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Abstract

Content-based 3D shape retrieval is an important prob-
lem in computer vision. Traditional retrieval interfaces re-
quire a 2D sketch or a manually designed 3D model as
the query, which is difficult to specify and thus not practi-
cal in real applications. With the recent advance in low-
cost 3D sensors such as Microsoft Kinect and Intel Re-
alsense, capturing depth images that carry 3D information
is fairly simple, making shape retrieval more practical and
user-friendly. In this paper, we study the problem of cross-
domain 3D shape retrieval using a single depth image from
low-cost sensors as the query to search for similar human
designed CAD models. We propose a novel method using
an ensemble of autoencoders in which each autoencoder is
trained to learn a compressed representation of depth views
synthesized from each database object. By viewing each au-
toencoder as a probabilistic model, a likelihood score can
be derived as a similarity measure. A domain adaptation
layer is built on top of autoencoder outputs to explicitly ad-
dress the cross-domain issue (between noisy sensory data
and clean 3D models) by incorporating training data of
sensor depth images and their category labels in a weakly
supervised learning formulation. Experiments using real-
world depth images and a large-scale CAD dataset demon-
strate the effectiveness of our approach, which offers signif-
icant improvements over state-of-the-art 3D shape retrieval
methods.

1. Introduction
Content-based 3D shape retrieval is an important topic

in computer vision. It provides rich geometry information
compared with 2D images and has important applications
in 3D content organization and exploration, 3D model edit-
ing and printing, augmented reality, and even self-driving
cars. Traditional 3D retrieval has focused on the settings of
a CAD model database and various forms of query, includ-
ing 2D sketches and CAD models. Recent developments in
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Figure 1. 3D shape retrieval using one depth image from a low-
cost sensor. The purple rectangle shows the scope of this paper.

low-cost 3D sensors such as Microsoft Kinect and the Intel
Realsense camera have introduced a new setting to 3D re-
trieval, i.e. using the user-captured depth image as the query
(as shown in Figure 1). This new setting allows general
users without professional knowledge of CAD modeling or
sketching to effortlessly obtain 3D models that are visually
similar to physical objects. This motivates many new excit-
ing applications. For example, a user can search for a CAD
model that is similar to his cup, and then virtually move the
cup around through augmented reality glasses. With the po-
tential proliferation of these 3D sensors on mobile devices,
shape retrieval and its derived applications can be as acces-
sible and enjoyable as taking a picture.

While offering advantages when compared with tradi-
tional settings, 3D shape retrieval that is based on low-cost
sensors also has its unique challenges. First, the captured
3D shape is usually incomplete due to self-occlusion. Al-
gorithms for RGBD registration such as KinectFusion [8]
can alleviate this problem by combining multiple depth im-
ages. However, in most cases, it is still impractical to scan
many angles of an object, in addition to the requirement of
computational cost to run the algorithm. Second, the inex-
pensive cost of the sensors is accompanied by a compromise



of higher sensor noise, especially comparing with higher-
end LiDAR sensors or desktop 3D scanners. This makes
the retrieval problem especially difficult, considering that
the CAD models in the database are manually designed and
free of sensor noise. Third, despite the fact that much effort
has been invested in 3D features, adequate feature repre-
sentation is still lacking for shape retrieval, especially when
handling an incomplete query that could be captured from
arbitrary viewpoints. In this paper, we address the chal-
lenges associated with the cross-domain 3D retrieval prob-
lem, with input from the low-cost 3D sensors and clean 3D
models as the search targets.

