
Fast Kalman filtering via a low-rank perturbative approach

Liam Paninski, Kamiar Rahnama Rad, and Jonathan Huggins
Department of Statistics and Center for Theoretical Neuroscience

Columbia University
http://www.stat.columbia.edu/∼liam

September 23, 2011

Abstract

Kalman filtering is a fundamental tool in statistical time series analysis: it is compu-
tationally tractable in many real-world situations, implements the optimal Bayesian filter
in the linear-Gaussian setting, and serves as a key step in the inference algorithms for a
wide variety of nonlinear and non-Gaussian models. However, standard implementations
of the Kalman filter require O(N3) time and O(N2) space per timestep, where N is the
dimension of the state variable, and are therefore impractical in many high-dimensional
problems. In this paper we note that if a relatively small number of observations with
low signal-to-noise (SNR) are available per time step, the Kalman equations may be
approximated in terms of a low-rank perturbation of the prior state covariance matrix
in the absence of any observations. In many cases this approximation may be com-
puted and updated very efficiently (often in just O(N) or O(N log N) time and space per
timestep), using fast methods from numerical linear algebra. This opens up the possibility
of real-time adaptive experimental design and optimal control in systems of much larger
dimension than was previously feasible. We describe an application involving smoothing
of spatiotemporal neuroscience data.

Introduction

Understanding the dynamics of large systems for which limited, noisy observations are avail-
able is a fundamental and recurring scientific problem. A key step in any such analysis involves
data assimilation: we must incorporate incoming observations and update our beliefs about
the dynamical state of the system accordingly. The Kalman filter may be considered the
canonical method for data assimilation (Durbin and Koopman, 2001); this method provides a
conceptually simple recursive framework for online Bayesian inference in the context of linear
and Gaussian dynamics and observation processes. Furthermore, the Kalman filter serves as
the underlying computational engine in a wide variety of more complicated non-Gaussian and
nonlinear statistical models.

However, these methods face a major limitation: standard implementations of the Kalman
filter require O(N3) time and O(N2) space per timestep, where N denotes the dimension of
the system state variable, and are therefore impractical for applications involving very high-
dimensional systems. The bottleneck is in the representation and computation of the forward
covariance matrix Ct = C(qt|Y1:t): this is the posterior covariance of the N -dimensional state
vector qt, given the sequence of observations Y1:t up to the current time t. Two natural ideas
for reducing the computational burden of storing and computing this N×N matrix have been
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explored. First, if Ct is sparse (i.e., consists of mostly zeros), then we can clearly store and
perform matrix-vector computations with Ct with o(N2) complexity. In many examples Ct has
a nearly banded, or strongly tapered, structure (i.e., most of the large components of Ct are
near the diagonal), and sparse approximate matrix updates can be exploited (Pnevmatikakis
et al., 2011). This approach has been shown to be extremely effective in some cases (Furrer
and Bengtsson, 2007; Khan and Moura, 2008; Bickel and Levina, 2008; Kaufman et al., 2008;
El Karoui, 2008), but in many settings there is no a priori reason to expect Ct to have any
useful sparse structure, and therefore this idea can not be applied generally.

Second, we could replace Ct with a low-rank approximation. For example, a major theme
in the recent literature on numerical weather prediction (where the system of interest is the
atmosphere discretized in a spatial grid, leading in many cases to a state dimension in the tens
or hundreds of millions) has been the development of the theory of the “ensemble Kalman
filter” (Verlaan, 1998; Treebushny and Madsen, 2005; Gillijns et al., 2006; Chandrasekar et al.,
2008; Evensen, 2009), which implements a Monte Carlo-based, low-rank approximation of the
full Kalman filter. Randomized low-rank approximations of large matrices have also received
increasing attention in the applied math literature (Liberty et al., 2007; Halko et al., 2009).
Low-rank approximations for Ct are typically justified on computational grounds — in some
cases it is hard to think of any alternative approaches for storing (even approximately) a
general large matrix without any sparse structure — but may also be justified statistically in
the case that many high-signal-to-noise (high-SNR) observations are available: in this setting,
we can argue that our posterior uncertainty Ct will be approximately restricted to a subspace
of dimension significantly less than N , as discussed, e.g., in (Solo, 2004). Alternatively, we
may impose a low-rank structure on the posterior covariance Ct directly by choosing our
prior covariance matrix to be of low rank (Wikle and Cressie, 1999; Wood, 2006; Cressie and
Johannesson, 2008; Banerjee et al., 2008; Cressie et al., 2010); however, our focus in this work
is on approximating Ct given a prior covariance matrix which is of full rank.

The low-SNR setting, where a relatively small number of noisy observations are available
per time step, has been explored less thoroughly. One exception is the neuronal dendritic
application discussed in (Paninski, 2010), where we noted that Ct could be approximated very
accurately in terms of a low-rank perturbation of C0, the prior equilibrium covariance of the
state variable qt in the absence of any observations Y . (Note that this approximation is very
different from the high-SNR case, where we approximate Ct as a low-rank perturbation of the
zero matrix, not of C0.) To efficiently update this low-SNR approximation to Ct, (Paninski,
2010) exploited the special structure of the dynamics in this application: dendritic voltage
dynamics are governed by a cable equation on a tree (Koch, 1999), which may be solved
using symmetric sparse matrix methods in O(N) time (Hines, 1984). In turn, this implied
that Ct could be updated in O(n3 + nN) time, where n is the rank of the perturbation of
C0 used to represent Ct. Since empirically n ≪ N sufficed to accurately approximate Ct in
this application, this approach resulted in a much faster implementation of the Kalman filter,
with linear instead of cubic complexity in N .

