Importing Skill-Biased Technology

Ariel Burstein Javier Cravino Jonathan Vogel

January 2012

Observations

- Capital equipment (e.g. computers and industrial machinery):
 - embodies skill-biased technology
 - At firm, sector, plant level, surveyed in Katz & Autor '99
 - is highly traded and world production is highly concentrated
 - Eaton and Kortum '01

Implication

Countries import skill-biased technology with equipment

This paper

• To what extent does trade in equipment raise demand for skilled labor and increase skill premia in many countries?

- Introduce capital-skill complementarity into a multi-country, multi-sector Ricardian model of trade
- Capital-skill complementarity:
 - † in capital † demand for skilled relative to unskilled labor
- With trade, capital stock depends on
 - domestic productivities and factor supplies,
 - foreign productivities and factor supplies,
 - and trade costs

Preview of analytic results

- All changes in
 - trade costs
 - foreign technologies
 - foreign factor supplies

affect domestic skill premium only through changes in

- domestic sectoral expenditure shares, $\pi_{ii}(j)$
- Analytic 1st-order approx for SS change in skill premium
 - highlights intuition
 - facilitates sensitivity analysis

Preview of quantitative results

Intro

Two counterfactuals taking changes in trade shares as given:

Preview of quantitative results

Two counterfactuals taking changes in trade shares as given:

- Counterfactual 1: Move to autarky
 - Effect varies widely across countries in our sample
 - Large in countries with comparative disadvantage in equipment
 - Skill Premium falls:
 - e.g., 16% in median country, 5% in US, 20% in Chile

The commentation of the comments of the commen

Counterfactual 1: Move to autarky

- Effect varies widely across countries in our sample
- Large in countries with comparative disadvantage in equipment
- Skill Premium falls:
 - e.g., 16% in median country, 5% in US, 20% in Chile
- Counterfactual 2: Feed observed changes in trade shares
 - Moving from 2000 to 1963 trade shares, skill premium falls:
 - e.g., 13% in UK, 19% in Canada
 - Numbers significant relative to observed changes in skill premia

Related literature

- Evidence on trade and technology change:
 - Pavcnik ('02), De Loecker ('10), Lileeva & Trefler ('10), Bustos ('11a)
- Evidence on trade and skill intensity:
 - Verhoogen ('08), Bloom et. al. ('11), Bustos ('11b), Koren & Csillag ('11)
- Trade and SBTC:
 - Acemoglu (2003), Yeaple ('05), Thoenig and Verdier (2003)
- Capital skill complementarity and skill premium
 - Krusell et. al. ('00), Polgreen & Silos ('08)
- Quantitative trade models and inequality:
 - Parro ('10), Burstein & Vogel ('10)

Model

Model: Overview

Model

- I countries, 3 sectors (Manufacturing, Equipment and Services)
 - M used for consumption and intermediate inputs
 - S used for consumption, intermediate inputs and structures
 - E used for capital equipment
- Production uses
 - skilled and unskilled labor, H_i and L_i
 - capital structures and equipment, $K_i(S)$ and $K_i(E)$
 - intermediate inputs, $X_i(S)$ and $X_i(M)$
- Countries endowed with labor, capital is accumulated
- Factors and goods markets are perfectly competitive
- Iceberg trade costs

Model: Preferences and final output

• Preferences:

Model

$$\sum_{t=0}^{\infty} \beta^{t} u \left[C_{i,t} \left(M \right)^{\phi} C_{i,t} \left(S \right)^{1-\phi} \right]$$

• Sectorial output is an aggregate of intermediates:

$$Y_i(j) = \left[\int_0^1 q_i(\omega, j)^{(\eta-1)/\eta} d\omega\right]^{\eta/(\eta-1)}$$

• Market clearing in final goods:

$$Y_i(M) = C_i(M) + X_i(M)$$

$$Y_i(S) = C_i(S) + X_i(S) + I_i(S)$$

$$Y_i(E) = I_i(E)$$

Model

• KORV production function—nested CES using H_i , L_i , K_i (S), K_i (E)—w/ intermediate inputs & heterogeneous productivity

Model

• KORV production function—nested CES using H_i , L_i , K_i (S), K_i (E)—w/ intermediate inputs & heterogeneous productivity

$$y_i(\omega, j) = A_i(j) z_i(\omega, j) \times [Int.Inputs]^{1-\zeta} \times [VA]^{\zeta}$$

