = 0 only or q∗1(t) > 0 only. The fact that are finitely many such intervals comes

from piecewise monotonicity assumption, i.e., Assumption 4 and the proof of Theorem 1.

We next show inductively that (X̄, Ȳ ) = (q∗, y∗) on each [Vi, Vi+1). Suppose that X̄(Vi) = q∗(Vi) and

Ȳ (Vi) = y∗(Vi) for some i.

We first consider the case that q∗1(t)> 0 on (Vi, Vi+1). Because q
∗
1(t) decreases at the maximum possible

rate for t < T1 under the optimal fluid control, we have that X̄1(t)≥ q∗1(t)> 0 and X̄2(t)≤ q∗2(t) for all t ∈

(Vi, Vi+1). Hence, for s∈ (Vi, Vi+1), h1µ12G
s
1(X̄1(s))−ϕ12 >h2µ22G

s
2(X̄2(s)). By continuity of t 7→Gt

i(X̄i(t))

(Lemma 3), we have

h1µ12G
t
1(X̄1(t))−ϕ12 > δ+h2µ22G

t
2(X̄2(t))

for all t∈ [s−ϵ, s+ϵ], for some ϵ, δ > 0. Since (Xn
1 (t)/n,X

n
2 (t)/n))→ (X̄1(t), X̄2(t)) u.o.c., we have by Lemma

4 that

h1µ12G̃
t
1,n(X

n
1 (t)/n)−ϕ12 > δ/2+h2µ22G̃

t
2,n(X

n
2 (t)/n) and Xn

1 (t)> s1 + s2

for all t∈ [s− ϵ, s+ ϵ], for n large enough. According to the scheduling policy, for each such nth system and

t∈ [s− ϵ, s+ ϵ], pool 2 prioritizes class 1, so that dȲ n(t)/dt= (s1, s2,0). In addition, since h1µ12G
t
1(q

∗
1(t))−

ϕ12 >h2µ22G
t
2(q

∗
2(t)),

h1µ12G
t
1(X̄1(t))−ϕ12 >h2µ22G

t
2(X̄2(t))

for all t ∈ (Vi, Vi+1). Then, dȲ (t)/dt= dy∗(t)/dt for all (regular) t ∈ (Vi, Vi+1), which implies that (X̄, Ȳ ) =

(q∗, y∗) on t∈ [Vi, Vi+1]. In particular, X̄(Vi+1) = q∗(Vi+1) and Ȳ (Vi+1) = y∗(Vi+1). This technique – applying
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Lemma 4 to derive inequalities involving G̃t
i,n(X

n
i (t)/n) based on inequalities involving Gt

i(X̄i(t)) – is also

used in subsequent cases in the proof.

We next consider the case q∗1(t) = 0 on (Vi, Vi+1). Suppose that X̄1(t) > 0 for some t ∈ (Vi, Vi+1). Let

S = sup{s ≤ t : X̄1(s) = 0}. Note that X̄1(S) = 0 by continuity, and that S ≥ Vi because X̄1(Vi) = 0. By

definition X̄1(s)> 0 for all s ∈ (S, t]. Then, following similar lines of analysis as in the case when q∗1(t)> 0,

dȲ n(t)/dt= (s1, s2,0) for large enough n and dX̄1(t)/dt= λ1(t)− s1µ11 − s2µ12 ≤ 0. In this case, X̄1(s) is

non-increasing in (S, t]. Thus, X̄1(s)≥ X̄1(t)> 0 for s ∈ (S, t]. This implies that X̄1(s) is not continuous at

s= S, a contradiction. This implies that X̄1(t) = 0 for t∈ (Vi, Vi+1). In addition, by Assumption 1, X̄2(t)> 0

on (Vi, Vi+1), which implies that d(Ȳ12(t) + Ȳ22(t))/dt= s2 on (Vi, Vi+1). As dȲ11(t)/dt= s1 and X̄1(t) = 0,

we have
dȲ12(t)

dt
=
λ1(t)− s1µ11

µ12

=
dy∗12(t)

dt
for t∈ (Vi, Vi+1).

Thus, (X̄, Ȳ ) = (q∗, y∗) on [Vi, Vi+1].

By induction, (X̄, Ȳ ) = (q∗, y∗) on [0, T1).

Lastly, we analyze (X̄(t), Ȳ (t)) for t > T1. Note that for T1 > 0, q∗1(T1) > 0. Let T2 > T1 be the first

time q∗1 empties, i.e., T2 = inf{t ≥ T1 : q∗1(t) = 0}. Let S2 > T1 be the first time X̄1 empties, i.e., S2 =

inf{t ≥ T1 : X̄1(t) = 0}. For T1 < t < S2, X̄1(t) > 0. By the same reasoning as before, we have that there

exists ϵ > 0 such that Xn
1 (s) > s1 for s ∈ [t − ϵ, t + ϵ], for n sufficiently large. Thus, according to our

scheduling policy, dȲ11(t)/dt= s1. This implies that h1µ12G
t
1(X̄1(t))−ϕ12 decreases at rate at least h1µ12,

whereas h2µ22G
t
2(X̄2(t)) decreases at rate at most h2µ22. Since h1µ12 >h2µ22 and h1µ12G

T1
1 (X̄1(T1))−ϕ12 ≤

h2µ22G
T1
2 (X̄2(T1)) (strict inequality is possible if T1 = 0), we have that for all T1 < t< S2,

h1µ12G
t
1(X̄1(t))−ϕ12 <h2µ22G

t
2(X̄2(t)).

Following similar lines of argument as before, we can show that for each t ∈ (T1, S2) and large enough n,

pool 2 only serves class 2 in the nth system at time t. Therefore, X̄1(t) = q∗1(t) for t ∈ (T1, S2) and S2 = T2.

For t > T2, X̄1(t) = 0. Hence, X̄1(t) = q∗1(t) for all t.

The above also establishes that X̄2 = q∗2, Ȳ12 = y∗12 and Ȳ22 = y∗22 on (T1, T3), where T3 = inf{t≥ T1 : q
∗
2(t) =

0} is the common emptying time of the class 2 queue for both q∗2 and X̄2. For t > T3, we again have that

h1µ12G
t
1(X̄1(t))−ϕ12 <h2µ22G

t
2(X̄2(t)),

as shown above if t < S2, and trivially if t≥ S2. Therefore Ȳ12 = y∗12 for t > T3, and pool 2 only serves its

own class for large enough systems. Since X̄1 = q∗1, this also implies that Ȳ11 = y∗11. Finally, for t > S2, since

X̄ ′
2(t)≤ 0 whenever X̄2(t)> 0, X̄2(t) = q∗2(t) = 0 and Ȳ22(t) = y∗22(t).

Case II: h1µ12 < h2µ22. The case of interest is the one where pool 2 provides partial help to queue 1 in

q∗, i.e., after queue 2 has emptied, queue 1 is still large. If no partial help occurs, the result will follow from

the analysis in case I.

Let T1 = inf{t≥ κ2 : q
∗
2(t) = 0}. Similarly, let S1 = inf{t≥ κ2 : X̄2(t) = 0}. For t < S1∧T1, we have X̄i(t)> 0.

By the same reasoning as in Case I, dȲii(t)/dt= si = dy∗ii(t)/dt. This implies S1 = T1. Thus, (X̄, Ȳ ) = (q∗, y∗)
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on t ∈ [0, T1]. For t > T1, we can show as in Case I that X̄ ′
2(t) ≤ 0 if X̄2(t) > 0, so that X̄2(t) = 0 = q∗2(t).

Hence also Ȳ22(t) = y∗22(t) for t > T1.

Next, let T2 ≥ T1 be the time at which partial help by pool 2 ends under the optimal fluid control. For t∈

[T1, T2), h1µ12G
t
1(q

∗
1(t))>ϕ12 and q∗2(t) = 0. Note that X̄2(t) = 0 for t∈ [T1, T2) as well. Because the optimal

fluid control minimizes q1(t) for t∈ [T1, T2) while keeping q2(t) at zero, we have that X̄1(t)≥ q∗1(t)> 0 for t∈

[T1, T2). Hence, h1µ12G
t
1(X̄1(t))>ϕ12 for t∈ [T1, T2). Thus, d(Ȳ12(t)+ Ȳ22(t))/dt= s2 = d(y∗12(t)+y

∗
22(t))/dt

for t∈ (T1, T2). Since Ȳ22 = y∗22, this implies that Ȳ12(t) = y∗12(t) for t∈ [T1, T2). Hence also X̄1(t) = q∗1(t) for

t∈ [T1, T2).

For t > T2, h1µ12G
t
1(X̄1(t))<ϕ12. Following similar lines of argument as before, Ȳ12(t) = y∗12(t) = y∗12(T2),

Ȳ11(t) = y∗11(t) and X̄11(t) = q∗11(t). □

With Theorem 9, we are now ready to prove the second part of Theorem 3.

Proof. Recall that (X̄n, Ȳ n)→ (q∗, y∗) uniformly on [0, T (x)] almost surely, which implies that X̄n
i (t) is

uniformly bounded in n and t. Also, note that Ȳ n
12(T (x))≤ s2T (x) is bounded. We have

V̄ n,ν̃n

(x) =E

[∫ T (x)

0

∑
i

hiX̄
n
i (t)dt+ϕ12Ȳ

n
12(T (x))

]

=

∫ T (x)

0

∑
i

hiE[X̄n
i (t)]dt+ϕ12E[Ȳ n

12(T (x))] since X̄
n
i (t)≥ 0

→
∫ T (x)

0

∑
i

hiq
∗
i (t)dt+ϕ12y

∗
12(T (x)) as n→∞ by bounded convergence

=V̄ ∗(x). □
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E-companion for “Optimal Routing under Demand Surges:
The Value of Future Arrival Rates”

In this E-companion, we provide results from additional numerical experiments as well as the

proofs for Theorems 2, 4, 5, and 6. These proofs require constructing the optimal fluid trajectories

q∗ and the corresponding adjoint vectors p∗ so that we can verify the conditions in Theorem 7.

The derivations are similar to those of Theorem 1.

Appendix EC.1: Simple Priority Switching Structure for the N-model

The optimal scheduling policy derived in Theorem 1 can be characterized via a time-and-state-

dependent switching curve, which is defined as

ψ(t) = h1µ12G
t
1(q1(t))−ϕ12 −h2µ22G

t
2(q2(t)).

In Case I, when ψ(t) > 0, pool 2 gives priority to class 1; otherwise, pool 2 serves class 2 only.

Furthermore, Lemma 1 indicates that in Case I, pool 2 switches priority at most once throughout

the planning horizon. If it switches priority, it is from class 1 to class 2. If it does not switch priority,

it serves class 2 only throughout the planning horizon. This is a highly desirable feature for policy

implementation, since frequent priority switching can impose additional administrative burdens.

In the case of constant arrival rates, the switching curve reduces to a simple threshold policy.

In particular, the switching curve partitions the state space of (q1(t), q2(t)) into two regions. In

one region, pool 2 gives priority to class 1; in the other region, pool 2 serves class 2 only. To

demonstrate this, Figure EC.1 (a) plots the optimal fluid trajectory (q1(t), q2(t)) for different initial

queue lengths. The switching curve is the grey line in the figure. When (q1(t), q2(t)) is below the

curve (i.e., when q1(t) is sufficiently larger than q2(t)), pool 2 prioritizes class 1; otherwise, pool 2

serves class 2 only.

The switching curve structure also allows us to conduct sensitivity analyses to visualize the

impact of different system parameters. For example, Figure EC.1 (b) compares the fluid trajectories

when ϕ12 = 1 (solid) to the fluid trajectories when ϕ12 = 5 (dashed). As the overflow cost increases,

the optimal policy switches priority from class 1 to class 2 “earlier”.

Appendix EC.2: Value of Cross-training

The N-model and the X-model differ in whether pool 1 is cross-trained to help class 2 (pool 2

can help class 1 in both models). The X-model has the obvious advantage that when class 2 is

overloaded, pool 1 can help class 2 to alleviate the demand surge and bring the system back to

normal faster than in the N-model. Meanwhile, somewhat surprisingly, even when only class 1 is
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Figure EC.1 Optimal trajectory of the N-model with different initial queues and overflow costs. (Parameter

setting: s1 = s2 = 2, µ11 = µ22 = 0.25, µ12 = 0.2, λ1 = λ2 = 0.3, h1 = 1.5, h2 = 1.)

experiencing a demand surge, the extra flexibility in the X-model is beneficial. In particular, as

we explained in Section 5.1, because pool 1 can later help back class 2 in the X-model, pool 2 can

provide more help to class 1 (prioritize class 1 for a longer period of time) in the initial stage. This

helps reduce the class 1 congestion faster in the X-model than in the N-model. To demonstrate

the latter point, Table EC.1 compares the time to empty queue 1 and the time to empty queue

2 (which is also the time to empty the whole system) under the optimal control for the X-model

versus the N-model. We vary the level of demand surge experienced by class 1, while class 2 does

not experience any demand surge. Note that in all cases, not only is the X-model able to empty

the class 1 queue faster than an otherwise identical N-model, but also it empties the system (both

queues) faster than the N-model does.

λH 2 4 6
Time to empty queue 1

X-model 50.0 108.1 166.4
N-model 51.4 117.8 184.2

Time to empty queue 2
X-model 59.2 138.2 217.2
N-model 59.6 140.8 222.1

Table EC.1 Compare the N-model and the X-model under different levels of demand surge for class 1 (s1 = 3,

s2 = 4, µ11 = µ22 = 0.25, µ12 = 0.18, h1 = 2, h2 = 1, ϕ12 = 1, λ1(t) = λH ×1{0≤ t≤ 20}+0.5×1{t > 20},

λ2(t) = 0.6, q1(0) = 10, q2(0) = 0. For the X-model, µ21 = 0.18 and ϕ21 = 1.)

Appendix EC.3: Additional Numerical Experiments
EC.3.1. Fluid trajectory for exN2-model

Figure EC.2 compares the optimal trajectory of an exN2-model (a) with the optimal trajectory of

a similar N-model (b). For the N-model, we assume that pool 1 can serve both classes 1 and 2,
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while pool 2 can serve only class 2. The two systems share the same parameters for the first two

classes (see the caption of Figure EC.2 for more details).