In this paper we note that this basic idea can be applied much more generally. We describe
a number of examples where special features of the system dynamics allow us to compute and
update the low-SNR approximation to Ct very efficiently (often in just O(n3 +nN) or O(n3 +
nN log N) time and O(nN) space per timestep), using fast methods from numerical linear
algebra. One particularly simple setting involves spatiotemporal smoothing applications; as
a concrete example, we describe how to apply the proposed methods to efficiently smooth
certain kinds of high-dimensional spatiotemporal neuroscience data.
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Basic setup

We begin by briefly reviewing the Kalman filter and establishing notation. Again, let qt

denote our state variable, and yt the observation at time t. We assume that qt and yt satisfy
the following linear-Gaussian dynamics and observation equations:

qt+1 = Aqt + ut + ǫt, ǫt ∼ N (0, V ) (1)

yt = Btqt + ηt, ηt ∼ N (µη
t , Wt). (2)

Here A represents the system dynamics matrix; ut is a deterministic input to the system at
time t, and ǫt is an i.i.d. Gaussian vector with mean zero and covariance V . Bt denotes the
observation gain matrix, Wt the observation noise covariance, and µ

η
t an offset mean in the

observation. Our methods are sufficiently general that the dimension of yt (and therefore that
of Bt, Wt, and µ

η
t ) can vary with time. (Nonlinear and non-Gaussian observations may also

be incorporated in some cases, as we will discuss further below.) However, neither A nor V

in the dynamics equation are allowed to vary with time.
Now the focus of this paper is the efficient implementation of the Kalman filter recursion

(Durbin and Koopman, 2001) for computing the forward mean

µt = E(qt|Y1:t)

and covariance
Ct = Cov(qt|Y1:t),

where Y1:t denotes all of the observed data {ys} up to time t. The Kalman recursions may
be written as:

Ct =
[

(ACt−1A
T + V )−1 + BT W−1B

]−1

µt = Ct

[

(ACt−1A
T + V )−1 (Aµt−1 + ut) + BT W−1(yt − µ

η
t )

]

.

We have suppressed the possible time-dependence of B and W in the observation equation for
notational clarity; the extension of these equations to the general case is standard (Durbin and
Koopman, 2001). Note that the computation of the inverses in the recursion for Ct requires
O(N3) time in general, or O(N2) time via the Woodbury lemma (Golub and Van Loan, 1996)
if the observation matrix B is of low rank (i.e., if rank(B) ≪ N). In either case, O(N2) space
is required to store Ct.

These recursions are typically initialized with the marginal equilibrium covariance (i.e.,
the steady-state covariance of qt in the absence of any observations):

C0 = lim
t→∞

Cov(qt).

Here we may state our first basic assumption, namely that the dynamics matrix A is stable
(Anderson and Moore, 1979); otherwise the existence of C0 is not guaranteed. Note that we
restrict our attention in this paper to the case of stationary processes; extensions to nonsta-
tionary models are possible (Pnevmatikakis and Paninski, 2011), but will not be discussed
here.

This equilibrium covariance C0 satisfies the discrete Lyapunov equation

AC0A
T + V = C0; (3)

3



this is just the Kalman recursion for Ct above, solving for Ct = Ct−1 in the special case that
B = 0 (i.e., no observations are available). This equation can be solved explicitly in many
cases (Anderson and Moore, 1979), as we discuss briefly now.

Applying the standard moving-average recursion (Brockwell and Davis, 1991) for the
autoregressive model qt leads to

C0 =
∞

∑

i=0

AiV (AT )i (4)

(again, under suitable conditions to guarantee that this series has a finite limit). If the
dynamics equation A commutes with the dynamics noise covariance V , and A is normal (i.e.,
AAT = AT A), this reduces to the explicit solution

C0 = V

∞
∑

i=0

(AAT )i = V (I − AAT )−1.

More generally, if V and A do not commute then we can employ the (linear) whitening change
of variables xt = V −1/2qt (assuming V is of full rank). Abbreviating the symmetric matrix
square root E = V 1/2 and defining the reparameterized covariance matrix C ′

0 via C0 = EC ′
0E,

we rewrite the Lyapunov equation as

EE−1AEC ′
0EAT E−1E + EE = EC ′

0E.

Pre- and post-multiplying by E−1 gives

(E−1AE)C ′
0(E

−1AE)T + I = C ′
0;

if we define AV through the similarity transformation AV = E−1AE, assume AV is normal,
and argue as above, we find that

C ′
0 =

(

I − (E−1AE)(E−1AE)T

)−1

=
(

I − AV AT
V

)−1
,

so
C0 = E

(

I − AV AT
V

)−1
E.

The case that V is of reduced rank, or that the resulting AV is non-normal, appears to
be more difficult, as noted in more detail in the Discussion section below.

Fast method

Now the basic idea is that, in low-SNR conditions, Ct should be close to C0: i.e., we should
be able to represent the time-varying covariance Ct as a small perturbation about the steady-
state solution C0, in some sense. Thus, more concretely, we will approximate Ct as

Ct ≈ C0 + UtDtU
T
t , (5)

where UtDtU
T
t is a low-rank matrix we will update directly. We will now show that it is

straightforward to compute and update the perturbations Ut and Dt efficiently whenever fast
methods are available to solve linear equations involving A and C0.
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But first, why does the approximation in eq. (5) make sense? It is easy to see, using the
Woodbury matrix lemma, that if we make k observations at time t = 1 then eq. (5) will hold
exactly, for U1 of rank k. If we make no further observations, then Ct follows the simple
update rule

Ct = ACt−1A
T + V

= A[C0 + Ut−1Dt−1U
T
t−1]A

T + V

= C0 + AUt−1Dt−1U
T
t−1A

T ;

the first equality is just the standard Kalman update in the case that B = 0, and the third
equality follows from eq. (3). Iterating, we see that

Ct = C0 + At−sUsDsU
T
s (At−s)T ,

where s denotes the time of the last available observation. Since A is assumed to be stable,
this implies that the perturbation to Ct around the equilibrium covariance C0 caused by the
observations up to time s will decay exponentially; for t− s sufficiently large, we can discard
some dimensions of the perturbation At−sUsDsU

T
s (At−s)T without experiencing much error

in Ct. In the case that additional observations become available with each timestep t, a similar
phenomenon governs the behavior of Ct: long-ago observations are eventually “forgotten,”
due to the exponential decay caused by the double multiplication ACtA

T . We may exploit
this exponential decay by discarding some dimensions of Ct − C0 as they become sufficiently
small, and if the observations are sufficiently low-rank and low-SNR relative to the decay
rate imposed by A, then the effective rank of Ct − C0 will remain small. Conversely, if the
observation information matrix BT W−1B is large relative to the decay rate imposed by A,
then the effective rank of Ct − C0 can become large, and in this case the approximations
developed here will no longer be useful1.

