Robust Markov Decision Process

Beyond (and back to) Rectangularity

Vineet Goyal, Julien Grand-Clement

IEOR Department, Columbia University

What is this talk about?

Uncertainty in transition kernels of Markov Chains.

Geometry of the uncertainty set and tractability.

Markov Decision Process (MDP)

MDP: states S, actions A, reward (r_{sa}), transition probabilities ($P_{sas'}$). **Decision Maker:**

Policy π : Being in state s, what action(s) should I choose?

Goal: Given transition probabilities $P = (P_{sas'})$,

solve
$$\max_{\pi \in \Pi} R(\pi, \mathbf{P})$$
, where $R(\pi, \mathbf{P}) = E^{\pi, \mathbf{P}} \left[\sum_{t=0}^{\infty} \lambda^t r_{\mathbf{s}_t a_t} \mid \mathbf{s}_0 = \mathbf{p}_0 \right]$.

Bellman (1957), Howard (1960); Puterman (1994).

At optimality: Stationary, Markovian, deterministic optimal policy

 $\pi^*:\mathbb{S}\to\mathbb{A}.$

Efficiently solved:

• LP formulation, Policy Iteration (strongly polynomial: Ye (2011)).

At optimality: Stationary, Markovian, deterministic optimal policy

 $\pi^*:\mathbb{S}\to\mathbb{A}.$

Efficiently solved:

- LP formulation, Policy Iteration (strongly polynomial: Ye (2011)).
- Value Iteration:

At optimality: Stationary, Markovian, deterministic optimal policy

 $\pi^*:\mathbb{S}\to\mathbb{A}.$

Efficiently solved:

- LP formulation, Policy Iteration (strongly polynomial: Ye (2011)).
- Value Iteration:

Define Value V_s = expected reward starting from state s.

At optimality: Stationary, Markovian, deterministic optimal policy

 $\pi^*:\mathbb{S}\to\mathbb{A}.$

Efficiently solved:

- LP formulation, Policy Iteration (strongly polynomial: Ye (2011)).
- Value Iteration:

Define Value V_s = expected reward starting from state s. Bellman equation:

$$V_{s}^{*} = F_{s}(V^{*}, P) = \max_{a} \{ r_{sa} + \lambda \cdot P_{sa}^{T} V^{*} \}, \forall s.$$

At optimality: Stationary, Markovian, deterministic optimal policy

 $\pi^*:\mathbb{S}\to\mathbb{A}.$

Efficiently solved:

- LP formulation, Policy Iteration (strongly polynomial: Ye (2011)).
- Value Iteration:

Define Value V_s = expected reward starting from state s. Bellman equation:

$$V_{s}^{*} = F_{s}(V^{*}, P) = \max_{a} \{ r_{sa} + \lambda \cdot P_{sa}^{T}V^{*} \}, \forall s.$$

Fixed point of a contraction: $\lambda < 1$.

At optimality: Stationary, Markovian, deterministic optimal policy

 $\pi^*:\mathbb{S}\to\mathbb{A}.$

Efficiently solved:

- LP formulation, Policy Iteration (strongly polynomial: Ye (2011)).
- Value Iteration:

Define Value V_s = expected reward starting from state s. Bellman equation:

$$V_{s}^{*} = F_{s}(V^{*}, P) = \max_{a} \{ r_{sa} + \lambda \cdot P_{sa}^{T} V^{*} \}, \forall s.$$

Fixed point of a contraction: $\lambda < 1$.

 \rightarrow Iterate:

$$V_{s}^{k+1} = F_{s}(V^{k}, P), \forall s; V^{0} \in \mathbb{R}^{S}_{+}.$$

• Intrinsic uncertainty: Variance of the expected reward (\rightarrow risk).

- Intrinsic uncertainty: Variance of the expected reward (\rightarrow risk).
- External uncertainty: Parameters are estimated from the data.

- Intrinsic uncertainty: Variance of the expected reward (\rightarrow risk).
- External uncertainty: Parameters are estimated from the data.
- Optimal policy π^{nom} for nominal transition matrices:

- Intrinsic uncertainty: Variance of the expected reward (\rightarrow risk).
- External uncertainty: Parameters are estimated from the data.
- Optimal policy π^{nom} for nominal transition matrices:

may severely deteriorate for different but close matrices.