For the exN2-model in our example, we have h2µ21 >h3µ31 >h1µ11. Thus, we observe that pool

1 first provides full help to class 2 and then switches priority to help class 3. Pool 1 stops helping

class 2 at t = 4.6. In contrast, in the N-model, pool 1 stops helping class 2 at t = 6.1. This is

because in the exN2-model, pool 1 can also help class 3 and, thus, may provide less help to class

2 in order to help class 3. In the exN2-model, pool 1 provides full help to class 3 from t= 4.6 to

t= 7.6. Lastly, we note that because class 2 gets more help from pool 1 in the N-model, its queue

empties faster in the N-model than in the exN2-model.
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Figure EC.2 Optimal trajectory of the exN2-model versus the N-model. (s1 = s2 = 2, λ1 = λ2 = 0.3, µ11 = µ22 =

0.25, µ21 = 0.2, ϕ21 = 1, h1 = 1, h2 = 1.5, q1(0) = 5, q2(0) = 10. For the exN2-model, s3 = 2, λ3 = 0.3,

µ33 = 0.25, µ31 = 0.18, ϕ13 = 1, h3 = 1, and q3(0) = 10.)

EC.3.2. Performance of different policies in the stochastic systems

EC.3.2.1. Tuned versus untuned policies for the N-model Table EC.2 shows the cost

comparison between the tuned and untuned policies for the N-model. We set the tuning parameter

θ = 0.8 in the tuned policy, where θ is used for θGt
k(i∗)(qk(i∗)(t)) on the left-hand side of (12)

and (13) in the heuristic policy. Note that the untuned policy (with θ = 1) is the fluid optimal

control policy for the N-model. From this table, we observe that the tuned policy can achieve a

slightly better performance than the untuned policy can in the stochastic system. The relative cost

difference between the tuned and untuned policies is 1.1% to 2.1%.

EC.3.2.2. Additional comparisons for the N-model Table EC.3 reports the average costs

under our policy as well as those under the benchmark policies in the following arrival rate setting:

λ1(t) =

{
8, t < 40

1, t≥ 40
and λ2(t) =

{
3, t < 40

4.5, t≥ 40.



ec4 e-companion to Author: Optimal Routing under Demand Surges

Tuned (θ= 0.8) Untuned (θ= 1)
First Arrival Setting

ϕ= 2 Holding 1.08 1.09
Overflow 0.13 0.14
Total 1.21 1.23
SE 0.003 0.003

ϕ= 10 Holding 1.13 1.10
Overflow 0.51 0.56
Total 1.64 1.67
SE 0.004 0.004

ϕ= 25 Holding 1.47 1.28
Overflow 0.78 1.00
Total 2.25 2.28
SE 0.005 0.005

Tuned (θ= 0.8) Untuned (θ= 1)
Second Arrival Setting

ϕ= 2 Holding 2.72 2.78
Overflow 0.28 0.29
Total 3.00 3.07
SE 0.007 0.007

ϕ= 10 Holding 2.68 2.70
Overflow 1.31 1.37
Total 3.99 4.08
SE 0.008 0.008

ϕ= 25 Holding 2.78 2.72
Overflow 2.81 2.98
Total 5.59 5.70
SE 0.010 0.010

Table EC.2 Simulation costs for the N-model over 10000 replications. The holding cost h= (1.5,1). The costs

shown in the table are in units of 104. “SE” stands for the standard error for the corresponding total cost. The

tuning parameter θ is for θGt
k(i∗)(qk(i∗)(t)) on the left-hand side of (12) and (13) in the heuristic policy.

(h= (1.5,1), si = 20 and µii = 0.25, for i= 1,2, µ12 = 0.2, ϕ12 = ϕ, λ2(t) = 3. First arrival setting:

λ1(t) = 8×1{t < 40}+4×1{t≥ 40} and X(0) = (60,70). Second arrival setting:

λ1(t) = 12×1{t < 40}+4.5×1{t≥ 40} and X(0) = (30,40).)

That is, the arrival rate of class 1 drops sharply once the demand surge is over, while the arrival

rate of class 2 increases slightly at the same time. All other parameters are the same as in the

baseline setting.

The costs for policies in Figure 7 are in the first panel (ϕ= 2): 1.11× 104 for our policy versus

1.68× 104 for the modified maximum pressure policy – 50% higher than ours. This performance

gap further enlarges as ϕ increases. The cost under modified maximum pressure policy is around

twice the cost under our policy when ϕ= 25. More generally, the two maximum pressure policies

can perform arbitrarily worse than our policy as the arrival rate of class 2, after the demand surge

of class 1 is over, gets closer to 5. This is because too much help during the demand surge will
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result in the class 2 queue taking an extremely long time to deplete when the slackness of pool

2 approaches 0. On the other hand, the modified cµ policy performs well in this case, since it is

a no-overflow policy. However, the modified cµ policy doubles the cost of our policy in Table 1.

This indicates that the performance of policies that do not use future arrival rate can vary a lot

depending on the arrival rate patterns, which highlights the value of our look-ahead policy in a

time-nonstationary environment.

Look-ahead MaxPres ModMaxP Cmu ModCmu

ϕ= 2 Holding 1.07 1.60 1.59 2.91 1.28
Overflow 0.03 0.09 0.09 0.14 0.00
Total 1.11 1.69 1.68 3.05 1.28
SE 0.002 0.006 0.006 0.010 0.002

ϕ= 10 Holding 1.11 1.60 1.54 2.91 1.28
Overflow 0.11 0.46 0.44 0.73 0.00
Total 1.22 2.06 1.99 3.64 1.28
SE 0.002 0.006 0.006 0.010 0.002

ϕ= 25 Holding 1.28 1.60 1.46 2.91 1.28
Overflow 0.00 1.16 1.06 1.84 0.00
Total 1.28 2.76 2.52 4.75 1.28
SE 0.002 0.007 0.006 0.012 0.002

Table EC.3 Expected total cost for the N-model under different scheduling policies. The costs shown in the

table are in units of 104. “SE” stands for the standard error for the corresponding average total cost (holding +

overflow). (λ1(t) = 8×1{t < 40}+1×1{t≥ 40}, λ2(t) = 3×1{t < 40}+4.5×1{t≥ 40}. Other parameters are the

same as the baseline.)

EC.3.2.3. Different policies for the X-model For the X-model, we consider the same two

settings for the N-model: the baseline setting specified in Section 6.1, as well as the second setting

of Section 6.2. In the X-model, pool 1 can also serve class 2 customers if necessary. Table EC.4

reports the cost comparison among different policies. The “Look-ahead (opt)” policy corresponds

to the optimal fluid control derived in Section 5.1, while the “Look-ahead (heu)” policy is the

heuristic policy – i.e., (12) and (13) – with tuning parameter θ = 0.8. In all cases tested, our

heuristic policy achieves performance that is comparable to (slightly worse or slightly better than)

that of the fluid-optimal policy.

Table EC.5 shows the cost comparison between the tuned and untuned policies for the X-model.

In the table, the “N-policy Untuned” and “X-policy Untuned” stand for the directly translated

optimal fluid control policies derived for the N- and X-models, and for the “N-policy Tuned”, we

use the tuning parameter θ = 0.8. From this table, we observe that the relative cost difference

between the tuned and untuned policies is 0.6% to 2.1%.
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Look-ahead (opt) Look-ahead (heu) MaxPres ModMaxP Cmu ModCmu
Arrival Rate Setting I

ϕ= 2 Holding 1.09 1.08 1.10 1.10 1.08 2.75
Overflow 0.14 0.13 0.13 0.13 0.22 0.00
Total 1.23 1.21 1.23 1.23 1.29 2.75
SE 0.003 0.003 0.003 0.003 0.003 0.008

ϕ= 10 Holding 1.10 1.13 1.10 1.11 1.08 2.75
Overflow 0.56 0.51 0.65 0.62 1.08 0.00
Total 1.67 1.64 1.75 1.73 2.16 2.75
SE 0.004 0.004 0.004 0.004 0.005 0.008

ϕ= 25 Holding 1.28 1.47 1.10 1.13 1.08 2.75
Overflow 1.00 0.78 1.63 1.41 2.70 0.00
Total 2.28 2.25 2.73 2.54 3.78 2.75
SE 0.005 0.005 0.005 0.005 0.007 0.008

Arrival Rate Setting II

ϕ= 2 Holding 0.95 1.08 0.93 0.93 0.90 1.28
Overflow 0.08 0.03 0.20 0.20 0.31 0.00
Total 1.03 1.11 1.13 1.13 1.22 1.28
SE 0.002 0.002 0.002 0.002 0.003 0.002

ϕ= 10 Holding 1.02 1.15 0.93 0.92 0.90 1.28
Overflow 0.28 0.07 1.01 0.98 1.59 0.00
Total 1.30 1.23 1.95 1.90 2.50 1.28
SE 0.002 0.002 0.002 0.003 0.004 0.002

ϕ= 25 Holding 1.27 1.28 0.93 0.93 0.90 1.28
Overflow 0.00 0.00 2.54 2.12 3.98 0.00
Total 1.28 1.28 3.48 3.05 4.89 1.28
SE 0.002 0.002 0.006 0.006 0.008 0.002

Table EC.4 Expected total cost for the X-model under different scheduling policies. The costs shown in the

table are in units of 104. “SE” stands for the standard error for the corresponding average total cost (holding +

overflow). (Parameter setting: h= (1.5,1), si = 20, µii = 0.25, µij = 0.2, ϕij = ϕ for i ̸= j and X(0) = (60,70). For

the first arrival rate setting, λ1(t) = 8×1{t < 40}+4×1{t≥ 40} and λ2(t) = 3. For the second arrival rate setting,

λ1(t) = 8×1{t < 40}+1×1{t≥ 40} and λ2(t) = 3×1{t < 40}+4.5×1{t≥ 40}.)

EC.3.2.4. Tuned versus untuned heuristic policies for the 5-by-5 networks

Table EC.6 shows the cost comparison between the tuned and the untuned policies for the 5×5

model. We set the tuning parameter θ= 0.8 in the tuned policy. We observe that the relative cost

difference between the tuned and untuned policies is 1.2% to 4.1%.

EC.3.2.5. Clearing a large backlog with constant arrival rates We consider a setting

where there is a large initial queue to be cleared, and where arrival rates are constant. Specifically,

the initial queue lengths are X(0) = (400,70), while the constant arrival rates are λ1 = 3 and λ2 = 3.

As in the baseline setting, we set costs h1 = 1.5 and h2 = 1 and service rates µ11 = µ22 = 0.25 and

µ12 = 0.2. Also s1 = s2 = 20. The results are shown in Table EC.7.
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N-policy Tuned (θ= 0.8) N-policy Untuned X-policy Untuned
First Arrival Setting

ϕ= 2 Holding 1.08 1.09 1.05
Overflow 0.13 0.14 0.16
Total 1.21 1.23 1.21
SE 0.003 0.003 0.003

ϕ= 10 Holding 1.13 1.10 1.10
Overflow 0.51 0.56 0.56
Total 1.64 1.67 1.67
SE 0.004 0.004 0.004

ϕ= 25 Holding 1.47 1.28 1.28
Overflow 0.78 1.00 1.00
Total 2.25 2.28 2.28
SE 0.005 0.005 0.005

N-policy Tuned (θ= 0.8) N-policy Untuned X-policy Untuned
Second Arrival Setting

ϕ= 2 Holding 2.63 2.64 2.64
Overflow 0.30 0.32 0.32
Total 2.94 2.96 2.96
SE 0.007 0.007 0.007

ϕ= 10 Holding 2.67 2.67 2.67
Overflow 1.31 1.40 1.40
Total 3.99 4.07 4.07
SE 0.008 0.008 0.008

ϕ= 25 Holding 2.78 2.72 2.72
Overflow 2.81 2.98 2.98
Total 5.59 5.70 5.70
SE 0.010 0.010 0.010

Table EC.5 Simulation costs for the X-model over 10000 replications. The costs shown in the table are in units

of 104. “SE” stands for the standard error for the corresponding total cost. In the table, the “N-policy Untuned”

and “X-policy Untuned” stand for the optimal fluid control policies derived for the N- and X-models, and for the

“N-policy Tuned”, we used the tuning parameter θ= 0.8 for θGt
k(i∗)(qk(i∗)(t)) on the left-hand side of (12) and

(13). (h= (1.5,1), si = 20 and µii = 0.25, for i= 1,2, µ12 = 0.2, ϕ12 = ϕ, λ2(t) = 3. First arrival setting:

λ1(t) = 8×1{t < 40}+4×1{t≥ 40} and X(0) = (60,70). Second arrival setting:

λ1(t) = 12×1{t < 40}+4.5×1{t≥ 40} and X(0) = (30,40). For the X-model, µ21 = 0.2 and ϕ21 = ϕ.)

Note that Gt
i(qi(t)) = qi(t)/2 for i = 1,2. Thus, when ϕ = 2 is small, our policy is almost the

same as the (modified) maximum pressure policy. However, when ϕ is larger than 2, our policy

performs better than the two maximum pressure policies. Our policy is better than the cµ policies

throughout.

Appendix EC.4: Proof of the optimal fluid control for the N-model
with multiple demand surges

Proof of Theorem 2. We will construct the optimal primal and dual trajectories under the

policy characterized in Theorem 2 and show that the conditions in Theorem 7 are satisfied. We
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Tuned (θ= 0.8) Untuned (θ= 1)
Network Structure 1

ϕ= 2 Holding 3.21 3.24
Overflow 0.52 0.53
Total 3.73 3.77
SE 0.007 0.007

ϕ= 10 Holding 3.45 3.33
Overflow 2.05 2.24
Total 5.50 5.58
SE 0.008 0.008

ϕ= 25 Holding 4.29 4.04
Overflow 3.57 3.95
Total 7.86 7.99
SE 0.012 0.011

Network Structure 2

ϕ= 2 Holding 3.00 3.08
Overflow 0.48 0.50
Total 3.48 3.58
SE 0.005 0.006

ϕ= 10 Holding 3.07 3.12
Overflow 1.98 2.15
Total 5.05 5.26
SE 0.007 0.008

ϕ= 25 Holding 3.57 3.42
Overflow 3.77 4.19
Total 7.34 7.61
SE 0.009 0.010

Table EC.6 Simulation costs for the 5×5 model over 10000 replications. The holding cost h= (1.5,1). The

costs shown in the table are in units of 104. “SE” stands for the standard error for the corresponding total cost.

The tuning parameter θ is for θGt
k(i∗)(qk(i∗)(t)) on the left-hand side of (12) and (13) in the heuristic policy.

(Parameter setting: h= (1.5,1,1,1.5,1), si = 20, µii = 0.25, µij = 0.2 and ϕij = ϕ for i ̸= j;

λ1(t) = 12×1{t < 40}+4.5×1{t≥ 40}, λ2(t) = 3, λ3(t) = 4, λ4(t) = 8×1{t < 40}+4×1{t≥ 40}, λ5(t) = 3, and

X(0) = (30,40,50,60,70).)

first note that (T) holds trivially because q∗(t) = 0 for t large enough and for any feasible state

trajectory, q(t)≥ 0.