As a recent effort to tackle the above challenges, Wang
et al. [28] adopts an approach of first reconstructing a 3D
model from the depth inputs as the query, then extracting
3D features from the reconstructed model, and finally using
a Regression Tree Field to perform the retrieval. Although
their approach shows promising performance, the use of 3D
features has shortcomings, especially when only the noisy
depth image from a single view is available. As an example,
Figure 2 shows a depth map of a chair and the reconstructed
3D model from it. The inaccurate measurement near the ob-
ject boundary significantly distorts the shape of the recov-
ered 3D model, and thus makes 3D-based approaches more
difficult. Also, good retrieval performance heavily relies on
high-quality 3D local features, which requires significant
efforts to properly engineer. As an alternative to 3D feature-
based methods, the view-based approach is much less sen-
sitive to the sensory noise and can benefit from a large body
of mature matching techniques that have been developed
recently. Furthermore, to avoid dependency on ad-hoc fea-
ture engineering, we leverage the successful representation
learning paradigm, using neural networks to learn a discrim-
inative, yet compact, representation directly on the depth
images synthesized from 3D models in the database.

Autoencoders have been shown to be a simple, yet pow-
erful, model achieving state-of-the-art performance in many
problems including object recognition [13], face recogni-
tion [17], and action recognition [14]. They fit well in
our retrieval problem and we can train autoencoders for the
synthesized depth images from the 3D models. Instead of
learning a single autoencoder to represent all 3D models,
we propose to learn an object-specific autoencoder for each
model and take a generative probabilistic perspective, sim-
ilar to those in [1][10], to measure the similarity between
the noisy sensory query and each 3D model. Finally, due
to the inherent difference between sensor depth images and
synthesized depth images used to train the autoencoder, the
cross-domain issue also needs to be addressed.

Specifically, as shown in Figure 3, we propose a neu-
ral network architecture called ensemble of autoencoders to
tackle the challenging problems of 3D shape retrieval us-
ing a single depth view from a low-cost 3D sensor. This is

Figure 2. An example depth map of a chair (left), the recon-
structed point cloud (middle), and the mesh model (right).

inspired from successful ideas using an ensemble of weak
classifiers in detection and recognition [18][29][25]. For
each 3D object model in the database, a contractive au-
toencoder [20] is trained using synthesized depth images
to represent the view distribution of the object model. This
object-specific autoencoder serves as a model to estimate a
probability score that a depth image is generated by the cor-
responding object. An ensemble of autoencoders is then
constructed to produce this score for each database ob-
ject. To handle the cross-domain issue, we build a domain
adaptation layer on top of the ensemble structure to learn
the domain difference between the synthesized and sensor-
captured depth images in a weakly supervised way.

By utilizing autoencoders to model the view distribution
of each object, our approach not only eliminates the need of
specialized feature engineering, but also enhances robust-
ness against viewpoint variance. The adaptation process ex-
plicitly addresses the cross-domain issue between training
images in the 3D model database and query inputs captured
by noisy sensors, which provides significant performance
gains according to our experiments. The overall architec-
ture is easy to scale and train, making it suitable for our
retrieval task. Experiments on popular datasets demonstrate
that the proposed approach has significantly better retrieval
performance and computational efficiency compared with
state-of-the-art 3D retrieval approaches and baselines.

In summary, our contributions include:
• proposing a novel approach for the cross-domain 3D

shape retrieval problem, using a unified neural network
architecture with a domain adaptation design;
• the first attempt to learn a depth feature representation

from an ensemble perspective, to the best of the au-
thors’ knowledge;
• demonstrating the efficacy and efficiency of the pro-

posed approach with extensive experiments.

2. Related Work
2.1. Content-based 3D Shape Retrieval

Just as 2D local descriptors play a critical role in content-
based image retrieval, many 3D local descriptors have also
been proposed to describe the local geometry of 3D mod-
els for shape retrieval. Spin Images proposed by Johnson
et al. [9] project neighboring vertices to a local coordinate
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Figure 3. The architecture of our retrieval system, from a neural network perspective. The 3D model next to each autoencoder indicates
the CAD model from which the autoencoder is trained.

system, forming a 2D density histogram as the feature. Spin
Image is invariant to isometric deformation, but is sensitive
to scale change. Heat Kernel Descriptor [19] offers certain
non-rigid matching capabilities, using the Laplace-Beltrami
operator. Inspired by successful 2D local descriptors, 3D
extension of these descriptors has also been introduced for
shape retrieval, including 3D SIFT [24] and 3D HOG [31].
These 3D local descriptors are usually aggregated to form
an object-level feature vector. After extracting local de-
scriptors from an object, the Bag-of-Words(BoW) model is
widely used to aggregate these descriptors into a histogram
representation, and then distance metrics such as `1, `2 or
intersection are adopted for retrieval.

