Comparative Advantage and Optimal Trade Taxes

Arnaud Costinot (MIT), Dave Donaldson (MIT), Jonathan Vogel (Columbia) and Iván Werning (MIT)

June 2014

Motivation

- Two central questions...
 - 1. Why do nations trade?
 - 2. How should they conduct trade policy?
- Theory of comparative advantage
 - Influential answer to #1
 - → Virtually no impact on #2

This Paper

- Take canonical Ricardian model
 - simplest and oldest theory of CA
 - new workhorse model for theoretical and quantitative work
- Explore relationship...

CA Optimal Trade Taxes

Main Result

- Optimal trade taxes:
 - 1. uniform across imported goods
 - 2. monotone in CA across exported goods

Main Result

Examples:

zero import tariff + export taxes increasing in CA

Positive import tariff + export subsidies decreasing in CA

 More room to manipulate prices in comparative advantage sectors

- More room to manipulate prices in comparative advantage sectors
- New perspective on targeted industrial policy

- More room to manipulate prices in comparative advantage sectors
- New perspective on targeted industrial policy
 - larger subsidies for less competitive sectors not from desire to expand output ...

- More room to manipulate prices in comparative advantage sectors
- New perspective on targeted industrial policy
 - larger subsidies for less competitive sectors not from desire to expand output ...
 - ... but greater constraints to contract exports to exploit monopoly power

Two Applications

- Agriculture and Manufacturing examples
 - GT under optimal trade taxes are 20% and 33% larger than under no taxes
 - GT under under optimal uniform tariff are only 9% larger than under no taxes
- Micro-level heterogeneity matters for design and gains from optimal trade policy

Related Literature

- Optimal Taxes in an Open Economy:
 - General results: Dixit (85), Bond (90)
 - Ricardo: Itoh Kiyono (87), Opp (09)
- Lagrangian Methods:
 - Lagrangian methods in infinite dimensional space: AWA (06), Amador Bagwell (13)
 - Cell-problems: Everett (63), CLW (13)

Roadmap

- Basic Environment
- Optimal Allocation
- Optimal Trade Taxes
- Applications

Basic Environment

A Ricardian Economy

- Two countries: Home and Foreign
 - ullet Labor endowments:L and L^*
 - CES utility over continuum of goods:

$$U \equiv \int_{i} u_{i}(c_{i})di$$

$$u_{i}(c_{i}) \equiv \beta_{i} \left(c_{i}^{1-1/\sigma} - 1\right) / (1 - 1/\sigma)$$

- Constant unit labor requirements: a_i and a_i^*
- ullet Home sets trade taxes $t\equiv(t_i)$ and lump-sum transfer T
- Foreign is passive

$$c \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} (1 + t_{i}) \, \tilde{c}_{i} di \leq wL + T \right\}$$

$$c \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} (1 + t_{i}) \, \tilde{c}_{i} di \leq wL + T \right\}$$

$$q_{i} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} (1 + t_{i}) \, \tilde{q}_{i} - w a_{i} \tilde{q}_{i} \right\}$$

$$c \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} (1 + t_{i}) \, \tilde{c}_{i} di \leq wL + T \right\}$$

$$q_{i} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} (1 + t_{i}) \, \tilde{q}_{i} - w a_{i} \tilde{q}_{i} \right\}$$

$$T = \int_{i} p_{i} t_{i} (c_{i} - q_{i}) \, di$$

$$c \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} (1 + t_{i}) \, \tilde{c}_{i} di \leq wL + T \right\}$$

$$q_{i} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} (1 + t_{i}) \, \tilde{q}_{i} - wa_{i} \tilde{q}_{i} \right\}$$

$$T = \int_{i} p_{i} t_{i} (c_{i} - q_{i}) \, di$$

$$c^{*} \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}^{*}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} \tilde{c}_{i} di \leq w^{*}L^{*} \right\}$$

$$c \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} (1 + t_{i}) \, \tilde{c}_{i} di \leq wL + T \right\}$$

$$q_{i} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} (1 + t_{i}) \, \tilde{q}_{i} - w a_{i} \tilde{q}_{i} \right\}$$