This intuition is quantified in Fig. 1. If we compare Ct to C0 by computing the spectrum

of C
−1/2

0
CtC

−1/2

0
, we see that only a small fraction of the eigenvalues of C

−1/2

0
CtC

−1/2

0
are

significantly different from one. Thus C
−1/2

0
CtC

−1/2

0
may be approximated as a low-rank

perturbation of the identity matrix, or equivalently, Ct may be approximated as a low-rank
perturbation of C0. The effective rank of this perturbation depends on the decay rate imposed
by A and on the SNR of the observations, specifically on the scale of the observation noise
W and on the dimension of the observation vector yt: a larger BT W−1B leads to a larger

effective rank of I −C
−1/2

0
CtC

−1/2

0
. In some cases we can quantify this dependence explicitly.

For example, in the appendix we note that the solution to the Riccati equation for the limiting
covariance in the presence of time-invariant observation matrices B and W may be computed
in terms of an expansion in the observation information matrix BT W−1B, in the low-SNR
limit that BT W−1B is small. For example, in the simplest case, that A, V , and B commute,
C∞ = C0 + C1 + o(BT W−1B), where the matrix C1 has the same rank as B, is of the same
order as (BT W−1B), and may be computed explicitly. See the appendix for further details
and discussion.

Now we can describe a method for efficiently updating Ut and Dt. We will use A and C0

in what follows; it is easy to substitute the transformed matrices AV and C ′
0 (defined in the

1It seems reasonable to expect that this qualitative explanation in terms of exponential decay of error could
be developed further into a more quantitative stability theory that could provide bounds on the error generated
by discarding some dimensions of Ct − C0; we leave such a development for future work.
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Figure 1: Ct is fairly close to C0; in particular, I−C
−1/2

0
CtC

−1/2

0
has low effective rank. Left:

true Ct. Middle: C0. Both C0 and Ct are plotted on the same colorscale, to facilitate direct

comparison. Right: eigenvalue spectrum of I − C
−1/2

0
CtC

−1/2

0
; an approximation of rank

about 20 would seem to suffice for I − C
−1/2

0
CtC

−1/2

0
here. This Ct and C0 were extracted

from t = 200 in the “place field” simulation discussed in more depth in Figs. 2 and 3, below.

previous section) if necessary. First, as above, write

(ACt−1A
T + V )−1 = (A[C0 + Ut−1Dt−1U

T
t−1]A

T + V )−1

= (C0 + AUt−1Dt−1U
T
t−1A

T )−1.

Next apply the Woodbury matrix lemma:

(C0 + AUt−1Dt−1U
T
t−1A

T )−1 = C−1

0
− C−1

0
AUt−1(D

−1

t−1
+ UT

t−1A
T C−1

0
AUt−1)

−1UT
t−1A

T C−1

0

= C−1

0
− RtQtR

T
t ,

where we have abbreviated
Rt = C−1

0
AUt−1

and
Qt = (D−1

t−1
+ UT

t−1A
T C−1

0
AUt−1)

−1.

Now plug this into the covariance update:

Ct =
[

(ACt−1A
T + V )−1 + BT W−1B

]−1

=
[

C−1

0
− RtQtR

T
t + BT W−1B

]−1
.

We see that the update is of low-rank form. To apply Woodbury again, we just need to
simplify the term −RtQtR

T
t + BT W−1B. Choose an orthogonal basis

Ot = orth([Rt B])

and then write
−RtQtR

T
t + BT W−1B = OtMtO

T
t ,
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with
Mt = −OT

t RtQtR
T
t Ot + OT

t BT W−1BOt.

Now, finally, apply Woodbury again2:

Ct =
[

C−1

0
− RtQtR

T
t + BT W−1B

]−1

=
[

C−1

0
+ OtMtO

T
t

]−1

= C0 − C0Ot(M
−1
t + OT

t C0Ot)
−1OT

t C0. (6)

In practice, we find that occasionally Mt is itself poorly-conditioned (i.e., it is effectively of low
rank). In this case, we approximate Mt ≈ GtHtG

T
t , where Ht is a square matrix containing

the eigenvalues of Mt that are above some tolerance value, and Gt is the corresponding
eigenvector matrix; then we apply the Woodbury lemma directly to C−1

0
+(OtGt)Ht(OtGt)

T ,
instead of C−1

0
+ OtMtO

T
t .

We obtain Ut and Dt by truncating the SVD of the expression on the right-hand side of
equation (6): in Matlab, for example, we write

[U ′, D′] = svd(C0Ot(M
−1
t + OT

t C0Ot)
−1/2, ‘econ′),

then choose Ut as the first n columns of U ′ and Dt as the negative square of the first n

diagonal elements D′, where n is chosen to be large enough (for accuracy) and small enough
(for computational tractability). We have found that a reasonable choice of n is as the least
solution of the inequality:

∑

i≤n

|Dii| ≥ c
∑

i

|Dii|; (7)

i.e., choose n to capture at least a large fraction c of the variance in the right-hand term
perturbing C0 in equation (6).

Now the update for µt is relatively standard:

µt = Ct

[

(ACt−1A
T + V )−1mt + BT W−1(yt − µ

η
t )

]

= (P−1
t + BT W−1B)−1

[

P−1
t mt + BT W−1(yt − µ

η
t )

]

= (Pt − PtB
T (W + BPtB

T )−1BPt)
[

P−1
t mt + BT W−1(yt − µ

η
t )

]

= mt − PtB
T (W + BPtB

T )−1B [st + mt] + st,

where we have made the abbreviations

Pt = C0 + AUt−1Dt−1U
T
t−1A

T , (8)

mt = Aµt−1 + ut, (9)

and
st = PtB

T W−1(yt − µ
η
t ).