Another major direction for 3D shape retrieval is view-
based methods, which project each 3D object model to a
collection of 2D view images, from which regular image
features are extracted to describe the 3D model. View
matching is then performed to compute similarity scores.
The view images are usually silhouettes or textureless depth
images, since most 3D CAD models are not textured. The
view-based approach can benefit from sophisticated image
processing techniques and is therefore usually more dis-
criminative for retrieval than 3D local descriptors. Chen
et al. [4] proposed a feature representation for 3D models
called Light Field Descriptor (LFD) that creates 10 silhou-
ettes from the vertices of a dodecahedron and computes
Zernike moments and Fourier descriptors for each image.
Daras et al. [5] proposed the Compact Multi-View Descrip-
tor (CMVD) method, which integrates multiple features
from the binary and depth images to describe a 3D model.
Bo et al. [3] have proposed to learn a Kernel Descriptor for
RGBD images, which demonstrates promising results on in-

stance and category recognition on several RGBD datasets.

2.2. Representation Learning for 3D Models

Despite the significant progress gained from the afore-
mentioned approaches for 3D shape retrieval, most of them
still rely heavily on manually-designed features. Recent
years have witnessed unprecedented advancement in rep-
resentation learning for computer vision, especially deep
learning. Although color images remain the major focus,
some efforts have been invested to extend these techniques
to 3D model processing. Wu et al. [30] introduced a con-
volutional Deep Belief Network (DBN) to infer the 3D
structure and semantics behind a depth image, outperform-
ing existing approaches on various tasks including shape
classification and 2.5D recognition. Leng et al. [15] have
proposed the use of a stacked local convolutional autoen-
coder to learn deep representation for 3D object models, and
demonstrated significant improvement over state-of-the-art
retrieval methods. Our approach is motivated by the power
of feature learning but differs greatly from these approaches
in learning an ensemble of neural networks to produce view
feature and proposes a domain adaptation layer specifically
for our cross-domain retrieval problem.

3. Approach
In our approach, the captured noisy depth image is first

input to an ensemble of autoencoders, each of which then
estimates the probability the input depth image is generated
by the underlying autoencoder. The output score values of
the autoencoders are then fed to the layer of domain adap-
tation before ranking the 3D object models in the database.
The entire framework is shown in Figure 3.



3.1. Modeling Depth View Distribution

3.1.1 Object-specific Autoencoders

Autoencoders are neural networks aiming to reconstruct the
input itself. They first use an encoding function h(·) to
transform the input data x to a hidden representation:

h(x) = φ(WT
h x+ bh). (1)

Here, φ(·) is an activation function, which may have various
forms, such as linear activation, sigmoid, and rectified linear
unit (ReLU). Then, the reconstruction is computed from a
decoder g(·):

g
(
h(x)

)
= φ

(
WT

r h(x) + br
)
, (2)

where Wr is often set to WT
h . Therefore, we use W =

Wh = WT
r to simplify the notation. The training process

aims to minimize the average reconstruction error for a set
of training data χ = {xi}Ni=1, with a regularization term to
prevent converging to the trivial solution of identity func-
tion:

argmin
W,bh,br

1

N

∑
i

D
(
xi, r(xi)

)
+R(χ). (3)

Here r(x) = g
(
h(x)

)
is the reconstructed version of x, and

D(·, ·) is a distance function that is usually mean squared er-
ror or cross-entropy. R(.) is a regularizer, which can be `1
norm on h(xi) (sparse autoencoder (SAE) [13]), a denois-
ing function (denoising autoencoder (DAE) [27]), Frobe-
nius norm on Jacobian matrix of h(xi) (contractive autoen-
coder (CAE) [20]). With a proper activation function and
regularization, an autoencoder is able to learn a robust and
useful feature representation for the input data [1][20][27].

