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Abstract

This addendum provides the proofs of all propositions in Section 6 of our main paper.



1 Coordination Costs

1.1 Assumptions

Compared to the model described in Section 2 of our main paper, we assume that trade in intermediate

goods is subject to coordination costs τ ∈ (0, 1). If the production of a unit u of the final good in

a given country involves n international transactions– i.e. export and import at stages 0 < Su1 ≤
Su2 ≤ ... ≤ Sun < S– then the final good is defect free with probability (1− τ)n ∈ (0, 1). The case

considered in Section 2 corresponds to the limit as coordination costs τ go to zero. Upon completion

of each unit of the final good, we assume that consumers perfectly observe whether the unit is defect

free or not. A unit of the final good with a defect has zero price. Like in Section 2, we assume that

the (defect-free) final good is freely traded and we use it as our numeraire. Finally, we assume that

firms perfectly observe all international transactions so that two units of the same intermediate good

s may, in principle, command two different prices if their production requires a different number of

international transactions.

1.2 Pattern of International Specialization

Let cu (s) denote the country in which stage s has been performed for the production of a given unit

u. Using this notation, the pattern of international specialization can be characterized as follows.

Proposition 1 [Coordination Costs] In any competitive equilibrium, the allocation of stages to
countries, cu : S → C, is increasing in s for all u ∈

[
0,
∑

c∈C Qc (S)
]
.

Proof. We proceed in two steps.

Step 1: In any competitive equilibrium, cu is a step-function for all u ∈
[
0,
∑

c∈C Qc (S)
]
.

We proceed by contradiction. Suppose that cu is not a step-function. In this case, the number

of international transactions associated with the production of that particular unit must be infinite,

which is incompatible with zero profits.

Step 2: In any competitive equilibrium, cu is increasing in s for all u ∈
[
0,
∑

c∈C Qc (S)
]
.

Let us start by computing the expected cost of producing a given unit u. By Step 1, we know that

that there must be a sequence of countries {cu1 , ..., cun} and stages {Su1 , ..., Sun} such that: (i) cuk 6= cuk+1

for all k = 1, .., n − 1; (ii) Su0 = 0 < Su1 < ... < Sun−1 < Sun = S; and (iii) cu (s) = cuk for all

s ∈
(
Suk−1, S

u
k

)
. Let puk denote the cost of producing that unit up to stage S

u
k . By the same logic as in

the proof of Lemma 2 of our main paper, we know that {pu1 , ..., pun} satisfies

puk = e
λcu
k
Nu
k puk−1 +

(
e
λcu
k
Nu
k − 1

) (
wcuk/λc

u
k

)
,

where Nu
k ≡ Suk − Suk−1. Using the previous expression and iterating, it is then easy to check that the

expected cost of producing unit u is given by

pun =
{∑n

k=1

[∏
k′>k e

λcu
k′
Nu
k′
] (
e
λcu
k
Nu
k − 1

) (
wcuk/λc

u
k

)}/
(1− τ)n .
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The rest of our proof proceeds by contradiction. Suppose that cu is not weakly increasing. Then there

must exist k0 ∈ {1, ..., n− 1} and c > c′ such that cuk0 = c and cuk0+1 = c′. Suppose, in addition, that

Nu
k0

= Suk0 − S
u
k0−1 ≤ Suk0+1 − Suk0 = Nu

k0+1. The other case can be treated in a similar manner. Now

consider an alternative allocation of stages to countries, c̃u, in which country c′ produces all stages

from Suk0−1 to S
u
k0
and c produces all stages from Suk0+1 −Nu

k0
to Suk0+1. The rest of the allocation of

stages to countries is the same as in cu. Let p̃un denote the expect unit cost of the final good associated

with c̃u:

p̃un =
{∑k0−1

k=1

[(∏
k′>k e

λcu
k′
Nu
k′
)](

e
λcu
k
Nu
k − 1

) (
wcuk/λc

u
k

)
+
[
e
λcNu

k0

(∏
k′>k0+1 e

λcu
k′
Nu
k′
)](

e
λc′N

u
k0+1 − 1

)
(wc′/λc′)

+
[∏

k′>k0+1 e
λcu
k′
Nu
k′
] (
e
λcNu

k0 − 1
)

(wc/λc)

+
∑n

k>k0+1

[∏
k′>k e

λcu
k′
Nu
k′
] (
e
λcu
k
Nu
k − 1

) (
wcuk/λc

u
k

)}/
(1− τ)ñ ,

where, by construction, we must have ñ ≤ n. Under perfect competition, we know that unit costs of

production must be minimized. Thus we must have p̃un ≥ pun. Since ñ ≤ n, this further requires[
e
λcNu

k0

(∏
k′>k0+1 e

λcu
k′
Nu
k′
)](

e
λc′N

u
k0+1 − 1

)
(wc′/λc′) +

[∏
k′>k0+1 e

λcu
k′
Nu
k′
] (
e
λcNu

k0 − 1
)