- Intrinsic uncertainty: Variance of the expected reward (\rightarrow risk).
- External uncertainty: Parameters are estimated from the data.
- Optimal policy π^{nom} for nominal transition matrices: may severely deteriorate for different but close matrices.
- Robust optimization: $P \in \mathbb{P}$.

- Intrinsic uncertainty: Variance of the expected reward (\rightarrow risk).
- External uncertainty: Parameters are estimated from the data.
- Optimal policy π^{nom} for nominal transition matrices: may severely deteriorate for different but close matrices.
- Robust optimization: $P \in \mathbb{P}$.

Decision maker chooses policy π ,

- Intrinsic uncertainty: Variance of the expected reward (\rightarrow risk).
- External uncertainty: Parameters are estimated from the data.
- Optimal policy π^{nom} for nominal transition matrices: may severely deteriorate for different but close matrices.
- Robust optimization: $P \in \mathbb{P}$.

Decision maker chooses policy π ,

Nature chooses $\textbf{\textit{P}} \in \mathbb{P}$ adversarially,

- Intrinsic uncertainty: Variance of the expected reward (\rightarrow risk).
- External uncertainty: Parameters are estimated from the data.
- Optimal policy π^{nom} for nominal transition matrices: may severely deteriorate for different but close matrices.
- Robust optimization: $P \in \mathbb{P}$.

Decision maker chooses policy π ,

Nature chooses $\textit{P} \in \mathbb{P}$ adversarially,

Decision maker obtains $R(\pi, P)$.

- Intrinsic uncertainty: Variance of the expected reward (\rightarrow risk).
- External uncertainty: Parameters are estimated from the data.
- Optimal policy π^{nom} for nominal transition matrices: may severely deteriorate for different but close matrices.
- Robust optimization: $P \in \mathbb{P}$.

Decision maker chooses policy π ,

Nature chooses $\textit{P} \in \mathbb{P}$ adversarially,

Decision maker obtains $R(\pi, P)$.

Our goal

Solve $\max_{\pi \in \Pi} \min_{P \in \mathbb{P}} R(\pi, P)$.

 \cdot For general uncertainty set $\mathbb{P}:$

```
"min _{P\in\mathbb{P}}^{R}R(\pi, P)\geq\gamma?" is strongly NP-Hard (Wiesemann et al. (2012)).
```

· For general uncertainty set $\mathbb{P}:$

"min $R(\pi, P) \geq \gamma$?" is strongly NP-Hard (Wiesemann et al. (2012)).

• **Tractable** for some special cases. Iyengar (2005), El Ghaoui, Nilim (2005):

(s,a)-rectangularity:
$$\mathbb{P} = \underset{s,a}{\times} \mathbb{P}_{sa}, \ (P_{sas'})_{s'} \in \mathbb{R}^{S}_{+}.$$

Wiesemann et al. (2012):

s-rectangularity:
$$\mathbb{P} = \underset{s}{\times} \mathbb{P}_{s}, \ (P_{sas'})_{as'} \in \mathbb{R}^{S \times A}_{+}.$$

· For general uncertainty set $\mathbb{P}:$

"min $R(\pi, P) \geq \gamma$?" is strongly NP-Hard (Wiesemann et al. (2012)).

• **Tractable** for some special cases. Iyengar (2005), El Ghaoui, Nilim (2005):

(s,a)-rectangularity:
$$\mathbb{P} = \underset{s,a}{\times} \mathbb{P}_{sa}, \ (P_{sas'})_{s'} \in \mathbb{R}^{S}_{+}.$$

Wiesemann et al. (2012):

s-rectangularity:
$$\mathbb{P} = \underset{s}{\times} \mathbb{P}_{s}, \ (P_{sas'})_{as'} \in \mathbb{R}^{S \times A}_{+}.$$

• Cartesian product X × Y: no constraints across components.

What does Rectangularity mean?

• In MDP: transition probabilities *P*_{sa} are **unrelated**.