We represent each 3D object model oi as a collection of
depth images {xi}1 rendered from various locations on its
view sphere. The sampling is done uniformly from each
rotation axis (pitch, yaw, roll) of the object. For each axis,
we divide it into 15 uniform segments, which yields 15 ×
15 × 15 = 3375 total number of views for each object.
Each view is cropped to fit the bounding box of the object,
and resized to a fixed scale grayscale image. Example depth
images are shown in Figure 4(a) and Figure 4(b).

A contractive autoencoder with mean squared error and
sigmoid activation is learned using the synthesized depth
images from each object as training data. The autoencoder
can be considered as a compact representation of the depth
view distribution given the 3D object. We refer to it as
object-specific autoencoder AEi for object oi. The training
of the autoencoder is accomplished by Stochastic Gradient
Descent (SGD). Figure 4 illustrates two example autoen-
coders trained on a banana model and a cup model. The

1We use the notation xi here because it is also the training data of the
autoencoders.

(a) Training examples from a 3D
banana model.

(b) Training examples from a 3D
cup model.

(c) Learned weights of the banana
autoencoder.

(d) Learned weights of the cup au-
toencoder.

(e) Banana reconstruction from ba-
nana autoencoder.

(f) Banana reconstruction from cup
autoencoder.

Figure 4. Two example object-specific autoencoders.

visualized weights are the learned weights of the encoding
layer and they show that important shape and depth char-
acteristics are indeed captured by the autoencoders. From
the reconstruction results, it is apparent that the trained au-
toencoder is capable of describing the depth views for the
specific training object, e.g. the banana, while the autoen-
coder that learned from the cup cannot properly recover the
depth views for the banana. Such discriminative nature fur-
ther justifies our approach using an individual autoencoder
for each object.

3.1.2 View-Object Similarity

The reconstruction error has been used as a measure of the
fitness of an input sample to an autoencoder. However, for



aregularizedautoencoder,thisisusuallynotagoodscoring
metric,especiallywhencomparingamongdifferentautoen-
coders[10][26].Somerecentworkshaveinvestigatedthe
datageneratingdistributionlearnedbyanautoencoder,and
haveshownthatcertainregularizedautoencoderslikeDAE
orCAEcanbeinterpretedasprobabilisticmodels[1][10].
Morespecifically,[10]treatsthereconstructionprocessin
theautoencodertrainingasadynamicsystemandderivesa
potentialenergyfunctionas:

E(x)=
x

∞

h(t)dt−
1

2
x−br

2
2+const. (4)

Here,theintegraliswell-definedbecauseh(t)canbeshown
asagradientfield. Theconstantdependsonthebound-
aryconditionsofthedynamicsystem,whichareunknown.
Theexactformofpotentialenergydependsonthespecific
choiceofactivationfunction.Inthecaseofsigmoidactiva-
tion,thepotentialenergyfunctioncanbewrittenas:

E(x)=
k

log1+exp(wTkx+b
k
h)−

1

2
x−br

2
2+const,

(5)
wherekistheindexofthehiddennodeintheautoencoder.
Thispotentialenergy2isidenticaltothefreeenergyof
thecorrespondingRestrictedBoltzmannMachine(RBM),
whichismorelimitedandmoredifficulttotrainthananau-
toencoder.This“energy”viewequipsanautoencoderwith
theabilitytoestimatethelikelihoodofaninputsamplethat
willserve,inourcase,asthesimilaritybetweenaquery
viewandanobjectmodel.