2It is well-known that the Woodbury formula can be numerically unstable when the observation covariance
W is small (i.e., the high-SNR case). It should be straightforward to derive a low-rank square-root filter
(Howard and Jebara, 2005; Treebushny and Madsen, 2005; Chandrasekar et al., 2008) to improve the numerical
stability here, though we have not yet pursued this direction. Meanwhile, a crude but effective method to
guarantee that Ct remains positive definite is to simply shrink Dt slightly if any negative eigenvalues are
detected. This can be done easily in O(N) time by restricting attention to the subpsace spanned by Ut.
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Note that we update the mean µt first, then truncate Ut and Dt.
To review, we have introduced some simple low-rank recursions for Ut, Dt, and µt in

terms of C0 and A. These recursions may be defined in the original parameterization or in
the whitened representation, in which case we use AV in place of A and C ′

0 in place of C0.
The key point is that C0 or C−1

0
need never be computed explicitly; instead, all we need is

to multiply by A and multiply and divide by C0 or C−1

0
, whichever is easiest (by “divide,”

we mean to solve equations of the form C0v = r for the unknown vector v and known vector
r). The orthogonalization and SVD steps require O(n3) time, assuming n ≪ N , while all
the other steps involve O(n) matrix-vector multiplications or divisions by C0. Thus, if K(N)
denotes the cost of a single matrix-vector multiplication or division by C0, the computational
complexity of each low-rank update is O(n3 + nK(N)). In many cases of interest (see below)
K(N) = o(N2), and therefore the low-rank method is significantly faster than the standard
Kalman recursion for large N .

We close this section by noting that the posterior marginal variance difference [Ct −C0]ii
can be computed in O(nN) time given Ut and Dt, since computing the diagonal of Ct − C0

just requires us to sum the squared elements of (−Dt)
1/2Ut. This quantity is useful in a

number of contexts (Huggins and Paninski, 2010). In addition, the method can be sped up
significantly in the special case that B and W are time-invariant: in this case, Ct will converge
to a limit (as an approximate solution of the corresponding Riccati equation), and we can stop
recomputing Ut and Dt on every time step. More generally, if Bt and Wt are time-varying in
a periodic manner, then Ct will also be periodic, and we can store a period’s worth of Ut and
Dt in memory, instead of continuing to recompute these on each timestep.

Full forward-backward smoothing

So far we have focused on the forward problem of computing estimates of qt given the data
available up to time t, i.e., E(qt|Y1:t) and Cov(qt|Y1:t). To incorporate all of the available
information Y1:T (not just Y1:t), we need to perform a backward recursion. Two methods are
available: we can use the Kalman backward smoother (Shumway and Stoffer, 2006), which
provides both E(qt|Y1:T ) and Cov(qt|Y1:T ), or a version of the Thomas recursion for solving
block-tridiagonal systems (Press et al., 1992), which is slightly faster but only provides the
estimated mean E(qt|Y1:T ).

Both recursions can be adapted to our low-rank setting. In the Kalman backward smoother
we can approximate Cov(qt|Y1:T ) ≈ C0 + U s

t Ds
t (U

s
t )T , for an appropriately chosen low-rank

matrix U s
t Ds

t (U
s
t )T , which can be updated efficiently using methods similar to those we have

described here for the forward low-rank approximation C0+UtDtU
T
t ; see (Huggins and Panin-

ski, 2010) for full details. To derive an efficient low-rank block-Thomas approach, first we
recall that the output of Kalman filter-smoother, E(qt|Y1:T ), may be written as the solution to
a block-tridiagonal linear system (Fahrmeir and Kaufmann, 1991; Paninski et al., 2010). Close
inspection of the standard Thomas recursion applied to this block-tridiagonal system reveals
that the key step involves repeated multiplications by a large matrix which turns out to be the
identity in the limit that the observation information matrix BT W−1B tends to zero. More
generally, in the case that BT W−1B is nonzero but small and low-rank, we can replace this
identity matrix with an approximate matrix of the form I +Zt, where Zt is a low-rank matrix
which can again be updated efficiently using methods similar to those discussed here. See
(Huggins and Paninski, 2011) for full details on this low-rank block-Thomas approach. For
either approach (backward Kalman or block-Thomas), the computational complexity scales
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as O(n3 + nK(N)), as in the forward Kalman case discussed above.

Examples for which the proposed fast methods are applicable

There are many examples where the required manipulations with A and C0 are relatively
easy. The following list is certainly non-exhaustive. As before, we assume A is normal.

First, if A or its inverse is banded (or tree-banded, in the sense that Aij 6= 0 only if i

and j are neighbors on a tree) then so is C−1

0
, and multiplying and dividing by C0 costs just

O(N) time and space per timestep, via either the junction tree algorithm from the theory
of Markov random fields (Jordan, 1999; Weiss and Freeman, 2001; Shental et al., 2008) or
approximate minimum degree reparameterizations of C0 (Rue and Held, 2005; Davis, 2006),
as explained in (Paninski, 2010).

Second, in many cases A is defined in terms of a partial differential operator. (Again, the
example discussed in (Paninski, 2010) falls in this category; the evolution of the voltage on
the dendritic tree is governed by a cable equation on a tree (Hines, 1984; Koch, 1999).) A in
these cases is typically sparse and has a specialized local structure; multiplication by A and
C−1

0
requires just O(N) time and space. In many of these cases multigrid methods or other

specialized PDE solvers can be used to divide by C−1

0
in O(N) time and space (Briggs et al.,

2000). As one specific example, multigrid methods are well-established in electroencephalo-
graphic (EEG) and magnetoencephalographic (MEG) analysis (Wolters, 2007; Lew et al.,
2009), and therefore could potentially be utilized to significantly speed up the Kalman-based
analyses described in (Long et al., 2006; Galka et al., 2008; Freestone et al., 2011).

Third, A will have a Toeplitz (or block-Toeplitz) structure in many physical settings, for
example whenever the state variable qt has a spatial structure and the dynamics are spatially-
invariant in some sense. Multiplication by A and C−1

0
via the fast Fourier transform (FFT)

requires just O(N log N) time and space in these cases. Similarly, division by C−1

0
can be

performed iteratively via preconditioned conjugate gradient descent, which in many cases
again requires O(N log N) time and space (Chan and Ng, 1996). Of course, if A is circulant
then FFT methods may be employed directly to multiply and divide by C0 in O(N log N)
time and space (Press et al., 1992).