(wc/λc)

≥
[∏

k′>k0
e
λcu
k′
Nu
k′
] (
e
λcNu

k0 − 1
)

(wc/λc) +
[∏

k′>k0+1 e
λuck′

Nu
k′
] (
e
λc′N

u
k0+1 − 1

)
(wc′/λc′) ,

which simplifies into wc′ ≥ (λc′/λc)wc > wc. But if the previous inequality holds, then starting

from the allocation cu, the cost of producing unit u could be strictly lowered by performing all tasks in(
Suk0−1, S

u
k0+1

)
in country c: it reduces the rate of mistakes, it reduces wages, and it reduces the number

of international transactions. Since unit costs must be minimized in any competitive equilibrium, we

have established, by contradiction, that cu is increasing in s for all u ∈
[
0,
∑

c∈C Qc (S)
]
.

2 Simultaneous versus Sequential Production

2.1 Assumptions

Compared to the model described in Section 2 of our main paper, we assume that there are multiple

supply chains, indexed by n ∈ N ≡ {1, ..., N}, each associated with the production of a part. We allow
supply chains to differ in terms of their complexity, Sn, but we require failure rates to be constant

across chains and given by λc. Parts are ordered such that Sn is weakly increasing in n. Parts are

assembled into a unique final good using labor. Formally, the output Yc of the final good in country c

is given by

Yc = F
(
X1
c , ..., X

N
c , Ac

)
,

where F (·) is a production function with constant returns to scale, Xn
c is the amount of part n used

in the production of the final good in country c, and Ac ≤ Lc corresponds to the amount of labor used
for assembly in country c.
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2.2 Pattern of International Specialization

In this generalized version of our model, the pattern of international specialization still takes a very

simple form, as the next proposition demonstrates.

Proposition 1 [Simultaneous Production] In any free trade equilibrium, there exists a sequence
of stages S0 ≡ 0 ≤ S1 ≤ ... ≤ SC = SN such that for all n ∈ N , s ∈ (0, Sn], and c ∈ C, Qnc (s) > 0 if

and only if s ∈ (Sc−1, Sc]. Furthermore, if country c is engaged in parts production, Ac < Lc, then all

countries c′ > c are only involved in parts production, Ac′ = 0.

Proof. We proceed in two steps.

Step 1: In any free trade equilibrium, if Ac < Lc, then Ac′ = 0 for all c′ > c.

We proceed by contradiction. Suppose that there exist c′ > c such that Ac′ > 0 and Ac < Lc. Since

the production function for the final good, F , is identical across countries, zero profits in the final good

sector and Ac′ > 0 require wc ≥ wc′ . Since λc′ < λc, the unit cost of production of any intermediate

good in any chain is then lower in country c′ than in country c, thereby contradicting Ac < Lc.

Step 2: In any free trade equilibrium, there exists a sequence of stages S0 ≡ 0 ≤ S1 ≤ ... ≤ SC = S

such that for all n ∈ N , s ∈ (0, Sn], and c ∈ C, Qnc (s) > 0 if and only if s ∈ (Sc−1, Sc].

Using the same argument as in Proposition 1 of our main paper, one can easily show that for all

n ∈ N , there exist Sn0 ≡ 0 ≤ Sn1 ≤ ... ≤ SnC = Sn such that for all s ∈ (0, Sn] and c ∈ C, Qnc (s) > 0

if and only if s ∈ (Snc−1, S
n
c ]. Compared to our main paper, the only difference is that some countries

might not participate in chain n. Let us first show that (i) for all n, n′ ∈ N and c ∈ C, if Snc < Sn

and Sn
′

c < Sn
′
, then Snc = Sn

′
c . We proceed by contradiction. Suppose that there exist n, n

′, c such

that Snc < Sn, Sn
′

c < Sn
′
and Snc 6= Sn

′
c . Let c1 ≡ inf

{
c ∈ C|Snc 6= Sn

′
c

}
. Suppose, without loss of

generality, that Snc1 < Sn
′

c1 . Let c2 ≡ inf
{
c′ > c1|Snc′ > Snc1

}
. Since Snc1 < Sn, c2 is well-defined. Let

ε ≡ min
(
Sn
′

c1 − S
n
c1 , S

n
c2 − S

n
c1

)
. By construction, c1 produces all intermediate goods s ∈ (Snc1 , S

n
c1 + ε]

in chain n′, whereas c2 produces all intermediate goods s ∈ (Snc1 , S
n
c1 + ε] in chain n. Thus for all ε ∈

(0, ε], the zero-profit condition– condition (2) in our main paper– implies

pn
′ (
Snc1 + ε

)
= eλc1εpn

′ (
Snc1
)

+
(
eλc1ε − 1

)
(wc1/λc1) ,

pn
(
Snc1 + ε

)
= eλc2εpn

(
Snc1
)