- In MDP: transition probabilities *P*_{sa} are **unrelated**.
- This is too conversative in some applications.

- In MDP: transition probabilities *P*_{sa} are **unrelated**.
- This is too conversative in some applications.
- Healthcare: Drug effect related to the dose.

- In MDP: transition probabilities *P*_{sa} are **unrelated**.
- This is too conversative in some applications.
- Healthcare: Drug effect related to the dose.

different health states, same treatment \rightarrow related effect, ie, $\textit{P}_{s_1a} \text{ and }\textit{P}_{s_2a} \text{ might be related}.$

Idea: Transitions depend of common underlying vectors.

$$P_{sa} = \sum_{i=1}^{r} u_{sa}^{i} \mathbf{w}^{i},$$
$$\sum_{i=1}^{r} u_{sa}^{i} = 1, \forall (s, a),$$
$$(\mathbf{w}_{1}, ..., \mathbf{w}_{r}) = \mathbf{W} \in \mathbb{W}$$

Factor matrix (FM) uncertainty set

Generality of FM uncertainty set

For $r = S \times A$, this captures **any** uncertainty set \mathbb{P} .

"min_{$P \in \mathbb{P}$} $R(\pi, P) \ge \gamma$?" is strongly NP-Hard (Wiesemann et al. (2012)).

We assume r-rectangularity:

$$\mathbb{W} = \underset{i=1,\ldots,r}{\times} \mathbb{W}^{i}.$$

Idea: Coupled \mathbb{P} = simple transformation of uncoupled \mathbb{W} .

Think about SVD / Nonnegative Matrix Factorization.

Sum-up so far

In a nutshell:

Rectangularity of ${\mathbb P}$ leads to tractability.

Our theoretical results:

Sum-up so far

In a nutshell:

Rectangularity of $\mathbb P$ leads to tractability.

But too conservative for our applications (healthcare).

Our theoretical results:

Rectangularity of $\mathbb P$ leads to tractability.

But too conservative for our applications (healthcare).

FM uncertainty set: captures relations across transitions.

Our theoretical results:

Rectangularity of $\mathbb P$ leads to tractability.

But too conservative for our applications (healthcare).

FM uncertainty set: captures relations across transitions.

Our theoretical results:

Assuming r-rectangular ₩:

Rectangularity of $\ensuremath{\mathbb{P}}$ leads to tractability.

But too conservative for our applications (healthcare).

FM uncertainty set: captures relations across transitions.

Our theoretical results:

Assuming r-rectangular ₩:

• Given π , we solve $\min_{W \in \mathbb{W}} R(\pi, W)$ (also in Goh et al. (2014)).

Rectangularity of $\ensuremath{\mathbb{P}}$ leads to tractability.

But too conservative for our applications (healthcare).

FM uncertainty set: captures relations across transitions.

Our theoretical results:

Assuming r-rectangular \mathbb{W} :

- Given π , we solve $\min_{W \in \mathbb{W}} R(\pi, W)$ (also in Goh et al. (2014)).
- We solve $\max_{\pi \in \Pi} \min_{W \in \mathbb{W}} R(\pi, W)$.

Rectangularity of $\ensuremath{\mathbb{P}}$ leads to tractability.

But too conservative for our applications (healthcare).

FM uncertainty set: captures relations across transitions.

Our theoretical results:

Assuming r-rectangular \mathbb{W} :

- Given π , we solve $\min_{W \in \mathbb{W}} R(\pi, W)$ (also in Goh et al. (2014)).
- We solve $\max_{\pi \in \Pi} \min_{W \in \mathbb{W}} R(\pi, W)$.
- We prove a structural result:

 $\max_{\pi \in \Pi} \min_{W \in \mathbb{W}} R(\pi, W) = \min_{W \in \mathbb{W}} \max_{\pi \in \Pi} R(\pi, W).$

Rectangularity of $\ensuremath{\mathbb{P}}$ leads to tractability.

But too conservative for our applications (healthcare).

FM uncertainty set: captures relations across transitions.