$$T = \int_{i} p_{i} t_{i} (c_{i} - q_{i}) \, di$$

$$c^{*} \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}^{*}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} \tilde{c}_{i} di \leq w^{*}L^{*} \right\}$$

$$q_{i}^{*} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} \tilde{q}_{i} - w^{*} a_{i}^{*} \tilde{q}_{i} \right\}$$

$$c \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} (1 + t_{i}) \, \tilde{c}_{i} di \leq wL + T \right\}$$

$$q_{i} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} (1 + t_{i}) \, \tilde{q}_{i} - w a_{i} \tilde{q}_{i} \right\}$$

$$T = \int_{i} p_{i} t_{i} (c_{i} - q_{i}) \, di$$

$$c^{*} \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}^{*}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} \tilde{c}_{i} di \leq w^{*}L^{*} \right\}$$

$$q_{i}^{*} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} \tilde{q}_{i} - w^{*} a_{i}^{*} \tilde{q}_{i} \right\}$$

$$c_{i} + c_{i}^{*} = q_{i} + q_{i}^{*},$$

$$c \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} (1 + t_{i}) \, \tilde{c}_{i} di \leq wL + T \right\}$$

$$q_{i} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} (1 + t_{i}) \, \tilde{q}_{i} - wa_{i} \tilde{q}_{i} \right\}$$

$$T = \int_{i} p_{i} t_{i} \left(c_{i} - q_{i} \right) di$$

$$c^{*} \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}^{*}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} \tilde{c}_{i} di \leq w^{*}L^{*} \right\}$$

$$q_{i}^{*} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} \tilde{q}_{i} - w^{*} a_{i}^{*} \tilde{q}_{i} \right\}$$

$$c_{i} + c_{i}^{*} = q_{i} + q_{i}^{*},$$

$$\int_{i} a_{i} q_{i} di = L,$$

$$c \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} (1 + t_{i}) \, \tilde{c}_{i} di \leq wL + T \right\}$$

$$q_{i} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} (1 + t_{i}) \, \tilde{q}_{i} - w a_{i} \tilde{q}_{i} \right\}$$

$$T = \int_{i} p_{i} t_{i} (c_{i} - q_{i}) \, di$$

$$c^{*} \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}^{*}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} \tilde{c}_{i} di \leq w^{*}L^{*} \right\}$$

$$q_{i}^{*} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} \tilde{q}_{i} - w^{*} a_{i}^{*} \tilde{q}_{i} \right\}$$

$$c_{i} + c_{i}^{*} = q_{i} + q_{i}^{*},$$

$$\int_{i} a_{i} q_{i} di = L,$$

$$\int_{i} a_{i}^{*} q_{i}^{*} di = L^{*}.$$

Government Problem

Government Problem

$$c \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} (1 + t_{i}) \, \tilde{c}_{i} di \leq wL + T \right\}$$

$$q_{i} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} (1 + t_{i}) \, \tilde{q}_{i} - wa_{i} \tilde{q}_{i} \right\}$$

$$T = \int_{i} p_{i} t_{i} \left(c_{i} - q_{i} \right) di$$

$$c^{*} \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}^{*}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} \tilde{c}_{i} di \leq w^{*}L^{*} \right\}$$

$$q_{i}^{*} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} \tilde{q}_{i} - w^{*} a_{i}^{*} \tilde{q}_{i} \right\}$$

$$c_{i} + c_{i}^{*} = q_{i} + q_{i}^{*}$$

$$\int_{i} a_{i} q_{i} di = L,$$

$$\int_{i} a_{i}^{*} q_{i}^{*} di = L^{*}.$$

Government Problem

$$\max_{t,T,w,w^*,p,c,c^*,q,q^*} U(c)$$

$$c \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_i u_i(\tilde{c}_i) di \middle| \int_i p_i (1+t_i) \, \tilde{c}_i di \leq wL + T \right\}$$

$$q_i \in \operatorname{argmax}_{\tilde{q}_i \geq 0} \left\{ p_i (1+t_i) \, \tilde{q}_i - wa_i \, \tilde{q}_i \right\}$$

