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What is this talk about?

Uncertainty in transition kernels of Markov Chains.

Geometry of the uncertainty set and tractability.
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Markov Decision Process (MDP)

MDP: states S, actions A, reward (rsa), transition probabilities (Psas′).

Decision Maker:

Policy π : Being in state s, what action(s) should I choose?

Goal: Given transition probabilities P = (Psas′),

solve max
π∈Π

R(π,P), where R(π,P) = Eπ,P
[∑∞

t=0 λ
trstat

∣∣∣∣ s0 = p0
]
.

Bellman (1957), Howard (1960); Puterman (1994).
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Main Results for MDP

At optimality: Stationary, Markovian, deterministic optimal policy

π∗ : S → A.

Efficiently solved:

• LP formulation, Policy Iteration (strongly polynomial: Ye (2011)).

• Value Iteration:
Define Value Vs = expected reward starting from state s.
Bellman equation:

V∗s = Fs(V∗,P) = max
a

{ rsa + λ · PTsaV
∗ }, ∀ s.

Fixed point of a contraction: λ < 1.
→ Iterate:

Vk+1s = Fs(Vk,P), ∀ s; V0 ∈ RS
+.
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Uncertainty in MDP

• Intrinsic uncertainty: Variance of the expected reward (→ risk).

• External uncertainty: Parameters are estimated from the data.

• Optimal policy πnom for nominal transition matrices:

may severely deteriorate for different but close matrices.

• Robust optimization: P ∈ P.

Decision maker chooses policy π,

Nature chooses P ∈ P adversarially,

Decision maker obtains R(π,P).

Our goal

Solve max
π∈Π

min
P∈P

R(π,P).
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Related Works

• For general uncertainty set P:

“min
P∈P

R(π,P) ≥ γ ?” is strongly NP-Hard (Wiesemann et al. (2012)).

• Tractable for some special cases.
Iyengar (2005), El Ghaoui, Nilim (2005):

(s,a)-rectangularity: P = ×
s,a

Psa, (Psas′)s′ ∈ RS
+.

Wiesemann et al. (2012):

s-rectangularity: P = ×
s
Ps, (Psas′)as′ ∈ RS×A

+ .

• Cartesian product X× Y: no constraints across components.
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What does Rectangularity mean?

• In MDP: transition probabilities Psa are unrelated.

• This is too conversative in some applications.

• Healthcare: Drug effect related to the dose.

different health states, same treatment→ related effect, ie,
Ps1a and Ps2a might be related.
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Factor matrix (FM) uncertainty set

Idea: Transitions depend of common underlying vectors.

Psa =
r∑
i=1

uisawi,

r∑
i=1

uisa = 1,∀ (s,a),

(w1, ...,wr) = W ∈ W.
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Factor matrix (FM) uncertainty set

Generality of FM uncertainty set

For r = S× A, this captures any uncertainty set P.

“minP∈P R(π,P) ≥ γ ?” is strongly NP-Hard (Wiesemann et al. (2012)).

We assume r-rectangularity:

W = ×
i=1,..,r

Wi.

Idea: Coupled P = simple transformation of uncoupledW.

Think about SVD / Nonnegative Matrix Factorization.

8



Sum-up so far

In a nutshell:

Rectangularity of P leads to tractability.

But too conservative for our applications (healthcare).
FM uncertainty set: captures relations across transitions.

Our theoretical results:

Assuming r-rectangularW:

• Given π, we solve min
W∈W

R(π,W) (also in Goh et al. (2014)).

• We solve max
π∈Π

min
W∈W

R(π,W).

• We prove a structural result:

max
π∈Π

min
W∈W

R(π,W) = min
W∈W

max
π∈Π

R(π,W).

• We extend classical properties of MDPs (Maximum principle,
Blackwell optimality).
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Factor matrix (FM) uncertainty set

Theorem 1: Policy Evaluation for rectangular W
Consider a fixed policy π andW r-rectangular.

min
W∈W

R(π,W) can be casted as an MDP over {1, ..., r}.

Why is that the case?
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Sketch: solve min
W∈W

R(π,W)

• Define an underlying MDP on i ∈ {1, ..., r}.

• Write value vector and Bellman Recursion for this MDP:
βi = expected reward starting from a ‘state’ i ∈ {1, ..., r}.

β∗
i = Hi(β∗, π) = min

wi∈Wi
{wiT(rπ + λ · Tπβ∗)}, ∀ i.

Rectangularity ⇒ feasibility of (w∗
1 , ...,w∗

r ) ∈ W.
Fixed point of a contraction (λ < 1), iterate:

βk+1i = Hi(βk, π), ∀ i.

• Also LP formulation, Policy Iteration.
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Our results

Theorem 1: Max-min duality for rectangular W

max
π∈Π

min
W∈W

R(π,W) = min
W∈W

max
π∈Π

R(π,W).

• Formulation of min
W∈W

R(π,W) as an MDP over {1, ..., r}.