Our theoretical results:

Assuming r-rectangular \mathbb{W} :

- Given π , we solve $\min_{W \in \mathbb{W}} R(\pi, W)$ (also in Goh et al. (2014)).
- We solve $\max_{\pi \in \Pi} \min_{W \in \mathbb{W}} R(\pi, W)$.
- We prove a structural result:

$$\max_{\pi \in \Pi} \min_{W \in \mathbb{W}} R(\pi, W) = \min_{W \in \mathbb{W}} \max_{\pi \in \Pi} R(\pi, W).$$

• We extend classical properties of MDPs (Maximum principle, Blackwell optimality).
Theorem 1: Policy Evaluation for rectangular \mathbb{W} Consider a fixed policy π and \mathbb{W} r-rectangular. $\min_{W \in \mathbb{W}} R(\pi, W)$ can be casted as an MDP over $\{1, ..., r\}$.

Theorem 1: Policy Evaluation for rectangular \mathbb{W} Consider a fixed policy π and \mathbb{W} r-rectangular. $\min_{W \in \mathbb{W}} R(\pi, W)$ can be casted as an MDP over $\{1, ..., r\}$.

Theorem 1: Policy Evaluation for rectangular \mathbb{W} Consider a fixed policy π and \mathbb{W} r-rectangular. $\min_{W \in \mathbb{W}} R(\pi, W)$ can be casted as an MDP over $\{1, ..., r\}$.

Theorem 1: Policy Evaluation for rectangular \mathbb{W} Consider a fixed policy π and \mathbb{W} r-rectangular. $\min_{W \in \mathbb{W}} R(\pi, W)$ can be casted as an MDP over $\{1, ..., r\}$.

Theorem 1: Policy Evaluation for rectangular \mathbb{W} Consider a fixed policy π and \mathbb{W} r-rectangular. $\min_{W \in \mathbb{W}} R(\pi, W)$ can be casted as an MDP over $\{1, ..., r\}$.

• Define an underlying MDP on $i \in \{1, ..., r\}$.

- Define an underlying MDP on $i \in \{1, ..., r\}$.
- Write value vector and Bellman Recursion for this MDP:

- Define an underlying MDP on $i \in \{1, ..., r\}$.
- Write value vector and Bellman Recursion for this MDP:

 β_i = expected reward starting from a 'state' $i \in \{1, ..., r\}$.

- Define an underlying MDP on $i \in \{1, ..., r\}$.
- Write value vector and Bellman Recursion for this MDP:

 β_i = expected reward starting from a 'state' $i \in \{1, ..., r\}$.

$$\beta_i^* = H_i(\beta^*, \pi) = \min_{w_i \in \mathbb{W}^i} \{ w_i^T(r_{\pi} + \lambda \cdot T_{\pi}\beta^*) \}, \ \forall \ i.$$

- Define an underlying MDP on $i \in \{1, ..., r\}$.
- Write value vector and Bellman Recursion for this MDP:

 β_i = expected reward starting from a 'state' $i \in \{1, ..., r\}$.

$$\beta_i^* = H_i(\beta^*, \pi) = \min_{w_i \in \mathbb{W}^i} \{ w_i^T(r_{\pi} + \lambda \cdot T_{\pi}\beta^*) \}, \ \forall \ i.$$

Rectangularity \Rightarrow feasibility of $(w_1^*, ..., w_r^*) \in \mathbb{W}$.

- Define an underlying MDP on $i \in \{1, ..., r\}$.
- Write value vector and Bellman Recursion for this MDP:

 β_i = expected reward starting from a 'state' $i \in \{1, ..., r\}$.

$$\beta_i^* = H_i(\boldsymbol{\beta}^*, \pi) = \min_{\boldsymbol{w}_i \in \mathbb{W}^i} \{ \boldsymbol{w}_i^{\mathsf{T}}(\boldsymbol{r}_{\boldsymbol{\pi}} + \lambda \cdot \boldsymbol{T}_{\boldsymbol{\pi}} \boldsymbol{\beta}^*) \}, \ \forall \ i.$$

Rectangularity \Rightarrow feasibility of $(w_1^*, ..., w_r^*) \in \mathbb{W}$. Fixed point of a contraction ($\lambda < 1$), iterate:

$$\beta_i^{k+1} = H_i(\boldsymbol{\beta}^k, \pi), \ \forall \ i.$$

- Define an underlying MDP on $i \in \{1, ..., r\}$.
- Write value vector and Bellman Recursion for this MDP:

 β_i = expected reward starting from a 'state' $i \in \{1, ..., r\}$.

$$\beta_i^* = H_i(\boldsymbol{\beta}^*, \pi) = \min_{w_i \in \mathbb{W}^i} \{ w_i^T(\boldsymbol{r}_{\boldsymbol{\pi}} + \lambda \cdot \boldsymbol{T}_{\boldsymbol{\pi}} \boldsymbol{\beta}^*) \}, \ \forall \ i.$$

Rectangularity \Rightarrow feasibility of $(w_1^*, ..., w_r^*) \in \mathbb{W}$. Fixed point of a contraction ($\lambda < 1$), iterate:

$$\beta_i^{k+1} = H_i(\boldsymbol{\beta}^k, \pi), \ \forall \ i.$$

• Also LP formulation, Policy Iteration.

Theorem 1: Max-min duality for rectangular W

$$\max_{\pi\in\Pi}\min_{W\in\mathbb{W}} R(\pi, W) = \min_{W\in\mathbb{W}}\max_{\pi\in\Pi} R(\pi, W).$$

Theorem 1: Max-min duality for rectangular $\mathbb W$

$$\max_{\pi \in \Pi} \min_{W \in \mathbb{W}} R(\pi, W) = \min_{W \in \mathbb{W}} \max_{\pi \in \Pi} R(\pi, W).$$

• Formulation of $\min_{W \in \mathbb{W}} R(\pi, W)$ as an MDP over $\{1, ..., r\}$.

Theorem 1: Max-min duality for rectangular $\mathbb W$

$$\max_{\pi \in \Pi} \min_{W \in \mathbb{W}} R(\pi, W) = \min_{W \in \mathbb{W}} \max_{\pi \in \Pi} R(\pi, W).$$

• Formulation of $\min_{W \in \mathbb{W}} R(\pi, W)$ as an MDP over $\{1, ..., r\}$.

Lemma

There exists a deterministic robust optimal policy π^* .

Theorem 1: Max-min duality for rectangular $\mathbb W$

 $\max_{\pi\in\Pi}\min_{W\in\mathbb{W}} R(\pi, W) = \min_{W\in\mathbb{W}}\max_{\pi\in\Pi} R(\pi, W).$

• Formulation of $\min_{W \in \mathbb{W}} R(\pi, W)$ as an MDP over $\{1, ..., r\}$.

Lemma

There exists a deterministic robust optimal policy π^* .

• Interpretability, implementability.

Theorem 1: Max-min duality for rectangular $\mathbb W$

 $\max_{\pi\in\Pi}\min_{W\in\mathbb{W}} R(\pi, W) = \min_{W\in\mathbb{W}}\max_{\pi\in\Pi} R(\pi, W).$

• Formulation of $\min_{W \in \mathbb{W}} R(\pi, W)$ as an MDP over $\{1, ..., r\}$.

Lemma

There exists a deterministic robust optimal policy π^* .

• Interpretability, implementability.

Key Lemma

$$W^* \in \arg\min_{W \in W} R(\pi^*, W),$$

$$\pi^* \in \arg\max_{\pi \in \Pi} R(\pi, W^*).$$

Assume r-Rectangularity:

$$(W_1,...,W_r) \in \underset{i=1,...,r}{\times} \mathbb{W}^i.$$

Assume r-Rectangularity:

$$(\mathbf{W}_1,...,\mathbf{W}_r) \in \underset{i=1,..,r}{\times} \mathbb{W}^i.$$

Theorem 2: Robust value iteration Robust Value Iteration obtains (π^*, W^*) in polynomial time with $W^* \in \arg\min_{W \in W} R(\pi^*, W),$ $\pi^* \in \arg\max_{\pi \in \Pi} R(\pi, W^*).$

• Two competing MDP, with rectangular sets Π and \mathbb{W} .

- Two competing MDP, with rectangular sets Π and $\mathbb W.$
- Compete for the same reward $R(\pi, W)$.