$$T = \int_i p_i t_i \, (c_i - q_i) \, di$$

$$c^* \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_i u_i^* (\tilde{c}_i) di \middle| \int_i p_i \tilde{c}_i di \leq w^* L^* \right\}$$

$$q_i^* \in \operatorname{argmax}_{\tilde{q}_i \geq 0} \left\{ p_i \tilde{q}_i - w^* a_i^* \, \tilde{q}_i \right\}$$

$$c_i + c_i^* = q_i + q_i^*$$

$$\int_a q_i di = L,$$

$$\int_i a_i^* q_i^* di = L^*.$$

Optimal Allocation

Let us Relax

- Primal approach (Baldwin 48, Dixit 85):
- No taxes, no competitive markets at home
- Domestic government directly controls domestic consumption, c, and output, q

$$\max_{t,T,w,w^*,p,c,c^*,q,q^*} U(c)$$

$$c \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} (1 + t_{i}) \, \tilde{c}_{i} di \leq wL + T \right\}$$

$$q_{i} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} (1 + t_{i}) \, \tilde{q}_{i} - w a_{i} \tilde{q}_{i} \right\}$$

$$T = \int_{i} p_{i} t_{i} \left(c_{i} - q_{i} \right) di$$

$$c^{*} \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_{i} u_{i}^{*}(\tilde{c}_{i}) di \middle| \int_{i} p_{i} \tilde{c}_{i} di \leq w^{*}L^{*} \right\}$$

$$q_{i}^{*} \in \operatorname{argmax}_{\tilde{q}_{i} \geq 0} \left\{ p_{i} \tilde{q}_{i} - w^{*} a_{i}^{*} \tilde{q}_{i} \right\}$$

$$c_{i} + c_{i}^{*} = q_{i} + q_{i}^{*}$$

$$\int_{i} a_{i} q_{i} di = L,$$

$$\int_{i} a_{i}^{*} q_{i}^{*} di = L^{*}.$$

$$\max_{t,T,w,w^*,p,c,c^*,q,q^*} U(c)$$

$$c^* \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_i u_i^*(\tilde{c}_i) di \middle| \int_i p_i \tilde{c}_i di \leq w^* L^* \right\}$$

$$q_i^* \in \operatorname{argmax}_{\tilde{q}_i \geq 0} \left\{ p_i \tilde{q}_i - w^* a_i^* \tilde{q}_i \right\}$$

$$c_i + c_i^* = q_i + q_i^*$$

$$\int_i a_i q_i di = L,$$

$$\int_i a_i^* q_i^* di = L^*.$$

$$\max_{w^*,\,p,\,c,\,c^*,\,q,\,q^*} U(c)$$

$$c^* \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_i u_i^*(\tilde{c}_i) di \middle| \int_i p_i \tilde{c}_i di \leq w^* L^* \right\}$$

$$q_i^* \in \operatorname{argmax}_{\tilde{q}_i \geq 0} \left\{ p_i \tilde{q}_i - w^* a_i^* \tilde{q}_i \right\}$$

$$c_i + c_i^* = q_i + q_i^*$$

$$\int_i a_i q_i di = L,$$

$$\int_i a_i^* q_i^* di = L^*.$$

Convenient to focus on 3 key controls:

$$q, m = c - q, w^*$$

• Equilibrium abroad requires...

$$p_i(m_i, w^*) \equiv \min \{u_i^{*'}(-m_i), w^* a_i^*\},$$
$$q_i^*(m_i, w^*) \equiv \max \{m_i + d_i^*(w^* a_i^*), 0\}$$

$$\max_{w^*, p, c, c^*, q, q^*} U(c)$$

$$c^* \in \operatorname{argmax}_{\tilde{c} \geq 0} \left\{ \int_i u_i^*(\tilde{c}_i) di \middle| \int_i p_i \tilde{c}_i di \leq w^* L^* \right\}$$

$$q_i^* \in \operatorname{argmax}_{\tilde{q}_i \geq 0} \left\{ p_i \tilde{q}_i - w^* a_i^* \tilde{q}_i \right\}$$