Lemma

There exists a deterministic robust optimal policy π∗.

• Interpretability, implementability.

Key Lemma

W∗ ∈ arg min
W∈W

R(π∗,W),

π∗ ∈ argmax
π∈Π

R(π,W∗).

16
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Our results

Assume r-Rectangularity:

(w1, ...,wr) ∈ ×
i=1,..,r

Wi.

Theorem 2: Robust value iteration
Robust Value Iteration obtains (π∗,W∗) in polynomial time with

W∗ ∈ arg min
W∈W

R(π∗,W),

π∗ ∈ argmax
π∈Π

R(π,W∗).
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Sketch: solve max
π∈Π

min
W∈W

R(π,W)

• Two competing MDP, with rectangular sets Π andW.

• Compete for the same reward R(π,W).
• Max-min Duality gives two interwoven Bellman Equations.
• Write two contractions mapping.
• Their fixed points are the solutions to our max-min problem.
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Sketch: solve max
π∈Π

min
W∈W

R(π,W)

Decision Maker:
π∗ ∈ argmax

π∈Π
R(π,W∗).

Adversary:
W∗ ∈ arg min

W∈W
R(π∗,W).
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Sketch: solve max
π∈Π

min
W∈W

R(π,W)

Decision Maker:
V∗s = Fs(V∗,W∗), ∀ s.

Adversary:
W∗ ∈ arg min

W∈W
R(π∗,W).
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Sketch: solve max
π∈Π

min
W∈W

R(π,W)

Decision Maker:
V∗s = Fs(V∗,W∗), ∀ s.

Adversary:
β∗
i = Hi(β∗, π∗), ∀ i.
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Sketch: solve max
π∈Π

min
W∈W

R(π,W)

Using W∗TV∗ = β∗,

V∗s = fs(V∗), ∀ s,
β∗
i = hi(β∗), ∀ i,

and f : RS → RS,h : Rr → Rr are contractions.
22



Some useful properties

Maximum principle: in classical MDP, Vπ
∗
≥ Vπ, for all policy π.

Robust Maximum principle
Vπ

∗,W∗
≥ Vπ,W, for all policy π, for all W ∈ argminW∈W R(π,W).

Blackwell optimality: the optimal nominal policy remains optimal
when λ → 1.

Robust Blackwell optimality
There exists (π∗,W∗) and λ0 ∈ (0, 1), such that for all λ in (λ0, 1),

(π∗,W∗) ∈ argmax
π∈Π

min
W∈W

R(π,W, λ).
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Application: how to use FM uncertainty set?

• use of Non Negative Matrix Factorization (NMF).
• use of Robust maximum principle.

24



Use of Non Negative Matrix Factorization (NMF)

NMF ⇐⇒ non-negative SVD:

given A ≥ 0, minimize ∥A− BC∥ with B ≥ 0, C ≥ 0.

Suppose we have estimated P̂ = (P̂sas′) with confidence τ > 0.

we want P̂sa =
r∑
i=1

uisawi.

Therefore, for P̂ = (P̂s1a1 , ..., P̂SA), we solve the NMF program

min
W∈H1,u∈H2

∥P̂−Wu∥.

r-rectangularity: obtaining (Ŵ, û), budget of uncertainty sets:

Wi = {wi = ŵi+δ|δ ∈ RS, ∥δ∥1 ≤
√
S·τ, ∥δ∥∞ ≤ τ, e⊤S wi = 1,wi ≥ 0},∀ i.
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Example: hospital management (joint with C. Chan and V. Goyal)

300, 000 ‘patients histories’ at Kaiser Permanente hospitals:

Patients arrive in hospital ward with risk score s ∈ {1, ...,n}.
Risk score updated every six hours: s→ s′, Markov chain T.

Question: proactive transfer of patients to the emergency room?

• Pros: better outcome when treated in emergency room.

• Cons: crowded emergency room, patients get ‘bumped’.

• Build an MDP (action: send or not the patient at risk score s).

Using robust maximum principle, we prove

Proposition: structure of optimal policies.
The optimal nominal policy πnom is threshold.

The optimal robust policy πrob is threshold, and
thr(πrob) ≤ thr(πnom).

Example: πnom admits top 8% patients, πrob admits top 27.1%.
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Conclusion and future work

Our contributions:

AssumingW is rectangular:
• Efficient algorithm for min

W∈W
R(π,W).

• Robust Value Iteration for max
π∈Π

min
W∈W

R(π,W).

• Equilibrium result:

∃ (π∗,W∗), W∗ ∈ min
W∈W

R(π∗,W), π∗ ∈ max
π∈Π

R(π,W∗).

⇒ strong duality + deterministic optimal robust policy.
• Robust maximum principle, robust Blackwell optimality.

Future work:

• Robust MDP with long-run average reward.

• Fixed parameter r + non-rectangularW.
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Thank you! Any questions?

jg3728@columbia.edu
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