Case I: h1µ12 >h2µ22. In this case,

H(q(t), z(t), p(t), t) =h1q1(t)+h2q2(t)+ϕ12z12(t)

+ p1(t) (λ1(t)−µ11z11(t)−µ12z12(t))+ p2(t) (λ2(t)−µ22z22(t))

and

L(q(t), z(t), p(t), η(t), ξ(t), γ(t), t) =H(q(t), z(t), p(t), t)− η1(t)q1(t)− η2(t)q2(t)

− ξ11(t)z11(t)− ξ12(t)z12(t)− ξ22(t)z22(t)

+ γ1(t)(z11(t)− s1)+ γ2(t)(z12(t)+ z22(t)− s2).
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Look-ahead MaxPres ModMaxP Cmu ModCmu

ϕ= 2 Holding 3.47 3.47 3.47 4.11 5.55
Overflow 0.16 0.17 0.17 0.25 0.00
Total 3.63 3.64 3.64 4.36 5.55
SE 0.004 0.004 0.004 0.005 0.007

ϕ= 10 Holding 3.52 3.47 3.47 4.11 5.55
Overflow 0.68 0.84 0.83 1.26 0.00
Total 4.20 4.31 4.30 5.37 5.55
SE 0.004 0.004 0.004 0.006 0.007

ϕ= 25 Holding 3.89 3.47 3.47 4.11 5.55
Overflow 1.11 2.11 2.01 3.14 0.00
Total 5.00 5.58 5.48 7.25 5.55
SE 0.005 0.005 0.005 0.007 0.007

Table EC.7 Expected total cost for the N-model under different scheduling policies. The costs shown in the

table are in units of 104. “SE” stands for the standard error for the corresponding average total cost (holding +

overflow). (Parameter setting: h= (1.5,1), ϕ12 = ϕ, si = 20, λ1 = 3, λ2 = 3, X(0) = (400,70).)

There are three scenarios to consider, depending on the queue lengths at time κb (i.e., the beginning

of the second demand surge).

Scenario A: q∗1(κb) = q∗2(κb) = 0. That is, both queues have been emptied by the start of the

second demand surge. Following the proof of Theorem 1, we obtain q∗i , p
∗
i , z

∗
ij, η

∗
i , ξ

∗
ij, γ

∗
j for t∈ [0, κb).

We can then solve an “independent” optimal control problem using the initial state (0,0) to obtain

the values of q∗i , p
∗
i , z

∗
ij, η

∗
i , ξ

∗
ij, γ

∗
j for t ∈ [κb,∞). The verification of the conditions in Theorem 7

follows exactly the same lines of analysis as the proof of Theorem 1.

Scenario B: q∗1(κb)> 0. This implies that q∗1(t)> 0 and t+Gt
1(q

∗
1(t))>κb for t∈ [0, κb) (except

possibly q∗1(t) = 0 in an initial interval containing zero). In this case, Gt
1(q

∗
1(t)) decreases at rate at

least one until it hits zero. As such, pool 2 does not resume helping class 1 once it stops helping

class 1. Pool 2 gives priority to class 1 for an initial time

τ ∗ = inf{t≥ 0 : h1µ12G
t
1(q1(t))−ϕ12 ≤ h2µ22G

t
2(q2(t))}. (EC.1)

Thereafter, each queue is served by its primary server pool only, and is emptied at time τ ∗i =

τ ∗ + Gτ∗
i (q∗i (τ

∗)). Note that τ ∗1 /∈ (κb, κc], because the class 1 queue cannot be emptied at time

t∈ (κb, κc] without help from pool 2.

The optimal queue length trajectory follows:

q∗1(t) =


q1 +

∫ t

0
(λ1(s)− s1µ11 − z∗12(s)µ12)ds, t∈ [0, τ ∗),

q∗1(τ
∗)+

∫ t

τ∗
(λ1(s)− s1µ11)ds, t∈ [τ ∗, τ ∗1 ),

0, t∈ [τ ∗1 ,∞),

q∗2(t) =


q2 +

∫ t

0
(λ2(s)− z∗22(s)µ22)ds, t∈ [0, τ ∗),

q∗2(τ
∗)+

∫ t

τ∗(λ2(s)− s2µ22)ds, t∈ [τ ∗, τ ∗2 ),

0, t∈ [τ ∗2 ,∞).
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Note that q∗i (t)’s have exactly the same dynamics as q∗i (t)’s in Case I in the proof of Theorem 1.

Thus, the proof of this scenario follows exactly the same lines of analysis as Case I in Theorem 1

(i.e., the two demand surges can be treat as a single demand surge).

Scenario C: q∗1(κb) = 0 and q∗2(κb)> 0. Pool 2 gives priority to class 1 for an initial time

τ ∗ = inf{t≥ 0 : h1µ12G
t
1(q1(t))−ϕ12 ≤ h2µ22G

t
2(q2(t))}. (EC.2)

At time τ ∗1 = τ ∗ +Gτ∗
1 (q∗1(τ

∗))≤ κb, pool 1 is emptied.

Next, at time κb, G
t
1(q1(t)) jumps from zero to a positive number due to the second demand

surge, and hence pool 2 may resume helping class 1. Let

τ ′ = inf{t≥ κb : h1µ12G
t
1(q1(t))−ϕ12 ≤ h2µ22G

t
2(q2(t))} (EC.3)

be the time this helping period ends. In addition, let

τ ′i = τ ′ +G
τd
i (q∗i (τd))

be the subsequent time that class i, i= 1,2, queue is emptied.

The optimal queue length trajectory follows:

q∗1(t) =



q1 +
∫ t

0
(λ1(s)− s1µ11 − z∗12(s)µ12)ds, t∈ [0, τ ∗),

q∗1(τ
∗)+

∫ t

τ∗
(λ1(s)− s1µ11)ds, t∈ [τ ∗, τ ∗1 ),

0, t∈ [τ ∗1 , κb),∫ t

κb
(λ1(s)− s1µ11 − z∗12(s)µ12)ds, t∈ [κb, τ

′),∫ t

τ ′(λ1(s)− s1µ11)ds, t∈ [τ ′, τ ′1),

0, t∈ [τ ′1,∞),

q∗2(t) =



q2 +
∫ t

0
(λ2(s)− z∗22(s)µ22)ds, t∈ [0, τ ∗),

q∗2(τ
∗)+

∫ t

τ∗(λ2(s)− s2µ22)ds, t∈ [τ ∗, κb),

q∗2(κb)+
∫ t

κb
(λ2(s)− z∗22(s)µ22)ds, t∈ [κb, τ

′),

q∗2(τ
′)+

∫ t

τd
(λ2(s)− s2µ22)ds, t∈ [τ ′, τ ′2),

0, t∈ [τ ′2,∞).

Note that it may be that z∗12(t)< s2 for t∈ [0, τ ∗) or t∈ [κb, τ
′), if q1(t) = 0 and λ1(t)< s1µ11+s2µ12.

In this case, z∗22(t) = s2− z∗12(t) (since q2(t)> 0 by assumption). However, it is always the case that

z∗11(t) = s1 for t∈ [0, τ ∗].

Assume τ ∗ > 0. We now partition the interval [0, τ ∗) into subintervals I1, · · · , In where n ≥ 1,

Ii = [Vi−1, Vi) and 0 = V0 <V1 < · · ·<Vn = τ ∗. The subintervals are defined such that in the interior

of each subinterval, i.e., t∈ (Vi−1, Vi), either (i) q1(t)> 0 and q2(t)> 0, in which case we say that Ii

is an interior subinterval, or (ii) q1(t) = 0 and q2(t)> 0, in which case we say that Ii is a boundary

subinterval. Note that it is not possible that q1(t) > 0 and q2(t) = 0 for t ∈ Ii, because when
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q1(t)> 0, z∗22(t) = 0 and λ2(t)> 0 during this time. The subintervals I1, · · · , In do not necessarily

alternate between interior and boundary subintervals: it is possible that Ik and Ik+1 are both

interior subintervals, with q1(t) hitting zero at the single point Vk.

Define the adjoint vector

p∗2(t) =

{
h2(τ

∗
2 − t), t∈ [0, τ ′2),

0, t∈ [τ ′2,∞).

We also define

p∗1(t) =

{
h1(τ

∗
1 − t), t∈ [τ ∗, τ ∗1 ),

0, t∈ [τ ∗1 , κb).

With p∗1(Vn) = p∗1(τ
∗) defined, we recursively define p∗1(t) for t ∈ [0, Vn). We will do this in such a

way that (i) the jumps of p∗1, if any, occur only when q∗1(t) = 0 and are positive; (ii) in interior

subintervals Ii,

p∗1(t)µ12 −ϕ12 − p∗2(t)µ22 ≥ 0; (EC.4)

and (iii) in boundary subintervals Ii,

p∗1(t)µ12 −ϕ12 − p∗2(t)µ22 = 0. (EC.5)

Note that this is done exactly as in the proof of Theorem 1.

Likewise, define

p∗1(t) =

{
h1(τ

′
1 − t), t∈ [τ ′, τ ′1),

0, t∈ [τ ′1, κb).

With p∗1(τ
′) defined, we can again recursively define p∗1(t) for t∈ [κb, τ

′) such that (i) the jumps of

p∗1, if any, occur only when q∗1(t) = 0 and are positive; (ii) in interior subintervals Ii of [κb, τd),

p∗1(t)µ12 −ϕ12 − p∗2(t)µ22 ≥ 0; (EC.6)

and (iii) in boundary subintervals Ii of [κb, τd),

p∗1(t)µ12 −ϕ12 − p∗2(t)µ22 = 0. (EC.7)

Note that while p∗2(t) decreases linearly to zero, p∗1(t) may not always be decreasing as it has a

jump at time κb.

Define the multipliers

η∗1(t) =


0, t∈ Ik and Ik is an interior subinterval,

h1 − h2µ22
µ12

, t∈ Ik and Ik is a boundary subinterval,

0, t∈ [τ ∗, τ ∗1 )
⋃
[τd, τ

′
1),

h1, t∈ [τ ∗1 , κb)
⋃
[τ ′1,∞),

η∗2(t) =

{
0, t∈ [0, τ ′2),

h2, t∈ [τ ′2,∞)
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γ∗
1(t) =

{
p∗1(t)µ11, t∈ [0, τ ∗1 )

⋃
[κb, τ

′
1),

0, t∈ [τ ∗1 , κb)
⋃
[τ ′1,∞),

γ∗
2(t) =


p∗1(t)µ12 −ϕ12, t∈ [0, τ ∗)

⋃
[κb, τ

′)

p∗2(t)µ22, t∈ [τ ∗, κb)
⋃
[τ ′, τ ′2),

0, t∈ [τ ′2,∞)

ξ∗12(t) =

{
0, t∈ [0, τ ∗)

⋃
[κb, τ

′),

ϕ12 − p∗1(t)µ12 + p∗2(t)µ22, t∈ [τ ∗, κb)
⋃
[τ ′,∞),

ξ∗22(t) =

{
p∗1(t)µ12 −ϕ12 − p∗2(t)µ22, t∈ [0, τ ∗)

⋃
[κb, τ

′),

0, t∈ [τ ∗, κb)
⋃
[τ ′,∞)

and ξ∗11(t) = 0 for all t ≥ 0. Note that if τ ∗ > 0, p∗1(t)µ12 − ϕ12 − p∗2(t)µ22 ≥ 0 for t ∈ [0, τ ∗) by

construction, and p∗1(t)µ12 −ϕ12 − p∗2(t)µ22 ≤ 0 for t ∈ [τ ∗,∞) since p∗1(τ
∗)µ12 −ϕ12 − p∗2(τ

∗)µ22 ≤ 0

(it is worth noting that strict inequality can occur if q∗1(t) hits zero exactly at time κb, since then

Gt
1(q

∗
1(t)) will jump at time τ ∗1 ) and h1µ12−h2µ22 ≥ 0. Thus, ξ∗12 and ξ

∗
22 are non-negative on [0, κb).

Similarly, they are non-negative on [κb,∞).

The conditions (ODE), (ADJ), (J), and (H) are easily verified. For (C), we only need to check

that when z∗22(t)> 0 in boundary subintervals t∈ [Vk−1, Vk), ξ
∗
22(t) = 0. This holds because of (EC.5)

and (EC.7). We now verify (AH). Note that

∇z11L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t)) =−p∗1(t)µ11 + γ∗

1(t)− ξ∗11(t) = 0

because ξ∗11(t) = 0 and γ∗
1(t) = p∗1(t)µ11. Next,

∇z22L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t)) =−p∗2(t)µ22 + γ∗

2(t)− ξ∗22(t) = 0

because ξ∗22(t) = γ∗
2(t)− p∗2(t)µ22 for t ∈ [0, τ ∗)

⋃
[κb, τd), and ξ

∗
22(t) = 0 and γ∗

2(t) = p∗2(t)µ22 other-

wise. Finally,

∇z12L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t)) = ϕ12 − p∗1(t)µ12 + γ∗

2(t)− ξ∗12(t) = 0

because ξ∗12(t) = 0 and γ∗
2(t) = p∗1(t)µ12 − ϕ12 for t ∈ [0, τ ∗)

⋃
[κb, τd), and ξ∗12(t) = ϕ12 − p∗1(t)µ12 +

γ∗
2(t) otherwise.

It remains to verify (M). It is clear that z∗11(t) should always be maximal. (This is slightly less

clear if q∗1(t) = 0 for some t < τ ∗, since there is a constraint z∗11(t)µ11 + z∗12(t)µ12 ≤ λ1(t) when

q∗1(t) = 0. In this case, (M) follows because the coefficients of z∗11(t) and z∗12(t) are −p∗1(t)µ11 and
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ϕ12 − p∗1(t)µ12.) For t ∈ [0, τ ∗)
⋃
[κb, τd), the coefficients of z∗12(t) and z∗22(t) are respectively ϕ12 −

p∗1(t)µ12 and −p∗2(t)µ22. Since p
∗
1(t)µ12 − ϕ12 ≥ p∗2(t)µ22, it is optimal to have z∗12(t) maximal. For

other t, the reverse inequality is true, and so it is optimal to have z∗22(t) maximal. This in turn

implies that z∗12(t) = 0 for t < τ ′2 is optimal (pool 2 has no spare capacity to help class 1). When

t≥ τ ′2, ϕ12 − p∗1(t)µ12 ≤ 0, and again z∗12(t) = 0 is optimal.