+
(
eλc2ε − 1

)
(wc2/λc2) ,

pn
′ (
Snc1 + ε

)
≤ eλc2εpn

′ (
Snc1
)

+
(
eλc2ε − 1

)
(wc2/λc2) ,

pn
(
Snc1 + ε

)
≤ eλc1εpn

(
Snc1
)

+
(
eλc1ε − 1

)
(wc1/λc1) ,

where pn (·) and pn′ (·) represent the price of intermediate goods in chains n and n′, respectively. By
definition of c1, we know that pn

(
Snc1
)

= pn
′ (
Snc1
)
≡ pc. Thus the four previous conditions imply

eλc1ε (pc + wc1/λc1)− eλc2ε (pc + wc2/λc2) + (wc2/λc2)− (wc1/λc1) = 0.

Since the previous equation holds for all ε ∈ (0, ε], λc1 6= λc2 implies pc + wc1/λc1 = pc + wc2/λc2 = 0,
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which contradicts wc1 ,wc2 > 0. Using the exact same argument, one can also show that (ii) for all n,

n′ ∈ N and c ∈ C, if Snc = Sn and Sn
′

c < Sn
′
, then Sn

′
c ≥ Sn. To conclude, let Sc ≡ maxn∈N {Snc }.

Given the definition of Snc and properties (i) and (ii), for all n ∈ N , s ∈ (0, Sn], and c ∈ C, Qnc (s) > 0

if and only if s ∈ (Sc−1, Sc]. Our proposition follows directly from Steps 1 and 2.

3 Imperfect Observability of Mistakes

3.1 Assumptions

Like in Section 2 of our main paper, mistakes occur at a constant rate λc in country c. When a mistake

occurs on a unit u of intermediate good at stage s, any intermediate good produced after stage s using

unit u is also defective and the associated final good is worthless. Our only point of departure from our

benchmark model is that mistakes are imperfectly observed. Specifically, we assume that if a mistake

occurs in the production of intermediate good s, it can only be observed at that stage with probability

βc ∈ [0, 1], where country c is the country in which intermediate good s is produced. The location

in which different stages associated with a given unit have been performed is public information. All

markets are perfectly competitive and all goods are freely traded. Thus different units of a given

intermediate good s produced at different locations may command a different price p (s, θ) depending

on their “quality,” i.e., the commonly known probability θ ∈ [0, 1] that they are are defect free. Of

course, units which are known to have a defect have zero price, p (s, 0) = 0.

In this environment, if a firm from country c combines q [s, θ (s)] units of intermediate good s with

quality θ (s) with q [s, θ (s)] ds units of labor, its output at stage s+ ds is given by

q [s+ ds, θ (s+ ds)] = (1− βcλcds) q [s, θ (s)] , (1)

where the quality at stage s+ ds can be computed using Bayes’rule:

θ (s+ ds) =
1− λcds

1− βcλcds
θ (s) .

Since ds is infinitesimal, a first-order Taylor expansion implies

θ (s+ ds) = [1− (1− βc)λcds] θ (s) . (2)

For simplicity, we restrict ourselves to “symmetric”free trade equilibria in which all units of the final

good are produced in the same manner. Thus each stage of production is performed in only one

country, which implies that the quality θ (s) at a given stage s is the same for all units in equilibrium.

3.2 Pattern of International Specialization

Before deriving the pattern of international specialization in this more general environment, note that

the zero-profit condition in country c requires

p [s+ ds, θ (s+ ds)] q [s+ ds, θ (s+ ds)] ≤ p [s, θ (s)] q [s, θ (s)] + wcq [s, θ (s)] ds,

4



with equality if Qc (s′) > 0 for all s′ ∈ (s, s + ds]. Using equations (1) and (2), we can rearrange the

previous condition as

p [s+ ds, [1− (1− βc)λcds] θ (s)] ≤ p [s, θ (s)] (1 + βcλcds) + wcds, (3)

with equality if Qc (s′) > 0 for all s′ ∈ (s, s+ ds]. Building on this new zero profit condition, the next

proposition demonstrates how both βc and λc shape the pattern of international specialization.

Proposition 1 [Imperfect Observability of Mistakes] Suppose that βcλc is strictly decreasing
in c and λc is weakly decreasing in c. Then in any symmetric free trade equilibrium, there exists a

sequence of stages S0 ≡ 0 < S1 < ... < SC = S such that for all s ∈ S and c ∈ C, Qc (s) > 0 if and

only if s ∈ (Sc−1, Sc].

Proof. In any symmetric free trade equilibrium, each stage of production is performed in the same
country for all units of the final good. Let c (s) ∈ C denote the country performing stage s in equilib-
rium. Similarly, let w∗ (s) ≡ w∗c(s), β

∗ (s) ≡ βc(s), and λ
∗ (s) ≡ λc(s) denote the wage, the probability

of observing a mistake, and the rate of mistakes, respectively, in the country performing stage s in

equilibrium. Note that w∗(s), β∗ (s), and λ∗ (s) are measurable since if a firm produces intermediate

good s, then it necessarily produces a positive measure of intermediate goods around that stage.

