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What is this talk about?

Uncertainty in transition kernels of Markov Chains.

Geometry of the uncertainty set and tractability.



Markov Decision Process (MDP)
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MDP: states S, actions A, reward (rsq), transition probabilities (Psqs)-
Decision Maker:

Policy m : Being in state s, what action(s) should | choose?

Goal: Given transition probabilities P = (Psqsr),

solve max R(w, P), where R(w, P) = E™P {Z{’fo Arsq
TE

So —p0:| .

Bellman (1957), Howard (1960); Puterman (1994).
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Main Results for MDP

At optimality: Stationary, Markovian, deterministic optimal policy

S — A.

Efficiently solved:
- LP formulation, Policy Iteration (strongly polynomial: Ye (2011)).
- Value Iteration:
Define Value Vs = expected reward starting from state s.

Bellman equation:
Vs = Fs(V*,P) = max { rsa + - PIV*}, Vs.

Fixed point of a contraction: A < 1.

— lterate:
VEFT = F(VR P), V's; VP € RS
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Uncertainty in MDP

- Intrinsic uncertainty: Variance of the expected reward (— risk).
- External uncertainty: Parameters are estimated from the data.
- Optimal policy #"°™ for nominal transition matrices:

may severely deteriorate for different but close matrices.
- Robust optimization: P € PP.

Decision maker chooses policy m,

Nature chooses P € IP adversarially,

Decision maker obtains R(w, P).

Our goal

Solve maxmin R(m, P).
well PeP
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Related Works

- For general uncertainty set IP:
“minR(m, P) >~ ?" is strongly NP-Hard (Wiesemann et al. (2012)).

PeP

- Tractable for some special cases.
lyengar (2005), El Ghaoui, Nilim (2005):

(s,a)-rectangularity: P = x Psg, (Psgs')s € RS
s,a
Wiesemann et al. (2012):
s-rectangularity: P = x Ps, (Psgst)as' € R
S

- Cartesian product X x Y: no constraints across components.
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What does Rectangularity mean?

- In MDP: transition probabilities Ps, are unrelated.
- This is too conversative in some applications.
- Healthcare: Drug effect related to the dose.

different health states, same treatment — related effect, ie,

Ps.. and Ps,q might be related.



Factor matrix (FM) uncertainty set

Idea: Transitions depend of common underlying vectors.
r
Psa = > UW,
i=1

r
> Ul =1,Y (s, ),
i=1

(wq,...,w,) =W e W.



Factor matrix (FM) uncertainty set

Generality of FM uncertainty set

Forr =S x A, this captures any uncertainty set P.

“minpep R(m, P) >~ ?" is strongly NP-Hard (Wiesemann et al. (2012)).

We assume r-rectangularity:

W= x W.

i=1,..,r
Idea: Coupled P = simple transformation of uncoupled W.

Think about SVD / Nonnegative Matrix Factorization.
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In a nutshell:

Rectangularity of P leads to tractability.
But too conservative for our applications (healthcare).

FM uncertainty set: captures relations across transitions.
Our theoretical results:
Assuming r-rectangular W:

- Given m, we solve Vr\pi&] R(w, W) (also in Goh et al. (2014)).
€
- We solve max min R(m, W).
well WeWw
- We prove a structural result:

max min R(w, W) = min max R(w, W).
Tel WeWw WeWw wel

- We extend classical properties of MDPs (Maximum principle,
Blackwell optimality).



Factor matrix (FM) uncertainty set

Theorem 1: Policy Evaluation for rectangular W
Consider a fixed policy = and W r-rectangular.

Mrpi&/ R(mw, W) can be casted as an MDP over {1, ..., r}.
W
Why is that the case?

‘T[ P ‘
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Factor matrix (FM) uncertainty set

Theorem 1: Policy Evaluation for rectangular W
Consider a fixed policy = and W r-rectangular.

Mrpi&/ R(mw, W) can be casted as an MDP over {1, ..., r}.
W

Why is that the case?

s S,a s'

A4

i ANEW MDP !

14
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Sketch: solve min R(w, W)
Wew

- Define an underlying MDP on i € {1, ..., r}.
- Write value vector and Bellman Recursion for this MDP:

Bi = expected reward starting from a ‘state’ 1 € {1,...,r}.

w;eW'

Rectangularity = feasibility of (w7, ..., w*) € W.
Fixed point of a contraction (A < 1), iterate:

BT = Hi(B%,T), V1.

- Also LP formulation, Policy Iteration.
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Theorem 1: Max-min duality for rectangular W

max min R(w, W) = min max R(w, W).
men Wew WeW men

- Formulation of Vrpiwr\]/ R(m, W) as an MDP over {1, ..., r}.
(S

Lemma

There exists a deterministic robust optimal policy 7*.

- Interpretability, implementability.

Key Lemma

W* € arg min R(7*, W),
gv\/e‘w (/ ' )

" € argmaxR(mw, W*).
werll
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Assume r-Rectangularity:

(Wa,.owp) € x W,
i=1,..,r

Theorem 2: Robust value iteration
Robust Value Iteration obtains (7*, W*) in polynomial time with

W* € arg VrpeiYQ]R(w*, w),

* e argmax R(m, W*).
e g7T€I'I (W' )



Sketch: solve max mlr}
n€|_| W

g, =]

wi

j ANEW MDP ! N

- Two competing MDP, with rectangular sets T and W.