Case II: h1µ12 ≤ h2µ22. The proof is similar to that of Theorem 1 and we provide a roadmap here

only. In this case, pool 2 will serve only its own class until the class 2 queue is emptied. Thereafter,

it may provide partial help to class 1 for up to two different intervals, one for each demand surge

period of class 1.

If q∗1(κb)> 0, the two demand surges for class 1 behave as a single demand surge, and the proof

of Theorem 1 applies directly. If G0
2(q2(0))≥ κb, there is at most one demand surge for class 1 after

pool 2 is ready to provide partial help. The proof of Theorem 1 again applies directly. Suppose

instead q∗1(κb) = 0 and G0
2(q2(0))<κb. In this case, we can apply the proof of Theorem 1 separately

to each of the two intervals [0, κb) and [κb,∞). Noting that in this case, q∗1(κb) = q∗2(κb) = 0. □

Appendix EC.5: Optimal control for the X-Model

Proof of Theorem 4. To prove that the policy characterized in Theorem 4 is optimal, we shall

construct the optimal primal and dual trajectories and show that the conditions in Theorem 7 are

satisfied. We first note that (T) holds trivially because q∗(t) = 0 for t large enough and for any

feasible state trajectory, q(t)≥ 0.

Let q1(0) = q1 and q2(0) = q2. For the X-model, the Hamiltonian takes the form:

H(q(t), z(t), p(t), t) =
∑
i

hiqi(t)+ϕ12z12(t)+ϕ21z21(t)+
∑
i

pi(t)

(
λi(t)−

∑
j

µijzij(t)

)
.

The augmented Hamiltonian takes the form:

L(q(t), z(t), p(t), η(t), γ(t), ξ(t), t)

= H(q(t), z(t), p(t), t)−
∑
i

ηi(t)qi(t)+ γ1(t)(z11(t)+ z21(t)− s1)+ γ2(t)(z12(t)+ z22(t)− s2)

−
∑
i,j

ξij(t)zij(t).

Consider first the case h1µ12 > h2µ22. We further consider two sub-cases, depending on

whether pool 2 initially prioritizes class 1, i.e., whether (11) holds at t= 0.

Case I: Pool 2 does not initially prioritize class 1, i.e., (11) does not hold at t= 0. In this case,

the policy is that each pool serves only its own class for t < τ1 := G0
1(q1(0)). Then, pool 1 gives

partial help to class 2 for t∈ [τ1, τ1 + τ ∗), where

τ ∗ = inf{t≥ 0 : h2µ21G
τ1+t
2 (q2(τ1 + t))≤ ϕ21}.
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At all subsequent times, each pool serves only its own class again. In what follows, intervals of the

form [a, b) for b≤ a are empty.

Let τ ∗2 denote the first time at which queue 2 empties. That is, τ ∗2 = τ2 :=G0
2(q2(0)) if τ2 ≤ τ1, and

τ ∗2 = τ1+τ
∗+Gτ1+τ∗

2 (q∗2(τ1+τ
∗)) if τ2 > τ1. Note that if τ ∗ > 0, then h2µ21G

τ1+τ∗

2 (q∗2(τ1+τ
∗)) = ϕ21

by continuity, so that τ ∗2 = τ1 + τ ∗ + ϕ21
h2µ21

.

The optimal queue length trajectory follows:

q∗1(t) =

{
q1 +

∫ t

0
(λ1(s)− s1µ11)ds, t∈ [0, τ1),

0, t∈ [τ1,∞),

q∗2(t) =


q2 +

∫ t

0
(λ2(s)− s2µ22)ds, t∈ [0, τ1 ∧ τ ∗2 ),

q∗2(τ1)+
∫ t

τ1
(λ2(s)− s2µ22 − (s1 −λ1(s)/µ11)µ21)ds, t∈ [τ1, τ1 + τ ∗),

q∗2(τ1 + τ ∗)+
∫ t

τ1+τ∗(λ2(s)− s2µ22)ds, t∈ [τ1 + τ ∗, τ ∗2 )

0, t∈ [τ ∗2 ,∞).

Define the adjoint vectors

p∗1(t) =


h1(τ1 − t)+h2

µ21
µ11
τ ∗, t∈ [0, τ1),

h2
µ21
µ11

(τ1 + τ ∗ − t), t∈ [τ1, τ1 + τ ∗),

0, t∈ [τ1 + τ ∗,∞),

p∗2(t) =

{
h2(τ

∗
2 − t), t∈ [0, τ ∗2 ),

0, t∈ [τ ∗2 ,∞).

Define the Lagrangian multipliers

η∗1(t) =


0, t∈ [0, τ1),

h1 −h2
µ21
µ11
, t∈ [τ1, τ1 + τ ∗),

h1, t∈ [τ1 + τ ∗,∞),

η∗2(t) =

{
0, t∈ [0, τ ∗2 ),

h2, t∈ [τ ∗2 ,∞).

γ∗
1(t) =

{
p∗1(t)µ11, t∈ [0, τ1 + τ ∗),

0, t∈ [τ1 + τ ∗,∞),

γ∗
2(t) =

{
p∗2(t)µ22, t∈ [0, τ ∗2 ),

0, t∈ [τ ∗2 ,∞).

ξ∗12(t) =

{
ϕ12 − p∗1(t)µ12 + p∗2(t)µ22, t∈ [0, τ1 + τ ∗),

ϕ12 + p∗2(t)µ22, t∈ [τ1 + τ ∗,∞),

ξ∗21(t) =


ϕ21 − p∗2(t)µ21 + p∗1(t)µ11, t∈ [0, τ1),

0, t∈ [τ1, τ1 + τ ∗),

ϕ21 − p∗2(t)µ21, t∈ [τ1 + τ ∗,∞),
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and ξ∗11(t) = ξ∗22(t) = 0 for all t≥ 0. Note that η∗1(t)≥ 0 because h1µ11 ≥ h2µ21 by assumption.

To see that ξ∗21(t)≥ 0, note that because h2µ21 ≤ h1µ11, ξ
∗
21(t) is non-increasing on [0, τ1). More-

over, if τ ∗ > 0, it approaches zero as t→ τ1 (because h2µ21(τ
∗
2 − τ ∗ − τ1) = ϕ21), while if τ ∗ = 0, it

approaches ϕ21 −h2µ21G
τ1
2 (q2(τ1))≥ 0 instead, even if τ ∗2 ≤ τ1.

To see that ξ∗12(t) ≥ 0, note that it is non-decreasing on [0, τ1) (because h1µ12 ≥ h2µ22), it is

monotone on [τ1, τ1 + τ ∗), and it attains the value ϕ12 + p∗2(τ1 + τ ∗)µ22 ≥ 0 at τ1 + τ ∗. Thus, it

suffices to check that ξ∗12(0) ≥ 0. Meanwhile ξ∗12(0) ≥ 0 is equivalent to (11) is violated, which is

assumed in this case.

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforwardly verified by construc-

tion.

We now verify (AH). We have for i= 1,2 that

∇ziiL(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) =−p∗i (t)µii + γ∗

i (t)− ξ∗ii(t) = 0

because ξ∗ii(t) = 0 and γ∗
i (t) = p∗i (t)µii. Next,

∇z12L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) = ϕ12 − p∗1(t)µ12 + γ∗

2(t)− ξ∗12(t) = 0

because ξ∗12(t) = ϕ12 − p∗1(t)µ12 + p∗2(t)µ22. Finally,

∇z21L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) = ϕ21 − p∗2(t)µ21 + γ∗

1(t)− ξ∗21(t).

For t≥ τ1 + τ ∗, ϕ21 − p∗2(t)µ21 + γ∗
1(t)− ξ∗21(t) = 0 because the γ∗

1(t) = 0 and ξ∗21(t) = ϕ21 − p∗2(t)µ21.

For t∈ [τ1, τ1 + τ ∗), we get

ϕ21−p∗2(t)µ21+p
∗
1(t)µ11 = ϕ21−h2µ21 ((τ

∗
2 − t)− (τ1 + τ ∗ − t)) = ϕ21−h2µ21G

τ1+τ∗

2 (q∗2(τ1+τ
∗)) = 0.

Finally, for t∈ [0, τ1), ϕ21 − p∗2(t)µ21 + γ∗
1(t)− ξ∗21(t) = 0 because ξ∗21(t) = ϕ21 − p∗2(t)µ21 + γ∗

1(t).

It remains to verify (M). The coefficients of z∗11(t) and z
∗
21(t) are respectively −p∗1(t)µ11 and ϕ21−

p∗2(t)µ21. Note that ϕ21 − p∗2(t)µ21 + p∗1(t)µ11 = ξ∗21(t)≥ 0 for all t, so the Hamiltonian is minimized

by setting z∗11(t) maximal, i.e. pool 1 prioritizing class 1. For t < τ1, G
t
1(q1(t))> 0, so pool 1 has no

capacity to help class 2, i.e. z∗21(t) = 0. For t∈ [τ1, τ1+ τ
∗), ϕ21− p∗2(t)µ21 = 0, so it is Hamiltonian-

minimal (i.e. minimizes the Hamiltonian) for pool 1 to partially help class 2 (not helping is also

Hamiltonian-minimal), i.e. z∗21(t) =N1− z∗11(t). Finally, for t≥ τ1+ τ
∗, ϕ21− p∗2(t)µ21 ≥ 0, and so it

is Hamiltonian-minimal for pool 2 to serve only its own class.

Next, the coefficients of z∗12(t) and z∗22(t) are respectively ϕ12 − p∗1(t)µ12 and −p∗2(t)µ22. Note

that ϕ12 − p∗1(t)µ12 + p∗2(t)µ22 = ξ∗12(t) ≥ 0, for all t, so the Hamiltonian is minimized by setting

z∗22(t) maximal, i.e., pool 2 prioritizing class 2. Thus, for t < τ ∗2 , it is Hamiltonian-minimal to have
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z∗22(t) = N2 and z∗12(t) = 0. If τ ∗2 < τ1 and t ≥ τ ∗2 , ϕ12 − p∗1(t)µ12 = ξ∗12(t) ≥ 0, and so it is again

Hamiltonian-minimal to have z∗12(t) = 0. This completes the proof for case I.

Case II: Pool 2 initially prioritizes class 1, i.e., (11) holds at t = 0. Let T1 > 0 be the length

of time pool 2 initially prioritizes class 1. By continuity, equality holds for (11) at t= T1. In the

next period [T1, T2), each pool serves its own primary class until queue 1 empties at time T2. Next,

in [T2, T3), pool 1 partially helps class 2, i.e. z∗21(t) = s1 − z∗11(t). Finally, for all remaining time

t≥ T3, each pool again serves only its own primary class. Here, 0< T1 ≤ T2 ≤ T3, with T2 = T3 if

GT2
2 (q∗2(T2))≤ ϕ21

h2µ21
. Also, T1 = T2 is only possible if ϕ12 = 0.

Let T4 be the time other than zero that queue 2 empties after its demand surge ends, i.e.

T4 = inf{t > 0 : Gt
2(q

∗
2(t)) = 0}. It is possible that T4 ≤ T2 or T4 > T2. If T4 > T2, then T4 = T3 +

GT3
2 (q∗2(T3)). Note that the restriction that t > 0 is necessary because it is possible thatG0

2(q2(0)) = 0

if q2(0) = 0 and κ2 = 0.

The optimal queue length trajectory follows:

q∗1(t) =


q1 +

∫ t

0
(λ1(s)− s1µ11 − z∗12(s)µ12)ds, t∈ [0, T1),

q∗1(τ1)+
∫ t

τ1
(λ1(s)− s1µ11)ds, t∈ [T1, T2),

0, t∈ [T2,∞),

q∗2(t) =



q2 +
∫ t

0
(λ2(s)− z∗22(s)µ22)ds, t∈ [0, T1),

q∗2(τ1)+
∫ t

τ1
(λ2(s)− s2µ22)ds, t∈ [T1, T2 ∧T4),

q∗2(τ2)+
∫ t

τ2
(λ2(s)− s2µ22 − (s1 −λ1(s)/µ11)µ21)ds, t∈ [T2, T3),

q∗2(T3)+
∫ t

T3
(λ2(s)− s2µ22)ds, t∈ [T3, T4),

0, t∈ [T4,∞).

Note that it is possible that z∗12(t) < s2 and z∗22(t) = s2 − z∗12(t) > 0 for t ∈ [0, T1) when pool 2

prioritizes class 1, because it may be that q∗1(t) = 0 and λ1(t)< s1µ11 + s2µ12 but Gt
1(q

∗
1(t))> 0.

Define the adjoint vector

p∗2(t) =

{
h2(T4 − t), t∈ [0, T4),

0, t∈ [T4,∞).

We also define

p∗1(t) =


h1(T2 − t)+h2

µ21
µ11

(T3 −T2), t∈ [T1, T2),

h2
µ21
µ11

(T3 − t), t∈ [T2, T3),

0, t∈ [T3,∞).

We also need to define p∗1(t) for t ∈ [0, T1). We partition the interval [0, T1) into subintervals

I1, · · · , In where n ≥ 1, Ii = [Vi−1, Vi) and 0 = V0 < V1 < · · · < Vn = T1, as follows. In the interior

t ∈ (Vi−1, Vi) of each subinterval, either (i) q∗1(t)> 0 and q∗2(t)> 0, in which case we say that Ii is

an interior subinterval, or (ii) q∗1(t) = 0 and q∗2(t)> 0, in which case we say that Ii is a boundary

subinterval. Note that it is not possible that q∗1(t)> 0 and q∗2(t) = 0 in some subinterval, because
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z∗22(t) = 0 during this time and λ2(t)> 0. Also, Assumption 4 rules out the case q∗1(t) = q∗2(t) = 0

(such a subinterval cannot occur after κ1 ∨ κ2, because then Gt
i(qi(t)) = 0 for i = 1,2 and (11)

cannot hold).

The subintervals I1, · · · , In do not necessarily alternate between interior and boundary subin-

tervals: it is possible that Ik and Ik+1 are both interior subintervals, with q1(t) hitting zero at

the single point Vk. The fact that there are finitely many such subintervals follows from piecewise

monotonicity in Assumption 4, because the class 1 queue length can only leave zero once during

each monotone period.

With p∗1(Vn) = p∗1(T1) defined, we recursively define p∗1(t) for t ∈ [0, Vn). We will do this in such

a way that (i) the jumps of p∗1, if any, occur only when q∗1(t) = 0 and are positive; (ii) in interior

subintervals Ii,

p∗1(t)µ12 −ϕ12 − p∗2(t)µ22 ≥ 0; (EC.8)

and (iii) in boundary subintervals Ii,

p∗1(t)µ12 −ϕ12 − p∗2(t)µ22 = 0. (EC.9)

Note that

p∗1(T1)µ12 −ϕ12 − p∗2(T1)µ22 = 0. (EC.10)

Indeed, this statement is equivalent to equality for (11) at t= T1, which follows from continuity.