- Two competing MDP, with rectangular sets Π and $\mathbb W.$
- Compete for the same reward $R(\pi, W)$.
- Max-min Duality gives two interwoven Bellman Equations.

- \cdot Two competing MDP, with rectangular sets Π and $\mathbb W.$
- Compete for the same reward $R(\pi, W)$.
- Max-min Duality gives two interwoven Bellman Equations.
- Write two contractions mapping.

- \cdot Two competing MDP, with rectangular sets Π and $\mathbb W.$
- Compete for the same reward $R(\pi, W)$.
- Max-min Duality gives two interwoven Bellman Equations.
- Write two contractions mapping.
- Their fixed points are the solutions to our max-min problem.

Decision Maker:

$$\pi^* \in \arg \max_{\pi \in \Pi} R(\pi, W^*).$$

Adversary:

$$W^* \in rg\min_{W \in \mathbb{W}} R(\pi^*, W).$$

Decision Maker:

$$V_{s}^{*}=F_{s}(V^{*},W^{*}), \forall s.$$

Adversary:

$$W^* \in rg\min_{W \in \mathbb{W}} R(\pi^*, W).$$

Decision Maker:

$$V_{s}^{*}=F_{s}(V^{*},W^{*}), \forall s.$$

Adversary:

$$\beta_i^* = H_i(\boldsymbol{\beta}^*, \pi^*), \; \forall \; i.$$

Using $W^{*T}V^* = \beta^*$, $V_s^* = f_s(V^*), \forall s,$ $\beta_i^* = h_i(\beta^*), \forall i,$ and $f : \mathbb{R}^S \to \mathbb{R}^S, h : \mathbb{R}^r \to \mathbb{R}^r$ are contractions.

Some useful properties

Maximum principle: in classical MDP, $V^{\pi^*} \ge V^{\pi}$, for all policy π .

Robust Maximum principle

 $V^{\pi^*,W^*} \ge V^{\pi,W}$, for all policy π , for all $W \in \arg\min_{W \in \mathbb{W}} R(\pi, W)$.

Blackwell optimality: the optimal nominal policy remains optimal when $\lambda \rightarrow$ 1.

Robust Blackwell optimality There exists (π^*, W^*) and $\lambda_0 \in (0, 1)$, such that for all λ in $(\lambda_0, 1)$, $(\pi^*, W^*) \in \arg \max_{\pi \in \Pi} \min_{W \in W} R(\pi, W, \lambda).$ Application: how to use FM uncertainty set?

- use of Non Negative Matrix Factorization (NMF).
- use of Robust maximum principle.

Use of Non Negative Matrix Factorization (NMF)

NMF \iff non-negative SVD:

given $A \ge 0$, minimize ||A - BC|| with $B \ge 0, C \ge 0$.

Suppose we have estimated $\hat{P} = (\hat{P}_{sas'})$ with confidence $\tau > 0$.

we want
$$\hat{\boldsymbol{P}}_{sa} = \sum_{i=1}^{r} u_{sa}^{i} \boldsymbol{w}_{i}.$$

Therefore, for $\hat{P} = (\hat{P}_{s_1a_1}, ..., \hat{P}_{SA})$, we solve the NMF program $\min_{W \in H_1, u \in H_2} \|\hat{P} - Wu\|.$

r-rectangularity: obtaining (\hat{W}, \hat{u}) , budget of uncertainty sets:

$$\mathbb{W}^{i} = \{ \mathbf{w}_{i} = \hat{\mathbf{w}}_{i} + \boldsymbol{\delta} | \boldsymbol{\delta} \in \mathbb{R}^{S}, \| \boldsymbol{\delta} \|_{1} \leq \sqrt{S} \cdot \tau, \| \boldsymbol{\delta} \|_{\infty} \leq \tau, \mathbf{e}_{S}^{\top} \mathbf{w}_{i} = 1, \mathbf{w}_{i} \geq \mathbf{0} \}, \forall i.$$

300,000 'patients histories' at Kaiser Permanente hospitals:

Patients arrive in hospital ward with risk score $s \in \{1, ..., n\}$. Risk score updated every six hours: $s \rightarrow s'$, Markov chain T.