Our proof proceeds in three steps.

Step 1: For any pair of stages s1 > s2, if the quality at stage s2 is equal to θ (s2), then the quality

θ (s1) at stage s1 satisfies

θ (s1) = e
−
∫ s1
s2

(1−β∗(s))λ∗(s)ds
2 θ (s2) .

This directly follows from equation (2) and the definitions of β∗ (s) and λ∗ (s).

Step 2: For any stage s0, if the quality at stage s0 is equal to θ (s0), then p [s0, θ (s0)] satisfies

p [s0, θ (s0)] = e
−
∫ S
s0
λ∗(s)ds

θ (s0)−W (s0) ,

where W (s0) > 0 is strictly decreasing in s0.

By Step 1 we know that if θ (s0) is the quality at stage s0, then for any stage s > s0, quality is

given by

θ (s) = e
−
∫ s
s0

(1−β∗(s))λ∗(s)ds
θ (s0) . (4)

For all s ≥ s0, with a slight abuse of notation, let p (s) ≡ p [s, θ (s)]. Using condition (3), one can show

that
dp (s)

ds
= β (s)λ (s) p (s) + w∗ (s) , for all s ∈ [s0, S] . (5)

By choice of numeraire, we know that p [S, 1] = 1. By non-arbitrage, if θ (S) is the quality at stage S,

then

p (S) = θ (S) = e
−
∫ S
s0

(1−β∗(s))λ∗(s)ds
θ (s0) , (6)

where the second equality follows from equation (4) evaluated at s = S. Solving the differential
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equation (5) with terminal condition (6), we obtain at s = s0

p (s0) = e
−
∫ S
s0
λ∗(s)ds

θ (s0)−W (s0) , (7)

where

W (s0) =

∫ S

s0

e
−
∫ s
s0
β∗(s′)λ∗(s′)ds′

w∗ (s) ds > 0. (8)

Differentiating we get

W ′ (s0) = −w∗ (s0) + β∗ (s0)λ∗ (s0)

∫ S

s0

e
−
∫ s
s0
β∗(s′)λ∗(s′)ds′

w∗ (s) ds,

which can be rearranged as

W ′ (s0) = β∗ (s0)λ∗ (s0)

{
− w∗ (s0)

β∗ (s0)λ∗ (s0)
+

∫ S

s0

e
−
∫ s
s0
β∗(s′)λ∗(s′)ds′

w∗ (s) ds

}
.

Since along the optimal path the expected unit cost of production is minimized, we must have, in

particular, ∫ S

s0

e
−
∫ s
s0
β∗(s′)λ∗(s′)ds′

w∗ (s) ds ≤ w∗ (s0)

∫ S

s0

e−β
∗(s0)λ∗(s0)(s−s0)ds

where

w∗ (s0)

∫ S

s0

e−β
∗(s0)λ∗(s0)(s−s0)ds < w∗ (s0)

∫ ∞
s0

e−β
∗(s0)λ∗(s0)(s−s0)ds =

w∗ (s0)

β∗ (s0)λ∗ (s0)
.

Combining the three previous expressions, we obtain W ′ (s0) < 0.

Step 3: If c2 > c1 and Qc1 (s1) > 0, then Qc2 (s2) = 0 for all s2 < s1.

We proceed by contradiction. Consider a symmetric free trade equilibrium with two countries,

c2 > c1, and two stages, s1 > s2 > 0, such that Qc1 (s1) > 0 and Qc2 (s2) > 0. Country c1 produces

all intermediate goods s ∈ ∆ (s1), whereas country c2 produces all intermediate goods s ∈ ∆ (s2). Let

θ∗ (s) and p∗ (s) ≡ p [s, θ∗ (s)] denote the quality and the price of intermediate good s, respectively.

Condition (3) implies

p∗ (s1) =
(
1 + βc1λc1ds

)
p∗ (s1 − ds) + wc1ds,

p∗ (s2) =
(
1 + βc2λc2ds

)
p∗ (s2 − ds) + wc2ds,

p
{
s1,
[
1−

(
1− βc2

)
λc2ds

]
θ∗1
}
≤

(
1 + βc2λc2ds

)
p∗ (s1 − ds) + wc2ds,

p
{
s2,
[
1−

(
1− βc1

)
λc1ds

]
θ∗2
}
≤

(
1 + βc1λc1ds

)
p∗ (s2 − ds) + wc1ds,
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with θ∗1 ≡ θ∗ (s1 − ds) and θ∗2 ≡ θ∗ (s2 − ds). The previous conditions imply

p
{
s1,
[
1−

(
1− βc2

)
λc2ds

]
θ∗1
}

+ p
{
s2,
[
1−

(
1− βc1

)
λc1ds

]
θ∗2
}

≤ p∗ (s1) + p∗ (s2) +
(
βc2λc2ds− βc1λc1ds

)
[p∗ (s1 − ds)− p∗ (s2 − ds)] .