$$c_i + c_i^* = q_i + q_i^*$$

$$\int_i a_i q_i di = L,$$

$$\int_i a_i^* q_i^* di = L^*.$$

$$\max_{w^*,p,c,c^*,q,q^*} U(c)$$

$$\max_{w^*, p, c, c^*, q, q^*} U(c)$$

$$\int_{i} a_{i} q_{i} di \leq L,$$

$$\max_{w^*,p,c,c^*,q,q^*} U(c)$$

$$\int_{i} a_{i} q_{i} di \leq L,$$

$$\int_{i} a_{i}^{*} q_{i}^{*} (m_{i}, w^{*}) di \leq L^{*},$$

$$\max_{w^*,\,p,\,c,\,c^*,\,q,\,q^*} U(c)$$

$$\int_{i} a_{i}q_{i}di \leq L,$$

$$\int_{i} a_{i}^{*}q_{i}^{*}(m_{i}, w^{*}) di \leq L^{*},$$

$$\int_{i} p_{i}(m_{i}, w^{*}) m_{i}di \leq 0$$

$$\max_{w^*, m, q} U(c)$$

$$\int_{i} a_{i}q_{i}di \leq L,$$

$$\int_{i} a_{i}^{*}q_{i}^{*}(m_{i}, w^{*}) di \leq L^{*},$$

$$\int_{i} p_{i}(m_{i}, w^{*}) m_{i}di \leq 0$$

$$\max_{w^*, m, q} U(m+q)$$

$$\int_{i} a_{i}q_{i}di \leq L,$$

$$\int_{i} a_{i}^{*}q_{i}^{*}(m_{i}, w^{*}) di \leq L^{*},$$

$$\int_{i} p_{i}(m_{i}, w^{*}) m_{i}di \leq 0$$

Three Steps

- I. Decompose
 - (i) inner problem m, q
 - (ii) outer problem w^*
- 2. Concavity of inner problem
 Lagrangian Theorems (Luenberger 69)
- 3. Additive separability implies... (Everett 63) one infinite-dimensional problem many low-dimensional problems

Inner Problem

$$\max_{w^*,m,q} U(m+q)$$

$$\int_{i} a_{i}q_{i}di \leq L,$$

$$\int_{i} a_{i}^{*}q_{i}^{*}(m_{i}, w^{*}) di \leq L^{*},$$

$$\int_{i} p_{i}(m_{i}, w^{*}) m_{i}di \leq 0$$

Inner Problem

$$\max_{m,q} U(m+q)$$

$$\int_{i} a_{i}q_{i}di \leq L,$$

$$\int_{i} a_{i}^{*}q_{i}^{*}(m_{i}, w^{*}) di \leq L^{*},$$

$$\int_{i} p_{i}(m_{i}, w^{*}) m_{i}di \leq 0$$

Lagrangian

$$\mathcal{L}\left(m,q,\lambda,\lambda^*,\mu;w^*\right) \equiv \int \mathcal{L}_i\left(m_i,q_i,\lambda,\lambda^*,\mu;w^*\right) di$$

$$\mathcal{L}_i(m_i, q_i, \lambda, \lambda^*, \mu; w^*) \equiv u_i(q_i + m_i) - \lambda a_i q_i$$
$$-\lambda^* a_i^* q_i^*(m_i, w^*) - \mu p_i(m_i, w^*) m_i$$

Lagrangian Theorem

ullet (m^0,q^0) solves inner problem iff

$$\max_{m,q} \mathcal{L}(m,q,\lambda,\lambda^*,\mu;w^*)$$

for some $(\lambda, \lambda^*, \mu)$ and

$$\lambda \geq 0$$
, $\int_{i} a_{i}q_{i}^{0}di \leq L$, with complementary slackness, $\lambda^{*} \geq 0$, $\int_{i} a_{i}^{*}q_{i}^{*}\left(m_{i}^{0}, w^{*}\right)di \leq L^{*}$, with complementary slackness, $\mu \geq 0$, $\int_{i} p_{i}(m_{i}, w^{*})m_{i}^{0}di \leq 0$, with complementary slackness.

