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Consider a fractional Brownian Motion (fBM) BH = {BH(t) : t ∈ [0,1]} with Hurst index H ∈ (0,1). We

construct a probability space supporting both BH and a fully simulatable process B̂Hε such that

sup
t∈[0,1]

|BH(t)− B̂Hε (t)| ≤ ε

with probability one for any user specified error bound ε > 0. When H > 1/2, we further enhance our

error guarantee to the α-Hölder norm for any α ∈ (1/2,H). This enables us to extend our algorithm to

the simulation of fBM driven stochastic differential equations Y = {Y (t) : t∈ [0,1]}. Under mild regularity

conditions on the drift and diffusion coefficients of Y , we construct a probability space supporting both Y

and a fully simulatable process Ŷε such that

sup
t∈[0,1]

|Y (t)− Ŷε(t)| ≤ ε

with probability one. Our algorithms enjoy the tolerance-enforcement feature, under which the error bounds

can be updated sequentially in an efficient way. Thus, the algorithms can be readily combined with other

advanced simulation techniques to estimate the expectations of functionals of fBMs efficiently.
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1. Introduction The fractional Brownian motion (fBM) of Hurst parameter H ∈ (0,1),

{BH(t) : t≥ 0}, is a centered real-valued Gaussian process with covariance function

r(s, t) :=E[BH(s)BH(t)] =
1

2

(
s2H + t2H − |s− t|2H

)
. (1)

When H = 1/2, fBM is a Brownian motion (BM), which has independent increments. When

H < 1/2, the increments of fBM are negatively correlated. In contrast, when H > 1/2, fBM has

positively correlated increments and displays long-range dependence. Generally, fBM can be viewed

as an extension of BM. As it allows the increments to be correlated, it has been applied in

communications engineering (Norros, 1995), biology, and physics (Höfling and Franosch, 2013). See

also Laskin (2000) and Nualart (2006) for applications in finance and turbulence. However, due to
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the correlated increments (lack of Markovian structure), very few closed-form expressions are known

for performance measures related to functionals of fBMs. In this context, simulation-based numerical

method has been a powerful tool to conduct performance analysis for fBM driven processes.

In this paper, we develop a new class of algorithms to construct paths of fBM and fBM driven

stochastic differential equations (SDEs) with strong error guarantees. In particular, the algorithm

allows us to construct a probability space supporting both a fBM and a fully simulatable path B̂H
ε ,

such that

sup
0≤t≤1

|BH(t)− B̂H
ε (t)| ≤ ε w.p. 1.

Moreover, when H > 1/2, for any α∈ (1/2,H), we can further construct a fully simulatable path

B̂H
ε , such that

sup
0<s≤t≤1

∣∣BH(t)− B̂H
ε (t)− (BH(s)− B̂H

ε (s))
∣∣

|t− s|α
≤ ε w.p. 1.

For H > 1/2, the control of the α-Hölder norm allows us to use the rough path theory to construct

a probability space supporting both a fBM-driven SDE

dY (t) = µ(Y (t))dt+σ(Y (t))dBH(t),

and a sequence of fully simulatable path Ŷε, such that

sup
0≤t≤1

|Y (t)− Ŷε(t)| ≤ ε w.p. 1.

In terms of the computational complexity, our algorithm achieves the near optimal complexity.

Specifically, for fBM, to achieve an ε error bound, the expected computational cost is O(ε−1/(H−δ))

for any δ ∈ (0,H). When H > 1/2, for fBM driven SDEs, under suitable regularity conditions on the

drift and diffusion terms, to achieve an ε error bound, the expected computation cost is O(ε−1/(2α−1))

for any α∈ (1/2,H).

In addition to the strong error guarantee, the framework we developed also enjoys the tolerance-

enforcement feature. Specifically, for any sequence 0 < εn < εn−1 < · · · < ε1, we can adaptively

simulate BH
εn

conditional on BH
ε1
, . . . ,BH

εn−1
. This feature allows us to easily combine our procedure

with other advanced simulation/randomization techniques to remove estimation bias (see, for

example, Rhee and Glynn (2012); Beskos et al. (2012); Blanchet and Chen (2015)).

The simulation framework we developed in this paper contribute to recent development in ε-strong

simulation. Beskos et al. (2012) is among the first to introduce the concept ε-strong simulation.

There, the authors develop an ε-strong simulation algorithm for Brownian motion (BM). Later,

Blanchet and Chen (2015) and Blanchet et al. (2017) extend the framework to reflected Brownian
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motion and multidimensional stochastic differential equations respectively. Our paper is the first

work that develops ε-strong simulation algorithm to fBM and fBM driven SDEs. The extension

from processes related to BM to fBM is highly nontrivial, and involves the development of new

theoretical results and simulation techniques. To see where the fundamental differences are from,

note that fBMs with H 6= 1/2 no longer have independent increments.

In the process of developing the simulation algorithms, we establish several important properties

of fBM and fBM driven SDEs. Most noticeably, We provide bounds for the convergence rate

of midpoint displacement approximation of fBM. Although midpoint displacement and variants

of it (e.g., random midpoint displacement) has been applied to approximate fBM (Lau et al.,

1995; Norros et al., 1999), our paper is the first to rigorously study the convergence rate of this

approximation scheme. Our analysis builds on the decay rate of the conditional mean and covariance

of fBM, and can be applied to more general Gaussian processes beyond fBM. The convergence

results may be of independent interests. For example, it enables us to combine the midpoint

displacement approximation of fBM with Multilevel Monte Carlo (MLMC) for efficient estimation

of expectations (Giles, 2008). In MLMC, the key challenges lie in constructing a suitable coupling

for the differences in the telescoping sum and bounding the variance of the coupled differences. The

midpoint displacement construction provides a natural coupling and our convergence rate analysis

provides closed-form bounds for the corresponding variances.

In terms of the algorithmic development, our method builds on the idea of record-breakers. This

idea was first introduced in Blanchet and Sigman (2011) for exact sampling of stochastic perpetuities.

Later, similar ideas have been applied to exact simulation of queueing models in steady-state

(Blanchet and Dong, 2015; Blanchet and Chen, 2015), max-stable processes and related random

fields (Liu et al., 2019), etc. There are two key challenges in applying this idea. The first is to

define a proper sequence of record-breaking events, which relies on a good understanding of the

convergence rate for various approximations of the underlying processes. We overcome this challenge

by establishing strong convergence results for the midpoint displacement construction of fBM. The

second challenge is to find the last time the ‘record’ is broken. We overcome this challenge by

applying and extending ideas from rare-event simulation.

The rest of the paper is organized as follows. We conclude this section with a brief review of the

literature. We introduce the basic idea of our algorithmic development in Section 2. We conduct

convergence rate analysis of the midpoint displacement decomposition of fBM in Section 3. This

provides the theoretical basis for the construction of our algorithm. The results and proof techniques

can be of interests to the analysis of other Gaussian processes. The details of the actual simulation

algorithm for fBM are provided in Section 4. In Section 5, we extend the algorithm to SDEs driven

by fBM with Hurst index H > 1/2. Lastly, in Section 6 we conduct some numerical experiments as
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a sanity check and provide some comments about actual implementations of our algorithm. Several

detailed proofs are deferred until the Appendix. We also provide more details about applications of

our results to MLMC and unbiased estimation in the Appendix.

Throughout the paper, for v, which can be a vector, a matrix, or a tensor, and we use ‖v‖ to

denote the maximum of the absolute value of its entries. When v is a vector, we use (v)i to denote

its i-th component. By default, all the vectors are column vectors. We denote

‖u‖∞ := sup
0≤t≤1

‖u(t)‖ and ‖u‖α := sup
0≤s<t≤1

‖u(s)−u(t)‖
|s− t|α

as the supremum norm and α-Hölder norm of a generic function u on [0,1] respectively. Let C([0,1])

be the space of continuous functions over [0,1] equipped with uniform norm ‖ · ‖∞. We also write

Z+ as the set of positive integers and R as the set of real numbers. For two nonnegative functions f

and g defined on Z+, we define f(n) =O(g(n)) if there exists M > 0 such that |f(n)| ≤Mg(n). We

also define f(n) = Θ(g(n)) if there exists 0<L<M <∞ such that Lg(n)≤ f(n)≤Mg(n).

1.1. Literature review Our work is closely related to the line of research on simulation of

fBM. Existing methods can be divided into two categories, exact method and approximation method

(see Dieker (2004) for a detailed survey).

The exact methods aim to generate the fBM at a fixed finite set of time points from the exact

distribution. To carry out this task efficiently is highly nontrivial, due to the correlation structure

of fBM. Naive implementation using the Cholesky decomposition has a complexity of O(n3) for n

points in general. More efficient methods have been developed in the literature, mostly of them

utilizing the stationarity of the process (see, for example, Levinson (1946); Durbin (1960); Davies

and Harte (1987)). Among them, the circulant embedding method is able the reduce the complexity

to O(n logn) (Dietrich and Newsam, 1997; Wood and Chan, 1994). Our method aims to recover

the whole fBM path, but it builds on being able to generate the fBM at finite set of points exactly.

However, as our algorithm relies on sequentially updating the set of points (at finer and finer dyadic

levels), we can no longer utilize the stationarity structure.

The approximation methods aim to generate approximations of the fBM sample path. Some

approximation methods build on special representations of fBM, infinite series representations in

particular (see, for example, Abry and Sellan (1996); Dieker and Mandjes (2003); Ayache and

Taqqu (2003)). Our method also builds a suitable infinite series decomposition of the fBM based on

midpoint displacement. However, instead of applying a deterministic truncation level, our truncation

level is adapted to the sample path, which is random. Our work extends this line of literature by

achieving a stronger error guarantee. We also note that like a lot of the approximation methods

developed in the literature, our algorithm is for pre-specified fixed time horizons.
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2. Basic idea We start by introducing the basic idea of our algorithmic development. Recall

that fBM BH is a centered real-valued Gaussian process with the covariance function given in

(1). By Kolmogorov continuity theorem, fBM has a continuous modification. Moreover, for any

α∈ (0,H) and T > 0, this modification is α-Hölder continuous on [0, T ]. In this paper, we refer to

such a modification as the fBM, and focus on a finite time interval [0,1] with BH(0) = 0.

The algorithmic development consists of two steps. First, we identify an infinite series expansion

of fBM, i.e.,

BH(t) =
∞∑
k=0

Λk(t)Wk, (2)

where Λk’s are a sequence of basis functions, and Wk’s are the random coefficients. We then develop

an algorithm to truncate the infinite sum up to a finite but random level, K, so that the error

induced by the truncated terms is suitably controlled, e.g.

sup
0≤t≤1

∣∣∣∣ K∑
k=0

Λk(t)Wk−BH(t)

∣∣∣∣≤ ε w.p. 1.

Many infinite series expansions of fBM are developed in the literature: Some are based on wavelet

decomposition (multi-resolution framework) (see, for example, (Meyer et al., 1999)); Others are

based on Karhunen-Loéve type of expansion (spectral theory) (see, for example, Dzhaparidze and

Zanten (2004)). Our consideration here is twofold. First, the infinite series expansion needs to

converge fast in an almost sure sense under uniform norm or even the α-Hölder norm. Second, the

corresponding simulation algorithm can be implemented efficiently. To fulfill these two requirements,

we choose Lévy’s midpoint displacement technique, which corresponds to the wavelet decomposition

using the Haar wavelets. The challenge here is that when H 6= 1/2, the coefficients are correlated.

We shall provide more analysis about the random coefficient terms in Section 3.

The actual midpoint displacement construction goes as follows. Let Dn be the dyadic discretization

of order n and ∆n be the mesh of the discretization. Specifically,

Dn = {tn0 , tn1 , · · · , tn2n}, where tni = i/2n, i= 0,1, · · · ,2n, and ∆n = 1/2n.

We use BH
n = (BH(tn0 ), . . . ,BH(tn2n))> to denote the value of fBM at discretization level n. Given

a realization of BH
n , we can construct a continuous path BH

n over time interval [0,1] via linear

interpolation and we call BH
n a dyadic discretization of fBM at level n. We notice that BH

n (t) =

BH
n−1(t) for t∈Dn−1. At the augmented points Dn\Dn−1 = {tn2i+1}i=0,··· ,2n−1−1, we have

BH
n

(
tn2i+1

)
−BH

n−1

(
tn2i+1

)
=BH(tn2i+1)− 1

2

(
BH(tn−1

i ) +BH(tn−1
i+1 )

)
.

In Section 3, we show that the following infinite series representation is valid

BH(t) =
∞∑
k=0

[
BH
k (t)−BH

k−1(t)
]
, (3)
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i.e., BH
n converges to BH almost surely under the uniform norm (Theorem 2). Here, BH

−1(t) is a

constant function with value zero. Note that when we truncate the infinite series at level n, we

obtain BH
n . We also establish the rate of convergence for BH

n (Theorem 3 and Theorem 4). In

particular,

‖BH
n −BH‖∞ =O

(
2−(H−δ)n) a.s. for any δ ∈ (0,H).

Note that when the Wk’s in the series representation (2) are i.i.d. standard Gaussian random

variables, Kühn and Linde (2002) shows that

inf
{Λk}k≥1

{
E
[

sup
t∈[0,1]

∣∣ n∑
k=1

Λk(t)Wk−BH(t)
∣∣2]1/2

:BH(t) =
∞∑
k=1

Λk(t)Wk a.s.

}
= Θ(n−H(logn)1/2).

i.e., the optimal rate of convergence, under the L2 norm, is Θ(n−H(logn)1/2). The midpoint

displacement representation achieves almost the same rate of convergence as δ can be sent arbitrarily

small. (Note that the n-th dyadic level involves 2n time points.)

We next introduce the algorithmic development to truncate the infinite sum. Our goal here

is to control the error of the infinite truncated terms. To achieve this, we adopt the strategy of

“record-breakers”. The general idea is to define a sequence of events called record-breakers, which

satisfy the following two conditions

C1) The following event happens with probability one: beyond some random but finite level, there

will be no more record-breakers;

C2) By knowing that there are no more record-breakers, the contribution of the infinite remaining

terms are well under control.

Based on the convergence rate of BH
n , we say that a record is broken at level n if

‖BH
n −BH

n−1‖∞ ≥ ρ · 2−(H−δ)n.

Here δ ∈ (0,H) and ρ> 0 are hyper-parameters, which will be specified in Theorem 1 (Section 3).

We denote N as the level of the last record-breaker, i.e.,

N = sup
{
n≥ 1 : ‖BH

n −BH
n−1‖∞ ≥ ρ · 2−(H−δ)n} .

For C1), we show in Theorem 3 that N has a finite moment generating function. For C2), we notice

that for n≥N , we have ∥∥∥∥ ∞∑
k=n+1

[
BH
k −BH

k−1

]∥∥∥∥
∞
≤ ρ ·

∞∑
k=n+1

2−(H−δ)k.
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Thus, once we know the time of the last record-breaker N , to achieve a certain accuracy ε, we just

need to find

N(ε) = min

{
n : ρ ·

∞∑
k=n+1

2−(H−δ)k < ε

}
. (4)

Then ‖BH
N(ε)∨N −BH‖∞ < ε, where N(ε) ∨N denotes the maximum of N(ε) and N . The error

bound is achieved in a path-by-path sense. In addition, we show in Theorem 4 that conditional on

N , we also have an explicit upper bound for the α-Hölder norm of BH in a path-by-path sense.

This is important to develop the ε-strong simulation algorithm for fBM driven SDEs as outlined in

Section 5.

The remaining task is to find the level of the last record-breaker N . This is challenging as N

is not a stopping time under the filtration generated by the value of the fBM at different dyadic

levels. Our strategy is to find the record-breakers sequentially until we find the last one. Let τk to

denote the level of the k-th record-breaker, i.e.

τ0 = 0,

τk = inf
{
n≥ τk−1 + 1 : ‖BH

n −BH
n−1‖∞ >ρ · 2−(H−δ)n} , k≥ 1.

Then we have

N = sup{τk : τk <∞}.