By Step 2, we know that p [s, θ (s)] must be differentiable in θ (s). Since ds is infinitesimal, a first-order

Taylor approximation of the left handside leads to

p
{
s1,
[
1−

(
1− βc2

)
λc2ds

]
θ∗1
}

+ p
{
s2,
[
1−

(
1− βc1

)
λc1ds

]
θ∗2
}

= p∗ (s1)−
[(

1− βc2
)
λc2 −

(
1− βc1

)
λc1
] ∂p (s1, θ

∗
1)

∂θ
θ∗1ds

+ p∗ (s2)−
[(

1− βc1
)
λc1 −

(
1− βc2

)
λc2
] ∂p (s2, θ

∗
2)

∂θ
θ∗2ds.

Combining the two previous expressions we obtain

[(
1− βc2

)
λc2 −

(
1− βc1

)
λc1
] [
θ∗2
∂p (s2, θ

∗
2)

∂θ
− θ∗1

∂p (s1, θ
∗
1)

∂θ

]
(9)

≤
(
βc2λc2 − βc1λc1

)
[p∗ (s1 − ds)− p∗ (s2 − ds)] .

By Step 2, we know that

(
βc2λc2 − βc1λc1

)
[p∗ (s1 − ds)− p∗ (s2 − ds)]

=
(
βc2λc2 − βc1λc1

) [
e
−
∫ S
s1−dsλ

∗(s)ds
θ∗1 − e

−
∫ S
s2−dsλ

∗(s)ds
θ∗2 −W (s1) +W (s2)

]
.

Since W (·) is strictly decreasing, s1 > s2, and βc2λc2 − βc1λc1 < 0, the previous equality implies

(
βc2λc2 − βc1λc1

)
[p∗ (s1 − ds)− p∗ (s2 − ds)]

<
(
βc2λc2 − βc1λc1

) [
e
−
∫ S
s1−dsλ

∗(s)ds
θ∗1 − e

−
∫ S
s2−dsλ

∗(s)ds
θ∗2

]
.

Using Step 1, we can rearrange the previous expression as

(
βc2λc2 − βc1λc1

)
[p∗ (s1 − ds)− p∗ (s2 − ds)] (10)

<
(
βc2λc2 − βc1λc1

)
θ∗2e
−
∫ S
s2−dsλ

∗(s)ds

[
e

∫ s1−ds
s2−ds β

∗(s)λ∗(s)ds − 1

]
.

By Steps 1 and 2, we also know that

θ∗2pθ (s2, θ
∗
2)− θ∗1pθ (s1, θ

∗
1) = θ∗2e

−
∫ S
s2
λ∗(s)ds

(
1− e

∫ s1
s2
β∗(s)λ∗(s)ds

)
. (11)

Combining inequalities (9) and (10) with equation (11) and using the fact that ds is infinitesimal, we
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obtain after simplifications

(
1− βc1

)
λc1 −

(
1− βc2

)
λc2 <

(
βc2λc2 − βc1λc1

)
,

which contradicts λc1 ≥ λc2 . The final part of the proof is identical to the argument in the proof of

Proposition 1 in our main paper and omitted.

4 General Production Functions

4.1 Assumptions

Compared to the model described in Section 2 of our main paper, we assume that, in any country c

and at any stage s, the sequential production process corresponds to the limit, when δs goes to zero,

of the following CES production function:

q(s+ δs) = e−λc(s)δs
{

(1− δs)q(s)
σ−1
σ + δs [l(s)/δs]

σ−1
σ

} σ
σ−1

, (12)

where σ ≥ 0 denotes the elasticity of substitution at all stages of production and λc (s) ∈ R is

a measure of country c’s total factor productivity at stage s. In this environment, the first-order

conditions associated with profit maximization of a firm in country c are given by

p(s+ δs)e−λc(s)δs
{

(1− δs)q(s)
σ−1
σ + δs [l(s)/δs]

σ−1
σ

} 1
σ−1

(1− δs)q(s)−
1
σ ≤ p(s),

p(s+ δs)e−λc(s)∆s
{

(1− δs)l(s)
σ−1
σ + δs [l(s)/δs]

σ−1
σ

}( l(s)
δs

)− 1
σ

≤ wc,

where the two previous inequalities hold with equality if q (s), l(s) > 0. In this situation, optimal labor

demand at stage s is given by

l(s) = q (s) δs

(
p(s)

wc(1− δs)

)σ
. (13)

Combining equations (12) and (13), we obtain

q(s+ δs) = e−λc(s)δsq(s)

(
1− δs+ δs

(
wc(1− δs)

p(s)

)1−σ
) σ

σ−1

.