Cell Structure

ullet $\left(m^0,q^0
ight)$ solves inner problem iff $\left(m^0_i,q^0_i
ight)$ solves

$$\max_{m_i,q_i} \mathcal{L}_i(m_i,q_i,\lambda,\lambda^*,\mu;w^*)$$

for some $(\lambda, \lambda^*, \mu)$ and

$$\lambda \geq 0$$
, $\int_{i} a_{i}q_{i}^{0}di \leq L$, with complementary slackness, $\lambda^{*} \geq 0$, $\int_{i} a_{i}^{*}q_{i}^{*}\left(m_{i}^{0}, w^{*}\right)di \leq L^{*}$, with complementary slackness, $\mu \geq 0$, $\int_{i} p_{i}(m_{i}, w^{*})m_{i}^{0}di \leq 0$, with complementary slackness.

High-School Math: Optimal Output

High-School Math: Optimal Output

High-School Math: Optimal Net Imports

High-School Math: Optimal Net Imports

Wedges

Wedges at planning problem's solution:

$$\tau_i^0 \equiv \frac{u_i'\left(c_i^0\right)}{p_i^0} - 1$$

Previous analysis implies:

$$\tau_{i}^{0} = \begin{cases} \frac{\sigma^{*}-1}{\sigma^{*}}\mu^{0} - 1, & \text{if } \frac{a_{i}}{a_{i}^{*}} < A^{I} \equiv \frac{\sigma^{*}-1}{\sigma^{*}}\frac{\mu^{0}w^{0*}}{\lambda^{0}}; \\ \frac{\lambda^{0}a_{i}}{w^{0*}a_{i}^{*}} - 1, & \text{if } A^{I} < \frac{a_{i}}{a_{i}^{*}} \le A^{II} \equiv \frac{\mu^{0}w^{0*}+\lambda^{0*}}{\lambda^{0}}; \\ \frac{\lambda^{0*}}{w^{0*}} + \mu^{0} - 1, & \text{if } \frac{a_{i}}{a_{i}^{*}} > A^{II}. \end{cases}$$

• Any solution to Home's planning problem can be implemented by $t^0=\tau^0$

• Conversely, if t^0 solves the domestic's government problem, then the associated allocation and prices must solve Home's planning problem and satisfy:

$$t_i^0 = \frac{u_i'(c_i^0)}{\theta p_i^0} - 1 \qquad \left(1 + t_i^0 = \frac{1 + \tau_i^0}{\theta}\right)$$

(a) Export taxes

(b) Export subsidies and import tariffs

Intuition

- When $a_i/a_i^* < A^I$, Home has incentives to charge constant monopoly markup
- When $a_i/a_i^* \in [A^I, A^{II}]$, there is *limit pricing*: foreign firms are exactly indifferent between producing and not producing those goods
- When $a_i/a_i^* > A^{II}$, uniform tariff is optimal: Home cannot manipulate relative prices

Industrial Policy Revisited

Industrial Policy Revisited

- At the optimal policy, governments protects a subset of less competitive industries
 - but targeted/non-uniform subsidies do not stem from a greater desire to expand production...
 - ... they reflect tighter constraints on ability to exploit monopoly power by contracting exports

Industrial Policy Revisited

- At the optimal policy, governments protects a subset of less competitive industries
 - but targeted/non-uniform subsidies do not stem from a greater desire to expand production...
 - ... they reflect tighter constraints on ability to exploit monopoly power by contracting exports
- Countries have more room to manipulate world prices in their comparative-advantage sectors

Robustness

- Similar qualitative results hold in more general environments:
 - Iceberg trade costs
 - Separable, but non-CES utility
- Additional considerations:
 - Trade costs imply that zero imports are optimal for some goods at solution of Home's planning problem
 - Non-CES utility leads to variable markups for goods with strongest CA

Applications

Agricultural Example

- Home = U.S. Foreign = R.O.W.
- Each good corresponds to 1 of 39 crops
- Land is the only factor of production
 - Productivity from FAO's GAEZ project
 - Land endowments match acreage devoted to 39 crops in U.S. and R.O.W.
- Symmetric CES utility with σ =2.9 as in BW (06)