Question: proactive transfer of patients to the emergency room?

Pros: better outcome when treated in emergency room.

300,000 'patients histories' at Kaiser Permanente hospitals:

Patients arrive in hospital ward with risk score $s \in \{1, ..., n\}$. Risk score updated every six hours: $s \rightarrow s'$, Markov chain T.

Question: proactive transfer of patients to the emergency room?

- Pros: better outcome when treated in emergency room.
- Cons: crowded emergency room, patients get 'bumped'.

300,000 'patients histories' at Kaiser Permanente hospitals:

Patients arrive in hospital ward with risk score $s \in \{1, ..., n\}$. Risk score updated every six hours: $s \rightarrow s'$, Markov chain T.

Question: proactive transfer of patients to the emergency room?

- Pros: better outcome when treated in emergency room.
- · Cons: crowded emergency room, patients get 'bumped'.
- Build an MDP (action: send or not the patient at risk score *s*). Using robust maximum principle, we prove

```
Proposition: structure of optimal policies.
The optimal nominal policy \pi^{\text{nom}} is threshold.
The optimal robust policy \pi^{\text{rob}} is threshold, and thr(\pi^{\text{rob}}) \leq thr(\pi^{\text{nom}}).
```

300,000 'patients histories' at Kaiser Permanente hospitals:

Patients arrive in hospital ward with risk score $s \in \{1, ..., n\}$. Risk score updated every six hours: $s \rightarrow s'$, Markov chain T.

Question: proactive transfer of patients to the emergency room?

- Pros: better outcome when treated in emergency room.
- · Cons: crowded emergency room, patients get 'bumped'.
- Build an MDP (action: send or not the patient at risk score *s*). Using robust maximum principle, we prove

```
Proposition: structure of optimal policies.
The optimal nominal policy \pi^{\text{nom}} is threshold.
The optimal robust policy \pi^{\text{rob}} is threshold, and thr(\pi^{\text{rob}}) \leq thr(\pi^{\text{nom}}).
```

Example: π^{nom} admits top 8% patients, π^{rob} admits top 27.1%.

Our contributions:

Assuming \mathbb{W} is rectangular:

- Efficient algorithm for $\min_{W \in \mathbb{W}} R(\pi, W)$.
- Robust Value Iteration for $\max_{\pi \in \Pi} \min_{W \in \mathbb{W}} R(\pi, W)$.
- Equilibrium result:

$$\exists (\pi^*, W^*), W^* \in \min_{W \in \mathbb{W}} R(\pi^*, W), \pi^* \in \max_{\pi \in \Pi} R(\pi, W^*).$$

 \Rightarrow strong duality + deterministic optimal robust policy.

• Robust maximum principle, robust Blackwell optimality.

Future work:

• Robust MDP with long-run average reward.
Our contributions:

Assuming \mathbb{W} is rectangular:

- Efficient algorithm for $\min_{W \in \mathbb{W}} R(\pi, W)$.
- Robust Value Iteration for $\max_{\pi \in \Pi} \min_{W \in \mathbb{W}} R(\pi, W)$.
- Equilibrium result:

$$\exists (\pi^*, W^*), W^* \in \min_{W \in \mathbb{W}} R(\pi^*, W), \pi^* \in \max_{\pi \in \Pi} R(\pi, W^*).$$

 \Rightarrow strong duality + deterministic optimal robust policy.

• Robust maximum principle, robust Blackwell optimality.

Future work:

- Robust MDP with long-run average reward.
- Fixed parameter r + non-rectangular \mathbb{W} .

J. Goh, B. Mohsen, S.A. Zenios, S. Sundeep, and D. Moore. Data uncertainty in markov chains: Application to cost-effectiveness analyses of medical innovations. Operations Research (forthcoming), 2014.

G. Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):257–280, 2005.

A. Nilim and L. El Ghaoui. Robust control of markov decision processes with uncertain transition probabilities. Operations Research, 53(5):780–798, 2005.

W. Wiesemann, D. Kuhn, and B. Rustem. Robust markov decision processes. Operations Research, 38(1):153–183, 2013.

Thank you! Any questions?

jg3728@columbia.edu