• Productivity: $A_{i}\left(j\right)$ sectoral, $z_{i}\left(\omega,j\right)$ idiosyncratic: $z_{i}\left(\omega,j\right)=u^{-\theta},\ u\sim\exp\left(1\right)$

• KORV production function—nested CES using H_i , L_i , K_i (S), K_i (E)—w/ intermediate inputs & heterogeneous productivity

$$y_{i}(\omega, j) = A_{i}(j) z_{i}(\omega, j) \times [Int.Inputs]^{1-\zeta} \times [VA]^{\zeta}$$

- Productivity: $A_i(j)$ sectoral, $z_i(\omega, j)$ idiosyncratic: $z_i(\omega, j) = u^{-\theta}$, $u \sim exp(1)$
- Int.Inputs = $x_S^{\varepsilon} x_M^{1-\varepsilon}$
- $VA = k_S^{\alpha} \chi_2^{1-\alpha}$

Model

• KORV production function—nested CES using H_i , L_i , K_i (S), K_i (E)—w/ intermediate inputs & heterogeneous productivity

$$y_{i}(\omega, j) = A_{i}(j) z_{i}(\omega, j) \times [Int.Inputs]^{1-\zeta} \times [VA]^{\zeta}$$

- Productivity: $A_i(j)$ sectoral, $z_i(\omega, j)$ idiosyncratic: $z_i(\omega, j) = u^{-\theta}$, $u \sim exp(1)$
- Int.Inputs = $x_S^{\varepsilon} x_M^{1-\varepsilon}$
- $VA = k_S^{\alpha} \chi_2^{1-\alpha}$

Model

•
$$\chi_2 = \left[\mu^{\frac{1}{\sigma}} I^{\frac{\sigma-1}{\sigma}} + (1-\mu)^{\frac{1}{\sigma}} \chi_1^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}} \to \varepsilon(I, Y_1) = \sigma$$

•
$$\chi_{1} = \left[\lambda^{\frac{1}{\rho}} k_{E}^{\frac{\rho-1}{\rho}} + (1-\lambda)^{\frac{1}{\rho}} h^{\frac{\rho-1}{\rho}}\right]^{\frac{\rho}{\rho-1}} \to \varepsilon(k_{E}, h) = \rho$$

Capital skill complementarity if $\sigma > \rho$

Equilibrium

Model

• Unit cost of producer (ω, j) :

$$c_{in}\left(\omega,j\right) = \frac{c_{i}\tau_{in}\left(j\right)}{A_{i}\left(j\right)z_{i}\left(\omega,j\right)}$$

Prices:

$$p_{n}(\omega,j) = \min_{j} \{c_{in}(\omega,j)\},$$

Price indexes:

$$P_n(j) = \left[\int_0^1 p_n(\omega, j)^{1-\eta} d\omega \right]^{1/(1-\eta)}.$$

• Trade share:

$$\pi_{in}\left(j\right) = \frac{\int_{0}^{1} p_{n}\left(\omega,j\right)^{1-\eta} \mathbf{1}_{in}\left(\omega,j\right) d\omega}{P_{n}\left(j\right)^{1-\eta}}$$

Analytic Results

Skill Premium

• Following KORV:

$$\frac{s_i}{w_i} = \kappa \left[\lambda^{\frac{1}{\rho}} \left(\frac{K_i\left(E\right)}{H_i} \right)^{\frac{\rho-1}{\rho}} + (1-\lambda)^{\frac{1}{\rho}} \right]^{\frac{\sigma-\rho}{(\rho-1)\sigma}} \left(\frac{L_i}{H_i} \right)^{\frac{1}{\sigma}}$$

- $\frac{s_i}{w_i}$ increasing in $\frac{L_i}{H_i}$ if $\sigma > 0$
- $\frac{s_i}{w_i}$ increasing in $\frac{K_i(E)}{H_i}$ if $\sigma > \rho$

Skill Premium

Following KORV:

$$\frac{s_i}{w_i} = \kappa \left[\lambda^{\frac{1}{\rho}} \left(\frac{K_i\left(E\right)}{H_i} \right)^{\frac{\rho-1}{\rho}} + (1-\lambda)^{\frac{1}{\rho}} \right]^{\frac{\sigma-\rho}{(\rho-1)\sigma}} \left(\frac{L_i}{H_i} \right)^{\frac{1}{\sigma}}$$