Conditional on BH
τk

, τk <∞, we first use a change-of-measure to generate a candidate BH
τk+1

. We

then apply an acceptance-rejection step with a properly defined likelihood ratio. If the path is

accepted, we find τk+1 and BH
τk+1

; Otherwise, we claim that τk is the level of the last record-breaker,

i.e. N = τk. The details of the algorithmic developments are provided in Section 4.

3. Midpoint displacement of fBM In this section, we analyze the midpoint displacement

construction of fBM. This provides the theoretical foundation for our algorithmic development.

Specifically, we establish the validity of the infinite series expansion (3), and analyze its rate of

convergence under both the uniform norm and the α-Hölder norm.

Recall that at the augmented points Dk\Dk−1 = {tk2j+1}j=0,1,··· ,2k−1−1, we have

BH
k

(
tk2j+1

)
−BH

k−1

(
tk2j+1

)
=BH(tk2j+1)− 1

2

(
BH(tk−1

j ) +BH(tk−1
j+1 )

)
.

For notational convenience, we denote

akj :=BH(tk2j+1), bkj :=
1

2

(
BH(tk−1

j ) +BH(tk−1
j+1 )

)
. (5)
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Then since BH
k (t)−BH

k−1(t) is linear over intervals [tk2j, t
k
2j+1] and [tk2j+1, t

k
2j+2], we have

‖BH
k −BH

k−1‖∞ = max
0≤j≤2k−1−1

|akj − bkj |.

We first establish the convergence rate for {‖BH
k −BH

k−1‖∞}k∈Z+ , which lays the foundation of

subsequent results. We define

`k := 2−(H−δ)k, for any fixed δ ∈ (0,H).

For any constant ν > 0, we denote by

K(ν) = sup{n≥ 1 : 4
√
n> ν · 2δn}. (6)

Then we have the following theorem establishing bounds for ‖BH
k −BH

k−1‖∞.

Theorem 1. For any constant ν > 0 and ν∗ > 0, we have, for all k >K(ν),

P
(
‖BH

k −BH
k−1‖∞ ≥ ρ`k

)
= P
(

max
0≤j≤2k−1−1

|akj − bkj | ≥ ρ`k
)
≤ 2exp

{
−(ν∗)2 · 22kδ−2

}
,

where ρ= 2(ν+ ν∗).

Before we introduce the detailed proof of Theorem 1, we comment that δ and ρ are parameters

characterizing the record-breakers. We have some freedom in choosing these parameters, and there

is a tradeoff involved. For larger ρ, the record-breakers are less likely to happen and it is relatively

faster to find the last record-breaker. However, as a cost, we need to truncate at a higher level to

achieve the desired accuracy. We provide more discussion about the choice of these parameters in

practice in Section 6.

Proof of Theorem 1. Note that for fBM with Hurst index H 6= 1/2, akj − bkj is not a centered

Gaussian random variable conditioning on BH
k−1. In the following, we use

ckj =E
[
BH
(
tk2j+1

)∣∣BH
k−1

]
, j = 0,1, · · · ,2k−1− 1,

to denote the conditional expectation of fBM at the augmented points Dk\Dk−1 given BH
k−1. Then

we have

max
0≤j≤2k−1−1

|akj − bkj | ≤ max
0≤j≤2k−1−1

|akj − ckj |+ max
0≤j≤2k−1−1

|ckj − bkj |. (7)

The two terms in the right-hand side of inequality (7) correspond to the variance and bias. In what

follows, we will establish bounds for each of them.

It is easy to see that

P
(

max
0≤j≤2k−1−1

|akj − bkj | ≥ ρ`k
)
≤ P
(

max
0≤j≤2k−1−1

|akj − ckj |>ρ`k/2
)

︸ ︷︷ ︸
(V )

+P
(

max
0≤j≤2k−1−1

|ckj − bkj |>ρ`k/2
)

︸ ︷︷ ︸
(B)

.

(8)
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The rest of the proof is divided into two parts. We first establish a bound for (V), which

corresponds to the variance. We then establish a bound for (B), which corresponds to the bias. In

subsequent analysis, we need several auxiliary results which are summarized in Lemmas 1-3.

For (V), we have

P
(

max
0≤j≤2k−1−1

|akj − ckj |>ρ`k/2
)

=E
[
P
(

max
0≤j≤2k−1−1

|akj − ckj |>ρ`k/2 | BH
k−1

)]
. (9)

In the following, we use Pk−1(·) to denote P(·|BH
k−1), which is the conditional probability given the

values of BH
k−1. We also use Ek−1 and Vk−1 to denote corresponding conditional expectation and

variance. Then under the probability measure Pk−1(·), akj is a Gaussian random variable with mean

ckj and variance σ2
kj :=Vk−1(akj ). The following lemma upper bounds σ2

kj uniformly for all j’s.

Lemma 1. For all k≥ 1 and j = 0,1, · · · ,2k−1− 1, we have

Vk−1(akj ) = σ2
kj ≤ 2 · 2−2kH .

Using Lemma 1 and Borell-TIS inequality, for any u> 0, we obtain

Pk−1

(
max

0≤j≤2k−1−1
|akj − ckj | −Ek−1

[
max

0≤j≤2k−1−1
|akj − ckj |

]
>u

)
≤ exp

{
−u2 · 22kH−2

}
. (10)

In order to get rid of the expectation in inequality (10), we need the following lemma to upper

bound the expectation.

Lemma 2. Let X1,X2, · · · ,Xn be a sequence of (not necessarily independent) centered Gaussian

random variables whose variances are uniformly bounded by σ2. Then we have

E
[

max
1≤i≤n

|Xi|
]
≤ 2
√

2 log(2n) ·σ.

By applying Lemma 1 and 2, we obtain that for any ν > 0, there exists a K(ν) such that for all

k≥K(ν),

Ek−1

[
max

0≤j≤2k−1−1
|akj − ckj |

]
≤ 4
√
k · 2−kH ≤ ν`k. (11)

For any constant ν∗ > 0, by setting u= ν∗`k in inequality (10) and using inequality (11), we obtain

Pk−1

(
max

0≤j≤2k−1−1
|akj − ckj |> (ν+ ν∗)`k

)
≤ exp

{
−(ν∗)2 · 22kδ−2

}
.

Then based on (9), for the unconditional probability, we have

P
(

max
0≤j≤2k−1−1

|akj − ckj |> (ν+ ν∗)`k

)
≤ exp

{
−(ν∗)2 · 22kδ−2

}
. (12)

Now, we turn to (B). In contrast to the previous proof where we deal with the conditional

probability Pk−1(·) first, in this part, we consider the unconditional probability P(·) directly. In
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the following, to simplify notations, let bk = (bk0 , · · · , bk2k−1−1
)> and ck = (ck0 , · · · , ck2k−1−1

)>. Then by

definition, we have

bk =Mk−1B
H
k−1, where Mk−1 =

1/2 1/2 0 · · · 0
0 1/2 1/2 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1/2


2k−1×(2k−1+1)

.

Based on the conditional distribution of multivariate Gaussian random vector and the covariance

function of fBM, we have ck =Nk−1B
H
k−1, where

Nk−1 = Σ
(k−1)
12 · [Σ(k−1)

22 ]−1, (13)

and [·]−1 is the generalized inverse. Here, Σ
(k−1)
22 and Σ

(k−1)
12 take the forms

Σ
(k−1)
22 =


0 0 0 · · · · · ·
0 22H (22H + 42H − 22H)/2 · · · · · ·
0 (22H + 42H − 22H)/2 42H · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·


(2k−1+1)×(2k−1+1)

which is a (2k−1 + 1) by (2k−1 + 1) matrix with (i, j)-th entry (|2i−2|2H + |2j−2|2H −|2i−2j|2H)/2;

Σ
(k−1)
12 =


0 (12H + 22H − 12H)/2 (12H + 42H − 32H)/2 · · · · · ·
0 (32H + 22H − 12H)/2 (32H + 42H − 12H)/2 · · · · · ·
0 (52H + 22H − 32H)/2 (52H + 42H − 12H)/2 · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·


2k−1×(2k−1+1)

which is a 2k−1 by (2k−1 + 1) matrix with (i, j)-th entry (|2i− 1|2H + |2j− 2|2H − |2i− 2j+ 1|2H)/2.

We remark that we need to use the generalized inverse in (13), because BH
k−1 is degenerate, i.e., its

covariance matrix Σ
(k−1)
22 is not full rank as BH(0) = 0. However, utilizing the generalized inverse,

the conditional mean here is still well-defined (see Page 522 of Rao (1973)).

Then we have ck− bk = (Nk−1−Mk−1)BH
k−1 and its covariance matrix is given by

Σ(k) = (Nk−1−Mk−1)Σ
(k−1)
22 (Nk−1−Mk−1)> ·∆2H

k .

The following lemma bounds the diagonal entries of Σ(k), which correspond to the variances of

random variables ckj − bkj , j = 0,1, · · · ,2k−1− 1.

Lemma 3. The diagonal entries of Σ(k) are uniformly upper bounded by 2 · 2−2kH .

Then by Borell-TIS inequality, we have

P
(

max
0≤j≤2k−1−1

|ckj − bkj | −E
[

max
0≤j≤2k−1−1

|ckj − bkj |
]
> ν∗`k

)
≤ exp

{
−(ν∗)2 · 22kδ−2

}
.
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Similar to the proof for (V), we can get rid of the expectation and obtain that for all k >K(ν),

P
(

max
0≤j≤2k−1−1

|ckj − bkj |> (ν+ ν∗)`k

)
≤ exp

{
−(ν∗)2 · 22kδ−2

}
. (14)

Finally, combining (12) (for (V)) and (14) (for (B)), we obtain

P
(

max
0≤j≤2k−1−1

|akj − bkj | ≥ 2(ν+ ν∗)`k

)
≤ 2exp

{
−(ν∗)2 · 22kδ−2

}
,

which concludes the proof of Theorem 1. �

3.1. Validity of the expansion Based on Theorem 1, we can show that the midpoint

displacement approximation converges to the fBM almost surely. In particular, the next theorem

establishes the validity of (3).

Theorem 2. The sample paths of BH
n (t) converge to a fBM BH(t) in C([0,1]) almost surely.

In other words,

P
(

lim
n→∞

‖BH
n −BH‖∞ = 0

)
= 1.

Theorem 2 indicates that the representation

BH(t)−BH
n (t) =

∞∑
k=n+1

[
BH
k (t)−BH

k−1(t)
]

(15)

is well defined. We defer the proof of Theorem 2 and proofs of other results in this section to

Appendix A.

3.2. Convergence analysis in uniform norm and α-Hölder norm In this section, we

study the convergence rate of (3). We first investigate the rate of convergence in uniform norm,

which provides the basis for the ε-strong simulation of fBM. Then, for fBM with Hurst index

H > 1/2, we strengthen the convergence results to α-Hölder norm, which facilitates the development

of ε-strong simulation for fBM driven SDEs.

Based on our analysis in Section 3.1, we say that a record is broken at level k if

max
0≤j≤2k−1−1

|akj − bkj | ≥ ρ`k = ρ2−(H−δ)k, (16)

and the last record breaking time N = sup{k ≥ 1 : max0≤j≤2k−1−1 |akj − bkj | ≥ ρ`k}. The following

theorem shows that conditions C1) and C2) are satisfied for our definition of the record-breakers.

Theorem 3. For any fixed δ ∈ (0,H) and η > 0, E[exp{ηN}]<∞. When n>N ,

‖BH −BH
n ‖∞ ≤

ρ · 2−(H−δ)(n+1)

(1− 2−(H−δ))
.
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Note that Theorem 3 implies that the level of the last record-breaker N is finite almost surely.

For the α-Hölder norm, we only consider fBM with Hurst index H > 1/2. In this case, for any

α∈ (1/2,H), the sample paths of BH are α-Hölder continuous almost surely. By the representation

(15), we have the following upper bound for the α-Hölder norm of the discretization error

∥∥BH
n −BH

∥∥
α
≤

∞∑
k=n+1

∥∥BH
k −BH

k−1

∥∥
α
.

For each discretization level k, the following lemma provides a computable bound for ‖BH
k −BH

k−1‖α.

Lemma 4. For all k≥ 1, we have∥∥BH
k −BH

k−1

∥∥
α
≤ 2α(k−1)+2 · max

0≤j≤2k−1−1
|akj − bkj |.

The following theorem establishes convergence rate of (3) in the α-Hölder norm.

Theorem 4. Consider H > 1/2. For any fixed α∈ (1/2,H) and δ ∈ (0,H −α), when n>N

‖BH −BH
n ‖α ≤

ρ22−α · 2−(H−α−δ)(n+1)

1− 2−(H−α−δ) .

As a result of Theorem 4, once we find N , we also have an upper bound for the α-Hölder norm

of the fBM sample path. Specifically,

‖BH‖α ≤ ‖BH
N ‖α +

ρ22−α · 2−(H−α−δ)(N+1)

1− 2−(H−α−δ) .

4. Simulation Algorithm In this section, we introduce our ε-strong simulation algorithm

in details. As discussed in Section 2, our simulation algorithm includes two main steps. First, we

simulate the fBM up to level N , where N is the level of the last record-breaker. Notice that once

we find N , the truncation error at level n>N , is controlled by

ρ ·
∞∑

k=n+1

2−(H−δ)k =
ρ · 2−(H−δ)(n+1)

1− 2−(H−δ) .

Second, we find the truncation level N(ε) such that (1− 2−(H−δ))−1 · ρ · 2−(H−δ)(N(ε)+1) ≤ ε. In this

step, if N(ε) ≤N , we have already obtained an ε-strong approximated sample path of fBM by

simulating the path up to level N . Otherwise, we need to refine the path from level N to level N(ε).

We summarize our main simulation algorithm in Algorithm 1.

The details of the first step (finding the last record-breaker) is further outlined in Algorithm 2.

The second step (refining the dyadic approximation up to the desired truncation level) involves

simple acceptance-rejection method, and is already detailed in Algorithm 1. We note that sampling

the fBM at DN(ε) given its values at DN can be implemented straightforwardly by Cholesky
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Algorithm 1 ε-Strong Simulation of fBM (SFBM)

1: Input: Hurst index H, simulation accuracy ε, record-breaker parameters ρ, δ.

2: Find the last record-breaker:

3: Call Algorithm 2 (SLRB): set [N,SP]← SLRB(H,ρ, δ).

4: Find the truncation level: set N(ε)←max
{
N, dlog2(ρ · (ε(1− 2−(H−δ)))−1)/(H − δ)e

}
.

5: If N(ε)>N :

6: Simulate until the level N(ε) using acceptance-rejection method:

7: Repeat: sample fBM at DN(ε)\DN , under the nominal measure conditional on the

values of the fBM at DN .

8: Until: no record-breakers happen at levels N + 1, · · · ,N(ε).

9: Set SP ← Insert(valus of fBM at DN(ε)\DN , SP)

(We define “Insert” as inserting the values of fBM at the refined points to the original array. The output is an

array recording the value of the fBM at the refined dyadic level.)

10: Output: BH
N(ε), the piecewise linear interpolation of SP.

decomposition given the conditional mean and covariance matrix. However, this implementation has

a high computational cost. We will provide a more efficient recursive construction in Section 4.3.

In Algorithm 2, we find the record-breakers sequentially until the last one. Finding the next

record-breaker is a challenging task, as the next record-breaker may never happen. We overcome

the difficulty here by using techniques from rare-event simulation. Intuitively, breaking the record

at level n is a rare event for large values of n. Thus, we need to find a proper change-of-measure to

induce such an event. Then we can use acceptance-rejection method to decide whether to accept

the record-breaking path or to reject the path and claim that the record-breaker will never happen

again. More details of how to find the next record-breaker are summarized in Algorithm 3.

Algorithm 2 Simulation of the Last Record-Breaker (SLRB)

1: Input: Hurst index H, record-breaker parameters ρ, δ.

2: Determine the starting level:

3: Calculate N =N∗(ρ, δ). Sample BH
N and store it in array SP.

4: Set I← 1.