3.2.EnsembleofAutoencoders

3.2.1 EnsembleStructure

Giventhepotentialenergyinterpretationdescribedabove,
eachobject-specificautoencoderisabletoprovideascore
usingEquation(5)torepresenthowlikelyaninputdepth
viewisgeneratedbythecorrespondingobjectmodel.How-
ever,directlyusingthescoresforrankinginvolvestwochal-
lenges.First,duetotheunknownconstantinEquation(5),
thelikelihoodscoresfromdifferentautoencodersarenot
directlycomparable.Second,depthimagescapturedfrom
low-cost3Dsensorsusuallyexhibitquitedifferentappear-
ancescomparedwiththosesynthesizedfromclean,human-
designed3Dmodels.Commonsituationsincludenoisyand
lowfidelitydepthvalue,holes,andmissingpartsduetoob-
jectslocatedbeyondthesensor’sdistancerange.Sinceour
object-specificautoencodersaretrainedwithsynthesized
depthimages,directlyapplyingthelearnedautoencoders
onsensordepthimagesleadstoinaccuratepredictions.
Toaddresstheseissues,wetreattheoutputscoresfrom

object-specificautoencodersasthemiddle-levelfeatureand

2Weuseautoencoderenergyorscoreinterchangeablyinthispaper.

addaprocessinglayerontoptopredictthefinalranking
scoressothattheobjectmodelmostsimilartothequery
viewwillreceivethehighestscore. WecallthislayerDo-
mainAdaptationLayer(DAL).

3.2.2 DomainAdaptationbyMulti-classClassification

Wetreatthisadaptationprocessasamulti-classclassifica-
tioninwhicheachdatabaseobjectisaclass.Inourcase,the
softmaxclassifierisused.Thegoaloftheclassifieristopre-
dictthemostsimilardatabaseobjectgiventheautoencoder
scoresofasensordepthimageasfeaturevector.Aftertrain-
ingtheclassifier,thepredictionscoreforeachobjectcan
thenbeusedforranking.However,itisverychallenging
toobtaintrainingdatainwhicheveryobjectinthedatabase
hassensordepthimagesfromsimilarphysicalobjects.To
tacklethisproblem,weproposeatwo-steptrainingprocess.
First,wepre-traintheclassifierusingsynthesizeddepthim-
agesfromeachobjectmodel;thisisequivalenttoscorecal-
ibrationtailoredforsynthesizedviews.Second,weapply
weaklysupervisedlearningtofine-tunetheclassifierwith
sensordepthimages.Thefirststepisfairlystraightforward
toimplement;therefore,wewillfocusonthesecondstep.
Inmostcases,wehaveknowledgeaboutthecategory

ofqueryimagesanddatabaseobjectsinsteadofthecon-
nectionbetweenaqueryimageanditsmostsimilarobject,
whichcouldbehighlysubjective.Theideaistotreatthe
mostsimilarobjectforaqueryfromthesamecategoryas
ahiddenvariableandtoconvertourobjectclassifiertoa
categoryclassifierusingexistingcategorylabels.
Morespecifically,wedenotethecategorylabelofa

queryviewxiandanobjectokasy(xi)andy(ok),re-
spectively.Therawoutputscorevectorfromautoencoders
iss(xi),andthemostsimilarobjectofxiisdenotedas
oxi,whichisunknown.Theonlysupervisionwehaveis
y(xi)=y(oxi),i.e.aquerydepthimageanditsmostsim-
ilarobjectmodelmustcomefromthesamecategory.Our
goalistotrainanobjectclassifiergivenonlythecategory
labels.Inspiredbymultipleinstancelearning,werepresent
thecategorylikelihoodforthequeryimageusingthemax-
imumobjectlikelihoodfromthesamecategory.Themath-
ematicalformulationforthelearningobjectiveisdepicted
inEquation(6)usingnegativelog-likelihood.

−logL=−
i

logp(y(xi)|s(xi)), (6)

p(y(xi)|s(xi))= max
y(ok)=y(xi)

p(ok|s(xi)), (7)

p(ok|s(xi))=
exp(uTks(xi))

kexp(u
T
ks(xi))

(8)

wherep(ok|s(xi))istheprobabilityofxibelongingtothe
kthobject.Thegoalisthentofindtheoptimalukforeach
objecttominimizeEquation(6).