In all of these cases, block structure in A may be exploited easily, since the transpose
and product involved in the construction of C0 will preserve this block structure. Kronecker
structure in AAT may often be exploited easily, by the mixed-product and distributive prop-
erties of the Kronecker product. Of course, there are many other specialized matrix forms
(sparse H-matrices (Hackbusch and Khoromskij, 2000), multipole operators (Memarsadeghi
et al., 2008), etc.) for which fast numerical methods are available. Finally, it is worth noting
that parallelization is a major theme in modern numerical analysis; many specialized parallel
algorithms, with even faster scaling (depending on the number of available processing cores)
have been devised for the cases discussed above.

Application to smoothing

Now for the main statistical examples we have in mind. In many statistical settings, the
dynamics matrix A and noise covariance V are not directly defined; the analyst has some
flexibility in choosing these matrices according to criteria including physical realism and
computational tractability. Perhaps the simplest approach is to use a separable prior, defined
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most easily as follows. Let A = aI, 0 < a < 1. Now

C0 = (1 − a2)−1V ;

thus it is clear that when it is easy to multiply and divide by V , we may apply the fast
methods discussed above with no modifications. Note that in this case the prior covariance
of the vector Q = [q1 q2 . . . qT ] is separable:

cov(Q) = C0 ⊗ CAR,

where ⊗ denotes the Kronecker product and CAR denotes the covariance of the standardized
one-dimensional AR(1) process, qt+1 = aqt +

√
1 − a2ǫt, ǫt ∼ N (0, 1). Note that the posterior

covariance cov(Q|Y ) is not separable in general, which complicates exact inference.
It is straightforward to construct more interesting nonseparable examples. For example,

in many cases we may choose a basis so that V and A are diagonal and the transformation
back to the “standard” basis is fast. Examples include the discrete Fourier basis, common
spline bases (Green and Silverman, 1994; Wood, 2006), and wavelet bases (Daubechies, 1992;
Walnut, 2002). Now the interpretation is that each basis element is endowed with an AR(1)
prior: the (i, i)-th element of A defines the temporal autocorrelation width of the i-th process,
while the elements of the diagonal matrix (I −A2)−1V set the processes’ prior variance (and
therefore (I − A2)−1V expressed in the “standard” basis sets the prior covariance C0). The
difficulty in applying the standard Kalman recursion in this setting is that if B is not also
diagonal in this representation, then direct implementations of the Kalman filter require
O(N3) time per timestep, since Ct does not remain diagonal in general. Nonetheless, the fast
low-rank smoother may be applied in a straightforward manner in this setting: computing
E(qt|Y ) and Cov(qt|Y ) requires O(n3 + nN) time, to which we add the time necessary to
transform back into the standard basis.

A further speedup is possible in this diagonal case, if the observation matrices Bt are
sparse; i.e., if each observation yt only provides information about a few elements of the
state vector qt. This setting arises frequently in environmental applications, for example,
where a just a few sampling stations are often available to take spatially-localized samples
of large spatiotemporal processes of interest (Stroud et al., 2001). Another example, from
neuroscience, will be discussed in the following section. If It denotes the set of indices for
which Bs is nonzero for s ≤ t, then it is easy to show that the forward covariance Ct matrix
need only be evaluated on the |It| × |It| submatrix indexed by It; if i or j are not in It, then
[Ct]ij = [C0]ij . Thus, we need only update the low-rank matrix Ut at the indices It, reducing
the computational complexity of each update from O(n3 +nN) to O(n3 +n|It|). Clearly, with
each new update at time t, we will add some elements to It, but we can also discard some
elements as we go because our low-rank updates will effectively “forget” information as time
progresses, as discussed above. (In particular, the indices for which the recent observations
provide no information will eventually be dropped.) Thus in practice |It| often remains much
smaller than N , leading to a significant speedup.

The fast low-rank methods can also greatly facilitate the selection of hyperparameters in
the smoothing setting: typically the data analyst will need to set the scale over which the
data are smoothed, both temporally and spatially, and we would often like to do this in a
data-dependent manner. There are a number of standard approaches for choosing hyperpa-
rameters, including cross-validation, generalized cross-validation, expectation-maximization,
and maximum marginal likelihood or empirical Bayes methods. In all of these cases, it is
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clearly beneficial to be able to compute the estimate more rapidly for a variety of hyperpa-
rameter settings. In addition, the output of the filter-smoother is often a necessary ingredient
in hyperparameter selection. For example, the standard expectation-maximization method of
(Shumway and Stoffer, 2006) can be easily adapted to the low-rank setting: we have already
discussed the computation of the sufficient statistics E(qt|Y ) and Cov(qt|Y ), and the remain-
ing sufficient statistics E(qtq

T
t+1|Y ) follow easily. Similarly, a straightforward application of

the low-rank determinant lemma allows us to efficiently compute the marginal log-likelihood
log p(Y ), via a simple adaptation of the standard forward recursion for the loglikelihood in
the Kalman filter model (Rabiner, 1989).

Two neuroscience examples

To make these ideas more concrete, we now examine two examples from neuroscience. For
our first example we consider neurons in the rodent hippocampal brain region; many of
these neurons respond selectively depending on the animal’s current location. This spatial
dependency can be summarized in terms of a “place field” f(x), where f(x) is the expected
response of the neuron (quantified by the number of action potentials emitted by the neuron
in a fixed time interval), given that the animal is located at position x. It is known that
these place fields can in some cases change with time; in this case we might replace f(x) with
f(x, t). These time-varying place fields f(x, t) are often represented as a sum of some fixed
spatial basis functions (Brown et al., 2001; Frank et al., 2002; Czanner et al., 2008):

f(x, t) =
∑

i

qitfi(x). (10)

For example, the basis {fi(x)} could consist of spline functions defined on the spatial variable
x. Now we place a prior on how the weights qit evolve with time. In the simplest case, qit

could evolve according to independent AR(1) processes; as emphasized above, this means
that the dynamics matrix A is diagonal. Now the observation model in this setting may be
taken to be yt = f(xt, t)+ηt, with ηt denoting an i.i.d. Gaussian noise source, or we can use a
slightly more accurate Poisson model, yt ∼ Poiss{f(xt, t)}, where in either case xt represents
the (known) location of the animal as a function of time t, and Poiss{λt} denotes a Poisson
process with rate λt. (More detailed models are possible, of course (Czanner et al., 2008;
Rahnama Rad and Paninski, 2010), but this basic formulation is sufficient to illustrate the
key points here.) So the observation matrix Bt is just a N -dimensional vector, Bit = fi(xt),
if we use N basis vectors to represent the place field f . Computing Bt requires at most O(N)
time; if the basis functions fi have compact support, then Bt will be sparse (i.e., computable
in O(1) time), and we can employ the speedup based on the sparse index vector It described
above.