5: While I = 1:

6: Find the next record-breaker:

7: Call Algorithm 3 (SNRB): set [I,N,SP]←SNRB(N,SP,H,ρ, δ)

8: Output: [N,SP].
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Remark 1. In Algorithm 2, we need to start the dyadic approximation from a nontrivial

starting level N∗(ρ, δ), which is defined later in equation (25) for technical reasons. Specifically,

N∗(ρ, δ) is introduced to ensure that the likelihood ratio induced by the change-of-measure in

Algorithm 3 can be properly bounded. Note that N∗(ρ, δ) depends on our choice of (ρ, δ). We

provide more discussions about it in Section 6.

In Algorithm 3, we apply a change-of-measure technique to find the next record-breaker or claim

that the record will never be broken again. The basic idea is as follows. Assuming that we have

already simulated the fBM up to level n. We denote by τ > n the level of the next record-breaker.

Our goal is to find the next record-breaker or claim that τ =∞, which means that the record

will never be broken again. In order to determine whether τ <∞, we essentially want to generate

a Bernoulli random variable with success probability Pn(τ <∞) := P(τ <∞|BH
n ). However, the

exact value of Pn(τ <∞) is intractable. To overcome this difficulty, note that we can rewrite the

probability as

Pn(τ <∞) =
∞∑
m=1

Pn(τ = n+m) =
∞∑
m=1

Pn(τ = n+m)

gn(m)
· gn(m), (17)

where {gn(m)}m≥1 is a carefully designed distribution taking values in Z+ such that

Pn(τ = n+m)/gn(m)≤ 1, (18)

for all m≥ 1. {gn(m)}m≥1 can be interpreted as a potential realization of τ −n.

We now introduce our specific choice of {gn(m)}m≥1.

gn(m) =Z−1
n · 2n+m · exp

{
−ρ2/8 · 22(n+m)δ

}
, (19)

where Zn is the normalizing constant. If we first generate M from {gn(m)}m≥1 and then, given

M =m, generate a Bernoulli random variable with success probability Pn(τ = n+m)/gn(m), then,

it is easy to see from equation (17) that we obtain a Bernoulli random variable with success

probability Pn(τ <∞). Moreover, if the Bernoulli trial is a success, we also know that the next

record-breaker will happen at level m.

We next explain the strategy as how to generate a Bernoulli random variable with success

probability Pn(τ = n+m)/gn(m). We first note that as Pn(τ = n+m) is unknown, we can not

evaluate the success probability explicitly. However, by generating the fBM up to level n+m, we

can check whether τ = n+m. Thus, we can draw Bernoulli random variables with probability

of success Pn(τ = n + m). As we know gn(m) explicitly, if gn(m) is properly chosen, we can

potentially apply the Bernoulli factory to sample Bernoulli random variables with success probability

Pn(τ = n+m)/gn(m) (Huber, 2016). In our algorithmic development, we take a simpler route than
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the Bernoulli factory by applying the change-of-measure technique. The key idea is to construct a

new measure Q(m)
n such that

dPn
dQ(m)

n

1{τ = n+m} ≤ gn(m). (20)

In particular, we first sample the fBM up to level m, from Q(m)
n . Then, as

EQ(m)
n

[
dPn

dQ(m)
n

· 1{τ = n+m}
gn(m)

]
=

Pn(τ = n+m)

gn(m)
,

we can generate U , a uniform random variable over [0,1] independent of everything else, and check

whether

U <
dPn

dQ(m)
n

· 1{τ = n+m}
gn(m)

. (21)

In particular, it is easy to check that when the inequality (20) is satisfied, (21) holds with probability

Pn(τ = n+m)/gn(m). Moreover, if the inequality (21) holds, we accept the proposed trajectory as

one that leads to the next record-breaker, i.e., we get BH
τ ; Otherwise, we claim that τ =∞. Lastly,

we comment that for the bound (20) to hold, we need to make sure that when τ = n+m, dPn
is much smaller than dQ(m)

n , since by (19), gn(m) is very small for large values of n and m. This

implies that the new measure Q(m)
n needs to be properly constructed such that the record-breaking

event is more likely to happen under Q(m)
n . As record-breaking is rare under Pn, we apply exponential

tiling (a rare event simulation technique) to construct Q(m)
n .

The actual construction of the change-of-measure involves more subtleties. For example, we not

only need to consider the level of the next record-breaker, n+m, but also the actual time index,

and whether we break the record due to a large positive deviation or negative deviation. The details

of these subtleties are deferred to Section 4.1. It is also in general not easy to bound the probability

ratio (18) and likelihood ratio dPn/dQ(m)
n , even with carefully chosen gn(m) and Q(m)

n . We thus

introduce another technical step in the algorithm – the “bounded conditional expectation”condition

(BCE). Let

β= (1/2,−1,1/2)>, αn(m,k) = (BH(tn+m
2k−2),BH(tn+m

2k−1),BH(tn+m
2k ))>. (22)

and

µ̄n(m,k) =β>E[αn(m,k)|BH
n ]. (23)

Definition 1. (BCE condition) We say that BH
n satisfies the bounded conditional expectation

condition, if for all m≥ 1 and 1≤ k≤ 2n+m−1,

|µ̄n(m,k)|=
∣∣β>E[αn(m,k)|BH

n ]
∣∣≤ ρ/2 · `n+m,
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We will show in Section 4.1 that if the BCE condition is satisfied at level n, then the probability

ratio (18) is upper bounded by one, given that n is large enough such that Zn ≤ 1. Moreover, the

likelihood ratio in (20) is also properly bounded if we apply the change-of-measure from level n+ 1

onwards. In addition, this condition only gets violated a finite number of times almost surely. When

simulating the next record-breaker, we will first check if BH
n satisfies the BCE condition. If not,

we will keep generating more refined levels under the nominal measure until the BCE condition is

satisfied. Only then, we apply the change-of-measure to find the next record-breaker. The details of

how to check whether the BCE condition is met are laid out in Algorithm 5, which we defer to

Section 4.1 after we introduce a few more technical results.

Remark 2. We comment that the idea of introducing an intermediate condition, e.g., the

BCE condition in our case, can be of interests to the development of other rare-event simulation

algorithms. Note that the key in successful applications of the change-of-measure technique is that

the likelihood ratio function is suitably bounded. The intermediate condition we introduce satisfies

two important properties: 1) if this condition is satisfied, then the likelihood ratio is properly

bounded; 2) this condition is only violated a finite number of times. Similar intermediate conditions

that satisfy the two important properties can be used elsewhere.

4.1. Change of measure In this section, we provide details of our construction of the new

measure under which the record-breaker is more likely to happen. Recall that the setting is that we

have already generated BH
n and a proposed next record breaking level n+m, where m is sampled

from the distribution {gn(m)}m∈Z+ . Our goal is to find a way to generate a path such that the next

record-breaker is more likely to happen at level n+m. This will ensure that the likelihood ratio,

dPn/Q(m)
n , can be properly bounded.

Based on the definition of αn(m,k) and β in equation (22), we say that a record is broken at

level n+m, position k, if

|β>αn(m,k)|>ρ`n+m = ρ2−(H−δ)(n+m).

Furthermore, we say that the record-breaker is up-crossing if

β>αn(m,k)>ρ`n+m,

and downward-crossing if

β>αn(m,k)<−ρ`n+m.

Let

Ξ(m,k)
n (θ) =En[exp{θ ·β>αn(m,k)}] =E

[
exp{θ ·β>αn(m,k)}|BH

n

]
,
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Algorithm 3 Simulation of the Next Record-Breaker (SNRB)

1: Input: Current level n and values BH
n , Hurst index H, record-breaker parameters ρ, δ.

2: Initialize: Set AP, an array of values of fBM at augmented points, to be NULL, and J← 0.

3: Refine dyadic approximation until BCE condition is satisfied:

4: While J = 0:

5: Checking BCE condition:

6: Call Algorithm 5 (BCEC): set J←BCEC(H,ρ, δ,n,BH
n ).

7: If J = 1: break.

8: Refine dyadic approximation to next level:

9: Sample fBM at Dn+1\Dn, under the nominal measure conditional on BH
n , and

then store it in AP. Update n← n+ 1, BH
n ← Insert(AP,BH

n ).

10: If a record-breaker happens at level n: break.

11: If J = 1, apply change-of-measure:

12: Sample M from distribution {gn(m)}m≥1.

13: Call Algorithm 4 (ECM): set [I,AP]←ECM(H,ρ, δ,n,BH
n ,M).

14: Output:

15: If J = 0 : return [1, n,BH
n ],

16: Else if I = 1 : return [1, n+M, Insert(AP,BH
n )],

17: Else: return: [0, n,BH
n ].

which is the moment generating function of β>αn(m,k) conditional on the value of BH
n . We denote

the conditional probability density of αn(m,k) under measure Pn(·) by ψ(m,k)
n . We also denote

µn(m,k) =En[αn(m,k)] and Σαn(m,k) =En[(αn(m,k)−µn(m,k))(αn(m,k)−µn(m,k))>]

i.e., the conditional expectation and covariance of αn(m,k) respectively. Note that µ̄n(m,k) =

β>µn(m,k).

In what follows, we start by introducing the change-of-measure under the BCE condition. We

then show that the BCE condition can only be violated a finite number of times almost surely.

Under the BCE condition, we first sample K from the set {1,2, · · · ,2n+m−1} uniformly. The random

variable K proposes the position of the next record-breaker. We also sample Π from the set {+1,−1}

uniformly. The random variable Π proposes whether the record-breaker is up-crossing (+1) or

downward-crossing (−1). Second, given M =m,K = k, and Π = π, we apply exponential tilting to

ψ(m,k)
n with tilting parameter

θπn(m) = πρ/2 · 2(m+n)(H+δ). (24)
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We remark that the tilting parameter θπn(m) is chosen to make sure that the record-breaking event

is more likely to happen under the tilted measure and the likelihood ratio is properly bounded, i.e.,

the bound (20) holds (see Lemma 5 for more details).

Under the exponential tilting, we sample αn(m,k) from the density

ψ̃(m,k,π)
n (x1, x2, x3) =ψ(m,k)

n (x1, x2, x3) · exp

{
θπn(m) ·

(
1

2
(x1 +x3)−x2

)
− log

(
Ξ(m,k)
n (θπn(m))

)}
.

Note that the tilted distribution ψ̃(m,k,π)
n is still Gaussian. In particular, ψ̃(m,k,π)

n is the density of

the multivariate Gaussian with mean µn(m,k) + θπn(m) ·Σαn(m,k)β and variance Σαn(m,k).

After we have sampled αn(m,k) under the tilted measure, given the values of αn(m,k) and BH
n ,

we sample fBM at the remained dyadic points

Dn+m\(Dn ∪{tn+m
2k−2, t

n+m
2k−1, t

n+m
2k })

under the nominal measure. This step is achieved by calculating the conditional expectation and

covariance matrix, and then sampling from the corresponding multivariate Gaussian distribution.

We use Qn to denote the new measure induced by the above sampling scheme. Specifically, Qn

involves sampling M,K, and Π, using exponential tilting to sample αn(m,k), and sampling the

fBM at Dn+m\(Dn∪{tn+m
2k−2, t

n+m
2k−1, t

n+m
2k }) conditional on BH

n and αn(m,k) . We also denote Q(m,k,π)
n

as the conditional probability measure Qn(·|M =m,K = k,Π = π). Recall that we sample M from

the distribution {gn(m)}m≥1 and K,Π uniformly at random. Thus dQ(m,k,π)
n = dQn ·1{M =m,K =

k,Π = π}/(gn(m) · 2−(n+m)). Then the likelihood ratio between the measures Pn and Qn on the

event M =m,K = k and Π = π is

Θπ
n(m,k) := dPn/dQn · 1{M =m,K = k,Π = π}

= dPn/dQ(m,k,π)
n · gn(m)−1 · 2n+m

= gn(m)−1 · 2n+m · exp
{
−θπn(m) ·β>αn(m,k) + log

(
Ξ(m,k)
n (θπn(m))

)}
.

From the definition of gn(m) in (19), the normalizing constant Zn is given by

Zn =
∞∑
m=1

2n+m · exp{−ρ2/8 · 22(n+m)δ}.

We define

N∗(ρ, δ) = 1 + sup{n≥ 1 :Zn > 1}. (25)

Note that for all n≥N∗(ρ, δ), we have Zn ≤ 1. The next lemma shows that under the BCE condition,

Θπ
n(m,k) is suitably bounded. This result is important in constructing our change-of-measure

procedure.
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Lemma 5. For n≥N∗(ρ, δ), under the BCE condition, when M =m, K = k, and Π = π,

Θπ
n(m,k) · 1

{
π ·β>αn(m,k)>ρ`n+m

}
≤ 1.

The proof of Lemma 5 and subsequent lemmas in this section can be found in Appendix B.

We are now ready to present our actual algorithm. Let Cn(j) denotes the event that there are

record-breakers at level n+ j. We also write

Rn+m =
2n+m−1∑
k=1

1
{
|β>αn(m,k)|>ρ`n+m

}
, (26)

as the total number of record-breakers at level n+m. We generate a uniformly distributed random

variable U over interval [0,1], independent of everything else. Then, we return 1 if

U <Θπ
n(m,k) ·R−1

n+m · 1
{{
π ·β>αn(m,k)>ρ`n+m

}
∩∩m−1

j=1 [Cn(j)]c
}
,

and return 0 otherwise. We define 0/0 = 0 by convention. The details of this simulation procedure

are summarized in Algorithm 4.

It remains to show that the BCE condition is only violated a finite number of times and construct

an efficient way to check whether the BCE condition is satisfied at a specific level n. Let

En = {|µ̄n(m,k)|>ρ/2 · `n+m, for some m≥ 1 and 1≤ k≤ 2n+m−1},

where µ̄n(m,k) is the conditional expectation defined in (23). By Definition 1, En denotes the event

that the BCE condition is violated at level n. We also define

NE = sup{n≥ 1 : En happens},

i.e., it is the last level at which the BCE condition is violated.

Lemma 6. For any fixed δ ∈ (0,H) and η > 0, E[exp{ηNE}]<∞.

Lemma 6 implies that P(NE <∞) = 1, i.e., The BCE condition is violated a finite number times

almost surely. We also remark that like N , the time of the last record-breaker, NE is not a stopping

time. However, in our algorithm, we do not need to find NE . We only need to check whether the

BCE condition is violated at a particular level n.

We next introduce the algorithm to check whether the BCE condition is satisfied at level n

given the value of BH
n . The development of the algorithm is highly nontrivial. In particular,

directly checking by definition is impractical, as we needs to evaluate µ̄n(m,k) for m= 1,2, . . . ,

k = 1,2, . . . ,2n+m−1, i.e., infinitely many terms. To overcome this difficulty, we need to further

explore the structure of µ̄n(m,k). We use γn to denote the maximal absolute value of the entries

in vector Σ−1
n B

H
n , where Σn is the covariance matrix of BH

n . We have the following lemma which

establishes a bound for µ̄n(m,k).
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Algorithm 4 Exponential Change of Measure (ECM)

1: Input: Hurst index H, record-breaker parameters ρ, δ, current level n and values BH
n , level

difference m.

2: Initialize: set AP, the array of values of fBM at augmented points Dn+m\Dn, to be NULL.

3: Sample position of record-breaker: sample K = k uniformly from {1,2, · · · ,2n+m−1}.

4: Determine up-crossing or downward-crossing: sample Π = π uniformly from {+1,−1}.

5: Sample candidate path: sample αn(m,k) from the exponential tilted measure ψ̃(m,k,π)
n .

6: sample fBM at the remained points until the discretization level n+m.

7: Calculate likelihood ratio: calculate Θπ
n(m,k).

8: Calculate total number of record-breakers at level n+m: set

Rn+m←
2n+m−1∑
k=1

1
{
|β>αn(m,k)|>ρ`n+m

}
.

9: Sample from uniform distribution: generate U ∼U [0,1].