Using a first-order Taylor approximation when δs goes to ds infinitesimal, this can be rearranged as

q(s+ ds) =

{
1−

[
λc (s)− σ

1− σ

(
1− (wc/p(s))

1−σ
)]
ds

}
q(s), (14)

as argued in Section 6.4 of our main paper.
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4.2 Pattern of International Specialization

Before deriving the pattern of international specialization in this more general environment, note that

the zero-profit condition in country c requires

p(s+ ds) ≤ 1

Qc(s+ ds)
[Qc (s) p(s) + wcLc(s)] ,

with equality if Qc (s′) > 0 for all s′ ∈ (s, s + ds]. Combining the previous condition with equations

(13) and (14) and using again a first-order Taylor approximation when δs goes to ds infinitesimal, we

get

p(s+ ds) ≤
{

1 +

[
λc (s)− σ

1− σ

(
1−

(
wc
p(s)

)1−σ
)]

ds

}
p(s) + wcds

(
p(s)

wc

)σ
, (15)

with equality if Qc (s′) > 0 for all s′ ∈ (s, s + ds]. Building on this new zero-profit condition, we

now provide suffi cient conditions under which the pattern of international specialization can still be

described as in Proposition 1 of our main paper.

Proposition 1 [General Production Function] Suppose that σ < 1 and that λc(s) is strictly

decreasing in c, differentiable in s with either λ′c (s) > 0 or λ′c (s) = 0 for all s, and weakly submodular

in (s, c). Then in any free trade equilibrium, there exists a sequence of stages S0 ≡ 0 < S1 < ... <

SC = S such that for all s ∈ S and c ∈ C, Qc (s) > 0 if and only if s ∈ (Sc−1, Sc].

Proof. Recall that if a firm in country c produces intermediate good s, then it necessarily produces a

measure ∆ > 0 of intermediate goods around that stage. Specifically, there exists an s∆ < s ≤ s∆ + ∆

such that Qc (s′) > 0 for all s′ ∈ (s∆, s∆ + ∆]. Throughout this proof we use the same notation as in

the proof of Proposition 1 of our main paper and define ∆ (s) ≡ (s∆, s∆ + ∆), for some s∆ satisfying

the previous conditions. The local properties that follow do not depend on which exact s∆ we choose.

We proceed in four steps.

Step 1: p (·) is continuous.

Consider a stage s0 ∈ (0, S]. Good market clearing conditions require at least one country, call it

c0, to produce intermediate good s0. By assumption, Qc0 (s) > 0 for all s ∈ ∆ (s0). By condition (15),

we therefore have, for all s ∈ ∆ (s0),

p (s) =

{
1 +

[
λc0 (s− ds)− σ

1− σ

(
1−

(
wc0

p(s− ds)

)1−σ
)]

ds

}
p(s− ds) + wc0ds

(
p(s− ds)

wc

)σ
,

which implies
dp(s)

ds
=

{
λc0 (s)− σ

1− σ +
1

1− σ

(
wc0
p(s)

)1−σ
}
p(s). (16)

Thus p (·) is piecewise differentiable over (0, S], and in turn, continuous almost everywhere. To conclude

let us show that p cannot have any jumps. We proceed by contradiction. Suppose that there exists

s0 ∈ (0, S) such that p
(
s+

0

)
6= p

(
s−0
)
. Then there must exist c0 6= c1 such that firms in country c0
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produce intermediate good s0 and sell it to firms in country c1. If p
(
s+

0

)
> p

(
s−0
)
, then

p
(
s+

0

)
>

{
1 +

[
λc0 (s0 − ds)−

σ

1− σ

(
1−

(
wc0

p(s0 − ds)

)1−σ
)]

ds

}
p(s0−ds)+wc0ds

(
p(s0 − ds)

wc

)σ
,

which violates condition (15). If instead p
(
s+

0

)
< p

(
s−0
)
, then

p (s0 + ds) >

{
1 +

[
λc1
(
s−0
)
− σ

1− σ

(
1−

(
wc1
p(s−0 )

)1−σ
)]

ds

}
p(s−0 ) + wc1ds

(
p(s−0 )

wc

)σ
,

which again violates condition (15).

Step 2: If c2 > c1, then wc2 > wc1.

In a free trade equilibrium, factor market clearing conditions require country c1 to produce at least

one intermediate good in (0, S), call it s1. By assumption, this requires Qc1 (s) > 0 for all s ∈ ∆ (s1).

Thus condition (15) implies

p (s1) = p(s1 − ds) +

(
λc1 (s1)− σ

1− σ

)
p(s1 − ds)ds+

1

1− σ

(
wc1

p(s1 − ds)

)1−σ
p(s1 − ds)ds,

p (s1) ≤ p(s1 − ds) +

(
λc2 (s1)− σ

1− σ

)
p(s1 − ds)ds+

1

1− σ

(
wc2

p(s1 − ds)

)σ−1

p(s1 − ds)ds,

Since λc2 (s1) < λc1 (s1), these equation imply wc2 > wc1 .