Due to the presence of the max function, the objective is
not directly differentiable. As in [2], we use the Noisy-OR
(NOR) model to approximate the max function:

p(y(xi)|s(xi)) = 1−
∏

y(ok)=y(xi)

(1− p(ok|s(xi))) (9)

This approximation ensures that if one object yields high
probability, the corresponding category will get high proba-
bility, and the value is also bounded within [0, 1]. Since the
NOR model is differentiable, we can adopt gradient descent
for optimization. This formulation is general to query im-
ages from a subset of categories as the database objects in
which only the weights relevant to objects from the query
image categories are adjusted.

3.2.3 Ensemble Training

The entire ensemble architecture with the domain adap-
tation layer is essentially a multi-layer neural network in
which end-to-end learning can be performed for a spe-
cific task and dataset. However, to make the system more
scalable and efficient to train, we first pre-train all object-
specific autoencoders and the domain adaptation layer by
using only synthesized depth images with their correspond-
ing 3D object models. The entire architecture can subse-
quently be fine-tuned using sensor depth images. The pre-
trained autoencoders can be trained in parallel and reused
when new objects are added to the ensemble and only the
domain adaptation layer needs to be retrained.

4. Experiments
4.1. Experiment Settings

Datasets. In order to properly evaluate the novel prob-
lem of cross-domain 3D shape retrieval from a single depth
view, we require a database consisting of CAD models, as
well as queries of depth images captured by the Kinect sen-
sor from real world scenes. We construct the CAD database
from a subset of ModelNet [30]. It contains 80 categories,
each of which has 20 3D models, forming a database with
1600 instances. This is larger than the widely used 3D shape
datasets, e.g. Princeton Shape Benchmark [21] (907) and
SHREC12 [16] (1200). For queries, we collect one set from
UW RGBD object dataset [12] and the other set from NYU
Depth2 dataset [22]. The UW dataset contains Kinect-
captured depth images of objects on a turntable. The NYU
dataset consists of depth images from cluttered scenes cap-
tured by a Kinect. Notice the objects in the CAD database
and RGBD datasets are from completely different domains
which is useful to demonstrate the generality of our method.
Categories appearing in the query sets include everyday ob-
jects like cup, box, chair, etc. Because some of the cate-
gories have different names in the two datasets, e.g. eraser

in the UW dataset is named rubber Eraser in ModelNet,
we manually reconcile the name differences of the object
labels for proper evaluation. 20 object categories were se-
lected from UW dataset, and 80 depth images were ran-
domly sampled for each category, with one random half for
training the DAL, and the other half to form the query set.
The same process was done on NYU dataset to build the
second DAL training set and query set. To obtain the query
objects in the depth images, an object selection process is
usually involved. In a practical scenario, a user can select
the query object by simple interaction. Automated selection
is also possible by applying object proposal [11] or salient
object detection [7]. The selection process is beyond our
scope since we are focusing on the retrieval algorithm it-
self. We obtain the query objects from the object mask of
each depth image which are given in both UW and NYU
datasets. This is also generally the case in 3D shape re-
trieval evaluation [6] [16] [23] where the query object is
already segmented.

Evaluation protocol. To evaluate a retrieval method,
category labels are commonly used since it is very hard to
obtain a ground truth ranked list for each object in a large
database manually. Two sets of standard retrieval evaluation
methods are reported in our experiments.

• Precision-Recall curve and Mean Average Precision
(MAP): For a given query depth image, we compute
its similarity with each object model using the network
output. These models are then ranked in descending
order to form a list. Precision, recall and MAP values
are computed as in [23]. The final PR curve is aver-
aged across all query points.
• First Tier (FT) and Second Tier (ST): FT measures the

recall in the topK retrieval results. K is the number of
database instance from the same category as the query.
Similarly, ST evaluates the top 2K results to compute
the measurement.

Compared approaches. Due to the lack of existing
methods with the same cross-domain settings as ours, we
selected the state-of-the-art and baseline approaches that ad-
dress the problem settings most similar to ours.