10: Determine the next record-breaker via acceptance-rejection: set

I← 1
{
U <Θπ

n(m,k) ·R−1
n+m · 1

{{
π ·β>αn(m,k)>ρ`n+m

}
∩
{
∩m−1
j=1 [Cn(j)]c

}}}
.

11: If I = 1: AP=values of fBM at augmented points Dn+m\Dn.

12: Output: I and AP.

Algorithm 5 BCE Checking (BCEC)

1: Input: Hurst index H, record-breaker parameters ρ, δ, current level n and values BH
n .

2: Initialize: set J← 1.

3: Determine maximal checking level:

4: Set γn←max1≤i≤2n+1 |(Σ−1
n B

H
n )i|.

5: Set Mn←max
{

1, d(H − δ)−1 · log2

(
(2n+1 + 2)γn/ρ

)
−ne

}
.

6: For 1≤m≤Mn:

7: For 1≤ k≤ 2n+m−1:

8: Calculate conditional expectation µ̄n(m,k).

9: If |µ̄n(m,k)| ≥ ρ/2 · 2−(n+m)(H−δ): set J← 0, break.

10: Output: Return J .
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Lemma 7. For all m≥ 1 and 1≤ k≤ 2n+m−1, we have

|µ̄n(m,k)| ≤ γn · (2n + 1) · 2−2(n+m)H .

According to Lemma 7, for a fixed level n and given value of BH
n , the decay rate of |µ̄n(m,k)|

(with respect to m) is O(2−2mH). However, to check the BCE condition, we only need to compare

|µ̄n(m,k)| with ρ/2 · 2−(n+m)(H−δ), whose decay rate (with respect to m) is O(2−m(H−δ)). Hence,

when

m≥Mn = max
{

1,
⌈
(H − δ)−1 · log2

(
(2n+1 + 2)γn/ρ

)
−n
⌉}
,

the following inequality

|µ̄n(m,k)| ≤ ρ/2 · 2−(n+m)(H−δ)

always holds. This implies that to check whether BCE condition holds at level n, we only need

to calculate a finite collection of µ̄n(m,k), i.e. m= 1, . . . ,Mn, k = 1,2, . . . ,2n+m−1. The details is

summarized in Algorithm 5, which outputs 1 when the BCE condition is satisfied and 0, otherwise.

4.2. Correctness of the algorithm In this section, we provide detailed proof to show that

our algorithm actually works. The proof is divided into two main steps (two theorems). We first show

that under the BCE condition, for the output of Algorithm 3, Qn(M =m,I = 1) = Pn(τ = n+m)

and Qn(I = 0) = Pn(τ =∞) (Theorem 5). We then show that when M =m and I = 1, the output

path of Algorithm 4, i.e., the fBM at the augmented points Dn+m\Dn, follows from the distribution

Pn(·|τ = n+m) (Theorem 6).

Theorem 5. For the output of Algorithm 3, when n≥N∗(ρ, δ) and the BCE condition holds,

I is a Bernoulli random variable with success probability Pn(τ <∞). Moreover,

Qn(M =m,I = 1) = Pn(τ = n+m).

Proof. By definition, we have

Qn(I = 1) =
∞∑
m=1

Qn(I = 1,M =m) =
∞∑
m=1

Qn(I = 1|M =m) · gn(m).

We next show that Qn(I = 1|M =m) = Pn(τ = n+m)/gn(m). Note that if X is a random variable

taking value in [0,1] and U is a uniformly distributed random variable on [0,1] independent of

X, then 1{U <X} is a Bernoulli random variable of success probability E[X]. Recall that in our
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algorithm, both Θπ
n(m,k) is bounded by one. Then by the definition of I and Lemma 5, we have

the following decomposition

Qn(I = 1|M =m)

=
∑
π=+,−

EQ(m)
n

[
1
{
{π ·β>αn(m,K)>ρ`n+m}∩ {∩m−1

j=1 [Cn(j)]c}
}
·Θπ

n(m,K) ·R−1
n+m

∣∣∣π] · 1
2

=
∑
π=+,−

2n+m−1∑
k=1

EQ(m,k,π)
n

[
1
{
{π ·β>αn(m,k)>ρ`n+m}∩ {∩m−1

j=1 [Cn(j)]c}
}
·Θπ

n(m,k) ·R−1
n+m

]
· 1

2n+m

By the definition of weighted likelihood ratio Θπ
n(m,k), we further have

Qn(I = 1|M =m)

=
∑
π=+,−

2n+m−1∑
k=1

EQ(m,k,π)
n

[
1
{
{π ·β>αn(m,k)>ρ`n+m}∩ {∩m−1

j=1 [Cn(j)]c}
}
·R−1

n+m ·
dPn

dQ(m,k,π)
n

· gn(m)−1

]
.

Note that as

1
{
|β>αn(m,k)|>ρ`n+m

}
= 1

{
β>αn(m,k)>ρ`n+m

}
+ 1
{
β>αn(m,k)<−ρ`n+m

}
,

we finally have

Qn(I = 1|M =m) =
2n+m−1∑
k=1

En
[
1
{
{|β>αn(m,k)|>ρ`n+m}∩∩m−1

j=1 [Cn(j)]c
}
·R−1

n+m

]
· gn(m)−1

=En
[
1
{
Cn(m)∩{∩m−1

j=1 [Cn(j)]c}
}]

= Pn(τ = n+m)/gn(m).

Above all, for any m≥ 1, we have Qn(I = 1,M =m) = Pn(τ = n+m). �

Based on Theorem 5, if we obtain an output I = 0 from Algorithm 3, we claim that the record-

breaker will not happen again after level n. Otherwise, i.e. if we obtain I = 1 and M =m from

Algorithm 3, we claim that the first next record-breaker happens at level n+m. In the later case,

Algorithm 4 also outputs a path leading to the next record-breaker. We next show that the output

of Algorithm 4 when I = 1 is a realization of the fBM conditional on the event that the next

record-breaker happens at level n+m.

Theorem 6. For the output of Algorithm 4, given M =m, I = 1, the distribution of the values

of fBM at the augmented points Dn+m\Dn, follows Pn(·|τ = n+m).

Proof. For notational convenience, we denote by δmn D=Dn+m\Dn the augmented points. We

also write δmn B
H = (BH(t) : t ∈ δmn D), i.e., the fBM at the augmented points δmn D. Let A be an

arbitrary measurable set, we next show that

Pn
(
δmn B

H ∈A|τ = n+m
)

=Qn

(
δmn B

H ∈A
∣∣ I = 1,M =m

)
.
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For Pn
(
δmn B

H ∈A|τ = n+m
)
, by the definition of conditional probability, we have

Pn
(
δmn B

H ∈A|τ = n+m
)

=
Pn
(
δmn B

H ∈A,τ = n+m
)

Pn(τ = n+m)
=

En
[
1{δmn BH ∈A} · 1{τ = n+m}

]
Pn(τ = n+m)

.

(27)

For Qn

(
δmn B

H ∈A
∣∣ I = 1,M =m

)
, since M is sampled from the distribution {gn(m)}m≥1, we have

Qn

(
δmn B

H ∈A
∣∣ I = 1,M =m

)
=

Qn

(
δmn B

H ∈A,I = 1
∣∣ M =m

)
gn(m)

Qn(I = 1,M =m)
(28)

We first note that by Theorem 5, Pn(τ = n+m) =Qn(U = 1,M =m), the denominator in (27) is

equal to the denominator in (28). We next show that the numerators are also equal.

For the numerator in (27), recall that Cn(j) denotes the event that there is a record-breaker at

level n+ j. Then, we have 1{τ = n+m}= Cn(m)∩
(
∩m−1
j=1 [Cn(j)]c

)
. We also have

Cn(m) =
(
∪2n+m−1

k=1 1{|β>αn(m,k)|>ρ`n+m}
)
.

Then

En
[
1
{
δmn B

H ∈A
}
· 1{τ = n+m}

]
=
∑
π=+,−

2n+m−1∑
k=1

En
[
1
{
δmn B

H ∈A
}
·R−1

n+m · 1
{
{π ·β>αn(m,k)>ρ`n+m}∩ {∩m−1

j=1 [Cn(j)]c}
}]

(29)

where Rn+m is defined in (26). For each term in the summation in (29),

En
[
1
{
δmn B

H ∈A
}
·R−1

n+m · 1
{
{π ·β>αn(m,k)>ρ`n+m}∩ {∩m−1

j=1 [Cn(j)]c}
}]

=EQ(m,k,π)
n

[
1
{
δmn B

H ∈A
}
· 1
{
{π ·β>αn(m,k)>ρ`n+m}∩ {∩m−1

j=1 [Cn(j)]c}
}
·R−1

n+m · dPn/dQ(m,k,π)
n

]
=EQ(m,k,π)

n

[
1
{
δmn B

H ∈A
}
· 1
{
{π ·β>αn(m,k)>ρ`n+m}∩ {∩m−1

j=1 [Cn(j)]c}
}
·R−1

n+m ·Θπ
n(m,k)

]gn(m)

2n+m
,

(30)

where the second equality follows from the definition of Θπ
n(m,k).

For the numerator in (28), we have

Qn

(
δmn B

H ∈A,I = 1
∣∣ M =m

)
gn(m) =EQn

[
1{I = 1} · 1{δmn BH ∈A}

∣∣ M =m
]
gn(m)

=
∑
π=+,−

2n+m−1∑
k=1

EQ(m,k,π)
n

[
1{I = 1} · 1{δmn BH ∈A}

]
· gn(m)

2n+m
.

(31)

For each term in the summation in (31), as

EQ(m,k,π)
n

[
1{I = 1} | BH

n+m

]
=EQ(m,k,π)

n

[
1
{
{π ·β>αn(m,k)>ρ`n+m}∩ {∩m−1

j=1 [Cn(j)]c}
}
·R−1

n+m ·Θπ
n(m,k)

∣∣∣ BH
n+m

]
,
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then we have

EQ(m,k,π)
n

[
1{I = 1} · 1{δmn BH ∈A}

]gn(m)

2n+m

=EQ(m,k,π)
n

[
1{δmn BH ∈A} · 1

{
{π ·β>αn(m,k)>ρ`n+m}∩ {∩m−1

j=1 [Cn(j)]c}
}
·R−1

n+m ·Θπ
n(m,k)

]gn(m)

2n+m
.

(32)

Comparing (30) with (32), we have shown that the numerator in (27) is equal to the numerator in

(28). �

Theorem 5, together with Theorem 6, justifies the correctness of our algorithm.

4.3. Computational complexity analysis In this section, we analyze the computational

complexity1 of our algorithm. The first key component in our algorithm is to find the last record-

breaker and the associated path of the fBM. Once we have found the last record-breaker, to achieve

an ε error bound, the complexity of the refinement step is bounded by O(N(ε)2N(ε)). Note that the

O(N(ε)2N(ε)) complexity is nontrivial. We provide more details about the actual construction that

allows us to achieve this complexity later in this section.

We use N̄ to denote the last dyadic level we need to generate in order to determine the level of

the last record-breaker. Note that in our algorithm, in order to apply the change-of-measure to

propose the next record breaking level, we need to refine the dyadic approximation until the BCE

condition is satisfied. Thus, N̄ can be larger than N . We denote by CN̄ the associated computational

complexity. The following theorem establishes that CN̄ has finite expectation.

Theorem 7. For the cost of finding the last record-breaker in Algorithm 2, CN̄ , we have

E[CN̄ ]<∞.

Proof. In our algorithm, the computational cost comes from two main procedures. The first is

refining the dyadic level at which the BCE condition is satisfied. The second is finding the next

record-breaker or claiming that there is no more record-breaker given that the BCE condition holds.

In what follows, for simplicity, we use C to denote a generic constant, which may differ from line to

line.

We first derive a bound for N̄ . Recall that N is the level of the last record-breaker. We also recall

that NE is the last level at which the BCE condition is violated. Note that we only need to check

whether the BCE condition is violated at a specific level n in Algorithm 3. Thus, if NE + 1≤N ,

the last level needed to find the last record-breaker is just N , i.e., N̄ =N . If NE + 1>N , we can

1 We refer to the computational complexity as the total number of uniform random variables we need to generate
and the number of basic calculations. For example, the Cholesky decomposition of an n×n convariance matrix has a
computational complexity of O(n3).
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stop the first time when BCE condition is satisfied after N , which is upper bounded by NE + 1.

Therefore,

N̄ ≤max{N,NE + 1}. (33)

Secondly, we analyze the complexity of checking the BCE condition. Based on Algorithm 5,

we need to calculate the conditional expectation until level n + Mn = O(n + log2(γn)), whose

computational complexity is upper bounded by C23nγ3
n. Note that the BCE condition need to be

checked at each refinement level. Thus the total complexity of checking the BCE condition is upper

bounded by

C

NE+1∑
j=1

23jγ3
j .

Thirdly, if the BCE condition is satisfied at level n, we shall apply the change-of-measure

to propose a record-breaking path, i.e., call Algorithm 4. The computational complexity of the

change-of-measure is upper bounded by

C
∞∑
m=1

gn(m) · 23(n+m) ≤CZ−1
n ·

∞∑
m=1

24(n+m) · exp
{
−ρ2/8 · 22(n+m)δ

}
≤C23n.

We apply the change-of-measure at most N̄ times and the last time we apply the change-of-measure

is at level N̄ . Thus, the total complexity of the applying the change-of-measure is upper bounded

by CN̄23N̄ .

Combining the second part and the third part together, we have

CN̄ ≤C
NE+1∑
j=1

23jγ3
j +CN̄23N̄ . (34)

As N and NE have finite moment generating functions, from (33), N̄ also has a finite moment

generating function. Then, E
[
N̄23N̄

]
<∞. We next show that the first term in (34) also has finite

expectation.

E

[NE+1∑
j=1

23jγ3
j

]
=E

[
∞∑
j=1

23jγ3
j · 1{j ≤NE + 1}

]

=
∞∑
j=1

23jE[γ3
j · 1{j ≤NE + 1}] by Fubini’s Theorem

≤
∞∑
j=1

23jE[γ6
j ]

1/2P(j ≤NE + 1)1/2 by Cauchy-Schwartz inequality.

Recall that γn is the maximal absolute value of the entries in the vector Σ−1
n B

H
n , which follows

multivariate normal distribution with mean 0 and covariance matrix Σ−1
n . Thus,

E[γ6
j ]≤C · 2j · 26Hj =C · 2(1+6H)j.
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Then, similar to the proof of Theorem 3, using the decay rate of P(NE ≥ j) proved in Lemma 6 , we

obtain
∞∑
j=1

23jE[γ6
j ]

1/2P(j ≤NE + 1)1/2 <∞

Hence, E[CN̄ ]<∞, i.e., our algorithm has finite expected computational complexity. �

In our algorithm, once we have generated the fBM up to level N̄ , we can claim that we find the

last record-breaker. To achieve the desired accuracy ε, if N(ε)> N̄ , we need to refine the dyadic

approximation until the truncation level N(ε), conditioning on the event that the record will not

be broken beyond N̄ . Note that N̄ does not depend on ε, and by Theorem 7, E[CN̄ ]<∞. On the

other hand, N(ε)→∞ as ε→ 0 (see (4)). Thus, N(ε)> N̄ eventually almost surely as ε→ 0. To

sample the fBM at the augmented time points DN(ε)\DN̄ conditional on BH
N̄

, we next introduce a

recursive construction that has complexity O(2N(ε) log(2N(ε))). We comment that if we use Cholesky

decomposition for this refinement step, the complexity is O(23N(ε)). The recursive construction we

employ here is based on the Gaussian bridge idea developed in Sottinen and Yazigi (2014). We

summarize the main idea in the following lemma.