Suppose p∗1(Vk) has been defined for some k, with p∗1(Vk)µ12 − ϕ12 − p∗2(Vk)µ22 ≥ 0. If Ik is an

interior subinterval, we set

p∗1(t) = h1(Vk − t)+ p∗1(Vk)

for t ∈ [Vk−1, Vk). That is, p∗1 is continuous at Vk and has slope −h1 in the subinterval Ik. Thus,

p∗1(t)µ12 − ϕ12 − p∗2(t)µ22 has slope h2µ22 − h1µ12 ≤ 0, which implies that p∗1(Vk−1)µ12 − ϕ12 −

p∗2(Vk−1)µ22 ≥ 0.

Suppose instead Ik is a boundary subinterval. We set p∗1(Vk−1) = p∗2(Vk−1)µ22/µ12 +ϕ12/µ12 and

p∗1(t) = p∗1(Vk−1)− h2µ22
µ12

(t− Vk−1) for t ∈ (Vk−1, Vk). That is, p∗1 has a jump at Vk and has slope

−h2µ22
µ12

in the subinterval Ik. This ensures that ϕ12 − p∗1(t)µ12 =−p∗2(t)µ22 everywhere in Ik. The

size of the jump at Vk is p∗1(Vk) − p∗2(Vk)µ22/µ12 − ϕ12/µ12 ≥ 0, which is non-negative because

p∗1(Vk)µ12 − ϕ12 − p∗2(Vk)µ22 ≥ 0. Thus, we have defined p∗1 for t ∈ [0, T1) satisfying conditions (i),

(ii) and (iii).

Define the multipliers
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η∗1(t) =



0, t∈ Ik and Ik is an interior subinterval,

h1 −h2
µ22
µ12
, t∈ Ik and Ik is a boundary subinterval,

0, t∈ [T1, T2),

h1 −h2
µ21
µ11
, t∈ [T2, T3),

h1, t∈ [T3,∞),

η∗2(t) =

{
0, t∈ [0, T4),

h2, t∈ [T4,∞).

Note that h1µ12 ≥ h2µ22 and h1µ11 ≥ h2µ21, so that η∗1(t)≥ 0. Define also

γ∗
1(t) =

{
p∗1(t)µ11, t∈ [0, T3),

0, t∈ [T3,∞),

γ∗
2(t) =


p∗1(t)µ12 −ϕ12, t∈ [0, T1)

p∗2(t)µ22, t∈ [T1, T4),

0, t∈ [T4,∞).

ξ∗12(t) =

{
0, t∈ [0, T1),

ϕ12 − p∗1(t)µ12 + p∗2(t)µ22, t∈ [T1,∞),

ξ∗21(t) =


ϕ21 − p∗2(t)µ21 + p∗1(t)µ11, t∈ [0, T2),

0, t∈ [T2, T3),

ϕ21 − p∗2(t)µ21, t∈ [T3,∞).

ξ∗22(t) =

{
p∗1(t)µ12 −ϕ12 − p∗2(t)µ22, t∈ [0, T1),

0, t∈ [T1,∞),

and ξ∗11(t) = 0 for all t≥ 0. Note that p∗1(t)µ12 − ϕ12 − p∗2(t)µ22 ≥ 0 for t ∈ [0, T1) by construction.

Also, ϕ12−p∗1(T1)µ12+p
∗
2(T1)µ22 = 0 from (EC.10). Since h1µ12−h2µ22 ≥ 0, ϕ12−p∗1(t)µ12+p

∗
2(t)µ22

is non-decreasing for t ∈ [T1, T3), after which point it equals ϕ12 + p∗2(t)µ22 ≥ 0. Thus, ξ∗12 and ξ∗22

are non-negative.

To see that ξ∗21(t) ≥ 0, note that because h2µ21 ≤ h1µ11, ξ
∗
21(t) is non-increasing on [0, T2) (its

slope is at most h2µ21 − h1µ11 for t ∈ [0, T1)). If T3 >T2, ξ
∗
21(T2−) = 0 and ξ∗21(t) is non-decreasing

from its value of zero for t ∈ [T3,∞), so that ξ∗21(t) ≥ 0 everywhere. If instead T3 = T2, we have

ξ∗21(T2−)≥ 0 instead, and the same result holds.

The conditions (ODE), (ADJ), (J), and (H) can be straightforwardly verified by our construction.

For (C), we only need to check that when z∗22(t)> 0 in boundary subintervals t∈ [Vk−1, Vk), ξ
∗
22(t) =

0. This holds because of (EC.9). (Note that z∗22(Vk) = 0.)

We now verify (AH). We have that

∇z11L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) =−p∗1(t)µ11 + γ∗

1(t)− ξ∗11(t) = 0
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because ξ∗11(t) = 0 and γ∗
1(t) = p∗1(t)µ11. Next,

∇z22L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) =−p∗2(t)µ22 + γ∗

2(t)− ξ∗22(t) = 0

because ξ∗22(t) = γ∗
2(t)− p∗2(t)µ22 for t∈ [0, T1), and ξ

∗
22(t) = 0 and γ∗

2(t) = p∗2(t)µ22 for t≥ T1. Next,

∇z12L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) = ϕ12 − p∗1(t)µ12 + γ∗

2(t)− ξ∗12(t) = 0

because ξ∗12(t) = 0 and γ∗
2(t) = p∗1(t)µ12 − ϕ12 for t ∈ [0, T1), and ξ∗12(t) = ϕ12 − p∗1(t)µ12 + γ∗

2(t) for

t≥ T1. Finally,

∇z21L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) = ϕ21 − p∗2(t)µ21 + γ∗

1(t)− ξ∗21(t) = 0

because ξ∗21(t) = ϕ21 − p∗2(t)µ21 + γ∗
1(t) for all t≥ 0.

It remains to verify (M). The coefficients of z∗11(t) and z∗21(t) are respectively −p∗1(t)µ11 and

ϕ21 − p∗2(t)µ21. Note that ϕ21 − p∗2(t)µ21 + p∗1(t)µ11 = ξ∗21(t) ≥ 0 for all t, so the Hamiltonian is

minimized by setting z∗11(t) maximal, i.e. pool 1 prioritizing class 1. For t < T2, G
t
1(q1(t))> 0, so

pool 1 has no capacity to help class 2, i.e. z∗21(t) = 0. For t ∈ [T2, T3), ϕ21 − p∗2(t)µ21 = 0, so it is

Hamiltonian-minimal for pool 1 to partially help class 2 (not helping is also Hamiltonian-minimal),

i.e. z∗21(t) = s1 − z∗11(t). Finally, for t≥ T3, ϕ21 − p∗2(t)µ21 ≥ 0, and so it is Hamiltonian-minimal for

pool 2 to serve only its own class.

Next, the coefficients of z∗12(t) and z
∗
22(t) are respectively ϕ12−p∗1(t)µ12 and −p∗2(t)µ22. For t < T1,

ϕ12 − p∗1(t)µ12 + p∗2(t)µ22 = −ξ∗22(t) ≤ 0, so it is Hamiltonian-minimal to have z∗12(t) maximal, i.e.

pool 2 prioritizing class 1. Since p∗2(t)≥ 0, it is also Hamiltonian-minimal to have any remaining

pool 2 servers serve its own class, i.e. z∗22(t) = s2 − z∗12(t). For t ≥ T1, ϕ12 − p∗1(t)µ12 + p∗2(t)µ22 =

ξ∗12(t) ≥ 0, so it is Hamiltonian-minimal to have z∗22(t) maximal, i.e. pool 2 prioritizing class 2.

Thus, for t < T4, it is Hamiltonian-minimal to have z∗22(t) = s2 and z∗12(t) = 0. If T4 < T2 and

t≥ T2, ϕ12 − p∗1(t)µ12 = ξ∗12(t)≥ 0, and so it is again Hamiltonian-minimal to have z∗12(t) = 0. This

completes the proof.

Consider next the other case h1µ12 <h2µ22 and h2µ21 <h1µ11. Let τi =G0
i (qi(0)) for i= 1,2

be the time for each queue to empty using its own pool. By symmetry, we may assume without

loss of generality that τ1 ≤ τ2. Thus, the trajectory under the stated policy is as follows. First, in

[0, τ1], each pool serves only its own class until queue 1 empties. Let

τ ∗ = inf

{
t≥ 0 :Gτ1+t

2 (q2(τ1 + t))≤ ϕ21

h2µ21

}
.

Then, pool 1 will partially help class 2 for t∈ [τ1, τ1+ τ
∗), after which helping stops and both pools

again serve only their own class, until queue 2 is also emptied.
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Let τ ∗2 = τ1 + τ ∗ +Gτ1+τ∗

2 (q∗2(τ1 + τ ∗)) be the time until queue 2 empties. Note that if τ ∗ > 0,

then h2µ21G
τ1+τ∗

2 (q∗2(τ1 + τ ∗)) = ϕ21 by continuity, so that τ ∗2 = τ1 + τ ∗ + ϕ21
h2µ21

.

The optimal queue length trajectory follows:

q∗1(t) =

{
q1 +

∫ t

0
(λ1(s)− s1µ11)ds, t∈ [0, τ1),

0, t∈ [τ1,∞),

q∗2(t) =


q2 +

∫ t

0
(λ2(s)− s2µ22)ds, t∈ [0, τ1),

q∗2(τ1)+
∫ t

τ1
(λ2(s)− s2µ22 − (s1 −λ1(s)/µ11)µ21)ds, t∈ [τ1, τ1 + τ ∗),

q∗2(τ1 + τ ∗)+
∫ t

τ1+τ∗(λ2(s)− s2µ22)ds, t∈ [τ1 + τ ∗, τ ∗2 )

0, t∈ [τ ∗2 ,∞).

Define the adjoint vectors

p∗1(t) =


h1(τ1 − t)+h2

µ21
µ11
τ ∗, t∈ [0, τ1),

h2
µ21
µ11

(τ1 + τ ∗ − t), t∈ [τ1, τ1 + τ ∗),

0, t∈ [τ1 + τ ∗,∞),

p∗2(t) =

{
h2(τ

∗
2 − t), t∈ [0, τ ∗2 ),

0, t∈ [τ ∗2 ,∞).

Define the Lagrangian multipliers

η∗1(t) =


0, t∈ [0, τ1),

h1 −h2
µ21
µ11
, t∈ [τ1, τ1 + τ ∗),

h1, t∈ [τ1 + τ ∗,∞),

η∗2(t) =

{
0, t∈ [0, τ ∗2 ),

h2, t∈ [τ ∗2 ,∞).

γ∗
1(t) =

{
p∗1(t)µ11, t∈ [0, τ1 + τ ∗),

0, t∈ [τ1 + τ ∗,∞),

γ∗
2(t) =

{
p∗2(t)µ22, t∈ [0, τ ∗2 ),

0, t∈ [τ ∗2 ,∞).

ξ∗12(t) =

{
ϕ12 − p∗1(t)µ12 + p∗2(t)µ22, t∈ [0, τ1 + τ ∗),

ϕ12 + p∗2(t)µ22, t∈ [τ1 + τ ∗,∞),

ξ∗21(t) =


ϕ21 − p∗2(t)µ21 + p∗1(t)µ11, t∈ [0, τ1),

0, t∈ [τ1, τ1 + τ ∗),

ϕ21 − p∗2(t)µ21, t∈ [τ1 + τ ∗,∞),

and ξ∗11(t) = ξ∗22(t) = 0 for all t≥ 0. Note that η∗1(t)≥ 0 because h1µ11 ≥ h2µ21 by assumption.

To see that ξ∗21(t)≥ 0, note that because h2µ21 ≤ h1µ11, ξ
∗
21(t) is non-increasing on [0, τ1). More-

over, if τ ∗ > 0, it approaches zero as t→ τ1 (because h2µ21(τ
∗
2 − τ ∗ − τ1) = ϕ21), while if τ ∗ = 0, it

approaches ϕ21 −h2µ21G
τ1
2 (q2(τ1))≥ 0 instead, even if τ ∗2 ≤ τ1.
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Next, note that ξ∗12(t) is non-increasing on [0, τ1) (because h1µ12 ≤ h2µ22) and decreasing on

[τ1, τ1 + τ ∗), at which point it attains the value ϕ12 + p∗2(τ1 + τ ∗)µ22 ≥ 0. Thus, ξ∗12(t)≥ 0 for all t.

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforwardly verified by construc-

tion.

We now verify (AH). We have for i= 1,2 that

∇ziiL(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t)) =−p∗i (t)µii + γ∗

i (t)− ξ∗ii(t) = 0

because ξ∗ii(t) = 0 and γ∗
i (t) = p∗i (t)µii. Next,

∇z12L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t)) = ϕ12 − p∗1(t)µ12 + γ∗

2(t)− ξ∗12(t) = 0

because ξ∗12(t) = ϕ12 − p∗1(t)µ12 + p∗2(t)µ22. Finally,

∇z21L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t)) = ϕ21 − p∗2(t)µ21 + γ∗

1(t)− ξ∗21(t).

For t ≥ τ1 + τ ∗, ϕ21 − p∗2(t)µ21 + γ∗
1(t) − ξ∗21(t) = 0 because the third term is zero and ξ∗21(t) =

ϕ21 − p∗2(t)µ21. For t∈ [τ1, τ1 + τ ∗), we get

ϕ21−p∗2(t)µ21+p
∗
1(t)µ11 = ϕ21−h2µ21 ((τ

∗
2 − t)− (τ1 + τ ∗ − t)) = ϕ21−h2µ21G

τ1+τ∗

2 (q∗2(τ1+τ
∗)) = 0.

Finally, for t∈ [0, τ1), ϕ21 − p∗2(t)µ21 + γ∗
1(t)− ξ∗21(t) = 0 because ξ∗21(t) = ϕ21 − p∗2(t)µ21 + γ∗

1(t).

It remains to verify Hamiltonian minimization. The coefficients of z∗11(t) and z∗21(t) are respec-

tively −p∗1(t)µ11 and ϕ21 − p∗2(t)µ21. Note that ϕ21 − p∗2(t)µ21 + p∗1(t)µ11 = ξ∗21(t) ≥ 0 for all t, so

the Hamiltonian is minimized by setting z∗11(t) maximal, i.e. pool 1 prioritizing class 1. For t <

τ1, G
t
1(q1(t)) > 0, so pool 1 has no capacity to help class 2, i.e. z∗21(t) = 0. For t ∈ [τ1, τ1 + τ ∗),

ϕ21 − p∗2(t)µ21 = 0, so it is Hamiltonian-minimal for pool 1 to partially help class 2 (not helping is

also Hamiltonian-minimal), i.e. z∗21(t) = s1 − z∗11(t). Finally, for t≥ τ1 + τ ∗, ϕ21 − p∗2(t)µ21 ≥ 0, and

so it is Hamiltonian-minimal for pool 2 to serve only its own class.