A second example comes from sensory systems neuroscience. The activity of a neuron
in a sensory brain region depends on the stimulus which is presented to the animal. The
activity of a visual neuron, for example, is typically discussed using the notion of a “receptive
field,” which summarizes the expected response of the neuron as a function of the visual
stimulus presented to the eye. We can use a similar model structure to capture these stimulus-
dependent responses; for example, we might model yt = sT

t f t + ηt in the Gaussian case, or
yt ∼ Poiss{exp[sT

t f t]} in the Poisson case, where st is the sensory stimulus presented to the
neuron at time t, sT

t f t =
∑

x s(x, t)f(x, t) denotes the linear projection of the stimulus st onto
the receptive field f t at time t, and f(x, t) is proportional to the expectation of yt given that
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a light of intensity s(x, t) was projected onto the retina at location x. (The exponential link
function exp[.] in this Poisson regression model can be replaced easily in this context with
any function which is convex and whose logarithm is concave; see (Paninski, 2004; Paninski
et al., 2007) for further discussion.) As indicated by the notation f t, these receptive fields
can in many cases themselves vary with time, and to capture this temporal dependence it is
common to use a weighted sum of basis functions model, as in equation (10). This implies
that the observation matrix Bt can be written as Bt = sT

t F , where the i-th column of the
basis matrix F is given by fi. If the basis functions fi are Fourier or wavelet functions, then
the matrix-vector multiplications sT

t F can be performed in O(N log N) time per timestep; if
fi are compactly supported, F will be sparse, and computing sT

t F requires just O(N) time.
Now in each of these settings the low-SNR Kalman filter is easy to compute. In the case of

Gaussian observation noise ηt we proceed exactly as described above; in the Poisson case we
can employ well-known extensions of the Kalman filter described, for example, in (Fahrmeir
and Kaufmann, 1991; Fahrmeir and Tutz, 1994; Brown et al., 1998; Paninski et al., 2010); see
the appendix for details. In either case, the filtering requires O(n3 + n|It|) time per timestep
t. When the filtering is complete (i.e., E(qt|Y ) has been computed for each desired t), we
typically want to transform from the qt space to represent E(f |Y ); again, if the basis functions
fi correspond to wavelet or Fourier functions, this costs O(N log N) time per timestep, or
O(N) time if the fi functions are compactly supported.

Figures 2 and 3 illustrate the output of the fast filter-smoother applied to simulated place
field data. The spatial variable x is chosen to be one-dimensional here, for clarity. We
chose the true place field f(x, t) to be a Gaussian bump (as a function of x) whose mean
varied sinusoidally in time but whose height and width were held constant (see the upper
left panel of Fig. 2). The basis matrix F consisted of 50 equally-spaced bump functions with
compact support (specifically, spatial Gaussians truncated at σ ≈ 4, with each bump located
one standard deviation σ apart from the next.) The dynamics coefficient a (in the diagonal
dynamics matrix A = aI) was about 0.97, which corresponds to a temporal correlation time
of τ = 30 timesteps; the simulation shown in Fig. 2 lasted for T = 1000 timesteps. To explore
the behavior of the filter in two regimes, we let xt begin by sampling a wide range of locations
(see Fig. 2 for t < 200 or so), but then settling down to a small spatial subset for larger values
of t. We used the Gaussian noise model for yt in this simulation.

We find that, as expected, the filter does a good job of tracking f(x, t) for locations x near
the observation points xt, where the observations yt carry a good deal of information, but far
from xt the filter defaults to its prior mean value, significantly underestimating f(x, t). The
posterior uncertainty V (f(x, t)|Y ) = diag[FCov(qt|Y )F T ] remains near the prior uncertainty
diag[FC0F

T ] in locations far from xt, as expected. Figures 1 and 3 illustrate that the low-rank
approximation works well in this setting, despite the fact that (at least for t sufficiently large)
only a few singular values are retained in our low-rank approximation (c.f. Fig. 2, lower left
panel). We set the variance fraction coefficient c = 0.99 in equation (7) for this simulation;
the results do not depend qualitatively on the precise value of c in this case (data not shown).

We have also applied the filter to real neuronal data, recorded from single neurons in
the mouse hippocampal region by Dr. Pablo Jercog. In these experiments the mouse was
exploring a two-dimensional cage, and so we estimated the firing rate surface f(x, t) as a
function of time t and a two-dimensional spatial variable x. The results are most easily
viewed in movie form; see http://www.stat.columbia.edu/∼liam/research/abstracts/fast-low-
SNR-Kalman-abs.html for details.

Finally, Figure 4 illustrates an application of the fast filter-smoother to the second con-
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Figure 2: Output of the filter-smoother applied to simulated one-dimensional place field data.
The superimposed black trace in all but the lower left panel indicates the simulated path xt

of the animal; xt begins by sampling a wide range of locations for t < 200, but settles down
to a small spatial subset for larger values of t. Upper left: true simulated place field f(x, t)
is shown in color; f(x, t) has a Gaussian shape as a function of x, and the center of this
Gaussian varies sinusoidally as a function of time t. Top middle and right panels: estimated
place fields, forward (E(f(x, t)|Y1:t)) and forward-backward (E(f(x, t)|Y1:T )), respectively.
Here (in a slight abuse of notation) we use E(f t|Y ) to denote the projected mean FE(qt|Y ),
where F is the basis matrix corresponding to the basis coefficients q. Note that the estimated
place fields are accurate near the observed positions xt, but revert to the mean when no
information is available. Bottom middle and right panels: marginal variance of the estimated
place fields, forward (V (f(x, t)|Y1:t)) and forward-backward (V (f(x, t)|Y1:T )), respectively.
Again, note that the filter output is most confident near xt. Lower left panel: effective rank
of C0 − Cs

t as a function of t in the forward-backward smoother; the effective rank is largest
when xt samples many locations in a short time period.