Lemma 8. Let {Xt}t≥0 be a Gaussian process with covariance function r(s, t). Then the dis-

tribution of Xt conditional on that Xtk = yk, k= 1, · · · , n, is same as that of Xn
t , which is defined

recursively as

X0
t =Xt and Xk

t =Xk−1
t − rk−1(t, tk)

rk−1(tk, tk)
·
(
Xk−1
tk
− yk

)
, k= 1, · · · , n

where

r0(s, t) = r(s, t) and rk(s, t) = rk−1(s, t)− rk−1(s, tk) · rk−1(tk, t)

rk−1(tk, tk)
, k= 1, · · · , n

In our case, we first sample BH
N(ε) without taking the conditioning using Davies-Harte method

(Davies and Harte, 1987), which has complexity O(2N(ε) log(2N(ε))). Then, for each t∈DN(ε)\DN̄ , we

use the recursion in Lemma 8 to calculate the value of fBM. This has complexity O(23N̄) as we are

conditioning on 2N̄ points of the Gaussian process. Thus, the total complexity can be upper bounded

by C2N(ε) log(2N(ε)) +C23N̄2N(ε) From the definition of N(ε) in (4), we have 2N(ε) = Cε−1/(H−δ).

Thus, the expected complexity of the refinement step is upper bounded by

CE[2N(ε) log(2N(ε)) + 23N̄2N(ε)] =O(ε−1/(H−δ)).

Combining this with the complexity of finding the last record-breaker, the expected complexity of

our algorithm to achieve a strong error bound ε is upper bounded by

E[CN̄ ] +O(2N(ε) log(2N(ε))) =O(ε−1/(H−δ)) for any δ > 0.
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Lastly, we comment that Kühn and Linde (2002) shows among a fairly general class of approxima-

tions, the optimal complexity is Θ(n(ε)), where n(ε) is the solution of equation n−H
√

log(n) = ε. By

simple calculation, we can show that C1ε
−1/H ≤ n(ε)≤C2ε

−1/H · log(1/ε)1/(2H) for some constants

C1,C2 > 0. As δ can be made arbitrary small, our algorithm is near optimal.

5. ε-Strong simulation of stochastic differential equation driven by fBM In this

section, we extend the ε-strong simulation algorithm for fBM to stochastic differential equations

(SDEs) driven by fBM with H > 1/2 via rough path theory. Consider a d-dimensional SDE

dY (t) =µ(Y (t))dt+σ(Y (t))dBH(t), Y (0) = y(0), (35)

where BH is a d′-dimensional fBM (each component is an independent standard one-dimensional

fBM), µ(·) : Rd→ Rd and σ(·) : Rd→ Rd×d′ are vector fields corresponding to the drift and the

volatility, respectively. For any fixed ε > 0, our goal is to construct a probability space, supporting

both Y and a fully simulatable path Ŷε such that

sup
t∈[0,1]

‖Y (t)− Ŷε(t)‖ ≤ ε, a.s.

The construction of Ŷε(t) builds on our ability to estimate the driving fBM and its corresponding

α-Hölder norm. In particular, for any 1/2<α<H, the sample path of fBM is α-Hölder continuous

almost surely. In this case, by the rough path theory, the solution of SDE (35) can be defined path

by path, and the mapping from BH to Y is continuous under the α-Hölder norm (Lyons, 1998).

Therefore, if we can control the error of the simulated driving signals, by continuous mapping type

of argument, we can also control the error of the simulated SDEs.

In what follows, we lay out the main idea of our algorithmic development. The theoretical

foundation is provide in Section 5.1.

The construction of the approximated solution is based on simple Euler scheme. For dyadic

discretization Dn, we define Yn(tnk) via the recursion

Yn(tn0 ) = 0,

Yn(tnk+1) =Y (n)(tnk) +µ
(
Yn(tnk)

)
·∆n +σ

(
Yn(tnk)

)
· (BH(tnk+1)−BH(tnk)), k= 0,1, . . . ,2n.

We then construct the whole path Yn(t) via piecewise-constant interpolation,

Yn(t) =Yn(tnk), t∈ [tnk , t
n
k+1).

The challenge here is to choose an appropriate discretization level NY (ε), such that

‖YNY (ε)−Y ‖∞ ≤ ε a.s.
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In Theorem 9 below, we establish that

‖Yn−Y ‖∞ ≤G ·∆2α−1
n , (36)

where G can be characterized explicitly and is an increasing function with respect to the α-Hölder

norm of BH . Therefore, we shall first use the ε-strong simulation algorithm we developed in Section

4 to find an upper bound for ||BH ||α. We can then upper bound G by Ḡ, and set

NY (ε) = dlog2(ε−1Ḡ/(2α− 1))e.

The actual algorithm is summarized in Algorithm 6. Note that to achieve the accuracy of ε, the

expected computational complexity of Algorithm 6 is O(ε−1/(2α−1)).

We next provide two remarks about some extensions of our algorithm.

Remark 3. For the efficiency of the algorithm, if we use the Euler scheme, then ‖Yn−Y ‖∞ ≤
G ·∆2α−1

n is near the optimal rate of convergence. If we use higher order approximation, we can

achieve better convergence rate. For example, if we use the Milstein scheme, then we expect

‖Yn−Y ‖∞ ≤C ·∆3α−1
n for some C > 0 (Davie, 2008). However, implementing these higher order

schemes requires us to compute/estimate the iterated integrals of fBM, which is still largely an

open problem.

Remark 4. For H < 1/2, to define the SDE in a path-by-path sense and to apply continuous

mapping argument, higher order iterated integrals of fBM need to be specified (Davie, 2008). In

particular, we need to lift the fBM up to a rough path. Coutin and Qian (2002) construct a geometric

rough path associated with fBM with Hurst index H > 1/4, and develop a Skohorod integral

representation of the geometric rough path. More recently, Nualart and Tindel (2011) develop a

construction of the rough path above fBM using Volterra’s representation for any H ∈ (0,1). The

key challenge remains as how to estimate the iterated integrals of fBM efficiently.

5.1. Rate of convergence of Euler scheme In this section, we present the details of the

rate of convergence of Euler scheme for fBM driven SDEs. This result is an extension of Lejay

(2010). In particular, we explicitly characterize the constant term in front of ∆2α−1
n for the Euler

scheme at dyadic level n. This is important for our algorithmic development, as we need to know G

in (36) to find the required discretization level NY (ε).

We first introduce a few notations to simplify the exposition. Consider the following multidimen-

sional controlled differential equation system y driven by vector-valued signal x
dy1(t)
dy2(t)

...
dyd(t)

=


f11(y(t)) f12(y(t)) · · · f1h(y(t))
f21(y(t)) f22(y(t)) · · · f2h(y(t))

...
...

...
fd1(y(t)) fd2(y(t)) · · · fdh(y(t))

 ·


dx1(t)
dx2(t)

...
dxh(t)

 ,

y1(0)
y2(0)

...
yd(0)

=


y1

0

y2
0
...
yd0

 , (37)
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Algorithm 6 ε-Strong Simulation of SDE Driven by fBM (SSDE)

1: Input: Accuracy ε, vector fields µ,σ, order of Hölder norm α, Hurst index H, record-breaker

parameters ρ, δ.

2: Estimate α-Hölder norm :

3: For i in [d′]:

4: Call SLRB (Algorithm 2): set [B̂i,N i]← SLRB(H,ν, ρ, δ).

5: Calculate the upper bound for the α-Hölder norm:

Ĉi
α←‖B̂i‖α +

ρ22−α · 2−(H−α−δ)(Ni+1)

1− 2−(H−α−δ) .

6: Set Ĉα = maxi∈[d′] Ĉ
i
α .

7: Determine the truncation level:

8: Calculate Ḡ using Ĉα, then set NY (ε)←dlog2(ε−1Ḡ/(2α− 1))e.

9: Refine the approximation of fBM:

10: For i in [d′]:

11: If N i < NY (ε): refine dyadic approximation B̂i until level NY (ε) via acceptance-

rejection.

12: Solve the SDE by Euler scheme:

13: YNY (ε)(t
NY (ε)
0 )← 0

14: For k in [2NY ]:

15:

YNY (ε)(t
NY (ε)
k+1 )←YNY (ε)(t

NY (ε)
k ) +µ

(
YNY (ε)(t

NY (ε)
k )

)
∆NY (ε)

+σ
(
YNY (ε)(t

NY (ε)
k )

)
(B̂H(t

NY (ε)
k+1 )− B̂H(t

NY (ε)
k )).

16: Output: Return YNY (ε)(t), the piecewise constant interpolation of {YNY (ε)(t
NY (ε)
k )}

k=0,··· ,2NY (ε) .

where y(t) = [y1(t), · · · , yd(t)]> and x(t) = [x1(t), · · · , xh(t)]>. It is easy to see that SDE (35) can

be written in form of (37). We only need to set

f(·) = [µ(·), σ(·)] and dx(t) =

[
dt

dBH(t)

]
,

and then dimension h= d′+ 1. From now on, all of our derivation will be based on the notations

in (37). In the following of this section, we use f to denote the matrix [fij]d×h. Furthermore, we

assume that x is α-Hölder continuous with 1/2<α≤ 1, which is to say, ‖x(t)−x(s)‖ ≤Cα|t− s|α
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for some Cα ∈ (0,∞). In what follows, we use Cα to denote a computable upper bound for the

α-Hölder norm of x.

The solution to equation (37) is formally defined in terms of the Young integral. Formally, we

have the following definition.

Definition 2. We say that y is a solution of equation (37) if for all t∈ [0,1],

y(t) = y0 +

∫ t

0

f
(
y(s)

)
dx(s),

where the integration is interpreted as Young integral.

In what follows, we first provide a brief introduction to Young integral. Then, we quantify the error

of the Euler scheme.

Young integral is an extension of Riemann-Stieltjes integral for paths with finite p-variation for

1≥ p < 2, but potentially infinite total variation. We say a continuous path u∈Rh defined on [0,1]

has finite p-variation if

sup
Π

∑
ti∈Π

‖u(ti+1)−u(ti)‖p <∞,

where Π = {ti}i≥0 is a set of finite partitions of [0,1].

Definition 3. (Young integral) Let u and v be continuous paths on [0,1] with finite p-variation

and q-variation respectively, such that 1/p+ 1/q > 1. Then the limit of Riemann sum as the mesh

of the partition |Π| goes to zero

lim
|Π|→0

∑
ti∈Π

v(ti) · (u(ti+1)−u(ti)),

exists and is unique. We use
∫ 1

0
v(s)du(s), to denote this limit and call it the Young integral of v

with respect to u.

A special case of finite p-variation path is α-Hölder continuous path. In particular, if u is α-Hölder

continuous, i.e. ‖u(s)−u(t)‖ ≤ ‖u‖α · |s− t|α for some ‖u‖α ∈ (0,∞), then u has finite p-variation

with p= 1/α. In this case, we have the following Young-Lóeve estimate (Lejay (2010)).

Theorem 8. (Young-Lóeve estimate.) Assume that the integrator u and the integrand v are

Hölder continuous of exponents α and β with α+β > 1, respectively. Then for any s, t∈ [0,1],∥∥∥∫ t

s

v(r)du(r)−v(s)(u(t)−u(s))
∥∥∥≤K(α+β) · ‖u‖α · ‖v‖β · |t− s|α+β,

where K(α+β) = (1 +
∑

n≥1 n
−(α+β)) ·h. Moreover, for any finite partition Πs,t of [s, t],∥∥∥ ∑

ti∈Πs,t

v(ti)(u(ti+1)−u(ti))−v(s)(u(t)−u(s))
∥∥∥≤K(α+β) · ‖u‖α · ‖v‖β · |t− s|α+β,
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For dyadic discretization points Dn = {tnk}k=0,··· ,2n , we define

yn(tnk+1) = yn(tnk) +f
(
yn(tnk)

)
· (x(tnk+1)−x(tnk)), k= 0,1, · · · ,2n− 1. (38)

Based on the values {yn(tnk)}k=0,··· ,2n , we further construct a path over [0,1] via piecewise constant

interpolation, i.e.

yn(t) = yn(tnk), t∈ [tnk , t
n
k+1). (39)

We call yn an approximated solution of level n via Euler scheme. Our goal is to control the uniform

norm between the approximated solution yn and exact solution y.

To ensure the existence of solution of controlled differential equation (37) and control the

approximation error, we impose the following smoothness condition on the vector field f . We

define ∇f as a d×h× d tensor with the (i, j, k) element ∇fijk = ∂fij/∂yk. We also define ∇2f as

a d×h× d× d tensor with the (i, j, k, l) element ∂2fij/∂yk∂yl. With a little abuse of notation, we

denote

‖f‖= sup
y∈Rd

max
ij
|fij(y)|, ‖∇f‖= sup

y∈Rd
max
ijk

∣∣∣∣∂fij(y)

∂yk

∣∣∣∣ , and ‖∇2f‖= sup
y∈Rd

max
ijkl

∣∣∣∣∂2fij(y)

∂yk∂yl

∣∣∣∣ .

Assumption 1. We assume that f(·) is twice continuously differentiable, and

max{‖f‖,‖∇f‖,‖∇2f‖}<∞.

We also define the following constants. Recall that Cα is a computable upper bound for the

α-Hölder norm of x and the function K(·) is defined in Theorem 8. Let

G∗1 = 2h · d(2dhCαK(2α)‖∇f‖)1/αe1−α · ‖f‖ ·Cα, G∗2 = dh ·K(2α) · ‖∇f‖ ·Cα ·G∗1,

L= 4/(1− 21−2α) · (hCα)2‖∇f‖ · ‖f‖, ω= (h‖f‖Cα/L)1/α, (40)

G1 =
(
L+h‖f‖Cα

)
· (1 +ω−1), G2 = max

{
(2ω−α +ω−1−α) ·

(
L+h‖f‖Cα

)
,L
}
.

In addition, we define a sequence of constants {Γk}k≥1 and {Υk}k≥1 via recursion

Γ1 = 2G∗2, Υ1 = (4ζ)−1 ·Γ1,

Γk = 2(G∗2 + υ ·Υk−1), Υk = (4ζ)−1 ·Γk + Υk−1, k≥ 2, (41)

where

ζ = h ·K(2α) ·Cα ·
(
d · ‖∇f‖+ d2 · ‖∇2f‖ · (G∗1 +G1)

)
,

υ=Cα ·
(
d2h ·K(2α) · ‖∇2f‖ · (G∗1 +G1) + d · ‖∇f‖

)
.
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(a) (b)

Figure 1. Two realizations of the ε-strong simulation of fBM where the parameters are H = 0.8, ε= 0.1, ρ=

5, δ= 0.1.

Under Assumption 1, the general theory of Young integral equation ensures the existence and

uniqueness for the solution of equation (37). The following theorem characterizes the rate of

convergence of the Euler scheme under the uniform norm and it provides the theoretical foundation

for Algorithm 6. Its proof can be found in Appendix C.

Theorem 9. Under Assumption 1,

‖yn−y‖∞ ≤G ·∆2α−1
n :=

(
Υd(4ζ)1/αe+G∗1

)
·∆2α−1

n .

Remark 5. By the definition of G, it is easy to see that G is an increasing function with respect

to Cα.

6. Numerical experiments In this section, we conduct some numerical experiments as a

sanity check of the correctness of our algorithm. We also provide some discussions about how to

choose the hyper-parameters ρ and δ in actual implementations.

Figure 1 displays two realizations of a fBM with H = 0.8 using Algorithm 1 with ε= 0.1.

We next study the effect of different values of ρ and δ. Recall that the record-breaking threshold

takes the form ρ∆H−δ
n for level n. δ determines the asymptotic decay rate of the bound and ρ

determines the scale of the bound. Thus, we would want both to be as small as possible when

only considering truncation level, N(ε). Now, when also taking into account the time of the last

record-breaker, N , we notice that larger values of ρ and δ result in larger thresholds, under which,

the records are less likely to be broken. These in turn lead to a smaller value of N . We also note that

larger values of ρ and δ lead to smaller stating level N∗(ρ, δ) in Algorithm 2. In the asymptotic sense,

as N and N∗(ρ, δ) do not depends on ε, the values of N and N∗(ρ, δ) do not affect the asymptotic

behavior of our algorithms. This indicates that in theory, we should set ρ and δ as small as possible.