Step 3: If s2 > s1, then p(s2) > p(s1).

We first show that if for any s0 ∈ (0, S), firms in country c0 produce all stages s ∈ (s0 − ∆, s0]

and firms in country c1 produce all stages s ∈ (s0, s0 + ∆), then dp(s−0 )/ds = dp(s+
0 )/ds. Since p (·) is

continuous, we know from equation (16) that

dp(s−0 )

ds
=

{
λc0 (s0)− σ

1− σ +
1

1− σ

(
wc0
p(s0)

)1−σ
}
p(s0),

dp(s+
0 )

ds
=

{
λc1 (s0)− σ

1− σ +
1

1− σ

(
wc1
p(s0)

)1−σ
}
p(s0).

Thus, we need to show that that

p(s0)

{
λc0 (s0)− σ

1− σ +
1

1− σ

(
wc0
p(s0)

)1−σ
}

=

{
λc1 (s0)− σ

1− σ +
1

1− σ

(
wc1
p(s0)

)1−σ
}
p(s0). (17)
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From condition (15), we know that

p (s0 + ds)−
{

1 +

[
λc1 (s0)− σ

1− σ +
1

1− σ

(
wc1
p(s0)

)1−σ
]
ds

}
p(s0)

≥ p (s0 + ds)−
{

1 +

[
λc0 (s0)− σ

1− σ +
1

1− σ

(
wc0
p(s0)

)1−σ
]
ds

}
p(s0).

and

p (s0)−
{

1 +

[
λc0 (s0 − ds)−

σ

1− σ +
1

1− σ

(
wc0

p(s0 − ds)

)1−σ
]
ds

}
p(s0 − ds)

≥ p (s0)−
{

1 +

[
λc1 (s0 − ds)−

σ

1− σ +
1

1− σ

(
wc1

p(s0 − ds)

)1−σ
]
ds

}
p(s0 − ds).

After simplifications, the two previous inequalities can be rearranged as

p(s0)

[
λc0 (s0)− σ

1− σ +
1

1− σ

(
wc0
p(s0)

)1−σ
− λc1 (s0) +

σ

1− σ −
1

1− σ

(
wc1
p(s0)

)1−σ
]

≥ 0 ≥ p(s0 − ds)
[
λc0 (s0 − ds)−

σ

1− σ +
1

1− σ

(
wc0

p(s0 − ds)

)1−σ

−λc1 (s0 − ds) +
σ

1− σ −
1

1− σ

(
wc1

p(s0 − ds)

)1−σ
]
.

Since p (·), λc0 (·) and λc1 (·) are continuous, and since ds is infinitesimal, the above chain of inequalities
yields equation (17).

Let us consider separately the two cases: (i) λ′c (s) = 0 for all s and (ii) λ′c (s) > 0 for all s. We

start with case (i). In this case we can write λc0 (s) ≡ λc0 . Let us show that if country c0 produces

all stages s ∈ (s0, s0 + ∆] for any s0 ∈ [0, S − ∆] and dp(s+
0 )/ds > 0, then for s ∈ (s0, s0 + ∆) we

have dp(s)/ds > 0 and dp((s0 + ∆)−)/ds > 0. Let xc0(s) ≡ p(s)/wc0 . Since country c0 produces all

stages s ∈ (s0, s0 + ∆], we know that p(·) is a solution of equation (16) over that interval. Thus xc0(·)
is continuously differentiable over (s0, s0 + ∆) and its derivative satisfies:

dxc0(s)

ds
=

(
λc0 −

σ

1− σ

)
xc0(s) +

1

1− σx
σ
c0(s). (18)

By equation (18), dxc(s)/ds = 0 implies that either xc(s) = 0 or xc(s) = (σ + λc(σ − 1))
1

σ−1 (if

the latter is well-defined). Yet the constant functions xc(s) = 0 or xc(s) = (σ + λc0(σ − 1))
1

σ−1 (if

the latter is well-defined) are solutions to the differential equation (18). Therefore, by the Cauchy-

Lipschitz Theorem, if a solution to this differential equation, xc(·), is such that dxc(s)/ds is zero
for some s ∈ (s0, s0 + ∆), then xc(·) must be constant over (s0, s0 + ∆). This in turn implies that

dxc0(s)/ds for s ∈ (s0, s0 + ∆) and dxc0((s0 + ∆)−)/ds all have the same sign as dxc0(s
+
0 )/ds. Since

dxc0(s)/ds = (dp(s)/ds) /wc0 , the same property holds for dp/ds.
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Let us turn to case (ii). When λ′c (s) > 0 for all s, we show here that if country c0 produces all

stages s ∈ (s0, s0 + ∆] for any s0 ∈ [0, S − ∆] and dp(s+
0 )/ds ≥ 0, then dp((s0 + ∆)−)/ds ≥ 0 and