Sketch: solve max mlr}
n€|_| W

g, =]

wi

j ANEW MDP ! N

- Two competing MDP, with rectangular sets I and W.
- Compete for the same reward R(m, W).



Sketch: solve max m|n R(m,

mell cW

s S,a s’

j ANEW MDP ! N

- Two competing MDP, with rectangular sets I and W.

- Compete for the same reward R(m, W).
- Max-min Duality gives two interwoven Bellman Equations.



Sketch: solve max m|n R(m,

mell cW

sa P

wi wi,

j ANEW MDP ! N

- Two competing MDP, with rectangular sets I and W.

- Compete for the same reward R(m, W).

- Max-min Duality gives two interwoven Bellman Equations.
- Write two contractions mapping.



Sketch: solve max m|n R(m,

mell cW

wi wi,

j ANEW MDP ! N

- Two competing MDP, with rectangular sets I and W.
- Compete for the same reward R(m, W).

- Max-min Duality gives two interwoven Bellman Equations.

- Write two contractions mapping.

- Their fixed points are the solutions to our max-min problem



Sketch: solve max mlr}
n€|_| W

g, =]

wi

j ANEW MDP ! N

Decision Maker:
" € argmaxR(mw, W*).
wel

Adversary:
W* e argmrpé&R(w ,W).
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Sketch: solve max mlr}
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u i

sa

j ANEW MDP ! N

Decision Maker:
Vi = F(V*,W*), Vs
Adversary:
w* e argWé\%R(ﬂ ,W).
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Sketch: solve max mlr}
n€|_| W

g, =]

sas’

wi

s S,a s’

u i

sa

j ANEW MDP ! N

Decision Maker:
Vi=Fs(V",W*), Vs
Adversary:

B = Hi(B*,7™), Vi

21



Sketch: solve max m|n R(m,

mell cW

wi

s S,a s
. u isa N .
J ANEW MDP ! - |
Using W*Tv* — 8%,
—F(V7), Vs
B = hi(B%), Vi

and f:R> = R> h: R" — R’ are contractions.

22



Some useful properties

Maximum principle: in classical MDP, V™ > V™, for all policy .

Robust Maximum principle
v™ W > vmW for all policy «r, for all W € arg minyew R(r, W).

Blackwell optimality: the optimal nominal policy remains optimal
when A — 1.

Robust Blackwell optimality
There exists (7*, W*) and Ao € (0, 1), such that for all A in (Ao, 1),

W in R(mw, W, \).
(™, )eargrpear? min (m, W, \)

23



Application: how to use FM uncertainty set?

- use of Non Negative Matrix Factorization (NMF).
- use of Robust maximum principle.

24



Use of Non Negative Matrix Factorization (NMF)

NMF <= non-negative SVD:
given A > 0, minimize ||A — BC|| with B> 0,C > 0.

Suppose we have estimated P = (Psss) with confidence 7 > 0.
r .
we want Ps, = Z ul w;.
.
Therefore, for P = (Ps,q,, ..., Psa), we solve the NMF program

min ||P — Wul.
WeHq,ueH,
r-rectangularity: obtaining (W, 0), budget of uncertainty sets:

W' = {w; = W;+8|6 € R, ||8]l1 < VST, [|0]|oe < 7, €d Wi =1, w; > 0}, 1.

25



Example: hospital management (joint with C. Chan and V. Goyal)

300,000 ‘patients histories’ at Kaiser Permanente hospitals:

Patients arrive in hospital ward with risk score s € {1, ...,n}.
Risk score updated every six hours: s — s’, Markov chain T.

Question: proactive transfer of patients to the emergency room?

- Pros: better outcome when treated in emergency room.

26
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Example: hospital management (joint with C. Chan and V. Goyal)

300,000 ‘patients histories’ at Kaiser Permanente hospitals:

Patients arrive in hospital ward with risk score s € {1, ...,n}.
Risk score updated every six hours: s — s’, Markov chain T.

Question: proactive transfer of patients to the emergency room?
- Pros: better outcome when treated in emergency room.
- Cons: crowded emergency room, patients get ‘bumped’.
- Build an MDP (action: send or not the patient at risk score s).
Using robust maximum principle, we prove
Proposition: structure of optimal policies.
The optimal nominal policy #"°™ is threshold.

The optimal robust policy 7™ is threshold, and
thr(z™P) < thr(z"°m).

Example: 7"°™ admits top 8% patients, 77" admits top 27.1%. 23



Conclusion and future work

Our contributions:
Assuming W is rectangular:
- Efficient algorithm for min R(m, W).
wew
- Robust Value Iteration for max min R(w, W).
Tel WeW

€
- Equilibrium result:

3 (7", W*), W* e min R(z*, W), ©* € maxR(mw, W*).
Wwew el

= strong duality + deterministic optimal robust policy.
- Robust maximum principle, robust Blackwell optimality.

Future work:

- Robust MDP with long-run average reward.

27
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Our contributions:
Assuming W is rectangular:
- Efficient algorithm for min R(m, W).
wew
- Robust Value Iteration for max min R(w, W).
Tel WeW

€
- Equilibrium result:

3 (7", W*), W* e min R(z*, W), ©* € maxR(mw, W*).
Wwew el

= strong duality + deterministic optimal robust policy.
- Robust maximum principle, robust Blackwell optimality.

Future work:

- Robust MDP with long-run average reward.
- Fixed parameter r + non-rectangular W.

27
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Thank you! Any questions?

jg3728@columbia.edu
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