However, in practice, we do care about the “cost” of sampling N . Thus, in actual implementations,

we will tune ρ and δ to balance N∗(ρ, δ) and N(ε). Table 1 and 2 show the truncation level, the
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starting level, and the average level of the last record-breaker, (N(ε), N∗(ρ, δ), E[N ]), for different

choices of ρ and δ. Table 1 is for fBM with H = 0.8 and Table 2 is for fBM with H = 0.45. We make

two observations from the tables. First, the level of the last record-breaker, N , is quite sensitive to

our choice of ρ. For reasonably large values of ρ, e.g. ρ≥ 2.5, the record breaker rarely happens

beyond level n= 1. On the other hand, as we have discussed above, smaller values of ρ lead to

smaller values of truncation level N(ε). Second, the starting level N∗(ρ, δ) can be unreasonably

large if ρ and δ are not properly chosen. To sum up, as record-breaking is a rare event 2, the benefits

of shrinking the truncation level by choosing small ρ and δ is very appealing. However, in practice,

small values of ρ and δ may lead to a large value of N∗(ρ, δ).

δ
ρ

1 2.5 5

0.1 (7,38,14) (9,21,1) (11,1,1)
0.2 (9,16,6) (11,6,1) (12,1,1)

Table 1. (N(ε), N∗(ρ, δ), E[N ]) under different choices of ρ and δ when H = 0.8, ε= 0.1.

δ
ρ

1 2.5 5

0.1 (16,38,15+) (20,21,1) (23,1,1)
0.2 (24,16,8) (30,6,1) (31,1,1)

Table 2. (N(ε), N∗(ρ, δ), E[N ]) under different choices of ρ and δ when H = 0.45, ε= 0.1. (15+ means even

at level 15 we still see record-breaker happening.)
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Appendix A: Detailed Proofs for Theorems and Lemmas in Section 3

A.1. Proof of of the auxiliary lemmas for the proof of Theorem 1

A.1.1. Proof of Lemma 1 According to the definitions of akj , c
k
j and BH

k , we have

Vk−1(akj − ckj ) =V
(
BH(tk2j+1)|BH

k−1

)
=V

(
BH(tk2j+1)|BH(tk−1

0 ),BH(tk−1
1 ), · · · ,BH(tk−1

2k−1)
)

≤V
(
BH(tk2j+1)|BH(tk−1

j )
)
.

where the inequality follows from the fact that for random variables X,Y and Z, we have

E[V(X|Y,Z)]≤ E[V(X|Y )] and when the joint distribution of (X,Y,Z) is multivariate Gaussian,

the conditional variance V(X|Y,Z) and V(X|Y ) are both constants.

The upper bound of conditional variance V(BH(tk2j+1)|BH(tk−1
j )) is based on the orthogonal

bridge decomposition of Gaussian bridge (Sottinen and Yazigi (2014)), which is summarized in

Lemma 8. Specifically, let r(·, ·) denote the covariance function of BH , then the distribution of

BH(t) conditional on BH(tk−1
j ) = y∗ is same with that of

BH

tk−1
j ,y∗

(t) =BH(t)−
r(t, tk−1

j )

r(tk−1
j , tk−1

j )
· (BH(tk−1

j )− y∗).

By simple calculation, the covariance function of BH

tk−1
j ,y∗

(t) is given by

r
tk−1
j ,y∗(s, t) = r(s, t)−

r(t, tk−1
j ) · r(tk−1

j , s)

r(tk−1
j , tk−1

j )
.

Recall that ∆k = tk2j+1− tk−1
j = 2−k, then we have

V
(
BH(tk2j+1)|BH(tk−1

j )
)

= r
tk−1
j ,y∗

(
tk2j+1, t

k
2j+1

)
= |tk−1

j + ∆k|2H − 1/4 ·
(
|tk−1
j + ∆k|2H + |tk−1

j |2H − |∆k|2H
)2 · |tk−1

j |−2H .

In the next, we show that V(BH(tk2j+1)|BH(tk−1
j )) is no greater than 2 ·∆2H

k , which is equivalent to

|2j+ 1|2H − 1/4 ·
(
|2j+ 1|2H + |2j|2H − 1

)2 · |2j|−2H ≤ 2,

for arbitrary positive integers j. By calculation, the left-hand side of above inequality becomes

1

4
·
[
2 · |2j+ 1|2H −

( |2j+ 1|4H

|2j|2H
+ |2j|2H

)]
− 1

4
· |2j|−2H +

1

2
·
( |2j+ 1|2H

|2j|2H
+ 1
)
.

Obviously, this quantity is no greater than 2. Thus, above all, we obtain

Vk−1(akj − ckj )≤V
(
BH(tk2j+1)|BH(tk−1

j )
)
≤ 2 ·∆2H

k = 2 · 2−2kH ,

which concludes the proof.
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A.1.2. Proof of Lemma 2 Let Y = max1≤i≤n |Xi|. For any η > 0, by Jensen’s inequality, we

have

exp
{
ηE[Y ]

}
≤E

[
exp{ηY }

]
=E

[
max
1≤i≤n

exp{η|Xi|}
]
≤

n∑
i=1

E
[
exp{η|Xi|}

]
≤

n∑
i=1

E
[
exp{ηXi}

]
+E

[
exp{−ηXi}

]
≤ 2n · exp{η2σ2/2}.

Hence, we obtain E[Y ]≤ log(2n)/η+ ησ2/2 and the result follows by setting η=
√

2 log(2n)/σ.

A.1.3. Proof of Lemma 3 In the following, we denote by

Σ
(k−1)
11 =


12H (12H + 32H − 22H)/2 (12H + 52H − 42H)/2 · · · · · ·

(32H + 12H − 22H)/2 32H (32H + 52H − 22H)/2 · · · · · ·
(52H + 12H − 42H)/2 (52H + 32H − 22H)/2 52H · · · · · ·

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·


2k−1×2k−1

,

which is a 2k−1 by 2k−1 matrix with (i, j)-th entry (|2i− 1|2H + |2j− 1|2H − |2i− 2j|2H)/2. Recall

the definition of Nk−1 and Mk−1, we have

(Nk−1−Mk−1)Σ
(k−1)
22 (Nk−1−Mk−1)>

=Mk−1Σ
(k−1)
22 M>

k−1−Mk−1[Σ
(k−1)
12 ]>−Σ

(k−1)
12 M>

k−1 + Σ
(k−1)
12 · [Σ(k−1)

22 ]−1[Σ
(k−1)
12 ]>

=
(
Mk−1Σ

(k−1)
22 M>

k−1−Mk−1[Σ
(k−1)
12 ]>−Σ

(k−1)
12 M>

k−1 + Σ
(k−1)
11

)
−
(
Σ

(k−1)
11 −Σ

(k−1)
12 · [Σ(k−1)

22 ]−1[Σ
(k−1)
12 ]>

)
. (42)

Note that (Σ
(k−1)
11 −Σ

(k−1)
12 · [Σ(k−1)

22 ]−1[Σ
(k−1)
12 ]>) ·∆2H

k is the conditional covariance matrix

Cov
[(
BH(tk1),BH(tk3), · · · ,BH(tk2k−1)

)∣∣BH
k−1

]
.

Hence, the diagonal entries in second part in (42) are nonnegative. In the next, we compute

the diagonal entries of the first part in (42). We use ξi,j and ηi,j to denote the (i, j)-th entry of

Σ
(k−1)
22 and Σ

(k−1)
12 , respectively. After some calculation, we obtain that the j-th diagonal entries of

Mk−1Σ
(k−1)
22 M>

k−1 and Mk−1[Σ
(k−1)
12 ]> are[

Mk−1Σ
(k−1)
22 M>

k−1

]
j,j

= 1/4 · (ξj,j + ξj,j+1 + ξj+1,j + ξj+1,j+1),[
Mk−1[Σ

(k−1)
12 ]>

]
j,j

= 1/2 · (ηj,j + ηj+1,j).

By plugging in expression of ξi,j, ηi,j and Σ
(k−1)
11 , we obtain that the j-th diagonal entry of the first

part in (42) is 1− 22H−2, which is a constant. As a result, the j-th diagonal entry of Σ(k) is upper

bounded by

[Σ(k)]j,j ≤ (1− 22H−2) ·∆2H
k < 2 · 2−2kH .
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A.2. Proof of Theorem 2 We first prove that the sequence {BH
n }n≥1 is a Cauchy sequence

in C([0,1]) almost surely. Then its limiting process exists almost surely due to the completeness

of C([0,1]). Second, we show that the limiting process is a Gaussian process and has the same

covariance structure as the fBM. As a result, the almost surely limit of BH
n is fBM.

Since the tail bound 2 exp{−ν∗2 ·22kδ−2} established in Theorem 1 is summable, by Borel-Cantelli

Lemma, we have

P
(

max
0≤j≤2k−1−1

|akj − bkj | ≥ ρ`k, i.o.
)

= 0.

Hence, there exists a random variable N , which is finite almost surely, such that for all k ≥N ,

max0≤j≤2k−1−1 |akj − bkj | ≤ ρ`k. Then for arbitrary ε > 0, when n,m large enough, we have

‖BH
n −BH

m‖∞ ≤
m∑

k=n+1

‖BH
k −BH

k−1‖∞ ≤
m∑

k=n+1

max
0≤j≤2k−1−1

|akj − bkj | ≤ ρ
m∑

k=n+1

`k < ε.

Thus, by definition, {BH
n }n≥1 is a Cauchy sequence in C([0,1]) almost surely. Since C([0,1]) is

complete, there exists a stochastic process X such that ‖BH
n −X‖∞ converge to 0 almost surely.

We next show that X is indeed a fBM. Consider an arbitrary finite collection of time points

(t∗1, . . . , t
∗
m)∈ [0,1]. For each 1≤ i≤m, there exists a sequence of points tnin ∈Dn such that tnin → t∗i .

Note that ∣∣X(t∗i )−BH
n (tnin )

∣∣≤ ∣∣X(t∗i )−X(tnin )
∣∣+ ∣∣X(tnin )−BH

n (tnin )
∣∣

≤
∣∣X(t∗i )−X(tnin )

∣∣+ ‖X −BH
n ‖∞,

and BH
n (tinn ) is centered and Gaussian. It implies that (X(t∗1), · · · ,X(t∗m)) is the strong limit of a

sequence of centered Gaussian random vectors.

In what follows, we show that the strong limit of a sequence of m-dimensional centered Gaussian

random vector is still centered and Gaussian. Let {Zn}n≥1 be a sequence of centered Gaussian

random vectors with covariance matrix Σn, and Z be the strong limit of {Zn}n≥1. Convergence

almost surely implies that {Zn}n≥1 converge to Z in distribution and corresponding characteristic

functions φn(η) = exp{−η>Σnη/2} also converge for any fixed η ∈ Rm. By setting η = ei and

ei + ej, 1≤ i, j ≤m, where ei is the i-th standard basis of Rm, we obtain that each element of Σn

converges. Hence, Σn converges to some matrix Σ. As a result, the characteristic function of Z

takes form exp{−η>Ση/2}, which implies that Z is a centered Gaussian random vector.

The above analysis indicates that (X(t∗1), . . . ,X(t∗m)) is itself also a centered Gaussian random

vector and hence, X is a centered Gaussian process. Moreover, by construction, the covariance

matrix of (BH
n (tn1n ), · · · ,BH

n (tnmn )) is ΣH(tn1n , . . . , t
nm
n ), where ΣH is the covariance matrix function

of fBM. Since ΣH is continuous, we have ΣH(tn1n , . . . , t
nm
n )→ΣH(t∗1, . . . , t

∗
m), which implies that X

has same covariance matrix function as fBM. Thus X is a fBM.
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A.3. Proof of Theorem 3 The moment generating function of N can be written as

E[exp{ηN}] =E
[∫ ∞

0

1
{

exp{ηN} ≥ u
}

du
]

=

∫ ∞
0

P(N ≥ log(u)/η)du.

We have

P(N ≥ log(u)/η)≤
∞∑

k=blog(u)/ηc

P(record is broken at level k)

≤
∞∑

k=[log(u)/η]

2exp
{
−(ν∗)2 · 22kδ−2

}
(by Theorem 1)

≤C exp
{
−(ν∗)2 ·u2δ/η

}
,

where C is a constant sufficiently large. Since exp{−(ν∗)2 ·u2δ/η} is integrable, E[exp{ηN}] is finite.

Now for n>N , according to the representation (15), we have

∥∥BH −BH
n

∥∥
∞ ≤ ρ ·

∞∑
k=n+1

2−(H−δ)k =
ρ · 2−(H−δ)(n+1)

1− 2−(H−δ) .

A.4. Proof of Lemma 4 We use fk(t) to denote BH
k (t)−BH

k−1(t) and then by definition,

∥∥BH
k −BH

k−1

∥∥
α

= ‖fk‖α = sup
0≤s<t≤1

|fk(s)− fk(t)|
|s− t|α

.

Recall that fk(t
k−1
j ) = 0, fk(t

k
2j+1) = akj − bkj and fk(t) is linear over intervals [tk2j, t

k
2j+1] and

[tk2j+1, t
k
2j+2], where j = 0, . . . ,2k−1− 1. Note that tk2j = tk−1

j . Let

κ= 2k · max
0≤j≤2k−1−1

|akj − bkj |.

Then κ is the maximal slope of all linear pieces of fk(t). We make a discussion based on the locations

of s and t.

case 1: |s− t| ≤ 2−(k−1). If there exists some j∗ such that s, t∈ [tk2j∗ , t
k
2j∗+2], since κ is the maximal

slope, it is easy to show that |fk(s)− fk(t)| ≤ κ · |s− t|. Otherwise, there exists some j∗ such that

tk2j∗−1 ≤ s < tk2j∗ < t≤ tk2j∗+1. Then we have

|fk(s)− fk(t)|= |fk(s)− fk(tk2j∗) + fk(t
k
2j∗)− fk(t)| ≤ |fk(s)− fk(tk2j∗)|+ |fk(tk2j∗)− fk(t)|

≤ 2κ ·
(
|s− tk2j∗ |+ |t− tk2j∗ |

)
= 2κ · |s− t|.

Hence, by definition, we obtain

|fk(s)− fk(t)|
|s− t|α

≤ 2κ · |s− t|1−α ≤ 2κ · 2−(1−α)k ≤ 2α(k−1)+2 · max
0≤j≤2k−1−1

|akj − bkj |.
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case 2: |s− t|> 2−(k−1). In this case, there exist some i < j such that s∈ [tki , t
k
i+1] and t∈ [tkj , t

k
j+1].

Then we have

|fk(s)− fk(t)|= |fk(s)− fk(tki+1) + fk(t
k
j )− fk(t)| ≤ |fk(s)− fk(tki+1)|+ |fk(tkj )− fk(t)|

≤ 2κ ·
(
|s− tki+1|+ |t− tkj |

)
≤ 2−k+2 ·κ.

Moreover, we have

|fk(s)− fk(t)|
|s− t|α

≤ 2−k+2 ·κ
2−α(k−1)

= 2α(k−1)+2 · max
0≤j≤2k−1−1

|akj − bkj |.

Above all, we obtain ‖BH
k −BH

k−1‖α ≤ 2α(k−1)+2 ·max0≤j≤2k−1−1 |akj − bkj |, which concludes the proof

of Lemma 4.

A.5. Proof of Theorem 4 By the definition of N , for all k >N , we have max0≤j≤2k−1−1 |akj −

bkj | ≤ ρ2−(H−δ)k. Then according to Lemma 4, we have

∥∥BH
k −BH

k−1

∥∥
α
≤ 2α(k−1)+2 · ρ2−(H−δ)k = ρ22−α · 2−(H−α−δ)k.

Hence, for n>N

‖BH −BH
n ‖α ≤

∞∑
k=n+1

∥∥BH
k −BH

k−1

∥∥
α
≤

∞∑
k=n+1

ρ22−α · 2−(H−α−δ)k =
ρ22−α · 2−(H−α−δ)(n+1)

1− 2−(H−α−δ) .

Appendix B: Detailed Proofs for Theorems and Lemmas in Section 4

B.1. An Auxiliary Lemma In this subsection, we prove an auxiliary lemma, which establishes

an upper bound on Ξ(m,k)
n , i.e., the conditional moment generating function of β>αn(m,k). This

lemma is used in the proofs of Lemma 5 and 6.