either dp(s)/ds = 0 for all s ∈ (s0, s0 + ∆) or dp(s)/ds ≥ 0 for all s ∈ (s0, s0 + ∆) with dp(s)/ds > 0

for almost all s ∈ (s0, s0 + ∆). Again, let xc0(s) ≡ p(s)/wc0 . Since country c0 produces all stages

s ∈ (s0, s0 + ∆], we know that p(·) is a solution of equation (16) over that interval. Thus xc0(·)
is continuously differentiable over (s0, s0 + ∆) and its derivative satisfies (18). By equation (18),

dxc0(s)/ds = 0 implies that either xc0(s) = 0 or xc0(s) = [σ + λc0(s)(σ − 1)]
1

σ−1 (if the latter is well-

defined). If xc0(s) = 0, then the same argument as in case (i) implies that xc0(·) must be constant over
(s0, s0 + ∆). Since dxc0(s)/ds = (dp(s)/ds) /wc0 , this implies dp((s0 + ∆)−)/ds ≥ 0 and dp(s)/ds = 0

for all s ∈ (s0, s0 + ∆). If instead xc0(s) = [σ + λc0(s)(σ − 1)]
1

σ−1 > 0, then differentiating equation

(18), we get:

d2xc0(s)

ds2
= λ′c0(s)xc0(s) +

[
λc0 (s)− σ

1− σ

]
dxc0(s)

ds
+

σ

1− σx
σ−1
c0 (s)

dxc0(s)

ds
.

Since λ′c0(s) > 0, dxc0(s)/ds = 0 and xc0(s) > 0 imply d2xc0(s)/ds
2 > 0. Therefore, dxc0/ds can never

go from being positive to being negative: if dx(s+
0 )/ds ≥ 0, then dx((s0+∆)−)/ds ≥ 0, dx(s)/ds ≥ 0 for

all s ∈ (s0, s0+∆), and dx(s)/ds > 0 for almost all s ∈ (s0, s0+∆). Since dxc0(s)/ds = (dp(s)/ds) /wc0 ,

the same property holds for dp/ds, which establishes our claim.

To conclude, note that Step 2 and the assumption that it takes ε workers in any country to produce

good 0 imply p(0) = εw1. When ε is suffi ciently close to 0, equation (18) implies that dp(0+)/ds > 0, as

the term in xσc0(s) dominates when σ < 1. At this point, we have established that dp/ds is continuous

and never changes sign. Moreover, since dp(0+)/ds > 0, dp(s)/ds can only be zero on a set of measure

zero. Therefore, p is strictly increasing over (0, S].

Step 4: If c2 > c1 and Qc1 (s1) > 0, then Qc2 (s) = 0 for all s < s1.

We proceed by contradiction. Suppose that there exist two countries, c2 > c1, and two intermediate

goods, s1 > s2 > 0, such that c1 produces s1 and c2 produces s2. By assumption, c1 produces all

intermediate goods s ∈ ∆ (s1), whereas c2 produces all intermediate goods s ∈ ∆ (s2). Thus condition

(15) implies

p (s1) = p(s1 − ds) +

(
λc1 (s1)− σ

1− σ

)
p(s1 − ds)ds+

1

1− σ

(
wc1

p(s1 − ds)

)1−σ
p(s1 − ds)ds,

p (s2) = p(s2 − ds) +

(
λc2 (s2)− σ

1− σ

)
p(s2 − ds)ds+

1

1− σ

(
wc2

p(s2 − ds)

)1−σ
p(s2 − ds)ds,

p (s1) ≤ p(s1 − ds) +

(
λc2 (s1)− σ

1− σ

)
p(s1 − ds)ds+

1

1− σ

(
wc2

p(s1 − ds)

)1−σ
p(s1 − ds)ds,

p (s2) ≤ p(s2 − ds) +

(
λc1 (s2)− σ

1− σ

)
p(s2 − ds)ds+

1

1− σ

(
wc1

p(s2 − ds)

)1−σ
p(s2 − ds)ds.
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Combining the four previous expressions and rearranging, we get

λc2 (s2) + λc1 (s1)− λc1 (s2)− λc2 (s1) ≤
(
w1−σ
c2 − w1−σ

c1

) [
pσ−1(s1 − ds)− pσ−1(s2 − ds)

]
1− σ .

Since λ is weakly submodular and σ < 1, this implies

(
w1−σ
c2 − w1−σ

c1

) [
pσ−1(s1 − ds)− pσ−1(s2 − ds)

]
≥ 0. (19)

From Step 2 and Step 3, we know that p(s1 − ds) > p(s2 − ds) and wc2 > wc1 . Since 1 − σ > 0, this

implies w1−σ
c2 − w1−σ

c1 > 0 and pσ−1(s1 − ds) − pσ−1(s2 − ds) < 0, which contradicts Inequality (19).

The final part of the proof is identical to the argument in the proof of Proposition 1 in our main paper

and omitted.
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