text described above. We simulated neuronal responses of the form yt = sT
t f t + ηt, where the

sensory stimulus st was taken to be a spatiotemporal Gaussian white noise process and the
response noise ηt was also modeled as Gaussian and white, for simplicity. As discussed above,
we represented f t as a time-varying weighted sum of fixed basis functions fi. In this case
the basis F consisted of real-valued Fourier functions (sines and cosines), and multiplication
by this basis matrix was implemented via the fast Fourier transform. As in the previous
example, we chose the dynamics matrix A to be proportional to the identity; the effective au-
tocorrelation time was τ = 50 time steps here. The dynamics noise covariance V was diagonal
(and therefore so was the prior covariance C0), with the diagonal elements chosen so that the
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Figure 3: Comparison of the true vs. approximate projected covariance FCtF
T and mean Fµt

at t = 200. Simulation is as in Fig. 2. Left panel: true forward projected covariance FCtF
T .

Middle panel: approximate forward covariance F (C0 + UtDtUt)F
T . The maximal pointwise

error between these two matrices is about 1%. Right panel: true and approximate forward
mean Fµt. The black trace indicates the true mean and the red trace (barely visible) the
approximate mean. Figure 1 shows Ct from the same simulation at the same time, t = 200.

prior variance of the ω-th frequency basis coefficient falls off proportionally to ω−2; this led
to an effective smoothing prior. Figure 4 provides a one-dimensional example, where the full
spatiotemporal output of the filter-smoother can be visualized directly. We have also applied
the filter to higher-dimensional examples; a two-dimensional example movie is available at
http://www.stat.columbia.edu/∼liam/research/abstracts/fast-low-SNR-Kalman-abs.html.

Discussion

We have presented some simple but effective methods for more efficiently computing the
Kalman filter and smoother recursions. The basic idea is that, in many cases, fast methods
are available for multiplying and dividing by the prior equilibrium state covariance C0, and the
posterior state covariance Ct can be well-approximated by forming a low-rank perturbation
of the prior C0. These low-rank perturbations, in turn, can be computed and updated in an
efficient recursive manner.

There are a number of clear opportunities for application of this basic idea. Some exciting
examples involve optimal control and online experimental design in high-dimensional settings;
for instance, optimal online experimental design requires us to choose the observation matrix
Bt adaptively, in real time, to reduce the posterior uncertainty optimally, in some sense
(Fedorov, 1972; Mackay, 1992; Krause et al., 2008; Lewi et al., 2009). In the linear-Gaussian
case, the posterior covariance Ct is independent of the observations Y , so we can precompute
the optimal sequence of Bt, though more generally (in the case of nonlinear or non-Gaussian
observations) the optimal Bt can only be computed after observing the data Y1:t−1. A wide
variety of objective functions based on the posterior covariance Ct have been employed in the
experimental design literature (Fedorov, 1972); the fast methods we have introduced in this
paper can be adapted to compute many of these objective functions, including those based
on the posterior state entropy, or weighted sums of the marginal posterior state variance.
See (Huggins and Paninski, 2010) for an application of these ideas to the neuronal dendritic
setting.
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Figure 4: Tracking a time-varying one-dimensional receptive field. Top panel: the true re-
ceptive field f t was chosen to be a spatial Gaussian bump whose center varied sinusoidally
as a function of time t. Second panel: the stimulus st was chosen to be spatiotemporal white
Gaussian noise. Third panel: simulated output observed according to the Gaussian model
yt = sT

t f t + ηt. Lower four panels: the forward filter mean E(f t|Y1:t) and marginal vari-
ance V ar(f t(x)|Y1:t) and the full forward-backward smoother mean and marginal variance
E(f t|Y1:T ) and marginal variance V ar(f t(x)|Y1:T ). The dimension of the state variable f t

here was 210; inference required tens of seconds on a laptop. Time units are arbitrary here;
the assumed prior autocorrelation time was τ = 50 timesteps, while the total length of the
experiment T = 200 timesteps.

We have seen that the prior covariance is especially easy to compute in the case that the
dynamics matrix A is normal: here C0 may be computed analytically, assuming the dynamics
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noise covariance V can be transformed via a convenient whitening transformation. A key
direction for future work will be to extend these methods to the case that A is a non-normal
matrix. While there are a number of methods for solving the Lyapunov equation in this
non-normal case (Anderson and Moore, 1979; Higham, 2008), it seems harder to find general
efficient methods for multiplying or dividing by the solution C0 in o(N2) time and space, as
required by our fast method. The dynamics matrix A is normal (indeed, symmetric) in many
applications — e.g., electrostatic applications, where the interactions between compartments
i and j are symmetric (as in the neuronal cable case discussed in (Paninski, 2010)), and many
mechanical applications (Tipireddy et al., 2009)), but non-normal dynamics matrices also arise
quite frequently in practice. For example, weather prediction applications involve dynamics
with strong drift (not just diffusion) terms, making A non-symmetric and perhaps non-normal
in many cases. Standard direct methods for solving the Lyapunov equation given a non-
normal dynamics matrix A (e.g., the Bartels-Stewart algorithm (Antoulas, 2005)) require an
orthogonalization step that takes O(N3) time in general. There is a large applied mathematics
literature on the approximate solution of Lyapunov equations with sparse dynamics (see
e.g. (Sabino, 2007) for a nice review), but the focus of this literature is on the case that the
noise covariance matrix is of low rank, which may be of less relevance in some statistical
applications. Further research is needed into how best to adapt modern methods for solving
the Lyapunov equation (e.g., those based on the matrix sign function (Higham, 2008)) to this
fast Kalman filter setting.