Lemma 9. Under the BCE condition, for m≥ 1, 1≤ k≤ 2n+m−1 and θ > 0,

Ξ(m,k)
n (θ)≤ exp

{
1/2 ·

(
ρ`n+m · θ+ θ2 · 2−2(n+m)H

)}
.

Proof of Lemma 9. We denote by

µ̄n(m,k) =E
[
β>αn(m,k)

∣∣BH
n

]
, σ2

n(m,k) =V
(
β>αn(m,k)

∣∣BH
n

)
.

The key of the proof is to establish proper upper bounds for µ̄n(m,k) and σ2
n(m,k). We will first

show that

σ2
n(m,k)≤ 2−2(n+m)H .
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Similar to the proof of Lemma 1, for Gaussian random variables, taking condition does not increase

the variance. Hence, we have

V
(
β>αn(m,k)

∣∣BH
n

)
≤V

(
1/2 ·

(
BH(tn+m

2k−2) +BH(tn+m
2k )

)
−BH(tn+m

2k−1)
)

≤ 2 ·V
(

1/2 ·
(
BH(tn+m

2k−2)−BH(tn+m
2k−1

))
+ 2 ·V

(
1/2 ·

(
BH(tn+m

2k )−BH(tn+m
2k−1

))
.

Since the fBM is a stationary process, we have

V
(
BH(tn+m

2k−1)−BH(tn+m
2k−2)

)
=V

(
BH(tn+m

2k )−BH((tn+m
2k−1

)
=V

(
BH(∆n+m)

)
= ∆2H

n+m,

which further implies that

σ2
n(m,k)≤ 2−2(n+m)H .

Under the BCE condition, we have µ̄n(m,k)≤ ρ/2 · `n+m. Then the upper bound of the moment

generating function Ξ(m,k)
n (θ) holds. �

B.2. Proof of Lemma 5 We prove the case when π = +1 only. The case when π =−1 follows

analogously. To avoid confusion, we write Θπ
n(m,k) and θπn(m) when π = +1 as Θ+

n (m,k) and θ+
n (m)

respectively.

Note that if there is a up-crossing record-breaker at level n+m position k, then β>αn(m,k)>

ρ`n+m. In this case, we have

Θ+
n (m,k) = gn(m)−1 · 2n+m · exp

{
−θ+

n (m) ·β>αn(m,k) + log
(
Ξ(m,k)
n (θ+

n (m))
)}

≤ gn(m)−1 · 2n+m · exp{−θ+
n (m) · ρ`n+m} · exp

{
1/2 ·

(
ρθ+

n (m)`n+m + θ+
n (m)2 · 2−2(n+m)H

)}
≤ gn(m)−1 · 2n+m · exp

{
−ρ/2 · θ+

n (m) · 2−(n+m)(H−δ) + 1/2 · θ+
n (m)2 · 2−2(n+m)H

}
,

where the second inequality follows from Lemma 9. Hence, by our choice of

θ+
n (m) = ρ/2 · 2(n+m)(H+δ),

we obtain

Θ+
n (m,k)≤ gn(m)−1 · 2n+m · exp

{
−ρ2/8 · 22(n+m)δ

}
=Zn ≤ 1,

for all n>N∗(ρ, δ).
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B.3. Proof of Lemma 6 We first consider the conditional expectation. Note that

µ̄n(m,k) =E
[
β>αn(m,k)

∣∣BH
n

]
= (1/2,−1,1/2)>Σ(m,k)

n Σ−1
n B

H
n .

Since µ̄n(m,k) is the linear combination of Gaussian random variables, itself is also Gaussian. It is

easy to see that E[µ̄n(m,k)] = 0. For the variance, according to the decomposition of conditional

variance, we have

V
(
β>αn(m,k)

)
=E

[
V(β>αn(m,k)|BH

n )
]

+V
(
E[β>αn(m,k)|BH

n ]
)
.

Thus we obtain

V(µ̄n(m,k)) =V
(
β>αn(m,k))

)
−E

[
V(β>αn(m,k)|BH

n )
]
≤ 2 · 2−2(n+m)H ,

where the inequality follows from the proof of Lemma 9. For fixed n,m,k, we define the event

En(m,k) = {|µ̄n(m,k)|>ρ/2 · 2−(n+m)(H−δ)}.

Then we have

P
(
En(m,k)

)
≤C exp{−ρ2/8 · 22(n+m)δ},

where C is some constant. Note that En ⊆∪∞m=1 ∪2n+m−1

k=1 En(m,k). Then we have

P(En)≤
∞∑
m=1

2n+m−1 ·P
(
En(m,k)

)
≤C ·

∞∑
m=1

2n+m−1 · exp{−ρ2/8 · 22(n+m)δ} ≤C ′ · exp{−C ′′ · 22nδ},

where C ′ and C ′′ are some constants.

Then similar to the proof of Theorem 3, we obtain that the moment generating function of NE ,

the last level where the BCE condition is violated, is finite everywhere.

B.4. Proof of Lemma 7 Recall that we have

µ̄n(m,k) =E
[
β>αn(m,k)

∣∣BH
n

]
= (1/2,−1,1/2)>Σ(m,k)

n Σ−1
n B

H
n .

Here Σn is the covariance matrix of BH
n and Σ(m,k)

n is the covariance matrix of αn(m,k) and BH
n ,

which has form

Σ(m,k)
n =

r((2k− 2)/2n+m,0
)
r
(
(2k− 2)/2n+m,1/2n

)
· · · · · · r

(
(2k− 2)/2n+m,1

)
r
(
(2k− 1)/2n+m,0

)
r
(
(2k− 1)/2n+m,1/2n

)
· · · · · · r

(
(2k− 1)/2n+m,1

)
r
(
2k/2n+m,0

)
r
(
2k/2n+m,1/2n

)
· · · · · · r

(
2k/2n+m,1

)


3×(2n+1)

,
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where r(·, ·) denotes the covariance function of fBM. By calculation, for 1≤ j ≤ 2n + 1, the j-th

entry of (1/2,−1,1/2)>Σ(m,k)
n is

∆2H
m+n

4
·
(
|2k− 2|2H + |2k|2H − 2|2k− 1|2H

+ |2k− 2− j2m|2H + |2k− j2m|2H − 2|2k− 1− j2m|2H
)
.

We consider the function φ(x) = (x+ 2)2H + x2H − 2 · (x+ 1)2H . Then we have φ′(x) = 2H · ((x+

2)2H−1 + x2H−1 − 2 · (x+ 1)2H−1). When 1/2<H < 1, by Jensen’s inequality, φ′(x)≤ 0 for x≥ 0.

Hence φ(x) is decreasing on [0,∞]. Moreover, φ(x) is convex on [0,∞]. As a result, for all positive

integer i, we have

0≤ (i+ 2)2H + i2H − 2 · (i+ 1)2H ≤ 22H − 2< 2.

When 0<H < 1/2, by Jensen’s inequality, φ′(x)≥ 0 for x≥ 0. Hence φ(x) is increasing on [0,∞].

Moreover, φ(x) is concave on [0,∞]. As a result, for all positive integer i, we have

−2< 22H − 2≤ (i+ 2)2H + i2H − 2 · (i+ 1)2H ≤ 0.

Hence, for all H and i, we have ||2i−2|2H + |2i|2H −2|2i−1|2H | ≤ 2, which implies that the absolute

value of any entry of (1/2,−1,1/2)>Σ(m,k)
n is bounded by ∆2H

n+m = 2−2(n+m)H . Recall that γn denotes

the maximal absolute value of the entries in vector Σ−1
n B

H
n . Hence, we have

|µ̄n(m,k)|=
∣∣(1/2,−1,1/2)>Σ(m,k)

n Σ−1
n B

H
n

∣∣≤ γn · (2n + 1) · 2−2(n+m)H .

Appendix C: Convergence of the Euler scheme

C.1. Auxiliary lemmas The proof of Theorem 9 relies on the several lemmas. The first one

establishes the existence of the solution to equation (37).

Lemma 10. Under Assumption 1, the solution of equation (37) y exists. We also have the

following estimates. For all 0≤ s < t≤ 1,

‖y(t)−y(s)‖ ≤G∗1 · |t− s|α,∥∥y(t)−y(s)−f(y(s)) · (x(t)−x(s))
∥∥≤G∗2 · |s− t|2α.

where G∗1 and G∗2 are defined in equation (40).

The next lemma is a counterpart of Lemma 10. It establishes similar properties for the solutions

obtain by the Euler scheme.
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Lemma 11. For all the dyadic discretization time points tnj , t
n
r ∈ [0,1], we have the estimates

‖yn(tnj )−yn(tnr )‖ ≤G1 ·
∣∣tnj − tnr ∣∣α

‖yn(tnj )−yn(tnr )−f(yn(tnr )) · (x(tnj )−x(tnr ))‖ ≤G2·
∣∣tnj − tnr ∣∣2α.

where G1 and G2 are defined in equation (40).

We also need to define a restricted α-Hölder norm. Specifically, given the dyadic partition Dn and a

path x(t), the restricted α-Hölder norm on Dn is defined as

Hα(x|Dn) = sup
0≤i<j≤2n

∥∥x(tni )−x(tnj )
∥∥

|tni − tnj |α
.

Note that in the restricted α-Hölder norm, we do not require that the path is well-defined on points

outside of Dn. Intuitively, the restricted α-Hölder norm measures the α-Hölder continuity of the

solution obtained via Euler scheme on Dn. We have the following lemma on the restricted α-Hölder

norm of f(y)−f(yn) on Dn.

Lemma 12. For dyadic discretization Dn,

Hα

(
f(y)−f(yn)|Dn

)
≤
(
d · ‖∇f‖+ d2 · ‖∇2f‖ · (G∗1 +G1)

)
·Hα

(
y−yn|Dn

)
+

d2 · ‖∇2f‖ · (G∗1 +G1) · ‖y(0)−yn(0)‖.

C.2. Proof of Theorem 9. Let

Ji ≡
∫ tni+1

tni

(
f(y(s))−f(y(tni ))

)
dx(s).

By definition of Euler scheme and the solution of equation 37, we have

yn(tni+1)−y(tni+1) = yn(tni )−y(tni ) +
(
f
(
yn(tni )

)
−f

(
y(tni )

))
· (x(tni+1)−x(tni ))−Ji,

and furthermore, for all 0≤ ` < k≤ 2n,

(
yn(tnk)−y(tnk)

)
−
(
yn(tn` )−y(tn` )

)
=

k−1∑
i=`

(
f
(
yn(tni )

)
−f

(
y(tni )

))
· (x(tni+1)−x(tni ))−

k−1∑
i=`

Ji.

Using the Young-Lóeve estimate, we have the following bounds∥∥∥∥k−1∑
i=`

(
f
(
yn(tni )

)
−f

(
y(tni )

))
· (x(tni+1)−x(tni ))−

(
f
(
yn(tn` )

)
−f

(
y(tn` )

))
· (x(tnk)−x(tn` ))

∥∥∥∥
≤ h ·K(2α) ·Hα

(
f(y)−f(yn)|Dn

)
·Cα · |tnk − tn` |2α,

where K(2α) = 1 +
∑∞

n=1 n
−2α and Cα is the α-Hölder norm of x. By Lemma 10, we also have

‖Ji‖ ≤G∗2 · |tni+1− tni |2α.
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Note that

k−1∑
i=`

|tni+1− tni |2α ≤ |tnk − tn` | ·∆2α−1
n ≤ |tnk − tn` |α ·∆2α−1

n .

Then we have∥∥∥(yn(tnk)−y(tnk)
)
−
(
yn(tn` )−y(tn` )

)∥∥∥
≤ h ·K(2α) ·Hα

(
f(y)−f(yn)|Dn

)
·Cα · |tnk − tn` |2α+(

f
(
yn(tn` )

)
−f

(
y(tn` )

))
· (x(tnk)−x(tn` )) +G∗2 · |tnk − tn` |α ·∆2α−1

n .

By the definition of restricted α-Hölder norm,

‖f
(
yn(tn` )

)
−f

(
y(tn` )

)
‖ ≤Hα

(
f(y)−f(yn)|Dn

)
· |tn` |α +

∥∥f(yn(0)
)
−f

(
y(0))

∥∥,
combined with Lemma 12, we have

Hα

(
y−yn|Dn

)
≤ h ·K(2α) · (|tnk − tn` |α + |tn` |α) ·Cα ·Hα

(
f(y)−f(yn)|Dn

)
+

G∗2 ·∆2α−1
n +Cα · ‖f

(
yn(0)

)
−f

(
y(0)

)
‖

≤ h ·K(2α) ·Cα ·
(
d · ‖∇f‖+ d2 · ‖∇2f‖ · (G∗1 +G1)

)
· (|tnk − tn` |α + |tn` |α)

×Hα

(
y−yn|Dn

)
+G∗2 ·∆2α−1

n +Cα ·
(
d2h ·K(2α) · ‖∇2f‖ · (G∗1 +G1) + d · ‖∇f‖

)
×‖yn(0)−y(0)‖.

By the definition of ζ and υ in (41),

Hα

(
y−yn|Dn

)
≤ ζ(|tnk − tn` |α + |tn` |α) ·Hα

(
y−yn|Dn

)
+G∗2 ·∆2α−1

n + υ‖yn(0)−y(0)‖.

Let T0 = 0 and T1 = max{t∈Dn, t≤ (4ζ)−1/α}. Then

Hα

(
y−yn|Dn ∩ [T0, T1]

)
≤ 2G∗2 ·∆2α−1

n + 2υ‖yn(0)−y(0)‖.

Since the Euler scheme and the exact solution have same initial value, ‖yn(0)−y(0)‖= 0, then we

have

Hα

(
y−yn|Dn ∩ [T0, T1]

)
≤ 2G∗2 ·∆2α−1

n ,

and furthermore,

‖yn(T1)−y(T1)‖ ≤ 2G∗2 · (4ζ)−1 ·∆2α−1
n .

Now we let T2 = max{t∈Dn, t≤ 2(4ζ)−1/α}. For T1 ≤ tn` < tnk ≤ T2, we have

Hα

(
y−yn|Dn

)
≤ ζ(|tnk − tn` |α + |tn` −T1|α) ·Hα

(
y−yn|Dn

)
+G∗2 ·∆2α−1

n + υ‖yn(T1)−y(T2)‖.
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As a result,

Hα

(
y−yn|Dn ∩ [T1, T2]

)
≤ 2(G∗2 + υ · 2G∗2 · (4ζ)−1) ·∆2α−1

n ,

and

‖yn(T2)−y(T2)‖ ≤
[
2(G∗2 + υ · 2G∗2 · (4ζ)−1) · (4ζ)−1 + 2G∗2 · (4ζ)−1

]
·∆2α−1

n .

We need to repeat this procedure at most k∗ = d(4ζ)1/αe times in order to cover the whole interval

[0,1] and we can obtain the a sequence of bounds

Hα

(
y−yn|Dn ∩ [Tk−1, Tk]

)
≤ Γk ·∆2α−1

n ,

‖yn(Tk)−y(Tk)‖ ≤Υk ·∆2α−1
n ,

where {Γk} and {Υk} are defined via recursion (41). Note that {Γk} and {Υk} are increasing

sequences, and for any tni ∈ [Tk−1, Tk], we have ‖yn(tni )−y(tni )‖ ≤Υk ·∆2α−1
n . Therefore,

sup
tni ∈Dn

‖yn(tni )−y(tni )‖ ≤Υd(4ζ)1/αe ·∆
2α−1
n .

Finally, for any t∈ [0,1], there exists i such that tni ≤ t < tni+1. Then we have

‖yn(t)−y(t)‖ ≤ ‖yn(tni )−yn(t)‖+ ‖yn(t)−y(t)‖+ ‖y(tni )−y(t)‖

≤Υd(4ζ)1/αe ·∆
2α−1
n +G∗1 ·∆α

n ≤
(
Υd(4ζ)1/αe+G∗1

)
·∆2α−1

n .