• Random Tree Field (RTF) [28]: the state-of-the-art ap-
proach for cross-domain retrieval with low-cost sen-
sors, which uses 3D local descriptors as the represen-
tation of object models. A Regression Tree Field is
constructed for retrieval. We use the code from authors
as it was given.
• HOG+`2 (HOG): a straightforward baseline algo-

rithm for 3D shape retrieval from a single view. The
HOG features are extracted from both the query and
each synthesized depth image of database models. `2
norm is used to measure the distance between the
query depth image and a depth image synthesized from



3D models. The shortest distance between the query
and depth images of an object is assigned to the object
and used for ranking the database objects at the end.
The dimension of the HOG descriptor is 1116.
• Global Autoencoder (Global AE): a single stacked au-

toencoder with two encoder layers with dimensions of
500 and 300 is trained on synthesized views from all
database objects. Retrieval is accomplished using `2
norm on the features from the encoder output with a
dimension of 300.
• Ensemble of autoencoders without full domain adap-

tation layer (Ours without DAL): a baseline to justify
the necessity of the Domain Adaptation Layer (DAL).
The DAL is only trained using synthesized depth views
for score calibration.
• Ensemble of autoencoders with full domain adapta-

tion layer (Ours): the proposed approach. The DAL
is first pre-trained using synthesized depth views and
then fine-tuned using real sensor depth images.

Implementation details. The training of our architec-
ture involves some important parameters. They play a criti-
cal role in achieving good performance. Each object depth
patch is normalized to have a fixed range of depth values
(0-1) to ensure distance invariance. The normalized patch
maintains relative depth values thus shape geometry is not
lost. After normalization, the patch is resized to 28 × 28
pixels and then vectorized to be input into the autoencoder.
We also tried resolution of 32×32 and 48×48 but very little
improvement is observed. We use 28 × 28 to speed up the
computation. The hidden layer has 200 nodes, and the con-
traction coefficient is 0.01. For training autoencoders, the
learning rate is 0.03, and the maximum iteration number of
SGD is 200, which is generally sufficient to converge. Each
object-specific autoencoder takes approximately 40 seconds
to train using an NVIDIA GTX 645 GPU.

4.2. Results and Discussions

The average PR curves on UW query set are plotted in
Figure 5 for the methods used in our experiment. Quanti-
tative results for each competing method are shown in Ta-
ble 1. We also report the average time cost per retrieval for
each method. Comparing RTF with Ours without DAL,
where both methods are only trained on CAD model data,
shows that our view-based method achieves superior per-
formance to the state-of-the-art 3D feature-based method.
Given the difficulty of this task, HOG as a baseline does
a reasonable job due to its high discriminative power on
2D images, but the large margin between HOG and Ours
without DAL clearly shows the advantage of learned fea-
tures using autoencoders over manually specified features.
Global AE achieves good performance, especially when
the recall increases. Without using a stacked autoencoder,
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Figure 5. Precision-recall curves for our proposed methods and
comparison methods on UW query set (best viewed in color).

Ours without DAL achieves better MAP than Global AE
with its First Tier accuracy approximately 12% relative
gain, which indicates much better quality for top-ranked re-
sults. This demonstrates that object-specific autoencoders
are more discriminative in a retrieval setting. As seen in Fig-
ure 5, the proposed object-specific autoencoders perform a
little lower than the method using a global autoencoder in
the very high recall range. Since our algorithm is targeted
at retrieving similar object models instead of categoriza-
tion, there are object models in the same category as the
query but not necessarily visually similar. Thus the pro-
posed method using object-specific autoencoders will push
objects of dissimilar appearance down in the ranked list.
However, in terms of the overall accuracy over the entire
ranked list (based on MAP), the proposed methods are still
much better than the Global AE and runs at a much high
speed (as high as 40× speed gain). From the results of Ours
without DAL and Ours, we observe significant 7% perfor-
mance gain in MAP (7% absolute gain, 27% relative gain),
which demonstrates the effectiveness of our domain adap-
tation layer fine-tuned with sensor depth images, and illus-
trates the necessity to specifically address the cross-domain
issue in our problem.

