Robust Data-Driven Decision Making in Healthcare

Hospital management

- Ward vs Emergency room.
- Unplanned transfers: adversarial events.
- Early transfer to emergency room:
- \rightarrow highly benefits risky patients,
- might result in congestions.
- Patients who are transferred back to ward: worse mortality and Length-Of-Stay (LOS).
- From data: *risk scores* for each patient.
- Need for patient prioritization guidelines.

- Markov model for transition among risk scores: $T_{i,j}^0 = \mathbb{P}(i \to j).$
- Policy π : in risk score *i*, transfer or not.
- Goal: find π to maximize $Reward(\pi, T^0)$.
- Main limitation: Parameter mispecification.
- Parameters T^0 estimated from noisy data.
- Significantly suboptimal policy in practice.
- Robust approach: safety region \mathcal{U} ,

$$oldsymbol{T}^0\in\mathcal{U}$$

Goal: find policy π that maximizes

min $R(\pi, T)$ $oldsymbol{T}\in\mathcal{U}.$

Julien Grand-Clement, joint with Carri Chan and Vineet Goyal

jg3728,cwchan, vg2277}@columbia.edu, Columbia University

Why do we care?

- Markov model: main decision tool for healthcare, along with decision trees.
- Previous works: uncertainty too conservative (assume parameters variations are unrelated.)
- Healthcare: uncertainty in parameters can be coupled.

Example: blood pressure and sugar level can have related effects on the dynamics of the risk scores.

Our model of uncertainty

- Uncertainty depends on a small number of "patient types" $(\boldsymbol{w_1}, ..., \boldsymbol{w_r}) = \boldsymbol{W}$.
- Each patient is a combination of patient types: $T_{i,\cdot} = W u_i$.
- We assume patient types are *unrelated*:

$$(\boldsymbol{w_1},...,\boldsymbol{w_r}) \in \mathcal{W}^1 \times ... \times \mathcal{W}^r.$$

Key Idea: Coupled parameters T are simple transformations of uncoupled underlying W.

Methodology

Given the data:

- Estimate $T_{i,j}^0$ with confidence σ .
- **2** Non-Negative Matrix Factorization for (u_i^{ℓ}) and

$$(\boldsymbol{w_1}, ..., \boldsymbol{w_r}) \in \mathcal{W}^1 \times ... \times \mathcal{W}^r,$$

 $\mathcal{W}^i \subseteq B(\boldsymbol{w_i}, \kappa)_{\|\cdot\|_{\infty}} \cap B(\boldsymbol{w_i}, \tau)_{\|\cdot\|_1}.$

3Optimal nominal policies are deterministic.

- Optimal robust policies are deterministic.
- **5** Efficient algorithm to compute robust policies.

6Key question:

Do we improve the worst-case performance?

Application: early transfer of patients in hospital

- Goal: Compute robust transfer policies to the emergency room.
- Trade-off: congestion in emergency room vs patients recover faster in emergency room.
- Data set: $\approx 300,000$ patients hospitalizations \rightarrow estimated transitions $T_{i,j}$ and confidence intervals.
- **Result 1:** Deterioration of hospital performances.

•	$mort_{est.}$ (%)	$mort_{worst}$ (%)	$LOS_{est.}$ (d)	LOS_{worst} (d)
Policy 1	5.87	6.03	3.87	4.01
Policy 2	6.08	6.42	3.92	4.06
Policy 3	6.21	6.64	3.95	4.02

Table 1: Comparison of different transfer policies performances (mortality rate, Lengh-Of-Stay) for small parameter deviations.

• **Result 2:** Optimal and interpretable transfer policies. \rightarrow Threshold policies: transer all patients above a certain risk score. In our experiments, there are 10 risk scores.

Figure 1:Performances of the 11 threshold policies. Comparison of the nominal (blue circle) and worst-case (red triangle) rewards.

Insights

- Hospital performances may deteriorate.
- Some transfer policies are more robust than the 'naive' best policy.
- The optimal nominal policy is *threshold*.
- The optimal robust policy is threshold too, with a lower threshold.

Future works

- Parameter estimation: Compute better confidence bounds to reduce the parameter uncertainty?
- Actual implementation of the transfer policies in hospitals.
- Modeling: Tractable *policy-dependent* uncertainty?
- Improve the risk scores estimation.

More at: www.columbia.edu/~jg3728/