- $\frac{s_i}{w_i}$ increasing in $\frac{L_i}{H_i}$ if $\sigma > 0$
- $\frac{s_i}{w_i}$ increasing in $\frac{K_i(E)}{H_i}$ if $\sigma > \rho$
 - $K_i(E)$ determined in equilibrium

Result

Result 1

Proposition

Given parameters, country i's steady state skill premium can be calculated using only

- **1** Domestic expenditure shares, $\pi_{ii}(j)$'s
- **2** Domestic technologies, $A_i(j)$'s
- Omestic endowments, H_i and L_i
 - Implication: $\pi_{ii}(j)$'s are sufficient statistics for all international forces
 - Only need data on the domestic country for each counterfactual

Broad Intuition

Result 1

- In trade models with gravity, change in stock of consumption resulting from foreign shocks is a function of π_{ii}
 - Arkolakis, Costinot, Rodriguez-Clare (2011)
 - e.g., in EK (2002), $Q_i \propto A_i \pi_{ii}^{-\theta}$
- Here, changes in skill premium depend on changes in $K_i(E)$
 - And $K_i(E)$ depends on $A_i(j)$ and $\pi_{ii}(j)$ in a related manner...

• Log linearizing, the change in s_i/w_i is given by

$$\widehat{s}_{i} - \widehat{w}_{i} = \sum_{i} \beta_{1,i} \left(j \right) \left[\widehat{A}_{i} \left(j \right) - \theta \widehat{\pi}_{ii} \left(j \right) \right] - \beta_{2,i} \left(\widehat{H}_{i} - \widehat{L}_{i} \right)$$

 $\beta_{1,i}(j)$, $\beta_{2,i}$ are functions of factor shares and parameters

- Two ways to increase stock of equipment:
 - produce more $(\widehat{A}_i(E) > 0)$
 - import more $(\widehat{\pi}_{ii}(E) < 0)$

First-order approximation for the change in SP

• Log linearizing, the change in s_i/w_i is given by

$$\widehat{s}_{i} - \widehat{w}_{i} = \sum_{i} \beta_{1,i} \left(j \right) \left[\widehat{A}_{i} \left(j \right) - \theta \widehat{\pi}_{ii} \left(j \right) \right] - \beta_{2,i} \left(\widehat{H}_{i} - \widehat{L}_{i} \right)$$

 $\beta_{1,i}(j)$, $\beta_{2,i}$ are functions of factor shares and parameters

- Two ways to increase stock of equipment:
 - produce more $(\widehat{A}_i(E) > 0)$
 - import more $(\widehat{\pi}_{ii}(E) < 0)$
- $\left[\widehat{A}_{i}\left(j\right)-\theta\widehat{\pi}_{ii}\left(j\right)\right]\uparrow$ for $j\neq E\Rightarrow$ stock of equipment \uparrow
 - Production of equipment uses intermediates from $i \neq E$

First-order approximation for the change in SP

• Log linearizing, the change in s_i/w_i is given by

$$\widehat{s}_{i} - \widehat{w}_{i} = \sum_{i} \beta_{1,i} \left(j \right) \left[\widehat{A}_{i} \left(j \right) - \theta \widehat{\pi}_{ii} \left(j \right) \right] - \beta_{2,i} \left(\widehat{H}_{i} - \widehat{L}_{i} \right)$$

 $\beta_{1,i}(j)$, $\beta_{2,i}$ are functions of factor shares and parameters

- Two ways to increase stock of equipment:
 - produce more $(\widehat{A}_{i}(E) > 0)$
 - import more $(\widehat{\pi}_{ii}(E) < 0)$
- $\left|\widehat{A}_{i}\left(j\right) \theta\widehat{\pi}_{ii}\left(j\right)\right| \uparrow \text{ for } j \neq E \Rightarrow \text{stock of equipment } \uparrow$
 - Production of equipment uses intermediates from $j \neq E$
- Parameters and factor shares ⇒ elasticities

Quantitative results

Counterfactuals:

- Two counterfactuals taking changes in trade shares as given
- How would the skill premium change in each country if
 - it were moved to autarky?
 - trade shares return to base-year levels?
- From analytic results:
 - We conduct each counterfactual without solving for full multi-country general equilibrium
 - Only need data for domestic country
 - ullet Value of elasticities ho and σ key for results

Data

Data

- Compute $\pi_{ii}(j)$ as $1 \frac{Imports}{Output + Imports Exports}$
- Trade data: Feenstra et.al. (2004)
- Gross Output Data: UNIDO Industrial Statistics Database
- Follow Eaton-Kortum (2001) to group goods into E and M
 - The major investment sectors in Germany, US, & Japan:
 - non-electrical equipment
 - electrical equipment
 - instruments
- 54 countries, 1963 (or 1st available year) 2000
 - period varies across countries b/c of data coverage

Data Summary

Data

Data Summary		
	Median Level (2000)	Median Change
$\pi_{ii}(E)$	0.25	-30%
$\pi_{ii}(M)$	0.67	-15%

- Countries import a large share of their capital equipment
- Large increases in import shares over the period
- Import share is higher $(\pi_{ii} \text{ lower})$ and change is larger in E

- Factor shares from NIPA and IO tables
- Calibrate:

$$\rho^{-1} = 1 + \frac{\widehat{\xi^H}}{\widehat{K\left(E\right)/H}} \text{ and } \sigma = \frac{\left(\rho - 1\right)\widehat{\left(H/L\right)} + \rho\left(\widehat{1 + 1/\xi^H}\right)}{\left(1 - \rho\right)\widehat{\left(s/w\right)} + \left(\widehat{1 + 1/\xi^H}\right)}$$

where $\xi^H = s_i H_i / (r_i K_i(E))$ & changes from 1963 to 2000

Baseline Parameterization

- Factor shares from NIPA and IO tables
- Calibrate:

$$\rho^{-1} = 1 + \frac{\widehat{\xi^H}}{\widehat{K\left(E\right)/H}} \text{ and } \sigma = \frac{\left(\rho - 1\right)\widehat{\left(H/L\right)} + \rho\left(\widehat{1 + 1/\xi^H}\right)}{\left(1 - \rho\right)\widehat{\left(s/w\right)} + \left(\widehat{1 + 1/\xi^H}\right)}$$

where $\xi^{H}=s_{i}H_{i}/\left(r_{i}K_{i}\left(E\right)\right)$ & changes from 1963 to 2000

- US 63-00: ho = 0.63, $\sigma =$ 1.56
- Implied elasticities: $\frac{d \log[s/w]}{d \log[\pi_{ii}(E)]} = -0.10$, $\frac{d \log[s/w]}{d \log[\pi_{ii}(M)]} = -0.04$

Alternative Parameterizations

Parameterization

- Estimate ρ and σ via non-linear least squares using annual rather than cumulative changes
 - $\rho = 0.66$, $\sigma = 1.47$ (precisely estimated)
- 2 Allow exogenous SBT change similar to Katz & Murphy '92
 - If SBT annual growth is \leq 5.2%, then $\sigma \geq \rho$
- **3** Estimate σ and ρ using Chilean data 74-00
 - $\rho = 0.53$, $\sigma = 1.54$

Recall baseline parameterization in US: ho=0.63, $\sigma=1.56$

Counterfactual 1: Moving to Autarky

Counterfactual 1: Moving to Autarky

- Skill premium declines 16% in median country
- Wide variation across countries depending on comparative advantage rather than stage of development, e.g.
 - 2% decline in Japan,
 - 5% decline in US,
 - 11% decline in Argentina,
 - 25% decline in Canada,
 - 39% decline in Czech Republic
- Trade in manufactures important for some countries

Counterfactual 2: Observed changes in trade shares

- Median decline of 6%
- Wide variation depending on changing trade patterns
 - Significant in some developing countries (e.g. Argentina, Chile, Brazil, Greece, Uruguay)
 - Large in some developed countries, e.g. UK and Canada
 - Small in Japan and the US
 - Increase in the SP in some countries
- Most is coming from trade in equipment
- Get very similar results using the approximation

Conclusions

- Presented a theory of international trade and capital skill complementarity:
 - By importing equipment (and intermediates), countries import rise in skill premium
- Simple analytical expression summarizes all effects of trade
 - For quantitative work, only need data on domestic country
- Channel quantitatively important for various developing and developed countries