Next, the coefficients of z∗12(t) and z∗22(t) are respectively ϕ12 − p∗1(t)µ12 and −p∗2(t)µ22. Note

that ϕ12 − p∗1(t)µ12 + p∗2(t)µ22 = ξ∗12(t) ≥ 0, for all t, so the Hamiltonian is minimized by setting

z∗22(t) maximal, i.e. pool 2 prioritizing class 2. Thus, for t < τ ∗2 , it is Hamiltonian-minimal to have

z∗22(t) = s2 and z∗12(t) = 0. If τ ∗2 < τ1 and t ≥ τ ∗2 , ϕ12 − p∗1(t)µ12 = ξ∗12(t) ≥ 0, and so it is again

Hamiltonian-minimal to have z∗12(t) = 0. This completes the proof. □
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Appendix EC.6: Optimal control for the exN1-Model

Proof of Theorem 5. We will construct the optimal primal and dual trajectories under the

policy characterized in Theorem 5 and show that the conditions in Theorem 7 are satisfied. We

first note that (T) holds trivially because q∗(t) = 0 for t large enough and for any feasible state

trajectory, q(t)≥ 0.

Case I: h1µ12 ≥ h2µ22 and h1µ13 ≥ h3µ33. Let q
∗(t), z∗(t) be the trajectories under the given

control. The trajectory is such that each pool i= 2,3 gives priority to class 1 for some (possibly

zero) time, then only helps its own class thereafter. To see this, suppose without loss of generality

that pool 2 is the first pool to stop giving priority to class 1. After this point, Ḡt
exN1,1,3(q(t))

decreases at rate 1 while pool 3 continues to give priority to class 1, and Gt
2(q2(t)) decreases at

rate 1 as well. Since h1µ12 ≥ h2µ22, (17) does not hold at all subsequent times. When pool 3 stops

helping class 1, Ḡt
exN1,1,3(q(t)) =Gt

1(q1(t), and again, because h1µ12 ≥ h2µ22, the second inequality

in (18) is never subsequently triggered.

Define λ1,3(t) = λ1(t)− z∗13(t)µ13 to be the class 1 arrival rate ‘seen’ by pool 2, after accounting

for the effects of pool 3’s help. We claim that (q∗1(t), q
∗
2(t), z

∗
11(t), z

∗
12(t)), z

∗
22(t)) corresponds to that

of Theorem 1 for the N-model, where the arrival rate of class 1 is replaced by λ1,3(t). To see this,

consider the two cases: (i) pool 2 stops helping class 1 after pool 3, and (ii) pool 2 stops helping

class 1 before pool 3. If (i), then pool 2 stops helping class 1 when (18) is violated, which is precisely

the same condition as in the N-model. If (ii), note that pool 2 stops helping class 1 when (17) is

violated. Recall the definition of F t
3(q). Note that when pool 2 stops helping class 1 at time t, pool

3 continues to help class 1 for time F t
3(q), by construction. After which, pool 1 will take a further

time G
t+Gt

3(q)+P t
3(q)

1 (q̃1(t+Gt
3(q)+P t

3(q))) to empty. As such,

Ḡt
exN1,1,3(q(t)) =Gt

1(q1(t)),

where in the definition of Gt
1, the arrival rate of class 1 is replaced by λ1,3(t). This proves the claim.

From the proof of Theorem 1, we obtain p∗i (t), η
∗
i (t), γ

∗
i (t), ξ

∗
1i(t), ξ

∗
ii(t) for i= 1,2. Repeating the

above procedure of considering λ1,2(t) = λ1(t)− z12(t)µ12, we obtain p∗i (t), η
∗
i (t), γ

∗
i (t), ξ

∗
1i(t), ξ

∗
ii(t)

for i= 1,3. Note that the obtained values of p∗1(t), η
∗
1(t), γ

∗
1(t), ξ

∗
11(t) are the same.

The conditions (ODE), (ADJ), (AH), (C) and (J) follow directly from the N-model analysis. It

remains to verify (M).

The Hamiltonian is

H(q(t), z(t), p(t), t) =
∑
i

hiqi(t)+
∑
j ̸=1

ϕ1jz1j(t)+
∑
i

pi(t)

(
λi(t)−

∑
j

µijzij(t)

)
. (EC.11)

For i = 2,3, the coefficients of z1i(t) and zii(t) are ϕ1i − p∗1(t)µ1i and −p∗i (t)µii. By the proof of

the corresponding N-model, ϕ1i − p∗1(t)µ1i ≤ −p∗i (t)µii ≤ 0 whenever pool i is prioritizing class
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1, ϕ1i − p∗1(t)µ1i ≥ −p∗i (t)µii whenever pool i is prioritizing its own class and Gt
i(qi(t)) > 0 and

ϕ1i−p∗1(t)µ1i ≥ 0 whenever pool Gt
i(qi(t)) = 0. Moreover, by Assumption 5, q1(t)> 0 whenever pool

i is prioritizing class 1. This establishes (M).

Case II: h1µ12 <h2µ22 and h1µ13 >h3µ33.

The argument is similar to that of Case I. Let q∗(t), z∗(t) be the trajectories under the given con-

trol. Define λ1,3(t) = λ1(t)−z∗13(t)µ13 to be the class 1 arrival rate ‘seen’ by pool 2, after accounting

for the effects of pool 3’s help. We claim that (q∗1(t), q
∗
2(t), z

∗
11(t), z

∗
12(t)), z

∗
22(t)) corresponds to that

of Theorem 1 for the N-model, where the arrival rate of class 1 is replaced by λ1,3(t). To see this,

note that pool 2 stops partial helping class 1 when the inequality in (21) is violated. At this time,

pool 3 will continue to prioritize class 1 until (22) is violated (if it has not yet stopped prioritizing

class 1). Thus, the class 1 queue will take an additional

Ḡt
exN1,1,3(q) =Gt

3(q3)+P t
3(q)+G

t+Gt
3(q)+P t

3(q)
1 (q̃1(t+Gt

3(q)+P t
3(q)))

time to empty, as required.

From the proof of Theorem 1, we obtain p∗i (t), η
∗
i (t), γ

∗
i (t), ξ

∗
1i(t), ξ

∗
ii(t) for i= 1,2. Repeating the

above procedure of considering λ1,2(t) = λ1(t)− z12(t)µ12, we obtain p∗i (t), η
∗
i (t), γ

∗
i (t), ξ

∗
1i(t), ξ

∗
ii(t)

for i= 1,3. Note that the obtained values of p∗1(t), η
∗
1(t), γ

∗
1(t), ξ

∗
11(t) are the same.

The conditions (ODE), (ADJ), (AH), (C), and (J) all follow directly from the N-model analysis.

It remains to verify (M).

The Hamiltonian is

H(q(t), z(t), p(t), t) =
∑
i

hiqi(t)+
∑
j ̸=1

ϕ1jz1j(t)+
∑
i

pi(t)

(
λi(t)−

∑
j

µijzij(t)

)
. (EC.12)

For i = 2,3, the coefficients of z1i(t) and zii(t) are ϕ1i − p∗1(t)µ1i and −p∗i (t)µii. By the proof of

the corresponding N-model (consisting of classes 1 and 3), ϕ13−p∗1(t)µ13 ≤−p∗3(t)µ33 ≤ 0 whenever

pool 3 is prioritizing class 1, ϕ13−p∗1(t)µ13 ≥−p∗3(t)µ33 whenever pool 3 is prioritizing its own class

and Gt
3(q3(t)) > 0 and ϕ13 − p∗1(t)µ13 ≥ 0 whenever pool Gt

3(q3(t)) = 0. Also, by the proof of the

corresponding N-model (consisting of classes 1 and 2), ϕ12 − p∗1(t)µ12 ≥−p∗2(t)µ22 for all t, so it is

optimal for pool 2 to prioritize its own class for all t. It also follows from the proof of the N-model

that ϕ12 − p∗1(t)µ12 ≤ 0 when pool 2 is partially helping class 2, and ϕ12 − p∗1(t)µ12 ≥ 0 otherwise.

Moreover, by Assumption 5, q1(t)> 0 whenever pool i is providing help to class 1. This establishes

(M).

Case III: h1µ12 <h2µ22 and h1µ13 <h3µ33. The argument is similar to the previous two cases.

Let q∗(t), z∗(t) be the trajectories under the given control. Define λ1,3(t) = λ1(t)− z∗13(t)µ13 to be

the class 1 arrival rate ‘seen’ by pool 2, after accounting for the effects of pool 3’s help. It follows
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similarly to the other cases that (q∗1(t), q
∗
2(t), z

∗
11(t), z

∗
12(t)), z

∗
22(t)) corresponds to that of Theorem

1 for the N-model, where the arrival rate of class 1 is replaced by λ1,3(t).

From the proof of Theorem 1, we obtain p∗i (t), η
∗
i (t), γ

∗
i (t), ξ

∗
1i(t), ξ

∗
ii(t) for i= 1,2. Repeating the

above procedure of considering λ1,2(t) = λ1(t)− z12(t)µ12, we obtain p∗i (t), η
∗
i (t), γ

∗
i (t), ξ

∗
1i(t), ξ

∗
ii(t)

for i= 1,3. Note that the obtained values of p∗1(t), η
∗
1(t), γ

∗
1(t), ξ

∗
11(t) are the same.

The conditions (ODE), (ADJ), (AH), (C), and (J) all follow directly from the N-model analysis.

It remains to verify (M).

The Hamiltonian is

H(q(t), z(t), p(t), t) =
∑
i

hiqi(t)+
∑
j ̸=1

ϕ1jz1j(t)+
∑
i

pi(t)

(
λi(t)−

∑
j

µijzij(t)

)
. (EC.13)

For i= 2,3, the coefficients of z1i(t) and zii(t) are ϕ1i− p∗1(t)µ1i and −p∗i (t)µii. By the proof of the

corresponding N-model, ϕ1i−p∗1(t)µ1i ≥−p∗i (t)µii for i= 2,3 and all t, so it is optimal for pool i to

prioritize its own class for all t. It also follows from the proof of the N-model that ϕ1i−p∗i (t)µ1i ≤ 0

when pool i is partially helping class 2, and ϕ1i−p∗1(t)µ1i ≥ 0 otherwise. Moreover, by Assumption

5, q1(t)> 0 whenever pool i is providing help to class 1. This establishes (M). □

Appendix EC.7: Optimal control for the exN2-Model

Proof of Theorem 6. We will construct the optimal primal and dual trajectories under the

policy characterized in Theorem 6 and show that the conditions in Theorem 7 are satisfied. We

first note that (T) holds trivially because q∗(t) = 0 for t large enough and for any feasible state

trajectory, q(t)≥ 0.

Let q1(0) = q1 and q2(0) = q2. For the exN2-model, the Hamiltonian takes the form:

H(q(t), z(t), p(t), t) =
∑
i

hiqi(t)+
3∑

j=2

ϕj1zj1(t)+
∑
i

pi(t)

(
λi(t)−

∑
j

µijzij(t)

)
. (EC.14)

The augmented Hamiltonian takes the form:

L(q(t), z(t), p(t), η(t), γ(t), ξ(t), t)

= H(q(t), z(t), p(t), t)−
∑
i

ηi(t)qi(t)+ γ1(t)(z11(t)+ z21(t)+ z31(t)− s1)

+ γ2(t)(z22(t)− s2)+ γ3(t)(z33(t)− s3)−
∑
i,j

ξij(t)zij(t).

Case I: h2µ21 ≥ h3µ31 ≥ h1µ11. In this case, the policy is that pool 1 first fully serves class 2 for

a time τ1 ≥ 0, then fully serves class 3 for a time τ2 ≥ 0, then serves only its own class thereafter.

To see this, note first that

h2µ21G
τ1
2 (q2(τ1))≤ h1µ11ḠexN2,1(q(τ1))+ (h3µ31 −h1µ11)F

t(q(t))+ϕ21
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where equality holds by continuity if τ1 > 0. Subsequently, h2µ21G
t
2(q2(t)) decreases at rate h2µ21,

while the RHS decreases at rate h3µ31 when pool 1 fully helps class 3 and at rate h1µ11 when pool

1 serves its own class. Because h2µ21 ≥ h3µ31 ≥ h1µ11, the inequality (25) never holds subsequently,

and so pool 1 will not fully serve class 2 after time τ1.

Next, note that

h3µ31G
τ1+τ2
3 (q3(τ1 + τ2))−ϕ31 ≤ h1µ11G

τ1+τ2
1 (q1(τ1 + τ2))

with equality holding by continuity if τ2 > 0. Subsequently, when pool 1 serves its own class,

h3µ31G
t
3(q3(t)) decreases at rate h3µ31 while h1µ11G

t
1(q1(t)) decreases at rate h1µ11, and since

h3µ31 ≥ h1µ11, the inequality (26) never holds subsequently, and so pool 1 will not fully serve class

3 after time τ1 + τ2.

The times to deplete the three queues are

τ ∗1 = τ1 + τ2 +Gτ1+τ2
1 (q∗1(τ1 + τ2)),

τ ∗2 = τ1 +Gτ1
2 (q∗2(τ1)),

τ ∗3 = min
{
G0

3(q3(0)), τ1 + τ2 +Gτ1+τ2
3 (q∗3(τ1 + τ2))

}
.

The optimal queue length trajectory follows:

q∗1(t) =


q1 +

∫ t

0
(λ1(s)− z∗11(s)µ11)ds, t∈ [0, τ1 + τ2),

q∗1(τ1 + τ2)+
∫ t

τ1+τ2
(λ1(s)− s1µ11)ds, t∈ [τ1 + τ2, τ

∗
1 ),

0, t∈ [τ ∗1 ,∞),

q∗2(t) =


q2 +

∫ t

0
(λ2(s)− s2µ22 − z∗21(s)µ21)ds, t∈ [0, τ1),

q∗2(τ1)+
∫ t

τ1
(λ2(s)− s2µ22)ds, t∈ [τ1, τ

∗
2 ),

0, t∈ [τ ∗2 ,∞),

q∗3(t) =


q3 +

∫ t

0
(λ3(s)− s3µ33 − z∗31(s)µ31)ds, t∈ [0,min{τ ∗3 , τ1 + τ2}),

q∗3(τ1 + τ2)+
∫ t

τ1+τ2
(λ3(s)− s3µ33)ds, t∈ [τ1 + τ2, τ

∗
3 ),

0, t∈ [τ ∗3 ,∞).