The same quantitative results on NYU query set is shown
in Table 2. Due to the lower quality of object depth images
from NYU dataset, 3D local descriptors can not be reliably
extracted for RTF (code provided by the authors), therefore
we don’t report its performance here. Although the overall
performance of all methods decreases compared with that
on UW query set, our method still achieves the best per-
formance among all competing methods with an obvious
margin.

To understand the relative retrieval difficulties for dif-
ferent object categories, we present a detailed performance
analysis for each object category in Table 3. The top 5 best-



performing and worst-performing categories ranked by FT
are shown in the upper and lower regions of the table re-
spectively. Top categories like Banana and Cup perform
well due to their distinctive shapes and appearances, even
though the input from the depth sensor may not always be
of high quality. In contrast, Cell Phone and Ball perform
poorly because of their somehow less discriminative shapes,
making the retrieval ambiguous and encountering difficulty
in distinguishing them from other similar objects, e.g. cell
phone and small book, ball and orange.

Method FT ST MAP Time (s)
HOG 0.20 0.18 0.15 9.4

RTF [28] 0.32 0.22 0.18 0.27
Global AE 0.37 0.28 0.24 4.3

Ours without DAL 0.42 0.26 0.26 0.11
Ours 0.53 0.30 0.33 0.11

Table 1. Quantitative evaluation results on UW query set.

Method FT ST MAP
HOG 0.12 0.15 0.13

Global AE 0.27 0.22 0.19
Ours without DAL 0.33 0.23 0.20

Ours 0.40 0.26 0.24

Table 2. Quantitative evaluation results on NYU query set.

For qualitative evaluation, we visualize example retrieval
results in Figure 6. For each query, the color image is also
shown for a better illustration, but note that only the depth
image is used in our experiment. Top retrieval results are
displayed by rendering the corresponding database model
from a random perspective. Incorrect results are indicated
with a dashed box. Our method is able to handle queries
from arbitrary views and is robust to noise and obscured
parts. The final two rows of Figure 6 present example fail-
ure cases in which the bowl retrieves cups as top results
and the camera yields a calculator and boxes as its top re-
sults. Possible reasons are: 1) significant missing regions
in the depth image, e.g. the camera screen is not perceived
by Kinect sensor; 2) similar views among different objects,
e.g. bowls and cups from top-down view. The algorithm
nevertheless manages to accomplish its goal to locate ob-
jects with the most similar shapes based on the query view.

5. Conclusions
In this paper, we study 3D shape retrieval scenario that

uses a single depth image from low-cost 3D sensors as the
query. A novel approach based on an ensemble of autoen-
coders is presented in which an autoencoder is trained on
each database model and is able to yield a likelihood mea-
sure for an input depth image. A novel domain adaptation

Category FT ST MAP
Banana 0.95 0.48 0.87

Cup 0.94 0.48 0.85
Plate 0.94 0.48 0.85

Notebook 0.86 0.44 0.45
Box 0.67 0.36 0.50

Sponge 0.17 0.10 0.11
Camera 0.15 0.09 0.09

Keyboard 0.12 0.09 0.07
Cell Phone 0.12 0.09 0.07

Ball 0.09 0.05 0.05

Table 3. Quantitative evaluation results for the best and worst
performing object categories using our method.

Figure 6. Example top retrieval results using our proposed
method. Queries are depth images (color images are not used)
from the UW dataset (row 1-3) and NYU dataset (row 4-6). From
top to bottom, the queries are apple, cup, flashlight, hat, vase,
chair, bowl and camera. The last two rows show failure examples,
where incorrect results are highlighted with red boxes.

layer is further trained to address the cross-domain issue
between queries and training data to produce final ranking
scores. Extensive experiments demonstrate promising per-
formance of our approach on this challenging task.

With the fast development and deployment of low-cost
3D sensors, especially those targeting mobile devices, we
anticipate wide applications of 3D shape retrieval using
depth images as query. In future work, we will explore
automatic query proposal using object proposal or saliency
analysis, and how our ensemble architecture can be applied
to other problems like 3D object recognition.
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