C.3. Proof of the auxiliary lemmas

C.3.1. Proof of Lemma 10 Let ω = (2dhCαK(2α)|∇f |)−1/α and Tk = kω, k = 0,1,2, · · · .
Then the union of [Tk, Tk+1] where k= 0, · · · , dω−1e, covers [0,1]. From now on, we use Hα,[s,t](u)

to denote the α-Hölder norm of u on interval [s, t]. To be precise,

Hα,[s,t](u) = sup
s≤s′<t′≤t

‖u(s′)−u(t′)‖
|s′− t′|α

.

We introduce this new notation because in our later proof, we need to consider the α-Hölder norm

of u defined on some subintervals of [0,1]. According to the property of Young integral, we have

that for all s, t∈ [Tk, Tk+1],∥∥∥∫ t

s

f(y(u))dx(u)
∥∥∥≤ ∣∣f(y(s))T (x(t)−x(s))

∣∣+ d ·K(2α) ·Hα,[Tk,Tk+1](f(y)) ·Cα · |s− t|α

≤
(
h · ‖f‖ ·Cα + dh ·K(2α) ·Cα · ‖∇f‖ ·Hα,[Tk,Tk+1](y) · |s− t|α

)
· |s− t|α.

Since y is the solution of equation (37), it is easy to see that

Hα,[Tk,Tk+1](y)≤ h · ‖f‖ ·Cα + dh ·K(2α) ·Cα · ‖∇f‖ ·Hα,[Tk,Tk+1](y) ·ωα,
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which further implies that

sup
0≤k≤bω−1c

Hα,[Tk,Tk+1](y)≤ 2h · ‖f‖ ·Cα.

Now we turn to boundHα,[0,1](y). For any s, t∈ [0,1], we assume that Ti ≤ s < Ti+1 ≤ · · ·Tj ≤ t < Tj+1.

Then we have

‖y(s)−y(t)‖ ≤ ‖y(s)−y(Ti+1)‖+

j−1∑
`=i+1

‖y(T`)−y(T`+1)‖+ ‖y(Tj)−y(t)‖

≤ sup
0≤k≤bω−1c

Hα,[Tk,Tk+1](y) ·
(
|s−Ti+1|α +

j−1∑
`=i+1

|T`−T`+1|α + |Tj − t|α
)
.

Since α< 1, using Jensen’s inequality and the number of covering subintervals, we have

|s−Ti+1|α +

j−1∑
`=i+1

|T`−T`+1|α + |Tj − t|α ≤ dω−1e1−α · |s− t|α.

So we have Hα,[0,1](y)≤ 2h · dω−1e1−α · |f | ·Cα, which is the first bound.

For another bound, note that according to Young-Lóeve estimate, for any partition Π of [s, t], we

have∥∥∥∑
ti∈Π

f(y(ti)) · (x(ti+1)−x(ti))−f(y(s)) · (x(t)−x(s))
∥∥∥≤ dh ·K(2α) · ‖∇f‖ ·Hα,[0,1](y) ·Cα|s− t|2α.

Let the partition mesh goes to zero, we obtain the result.

C.3.2. Proof of Lemma 11 For notational convenience, in this proof, we use xk to denote

x(tnk) and yk to denote yn(tnk). We also write yik as the i-th element of yk. For each 0≤ j ≤ `≤ 2n,

let Ij` = y` − yj − f(yj) · (xj+1 −xj), and I ij` denote the i-th element of Ij`. We first show that

for all tnr , t
n
j ∈ [0,1], whenever |tnr − tnj | ≤ ω, then ‖Ijr‖ ≤ L|tnr − tnj |2α. By the definition of Euler

scheme, Ijr = 0, if r − j = 0,1. For r − j ≥ 2, we prove this lemma via induction. Suppose that

the claim holds true for all pairs p, q with q− p < r− j. Let ` ∈ [j, r) be the largest integer such

that |tnj − tn` | ≤ 1/2 · |tnj − tnr |. Then we have |tn`+1− tnr | ≤ 1/2 · |tnj − tnr |. By the inductive hypothesis,

‖Ij`‖ ≤L|tn` − tnj |2α and hence, we have

|yi`− yij| ≤ |I ij`|+
∣∣∣ h∑
k=1

fik(yj)(x
k
` −xkj )

∣∣∣≤L|tn` − tnj |2α +h · ‖f‖ ·Cα|tn` − tnj |α.

Furthermore, since |tn` − tnj | ≤ ω = (h|f |Cα/L)1/α, we have ‖y`−yj‖ ≤ 2h · ‖f‖ ·Cα|t`− tj|α. Note

that for j ≤ `≤ r,

I ijr = I ij` + I i`r +
h∑
k=1

(
fik(y`)− fik(yj)

)(
xkr −xk`

)
.



48

Then we have

|I ijr| ≤ |I ij`|+ |I i`r|+h‖∇f‖ · ‖y`−yj‖ ·Cα|tnr − tn` |α

≤ |I ij`|+ |I i`r|+ 2h2‖∇f‖ · ‖f‖ ·C2
α · |tnr − tnj |2α.

Similarly, we have

|I i`r| ≤ |I i`,`+1|+ |I i`+1,r|+ 2h2‖∇f‖ · ‖f‖ ·C2
α · |tnr − tnj |2α.

Since I i`,`+1 = 0, we get

|I ijr| ≤ |I ij`|+ |I i`+1,r|+ (2hCα)2‖∇f‖ · ‖f‖ · |tnr − tnj |2α.

By applying the inductive hypothesis again, we obtain

|I ijr| ≤L
(
|tj − t`|2α + |t`+1− tr|2α

)
+ (2hCα)2‖∇f‖ · ‖f‖ · |tnr − tnj |2α

≤
(
21−2αL+ (2hCα)2‖∇f‖ · ‖f‖

)
· |tnr − tnj |2α

=L · |tnr − tnj |2α,

where L= (1− 21−2α)−1 · (2hCα)2‖∇f‖ · ‖f‖. Hence, by induction, we finish the proof. Recall the

definition of Ijr, we also have that if |tnr − tnj | ≤ ω,

‖yr−yj‖ ≤ ‖Ijr‖+h‖f‖Cα|tnr − tnj |α ≤
(
L+h‖f‖Cα

)
· |tnr − tnj |α.

Now we come back to the proof of Lemma 11. For tnr , t
n
j ∈ [0,1] with |tnr − tnj | ≤ ω, we already

obtain the conclusion. Otherwise, we can decompose the interval [tnr , t
n
j ] as

tnr = tnk0 < t
n
k1
< tnk2 < · · ·< t

n
km

= tnj ,

such that |tnki+1
− tnki | ≤ ω or ki+1− ki = 1, i= 0,1, · · ·m− 1. In either case, it is easy to see that

‖yki+1
−yki‖ ≤

(
L+h‖f‖Cα

)
·
∣∣tnki+1

− tnki
∣∣α,

and hence

‖yj −yr‖ ≤
(
L+h‖f‖Cα

)
·
∣∣tnj − tnr ∣∣α ·m≤ (L+h‖f‖Cα

)
· (1 +ω−1) ·

∣∣tnj − tnr ∣∣α.
Furthermore, we have

‖Ijr‖ ≤ ‖yj −yr‖+h‖f‖Cα
∣∣tnj − tnr ∣∣α

≤ (2 +ω−1) ·
(
L+h‖f‖Cα

)
·
∣∣tnj − tnr ∣∣α

≤ (2ω−α +ω−1−α) ·
(
L+h‖f‖Cα

)
·
∣∣tnj − tnr ∣∣2α,

where we use |tnj − tnr | ≥ ω in the last inequality. Hence we conclude the proof of Lemma 11.
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C.3.3. Proof of Lemma 12 Based on Taylor’s expansion, for tni , t
n
j ∈Dn, we have

∥∥∥[f(y(tni ))−f(y(tnj ))
]
−
[
f(yn(tni ))−f(yn(tnj ))

]∥∥∥
=

∥∥∥∥∫ 1

0

∇f
(
y(tni ) + τ · [yn(tni )−y(tni )]

)>
[y(tni )−yn(tni )] dτ

−
∫ 1

0

∇f
(
y(tnj ) + τ · [yn(tnj )−y(tnj )]

)>
[y(tnj )−yn(tnj )] dτ

∥∥∥∥
≤
∥∥∥∥∫ 1

0

∇f
(
y(tni ) + τ · [yn(tni )−y(tni )]

)>[
(y(tni )−yn(tni ))− (y(tnj )−yn(tnj ))

]
dτ

∥∥∥∥
+

∥∥∥∥∫ 1

0

∇f
(
y(tnj ) + τ · [yn(tnj )−y(tnj )]

)
−∇f

(
y(tni ) + τ · [yn(tni )−y(tni )]

)>
[y(tnj )−yn(tnj )] dτ

∥∥∥∥.
We use A and C to denote the two parts in above inequality. Recall the definition of restricted

α-Hölder norm, we have

A≤ d · ‖∇f‖ ·Hα

(
y−yn|Dn

)
· |tni − tnj |α.

For the second term, by mean value theorem, it is easy to have

C ≤ d2 · ‖∇2f‖ ·
(
Hα(y|Dn) +Hα

(
yn|Dn

))
· |tni − tnj |α ·

∥∥y(tnj )−yn(tnj )
∥∥

≤ d2 · ‖∇2f‖ · (G∗1 +G1) · |tni − tnj |α ·
∥∥y(tnj )−yn(tnj )

∥∥,
where the second inequality follows from Lemma 10 and 11. Note that

∥∥y(tnj )−yn(tnj )
∥∥≤ ‖y(0)−yn(0)‖+

∥∥(y(tnj )−yn(tnj ))− (y(0)−yn(0))
∥∥

≤ ‖y(0)−yn(0)‖+Hα

(
y−yn|Dn

)
· |tnj |α.

Then we have

Hα

(
f(y)−f(yn)|Dn

)
≤
(
d · ‖∇f‖+ d2 · ‖∇2f‖ · (G∗1 +G1)

)
·Hα

(
y−yn|Dn

)
+

d2 · ‖∇2f‖ · (G∗1 +G1) · ‖y(0)−yn(0)‖,

which concludes the proof of Lemma 12.

Appendix D: Applications In this section, we show how to combine our convergence rate

result of the midpoint displacement construction (Theorem 1) and ε-strong simulation algorithm

with other advanced simulation techniques.
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D.1. Application to Multilevel Monte Carlo We start with a brief introduction of the

MLMC framework (Giles, 2008). Our objective is to estimate α = E[g(BH)], where g is an L-

Lipschitz continuous functional of the fBM path with respect to the uniform norm. Here, we define

a function g to be L-Lipschitz continuous, L∈ (0,∞), if for any x, y ∈ C([0,1]),

|g(x)− g(y)| ≤L‖x− y‖∞.

The MLMC estimator takes the following form

α̂K =
K∑
k=0

1

rk

rk∑
i=1

Dk(i) (43)

where Dk(i)’s are i.i.d. copies of some properly defined level differences. For example, Dk(i)
d
=

g(BH
k )− g(BH

k−1). Assuming g(BH
−1) = 0, then

E[α̂K ] =E[g(BH
K )],

which implies the bias of the estimator (43) only depends on the bias at the highest level K. On

the other hand,

V(α̂K) =
K∑
k=0

1

rk
V(Dk),

i.e. the variance depends on the variance at different levels. Thus, by using appropriate coupling to

create the level differences, Dk’s, and smartly allocating the computational budget, rk’s, we can

achieve substantial computational cost reduction comparing to naive Monte Carlo method 3. The

main obstacles in applying MLMC are 1) how to construct Dk’s and 2) how to calculate V(Dk) (or

upper bound it).

For 1), using the midpoint displacement construction, we can set Dk = g(BH
k )− g(BH

k−1).

For 2), we first note that

V(Dk) ≤ E[(g(BH
k )− g(BH

k−1))2]

≤ L2 ·E
[
‖BH

k −BH
k−1‖2∞

]
=L2 ·

∫ ∞
0

P
(
‖BH

k −BH
k−1‖∞ >

√
t
)

dt.

In Theorem 1, by setting ν = 0, for any fixed δ ∈ (0,H), we have

P
(
‖BH

k −BH
k−1‖∞ > 2ν∗`k

)
≤ 2exp

{
− (ν∗)2 · 22kδ − 2

}
.

3 By naive Monte Carlo method, we mean generating i.i.d. copies of g(BHK ).
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Subsequently, let 2ν∗`k =
√
t and then we obtain that

V(Dk)≤ 16L2`2k ·
∫ ∞

0

ν∗ exp
{
− (ν∗)2 · 22kδ−2

}
dν∗

≤
(

16L2

∫ ∞
0

ν∗ exp
{
− (ν∗)2 · 22δ−2

}
dν∗
)
·∆2(H−δ)

k =O
(
∆

2(H−δ)
k

)
.

Lastly, we study the computational complexity. According to the analysis in Section 4.3, we have

C(Dk) =O(∆−1
k log(∆−1

k )), where the recursive Gaussian bridge based method is used. Then, for

a given mean square error (MSE) bound ε2, we can set K = C1 log(1/ε), such that E[α̂K ]−α=

O(∆H−δ
K ) =O(ε). We can also set rk =C2∆

2(H−δ)
k ε−2 log(1/ε), such that V(α̂K) =O(ε2). With our

choice of K and rk, the total computational cost of α̂K is

K∑
k=0

rkC(Dk) =O

(
ε−2 log(1/ε)

K∑
k=1

∆
2(H−δ)−1
k log(∆−1

k )

)
4.

When 2(H − δ)> 1, the cost is O(ε−2 log(1/ε)); otherwise the cost is O(ε−1/(H−δ) log(1/ε)2). Note

that the computational cost for the naive Monte Carlo estimator is O(ε−2−1/(H−δ) log(1/ε)).

D.2. Application to Unbiased Estimation One important application of ε-strong simula-

tion algorithm is to build unbiased estimators for expectations involving functionals of the sample

path (Beskos et al., 2012), or to build exact simulation algorithm for the corresponding stochastic

processes at a finite collection of time points (Beskos and Roberts, 2005; Chen and Huang, 2013).

Blanchet and Zhang (2017) extends the algorithm developed in Blanchet et al. (2017) to construct

exact simulation algorithm for multidimensional SDEs. Pollock et al. (2016) studies SDEs with

jumps and provides a comprehensive discussion on ε-strong and exact simulation. See also Glynn

(2016) for an extensive review of recent development in exact simulation and unbiased estimation

algorithms.

In this section, we consider the task of estimating the expectation E[g(X)], where X denotes

the sample path of a continuous time stochastic process defined on [0,1] (e.g. fBM or SDEs driven

by fBM) and g is a positive and L-Lipschitz continuous functional defined on C([0,1]). We further

assume that give any realization of X, g(X) can be evaluated exactly. Our goal is to construct

unbiased estimators for E[g(X)].

Note that unbiased estimation in this setting can be highly nontrivial, as sampling X exactly

is infeasible, and approximation through discretization introduces bias. We next explain how to

apply the ε-strong simulation algorithm with its tolerance-enforced property to achieve unbiased

estimation as in Beskos et al. (2012).

4 Here, we treat the cost of generating the last record-breaker as a constant. This is because N does not depend on ε
and N ≤N(ε) almost surely as ε→ 0.
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Let T be a positive random variable with a strictly positive density p(t) on [0,∞), and is

independent of X. We then define

Z :=
1{g(X)>T}

p(T )
.

Note that

E[Z] =E
[
E[Z|X]

]
=E

[∫ ∞
0

1{g(X)> t}p(t)
p(t)

]
=E[g(X)],

i.e., Z is an unbiased estimator of g(X).

To sample Z, we first sample T . Then, given T = t, we only need to determine whether g(X)> t.

This can be achieved by sequentially updating ε and corresponding ε-strong approximation X̂ε

until we find the ε such that g(X̂ε)> t+ εL or g(X̂ε)< t− εL. Note that if g(Xε)> t+ εL, g(X)> t.

Likewise, if g(X̂ε)< t− εL, g(X)< t.
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