	No Trade Costs		Trade Costs	
	U.S.	R.O.W.	U.S.	R.O.W.
Laissez-Faire	39.15%	3.02%	5.02%	0.25%
Uniform Tariff	42.60%	1.41%	5.44%	0.16%
Optimal Taxes	46.92%	0.12%	5.71%	0.04%

	No Trade Costs		Trade Costs	
	U.S.	R.O.W.	U.S.	R.O.W.
Laissez-Faire	39.15%	3.02%	5.02%	0.25%
Uniform Tariff	42.60%	1.41%	5.44%	0.16%
Optimal Taxes	46.92%	0.12%	5.71%	0.04%

	No Trade Costs		Trade Costs	
	U.S.	R.O.W.	U.S.	R.O.W.
Laissez-Faire	39.15%	3.02%	5.02%	0.25%
Uniform Tariff	42.60%	1.41%	5.44%	0.16%
Optimal Taxes	46.92%	0.12%	5.71%	0.04%

	No Trade Costs		Trade Costs	
	U.S.	R.O.W.	U.S.	R.O.W.
Laissez-Faire	39.15%	3.02%	5.02%	0.25%
Uniform Tariff	42.60%	1.41%	5.44%	0.16%
Optimal Taxes	46.92%	0.12%	5.71%	0.04%

	No Trade Costs		Trade Costs	
	U.S.	R.O.W.	U.S.	R.O.W.
Laissez-Faire	39.15%	3.02%	5.02%	0.25%
Uniform Tariff	42.60%	1.41%	5.44%	0.16%
Optimal Taxes	46.92%	0.12%	5.71%	0.04%

Manufacturing Example

- Home=U.S. and Foreign=R.O.W.
- 400 goods. Labor is the only factor of production
 - Labor endowments set to match population in U.S. and R.O.W
- Productivity is distributed Fréchet:

$$a_i = \left(\frac{i}{T}\right)^{\frac{1}{\theta}}$$
 and $a_i^* = \left(\frac{1-i}{T^*}\right)^{\frac{1}{\theta}}$

- θ =5 set to match average trade elasticity in HM (13).
- T and T* set to match U.S. share of world GDP.
- Symmetric CES utility with σ =2.5 as in BW (06)

	No Trade Costs		Trade Costs	
	U.S.	R.O.W.	U.S.	R.O.W.
Laissez-Faire	27.70%	6.59%	6.18%	2.02%
Uniform Tariff	30.09%	4.87%	7.31%	1.31%
Optimal Taxes	36.85%	0.93%	9.21%	0.36%

	No Trade Costs		Trade Costs	
	U.S.	R.O.W.	U.S.	R.O.W.
Laissez-Faire	27.70%	6.59%	6.18%	2.02%
Uniform Tariff	30.09%	4.87%	7.31%	1.31%
Optimal Taxes	36.85%	0.93%	9.21%	0.36%

	No Trade Costs		Trade Costs	
	U.S.	R.O.W.	U.S.	R.O.W.
Laissez-Faire	27.70%	6.59%	6.18%	2.02%
Uniform Tariff	30.09%	4.87%	7.31%	1.31%
Optimal Taxes	36.85%	0.93%	9.21%	0.36%

	No Trade Costs		Trade Costs	
	U.S.	R.O.W.	U.S.	R.O.W.
Laissez-Faire	27.70%	6.59%	6.18%	2.02%
Uniform Tariff	30.09%	4.87%	7.31%	1.31%
Optimal Taxes	36.85%	0.93%	9.21%	0.36%

	No Trade Costs		Trade Costs	
	U.S.	R.O.W.	U.S.	R.O.W.
Laissez-Faire	27.70%	6.59%	6.18%	2.02%
Uniform Tariff	30.09%	4.87%	7.31%	1.31%
Optimal Taxes	36.85%	0.93%	9.21%	0.36%

Concluding Remarks

- First stab at how CA affects optimal trade policy
- Simple economics: countries have more room to manipulate prices in their CA sectors
- New perspective on targeted industrial policy
 - Larger subsidies are not about desire to expand, but constraint on ability to contract

Concluding Remarks

- More applications of our techniques
- Results suggest design and gains from trade policy depends on micro-level heterogeneity