Another important direction for future research involves generalizations beyond the simple
Kalman setting explored here. The smoothers we have discussed are all based on a simple
vector AR(1) framework. It is natural to ask if similar methods can be employed to handle
the AR(p) case, or if other temporal smoothing methodologies (e.g., penalized spline methods
(Green and Silverman, 1994; DiMatteo et al., 2001; Wood, 2006)) might benefit from a
similar approach, since all of these techniques rely heavily on solving linear equations for
which the corresponding matrices are banded in the temporal domain. One promising idea
is to develop methods for directly solving these banded matrix equations, without using the
Kalman recursions per se (Fahrmeir and Kaufmann, 1991; Paninski et al., 2010); see (Huggins
and Paninski, 2011) for one implementation of this approach.

Finally, another major limitation of the methods discussed here is that we assume the
underlying dynamics model is stationary, in order to compute the equilibrium state covariance
C0. One way to generalize this idea is to interpret C0 simply as the prior covariance, and not
the equilibrium solution; then C0 can vary as a function of time. In some cases this time-
varying C0 can be computed efficiently, and suitable low-rank approximations for Ct follow
directly (Pnevmatikakis and Paninski, 2011). This opens up some interesting applications
involving the incorporation of non-Gaussian priors (Park and Casella, 2008); we are currently
in the process of pursuing these directions further.

Appendix: nonlinear observations

We would like to incorporate observations yt obeying some arbitrary conditional density
p(yt|qt) into our filter equations. This is of course difficult in general, since if p(yt|qt) is
chosen maliciously it is clear that our posterior distribution p(qt|Y1:t) may be highly non-
Gaussian, and our basic Kalman recursion will break down. However, if log p(yt|qt) is a
smooth, concave function of qt, it is known that a Gaussian approximation to p(qt|Y1:t) will
often be fairly accurate (Fahrmeir and Tutz, 1994; Brown et al., 1998; Paninski et al., 2010),

16



and our Kalman recursion may be adapted in a fairly straightforward manner.
For simplicity, we will focus on the case that the observations yit are independent samples

from p(yit|Biqt), where Bi denotes the i-th row of the observation matrix B. (The extension
to the case that yt depends in a more general manner on the projection Bqt may be handled
similarly.) We approximate the posterior mean µt with the maximum a posteriori (MAP)
estimate,

µt ≈ arg max
qt

[log p(qt|Y0:t−1) + log p(yt|qt)]

≈ arg max
qt

[

−1

2
(qt − mt)

T P−1
t (qt − mt) +

∑

i

log p(yit|Biqt)

]

.

(Recall that the one-step covariance matrix Pt and mean mt were defined in eqs. (8-9).) This
MAP update is exact in the linear-Gaussian case (and corresponds exactly to the Kalman
filter), but is an approximation more generally.

To compute this MAP estimate, we use Newton-Raphson. We need the gradient and
Hessian of the log-posterior with respect to qt,

∇ = −P−1
t (qt − mt) + BT f1(qt)

and
H = −P−1

t + BT diag[f2(qt)]B,

respectively. Here f1(qt) and f2(qt) are the vectors formed by taking the first and second
derivatives, respectively, of log p(yit|u) at u = Biqt, with respect to u. Now we may form the
Newton step:

qnew = qold − H−1∇
= qold −

(

−P−1
t + BT diag[f2(qold)]B

)−1 (

−P−1
t (qold − mt) + B′f1(qold)

)

= qold − (Pt − PtB
T (−diag[f2(qold)

−1] + BPtB
T )−1BPt)

[

P−1
t (qold − mt) − BT f1(qold)

]

= mt + PtB
T (−diag[f2(qold)

−1] + BPtB
T )−1B

[

qold − mt − PtB
T f1(qold)

]

+ PtB
T f1(qold)

We iterate, using a backstepping linesearch to guarantee that the log-posterior increases on
each iteration, until convergence (i.e., when qnew ≈ qold, set µt = qold). Then, finally, we
update the covariance Ct by replacing W−1 with −diag[f2(qt)] in the original derivation. Since
multiplication by Pt is assumed fast (and we need to compute PtB

T just once per timestep),
all of these computations remain tractable. Finally, we note that it is also straightforward
to adapt these fast methods in the context of the filter-forward sample-backward approach
discussed in (Jungbacker and Koopman, 2007) for sampling from the posterior p(Q|Y ) once
the MAP path for Q is obtained; however, we have not yet pursued this direction extensively.

Appendix: Low-SNR approximations of the solution to the Riccati equation

We would like to better understand the solution C of the Riccati equation in the low-SNR
regime:

C−1 = (ACAT + I) + BT W−1B,

with BT W−1B small and constant. (For simplicity, note that we have standardized via
the usual whitening transformation so that the dynamics noise covariance matrix is just the
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identity; in addition, we will assume that the dynamics noise covariance is full-rank.) The
Riccati equation is difficult to solve in general. Since we are interested in the low-SNR case,
we may replace the information matrix BT W−1B with ǫJ , where ǫ is understood to be a
small parameter. We know that C = C0 when ǫ = 0. Now we can search for a solution in
terms of a series expansion in ǫ near ǫ = 0.

For ease of interpretation, we will assume that every matrix in sight (namely A, AT , and
J) commutes. Then C0 = (I −AAT )−1, as discussed in the main text. To first order, we seek
a solution for C in the form C = C0 + ǫQ. We expand both sides of the equation

C−1 = (ACAT + I)−1 + ǫJ

to first order in ǫ:

C−1 = (C0 + ǫQ)−1

= C−1

0
(I − ǫQC−1

0
) + o(ǫ)

and

(ACAT + I)−1 + ǫJ = (C0 + ǫAQAT )−1 + ǫJ

= C−1

0
(I − ǫAQAT C−1

0
) + ǫJ + o(ǫ).

Matching terms up to first order in ǫ gives

Q = −JC3
0 .

(If A is normal but does not commute with J , then we can use a similar approach and obtain
Q as the solution to a discrete Lyapunov equation; we omit the details.) Thus, in this case,
up to first order in ǫ, rank(C − C0) = rank(J), providing further quantitative justification
for our low-rank approximation. More generally, this result can provide at least a rough sense
of how large the perturbation C − C0 will be as a function of the observation information
matrix J and the dynamics matrix A (through C0 = (I − AAT )−1). This, in turn, could be
useful in determining how large the perturbation rank n will have to be to maintain a given
accuracy in the approximate filter.
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