Note that by Assumption 6, q∗2(t)> 0 for t∈ [0, τ1) and q
∗
3(t)> 0 for t∈ [0, τ1+τ2). Thus, when pool

1 is fully helping class 2, z∗21(t) = s1 and similarly, when pool 1 is fully helping class 3, z∗31(t) = s1.

Define the adjoint vectors, for i= 1,2,3,

p∗i (t) =

{
hi(τ

∗
i − t), t∈ [0, τ ∗i ),

0, t∈ [τ ∗i ,∞).

Define the multipliers
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η∗1(t) =

{
0, t∈ [0, τ ∗1 ),

h1, t∈ [τ ∗1 ,∞),

η∗2(t) =

{
0, t∈ [0, τ ∗2 ),

h2, t∈ [τ ∗2 ,∞)

η∗3(t) =

{
0, t∈ [0, τ ∗3 ),

h3, t∈ [τ ∗3 ,∞)

γ∗
1(t) =


p∗2(t)µ21 −ϕ21, t∈ [0, τ1),

p∗3(t)µ31 −ϕ31, t∈ [τ1, τ1 + τ2),

p∗1(t)µ11, t∈ [τ1 + τ2, τ
∗
1 ),

0, t∈ [τ ∗1 ,∞),

γ∗
2(t) =

{
p∗2(t)µ22, t∈ [0, τ ∗2 ),

0, t∈ [τ ∗2 ,∞),

γ∗
3(t) =

{
p∗3(t)µ33, t∈ [0, τ ∗3 ),

0, t∈ [τ ∗3 ,∞)

ξ∗21(t) =

{
0, t∈ [0, τ1),

ϕ21 − p∗2(t)µ21 + γ∗
1(t), t∈ [τ1,∞)

ξ∗31(t) =

{
0, t∈ [τ1, τ1 + τ2),

ϕ31 − p∗3(t)µ31 + γ∗
1(t), t /∈ [τ1, τ1 + τ2)

ξ∗11(t) =

{
γ∗
1(t)− p∗1(t)µ11, t∈ [0, τ1 + τ2),

0, t∈ [τ1 + τ2,∞)

and ξ∗22(t) = ξ∗33(t) = 0 for all t≥ 0. We next show γ∗
1(t) and ξ

∗
ij(t) are non-negative. Suppose first

that τ1 > 0 and τ2 > 0. By construction of the policy, we have

h2µ21(τ
∗
2 − τ1)−ϕ21 = h1µ11(τ

∗
1 − τ1 − τ2)+h3µ31τ2

and

h3µ31(τ
∗
3 − τ1 − τ2)−ϕ31 = h1µ11(τ

∗
1 − τ1 − τ2).

Then,

p∗2(τ1)µ21 −ϕ21 = p∗3(τ1)µ31 −ϕ31

and

p∗3(τ1 + τ2)µ31 −ϕ31 = p∗1(τ1 + τ2)µ11.

In particular, γ∗
1(t) is continuous. Since γ

∗
1(t) is decreasing in each of the intervals [0, τ1), [τ1, τ1+τ2)

and [τ1+ τ2, τ
∗
1 ), before reaching zero, it is non-negative. Moreover, because h2µ21 ≥ h3µ31 ≥ h1µ11,
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γ∗
1(t) decreases at a rate that is at least the rate at which p∗1(t)µ11 changes in [0, τ1 + τ2), γ

∗
1(t)≥

p∗1(t)µ11 in [0, τ1 + τ2), i.e., ξ
∗
11(t)≥ 0.

Next, from the above discussion, we have that ξ∗21(τ1) = 0. Because h2µ21 ≥ h3µ31 ≥ h1µ11, ξ
∗
21(t)

is non-decreasing for t∈ [τ1, τ
∗
2 ), and is non-negative for t≥ τ ∗2 because p∗2(t) = 0. Thus, ξ∗21(t)≥ 0.

We also have that ξ∗31(τ1−) = 0= ξ∗31(τ1+τ2). A similar reasoning shows that ξ∗31(t) is non-increasing

in [0, τ1) and non-decreasing in [τ1 + τ2, τ
∗
3 ), and so ξ∗31(t)≥ 0 for all t.

The analysis for the cases involving τ1 = 0 and τ2 = 0 follows similarly.

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforwardly verified by construc-

tion.

We now verify (AH). For i= 2,3,

∇ziiL(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) =−p∗i (t)µii + γ∗

i (t)− ξ∗ii(t) = 0

because ξ∗ii(t) = 0 and γ∗
i (t) = p∗i (t)µii. Next,

∇z11L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) =−p∗1(t)µ11 + γ∗

1(t)− ξ∗11(t) = 0

because ξ∗11(t) = γ∗
1(t)−p∗1(t)µ11 for t∈ [0, τ1+τ2), and ξ

∗
11(t) = 0 and γ∗

1(t) = p∗1(t)µ11 for t≥ τ1+τ2.

Next,

∇z21L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) = ϕ21 − p∗2(t)µ21 + γ∗

1(t)− ξ∗21(t) = 0

because ξ∗21(t) = 0 and γ∗
1(t) = p∗2(t)µ21 − ϕ21 for t ∈ [0, τ1), and ξ∗21(t) = ϕ21 − p∗2(t)µ21 + γ∗

1(t) for

t≥ τ1. Finally,

∇z31L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) = ϕ31 − p∗3(t)µ31 + γ∗

1(t)− ξ∗31(t) = 0

because ξ∗31(t) = 0 and γ∗
1(t) = p∗3(t)µ31 −ϕ31 for t ∈ [τ1, τ1 + τ2), and ξ

∗
31(t) = ϕ31 − p∗3(t)µ31 + γ∗

1(t)

for t /∈ [τ1, τ1 + τ2).

It remains to verify (M). It is easy to see that z∗22(t) and z∗33(t) should always be maximal.

The coefficients of z∗11(t), z
∗
21(t) and z∗31(t) are respectively −p∗1(t)µ11, ϕ21 − p∗2(t)µ21 and ϕ31 −

p∗3(t)µ31. For t < τ1, we have that p∗2(t)µ21 − ϕ21 ≥ p∗3(t)µ31 − ϕ31 ≥ p∗1(t)µ11 (this follows from the

earlier discussion of γ∗
1(t)), it is optimal to have z∗21(t) maximal. When t ∈ [τ1, τ1 + τ2), we have

p∗3(t)µ31−ϕ31 ≥max(p∗2(t)µ21−ϕ21, p
∗
1(t)µ11), so it is optimal to have z∗31(t) maximal. Finally, when

t≥ τ1 + τ2, we have p∗1(t)µ11 ≥ p∗3(t)µ31 − ϕ31 ≥ p∗2(t)µ21 − ϕ21, so it is optimal to have pool 1 give

class 1 priority. When p∗1(t) = 0 so that q∗1(t) = 0, we have that p∗i (t)µi1 − ϕi1 ≤ 0 for i= 2,3, so it

is optimal for pool 1 to not partially help classes 2 and 3.

Case II: h2µ21 ≥ h1µ11 > h3µ31. In this case, the policy is that pool 1 first fully serves class 2

for a time τ1 ≥ 0, then serves only its own class 1 for time τ2 =Gτ1
1 (q1(τ1)) until it empties, then
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partially helps class 3 for some time τ3 ≥ 0, then serves only its own class thereafter. To see this,

note first that

h2µ21G
τ1
2 (q2(τ1))≤ h1µ11G

τ1
1 (q1(τ1))+h3µ31P

τ1(q(τ1))+ϕ21

where equality holds by continuity if τ1 > 0. Subsequently, h2µ21G
t
2(q2(t)) decreases at rate h2µ21,

while the RHS decreases at rate h1µ11 when pool 1 serves only its own class and at rate h3µ31

when pool 1 partially helps class 3. Because h2µ21 ≥ h1µ11 >h3µ31, the inequality (27) never holds

subsequently, and so pool 1 will not fully serve class 2 after time τ1.

The times to deplete the three queues are

τ ∗1 = τ1 +Gτ1
1 (q∗1(τ1),

τ ∗2 = τ1 +Gτ1
2 (q∗2(τ1)),

τ ∗3 = min
{
G0

3(q3(0)), τ
∗
1 + τ3 +G

τ∗1+τ3
3 (q3(τ

∗
1 + τ3))

}
.

The optimal queue length trajectory follows:

q∗1(t) =


q1 +

∫ t

0
(λ1(s)− z∗11(s)µ11)ds, t∈ [0, τ1),

q∗1(τ1)+
∫ t

τ1
(λ1(s)− s1µ11)ds, t∈ [τ1, τ

∗
1 ),

0, t∈ [τ ∗1 ,∞),

q∗2(t) =


q2 +

∫ t

0
(λ2(s)− s2µ22 − z∗21(s)µ21)ds, t∈ [0, τ1),

q∗2(τ1)+
∫ t

τ1
(λ2(s)− s2µ22)ds, t∈ [τ1, τ

∗
2 ),

0, t∈ [τ ∗2 ,∞).

In addition, if τ ∗3 > 0,

q∗3(t) =


q3 +

∫ t

0
(λ3(s)− s3µ33)ds, t∈ [0, τ ∗1 ),

q∗3(τ
∗
1 )+

∫ t

τ∗1
(λ3(s)− s3µ33 − (s1 −λ1(s)/µ11)µ31)ds, t∈ [τ ∗1 , τ

∗
1 + τ3),

q∗3(τ
∗
1 + τ3)+

∫ t

τ∗1
(λ3(s)− s3µ33)ds, t∈ [τ ∗1 + τ3, τ

∗
3 ),

0, t∈ [τ ∗3 ,∞),

otherwise,

q∗3(t) =

{
q3 +

∫ t

0
(λ3(s)− s3µ33)ds, t∈ [0, τ ∗3 ),

0, t∈ [τ ∗3 ,∞).

Assumption 6 ensures that q∗2(t) > 0 for t ∈ [0, τ1). Thus, when pool 1 is fully helping class 2,

z∗21(t) = s1.

Define the adjoint vectors, for i= 2,3,

p∗i (t) =

{
hi(τ

∗
i − t), t∈ [0, τ ∗i ),

0, t∈ [τ ∗i ,∞).
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Define also

p∗1(t) =


h1(τ

∗
1 − t)+h3

µ31
µ11
τ3, t∈ [0, τ ∗1 )

h3
µ31
µ11

(τ ∗1 + τ3 − t), t∈ [τ ∗1 , τ
∗
1 + τ3),

0, t∈ [τ ∗1 + τ3,∞).

Define the multipliers

η∗1(t) =


0, t∈ [0, τ ∗1 ),

h1 −h3
µ31
µ11
, t∈ [τ ∗1 , τ

∗
1 + τ3),

h1, t∈ [τ ∗1 + τ3,∞),

η∗2(t) =

{
0, t∈ [0, τ ∗2 ),

h2, t∈ [τ ∗2 ,∞)

η∗3(t) =

{
0, t∈ [0, τ ∗3 ),

h3, t∈ [τ ∗3 ,∞)

γ∗
1(t) =


p∗2(t)µ21 −ϕ21, t∈ [0, τ1),

p∗1(t)µ11, t∈ [τ1, τ
∗
1 + τ3),

0, t∈ [τ ∗1 + τ3,∞),

γ∗
2(t) =

{
p∗2(t)µ22, t∈ [0, τ ∗2 ),

0, t∈ [τ ∗2 ,∞),

γ∗
3(t) =

{
p∗3(t)µ33, t∈ [0, τ ∗3 ),

0, t∈ [τ ∗3 ,∞)

ξ∗21(t) =

{
0, t∈ [0, τ1),

ϕ21 − p∗2(t)µ21 + γ∗
1(t), t∈ [τ1,∞)

ξ∗31(t) =

{
0, t∈ [τ ∗1 , τ

∗
1 + τ3),

ϕ31 − p∗3(t)µ31 + γ∗
1(t), t /∈ [τ ∗1 , τ

∗
1 + τ3)

ξ∗11(t) =

{
γ∗
1(t)− p∗1(t)µ11, t∈ [0, τ1),

0, t∈ [τ1,∞)

and ξ∗22(t) = ξ∗33(t) = 0 for all t≥ 0. Note that η∗1 ≥ 0 because h1µ11 > h3µ31. We next show γ∗
1(t)

and ξ∗ij(t) are non-negative. Suppose first that τ1 > 0. Note that

h2µ21(τ
∗
2 − τ1)−ϕ21 = h1µ11(τ

∗
1 − τ1)+h3µ31τ3,

from which it follows that

p∗2(τ1)µ21 −ϕ21 = p∗1(τ1)µ11.
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In particular, γ∗
1(t) is continuous. Since γ∗

1(t) is decreasing in each of the intervals [0, τ1) and

[τ1, τ
∗
1 + τ3) before reaching zero, it is non-negative. Moreover, because h2µ21 ≥ h1µ11 >h3µ31, γ

∗
1(t)

decreases at a rate that is at least the rate at which p∗1(t)µ11 changes in [0, τ1), γ
∗
1(t)≥ p∗1(t)µ11 in

[0, τ1), i.e., ξ
∗
11(t)≥ 0.

Next, from the above discussion, we have that ξ∗21(τ1) = 0. Because h2µ21 ≥ h1µ11 >h3µ31, ξ
∗
21(t)

is non-decreasing for t∈ [τ1, τ
∗
2 ), and is non-negative for t≥ τ ∗2 because p∗2(t) = 0. Thus, ξ∗21(t)≥ 0.

Next, ξ∗31(t) is zero if τ3 = 0; suppose instead τ3 > 0. For t∈ [τ ∗1 , τ
∗
1 + τ3), we have

ξ∗31(t) = ϕ31 − p∗3(t)µ31 + p∗1(t)µ11 = ϕ31 −h3µ31(τ
∗
1 − t)+h3

µ31

µ11

µ11(τ
∗
1 + τ3 − t) = 0,

because τ ∗3 = τ ∗1 + τ3 +
ϕ31

h3µ31
.

The analysis for the cases involving τ1 = 0 and τ2 = 0 follows similarly.

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforwardly verified by construc-

tion.

We now verify (AH). For i= 2,3,

∇ziiL(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) =−p∗i (t)µii + γ∗

i (t)− ξ∗ii(t) = 0

because ξ∗ii(t) = 0 and γ∗
i (t) = p∗i (t)µii. Next,

∇z11L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) =−p∗1(t)µ11 + γ∗

1(t)− ξ∗11(t) = 0

because ξ∗11(t) = γ∗
1(t)− p∗1(t)µ11 for t∈ [0, τ1), and ξ

∗
11(t) = 0 and γ∗

1(t) = p∗1(t)µ11 for t≥ τ1. Next,

∇z21L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) = ϕ21 − p∗2(t)µ21 + γ∗

1(t)− ξ∗21(t) = 0

because ξ∗21(t) = 0 and γ∗
1(t) = p∗2(t)µ21 − ϕ21 for t ∈ [0, τ1), and ξ∗21(t) = ϕ21 − p∗2(t)µ21 + γ∗

1(t) for

t≥ τ1. Finally,

∇z31L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) = ϕ31 − p∗3(t)µ31 + γ∗

1(t)− ξ∗31(t).

When t /∈ [τ ∗1 , τ
∗
1 + τ3), ϕ31− p∗3(t)µ31+γ

∗
1(t)− ξ∗31(t) = 0 because ξ∗31(t) = ϕ31− p∗3(t)µ31+γ

∗
1(t). For

t∈ [τ ∗1 , τ
∗
1 + τ3), ξ

∗
31(t) = 0 and we have

ϕ31 − p∗3(t)µ31 + p∗1(t)µ11 = ϕ31 −h3µ31(τ
∗
1 − t)+h3

µ31

µ11

µ11(τ
∗
1 + τ3 − t) = 0,

because τ ∗3 = τ ∗1 + τ3 +
ϕ31

h3µ31
.

It remains to verify (M). It is clear that z∗22(t) and z
∗
33(t) should always be maximal. The coeffi-

cients of z∗11(t), z
∗
21(t) and z

∗
31(t) are respectively −p∗1(t)µ11, ϕ21−p∗2(t)µ21 and ϕ31−p∗3(t)µ31. From

the earlier discussion, we have that p∗2(t)µ21 − ϕ21 ≥ p∗1(t)µ11 for t ∈ [0, τ1), and that p∗1(t)µ11 =
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p∗3(t)µ31−ϕ31 for t∈ [τ ∗1 , τ
∗
1 +τ3). Because h2µ21 ≥ h1µ11 >h3µ31, we have that p

∗
1(t)µ11 > p

∗
3(t)µ31−

ϕ31 for t∈ [τ1, τ
∗
1 ), and hence also p∗2(t)µ21−ϕ21 > p

∗
1(t)µ11 for t∈ [0, τ1). As such, for t∈ [0, τ1), it is

optimal to have z∗21(t) maximal. When t∈ [τ1, τ
∗
1 ), we have p

∗
1(t)µ11 ≥max(p∗2(t)µ21−ϕ21, p

∗
3(t)µ31−

ϕ31), so it is optimal to have pool 1 serve only class 1. When t ∈ [τ ∗1 , τ
∗
1 + τ3), we have p∗1(t)µ11 =

p∗3(t)µ31 − ϕ31 ≥ p∗2(t)µ21 − ϕ21, so it is optimal to have pool 1 to partially help class 3. When

t≥ τ ∗1 + τ3, p
∗
1(t) = 0, and we have that p∗i (t)µi1 −ϕi1 ≤ 0 for i= 2,3, so it is optimal for pool 1 to

not partially help classes 2 and 3.

Case III: h1µ11 >h2µ21 ≥ h3µ31. In this case, the policy is that pool 1 first serves only its own

class 1 for a time τ ∗1 =G0
1(q1(0))≥ 0 until it empties, then partially helps class 2 for time τ2 ≥ 0,

then partially helps class 3 for some time τ3 ≥ 0, then serves only its own class thereafter. To see

this, note first that

h2µ21G
τ∗1+τ2
2 (q2(τ

∗
1 + τ2))≤ h3µ31P

τ∗1+τ2(q(τ ∗1 + τ2))+ϕ21

where equality holds by continuity if τ2 > 0. Subsequently, h2µ21G
t
2(q2(t)) decreases at rate h2µ21,

while the RHS decreases at rate h3µ31. Because h2µ21 ≥ h3µ31, the inequality (28) never holds

subsequently, and so pool 1 will not partially help class 2 after time τ ∗1 + τ2.

The times to deplete the three queues are

τ ∗1 = G0
1(q1(0)),

τ ∗2 = min
{
G0

2(q2(0)), τ
∗
1 + τ2 +G

τ∗1+τ2
2 (q∗2(τ

∗
1 + τ2))

}
,

τ ∗3 = min
{
G0

3(q3(0)), τ
∗
1 + τ2 + τ3 +G

τ∗1+τ2+τ3
3 (q∗3(τ

∗
1 + τ2 + τ3))

}
.

The optimal queue length trajectory follows:

q∗1(t) =

{
q1 +

∫ t

0
(λ1(s)− s1µ11)ds, t∈ [0, τ ∗1 ),

0, t∈ [τ ∗1 ,∞),

q∗2(t) =


q2 +

∫ t

0
(λ2(s)− s2µ22)ds, t∈ [0,min{τ ∗1 , τ ∗2 }),

q∗2(τ
∗
1 )+

∫ t

τ∗1
(λ2(s)− s2µ22 − z∗21(s)µ21)ds, t∈ [τ ∗1 , τ

∗
1 + τ2),

q∗2(τ
∗
1 + τ2)+

∫ t

τ∗1+τ2
(λ2(s)− s2µ22)ds, t∈ [τ ∗1 + τ2, τ

∗
2 ),

0, t∈ [τ ∗2 ,∞),

q∗3(t) =


q3 +

∫ t

0
(λ3(s)− s3µ33)ds, t∈ [0,min{τ ∗1 , τ ∗3 }),

q∗3(τ
∗
1 )+

∫ t

τ∗1
(λ3(s)− s3µ33 − z∗31(s)µ31)ds, t∈ [τ ∗1 ,min{τ ∗1 + τ2 + τ3, τ

∗
3 }),

q∗3(τ
∗
1 + τ2 + τ3)+

∫ t

τ∗1+τ2+τ3
(λ3(s)− s3µ33)ds, t∈ [τ ∗1 + τ2 + τ3, τ

∗
3 ),

0, t∈ [τ ∗3 ,∞).

Note for example that if τ ∗1 > τ ∗2 , then τ2 = 0 and [τ ∗1 , τ
∗
1 + τ2) is empty and so the corresponding

expression for q∗2(t) can be ignored. Assumption 6 ensures that q∗2(t)> 0 for t ∈ [τ ∗1 , τ
∗
1 + τ2) and
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q∗3(t)> 0 for t∈ [τ ∗1 + τ2, τ
∗
1 + τ2 + τ3). Thus, when pool 1 is partially helping class i= 2,3, z∗i1(t) =

s1 − z∗11(t) = s1 −λ1(s)/µ11.

Define the adjoint vectors, for i= 2,3,

p∗i (t) =

{
hi(τ

∗
i − t), t∈ [0, τ ∗i ),

0, t∈ [τ ∗i ,∞).

Define also

p∗1(t) =


h1(τ

∗
1 − t)+h2

µ21
µ11
τ2 +h3

µ31
µ11
τ3, t∈ [0, τ ∗1 ),

h2
µ21
µ11

(τ ∗1 + τ2 − t)+h3
µ31
µ11
τ3, t∈ [τ ∗1 , τ

∗
1 + τ2),

h3
µ31
µ11

(τ ∗1 + τ2 + τ3 − t), t∈ [τ ∗1 + τ2, τ
∗
1 + τ2 + τ3),

0, t∈ [τ ∗1 + τ2 + τ3,∞).

Define the multipliers

η∗1(t) =


0, t∈ [0, τ ∗1 ),

h1 −h2
µ21
µ11
, t∈ [τ ∗1 , τ

∗
1 + τ2),

h1 −h3
µ31
µ11
, t∈ [τ ∗1 + τ2, τ

∗
1 + τ2 + τ3),

h1, t∈ [τ ∗1 + τ2 + τ3,∞),

η∗2(t) =

{
0, t∈ [0, τ ∗2 ),

h2, t∈ [τ ∗2 ,∞)

η∗3(t) =

{
0, t∈ [0, τ ∗3 ),

h3, t∈ [τ ∗3 ,∞)

γ∗
1(t) =

{
p∗1(t)µ11, t∈ [0, τ ∗1 + τ2 + τ3),

0, t∈ [τ ∗1 + τ2 + τ3,∞),

γ∗
2(t) =

{
p∗2(t)µ22, t∈ [0, τ ∗2 ),

0, t∈ [τ ∗2 ,∞),

γ∗
3(t) =

{
p∗3(t)µ33, t∈ [0, τ ∗3 ),

0, t∈ [τ ∗3 ,∞)

ξ∗21(t) =

{
0, t∈ [τ ∗1 , τ

∗
1 + τ2),

ϕ21 − p∗2(t)µ21 + γ∗
1(t), t /∈ [τ ∗1 , τ

∗
1 + τ2)

ξ∗31(t) =

{
0, t∈ [τ ∗1 + τ2, τ

∗
1 + τ2 + τ3),

ϕ31 − p∗3(t)µ31 + γ∗
1(t), t /∈ [τ ∗1 + τ2, τ

∗
1 + τ2 + τ3)

and ξ∗11(t) = ξ∗22(t) = ξ∗33(t) = 0 for all t≥ 0. Note that η∗1(t)≥ 0 because h1µ11 >h2µ21 ≥ h3µ31. We

next show ξ∗21(t) and ξ
∗
31(t) are non-negative. Consider first ξ∗21(t). Because h1µ11 >h2µ21 ≥ h3µ31,
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γ∗
1(t) − p∗2(t)µ21 + ϕ21 is decreasing on [0, τ ∗1 ), constant on [τ ∗1 , τ

∗
1 + τ2) and non-decreasing on

[τ ∗1 +τ2, τ
∗
2 ), after which it is positive since p∗2(t) = 0. So, it suffices to show that γ∗

1(t)−p∗2(t)µ21+ϕ21

is non-negative at t= τ ∗1 + τ2. This holds because

ϕ21 − p∗2(τ
∗
1 + τ2)µ21 + p∗1(τ

∗
1 + τ2)µ11 = ϕ21 −h2µ21(τ

∗
2 − τ ∗1 − τ2)+h2µ21(τ

∗
1 − τ ∗1 )+h3µ31τ3 ≥ 0,

since h2µ21(τ
∗
2 − τ ∗1 − τ2)−ϕ21 ≤ h3µ31τ3 by construction of the policy (equality holds if τ2 > 0).

We next turn to ξ∗31(t). Because h1µ11 >h2µ21 ≥ h3µ31, γ
∗
1(t)−p∗3(t)µ31+ϕ31 is non-increasing on

[0, τ ∗1 + τ2) and constant on [τ ∗1 + τ2, τ
∗
1 + τ2 + τ3), after which it is non-decreasing since γ∗

1(t) = 0.

So, it suffices to show that γ∗
1(t)− p∗3(t)µ31 + ϕ31 is non-negative at t∗ = τ ∗1 + τ2 + τ3. This holds

because we have

ϕ31 − p∗3(t
∗)µ31 + p∗1(t

∗)µ11 = ϕ31 −h3µ31(τ
∗
3 − t∗)+h3µ31(τ

∗
1 + τ2 + τ3 − t∗)≥ 0,

because h3µ31(τ
∗
3 − τ ∗1 − τ2 − τ3)≤ ϕ31 by construction of the policy (equality holds if τ3 > 0).

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforward verified by construction.

We now verify (AH). For i= 1,2,3,

∇ziiL(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) =−p∗i (t)µii + γ∗

i (t)− ξ∗ii(t) = 0

because ξ∗ii(t) = 0 and γ∗
i (t) = p∗i (t)µii. Next,

∇z21L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) = ϕ21 − p∗2(t)µ21 + γ∗

1(t)− ξ∗21(t).

When t /∈ [τ ∗1 , τ
∗
1 + τ2), this is zero because ξ∗21(t) = ϕ21 − p∗2(t)µ21 + γ∗

1(t). For t ∈ [τ ∗1 , τ
∗
1 + τ2),

ξ∗21(t) = 0 and we have

ϕ21 − p∗2(t)µ21 + p∗1(t)µ11 = ϕ21 −h2µ21(τ
∗
2 − t)+h2µ21(τ

∗
1 + τ2 − t)+h3µ31τ3 = 0,

because h2µ21(τ
∗
2 − τ ∗1 − τ2)−ϕ21 = h3µ31τ3, when τ2 > 0. Finally,

∇z31L(q
∗(t), z∗(t), p∗(t), η∗(t), γ∗(t), ξ∗(t), t) = ϕ31 − p∗3(t)µ31 + γ∗

1(t)− ξ∗31(t).

When t /∈ [τ ∗1 + τ2, τ
∗
1 + τ2 + τ3), this is zero because ξ∗31(t) = ϕ31 − p∗3(t)µ31 + γ∗

1(t). For t ∈ [τ ∗1 +

τ2, τ
∗
1 + τ2 + τ3), ξ

∗
31(t) = 0 and we have

ϕ31 − p∗3(t)µ31 + p∗1(t)µ11 = ϕ31 −h3µ31(τ
∗
3 − t)+h3µ31(τ

∗
1 + τ2 + τ3 − t) = 0,

because h3µ31(τ
∗
3 − τ ∗1 − τ2 − τ3) = ϕ31, when τ3 > 0.

It remains to verify (M). It is clear that z∗22(t) and z
∗
33(t) should always be maximal. The coef-

ficients of z∗11(t), z
∗
21(t) and z∗31(t) are respectively −p∗1(t)µ11, ϕ21 − p∗2(t)µ21 and ϕ31 − p∗3(t)µ31.
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From the earlier discussion on the non-negativity of ξ∗21(t) and ξ
∗
31(t), we have that p

∗
2(t)µ21−ϕ21 ≤

p∗1(t)µ11 for all t, and that p∗3(t)µ31 −ϕ31 ≤ p∗1(t)µ11 for all t. Thus, it is optimal for pool 1 to give

priority to class 1 at all times. For t ∈ [τ ∗1 , τ
∗
1 + τ2), p

∗
1(t)µ11 = p∗2(t)µ21 − ϕ21, and so it is optimal

for pool 1 to partially help class 2. For t ∈ [τ ∗1 + τ2, τ
∗
1 + τ2 + τ3), p

∗
1(t)µ11 = p∗3(t)µ31 − ϕ31, and so

it is optimal for pool 1 to partially help class 3. For t≥ τ ∗1 + τ2 + τ3, p
∗
1(t) = 0, which implies that

p∗i (t)µi1 −ϕi1 ≤ 0 for i= 2,3, and so it is optimal for pool 1 to not help classes 2 and 3. □


