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Introduction

I 2-party Communication Complexity
I Multiparty Communication Complexity

Why multiparty?
We have seen a number of two-party communication complexity
problems such as MAJ, XOR, EQ and their applications to
obtaining lower bounds in circuit complexity, boolean functions and
algorithms. Generally, the two-party communication complexity is a
well-studied model [KN97][And79], while multi-party is relatively
more mysterious.



Two models for Multiparty CC

I Number-in-hand(NIH): The t players each holds an n-bit
input xi ∈ {0, 1}n. They wish to compute a joint function of
their input f (x1, ..., xt). They can communicate until one of
them figures out the value of f (x1, ..., xt) and returns it.

I Number-on-the-forehead(NOF): Each player can see the
inputs of all other players but cannot see his own input. Other
setting is the same as in number-in-hand model.

Equivalent in two party communication case, entirely different for
multi-party communication!
The NIH is useful in proving space lower bounds for streaming
algorithms. The NOF model has applications to circuit complexity
but since every player has a relatively large amount of information,
the lower bound is hard to obtain. We do not cover NOF here.



Settings of Communication

I blackboard model: any message sent by a player is written
on a board and all players can see.

I message-passing model(private message ): a player pi
sends messages to another specific player pj .

I coordinator model: we have a (t + 1)-th player as a
coordinator who does not get any input. Players send
messages only to the coordinator but not to each other.

Observation: the communication complexity in the coordinator
model is just that from the message-passing model with a log t
multiplicative factor. Each player pi can send message (m, j) to the
coordinator, where m is the original message he wants to send to pj
and j tells the coordinator to forward to player pj . (if
communication is not one-way)



Settings of Communication

I Sometimes the message can only be one-way
I Simultaneous Message: all players send messages

simultaneously to coordinator



Deterministic and Randomized Protocols

Similar to 2-party CC, we can have deterministic and randomized
Protocols,

I Deterministic: Bound analysis methods used in deterministic
problems are often purely combinatorial

I Randomized: the players have access to public or private coins,
which are equivalent to an infinite string of independent
random bits. The protocol is allowed to return a wrong answer
with probability of a small constant ε.
Various methods: symmetrization, information complexity,
direct sum arguments, etc.



Applications of NIH multiparty CC

A data stream is a sequence of data that is too large to be entirely
stored in memory. Streaming algorithms are algorithms for
computing, and often estimating some statistics with respect to an
input data stream. The input may be examined in a few passes, but
typically just one.
Problems people are usually interested
I frequency moments
I distinct elements
I heavy hitters
I streaming on graphs: edge connectivity, maximum bipartite

matching, etc.
NIH multiparty communication complexity can be used to lower
bound the space complexity of deterministic and randomized
streaming algorithms.



What we will cover

I Strong Fooling Sets technique for lower bounds of
deterministic protocols

I Space lower bounds for frequency moments
I Graph streams and graph communication problems
I Our own ideas inspired by strong fooling sets technique
I A glance of randomized protocols(if time permits)



Strong Fooling Sets: Concepts

Definition
Let X1, ...,Xt be finite sets. Put X := X1 × ...×Xt . f : X  Z is
a partial function. Or say, f : X  Z ∪ {?}, where ? is a special
“do-not-care” value. Denote t players as PLR1, ...,PLRt . Suppose
the input for each PLRi is xi ∈ Xi . The players should then
communicate according to a deterministic protocol Π to output
Π0(x) ∈ Z. Π computes f if

∀x ∈ X : f (x) 6= ?⇒ Π0(x) = f (x)

I Discreet(Private) Protocol
I Blackboard Protocol



Discrete Protocol & Blackboard Protocol

I Discreet(Private) Protocol:

cost(Π) := max
i ,x
|Πi (x)| = min{B : Π is B-bounded}

DD(f ) := min{cost(Π) : discreet protocol Π computes f }

I Blackboard Protocol:

costtot(Π) := max
x

(|Piw1 (x)|+ · · ·+ |Πw
t (x)|)

BBtot(f ) := min{costtot(Π) : Π computes f }

Relation:
costtot(Π) ≤ t

2
cost(Π) (1)



Weak Fooling Set bound

I Combinatorial Rectangle: Y1 × · · · × Yt ⊆ X
I Each equivalence class of a blackboard protocol Π is a

rectangle in X . In particular, if F ⊆ X lies within an
equivalence class, then so does span(F). Consequently, if Π
computes a partial function f , then f is constant on span(F).

I suppose the communication game is f : X  Z. A set F is a
K -weak-fooling-set for f if
∀F ′ ⊆ F with |F ′| > K , span(F ′) is not constant on f



Weak Fooling Set bound

Lemma (Weak-fooling-set bound)
Suppose that f : X  Z specifies a t-player communication game
and that f has a K -weak-fooling-set F . Then

BBtot(f ) ≥ log
|F|
K
⇒ DD(f ) ≥ 2

t
log
|F|
K



Neighborhood

Definition
Let G ⊆ X be nonempty. A neighborhood within G is a t-tuple
N = (H1, ...,Ht) where each Hi ⊆ G and core(N ) := H1∩ ...∩Ht

is nonempty. And wid(N ) := min{|H1|, ..., |Ht |}.

Lemma (Generalized Rectangle Property)
Let Π be a discrete protocol on input space X . Let N be a
neighborhood within X such that Π is smooth on N . Then
span(N ) lies within an equivalence class of Π. Consequently, if Π
computes a partial function f , then f is constant on span(N ).

Proof.
(x1, ...xt)→ (y1, x2, ...xt)→ · · · → (y1, ..., yt)



Strong Fooling Set bound
Lemma
Let Π be a B-bounded t-player discreet protocol on input space X .
Let G ⊆ X . Then there exists a neighborhood N within G such
that Π is smooth on N and wid(N ) ≥ |G|/(t2B).

Lemma
Suppose the finite set S is partitioned into L blocks and s ∈R S is
picked uniformly at random. For every real A > 0,
Pr[|block contains s| < |S |/(AL)] < 1/A.
Probabilistic method:

Pr
[
wid(Nx) ≥ G

t2B

]
= 1− Pr

[
∃i : |Hi | <

G
t2B

]
≥ 1−

t∑
i=1

Pr
[
|Hi | <

G
t2B

]

> 1−
t∑

i=1

1
t

= 0



Strong Fooling Set bound

Definition
Let f : X  Z specify a communication game and let F ⊆ X . F
is a K -fooling-set for f , if for every neighborhood N within F ,

wid(N ) > K =⇒ f is nonconstant on span(N )

I For a B-bounded discreet protocol Π for f . If F is a
K -fooling-set for f .

I There exists a neighborhood N within F ⊆ X such that Π is
smooth on N and wid(N ) ≥ |F|/(t2B).

I f is constant on span(N ).
I Then there is wid(N ) ≥ |F|/(t2B) ≤ K .

I Thus, DD(f ) ≥ log |F|tK (Strong Fooling Set bound)

m,mm



Lower bounds for EQ-DIST

EQ-DISTn,t(x1, ..., xt) =


1, if x1 = · · · = xt ,

0, if xi 6= xj ,∀i , j , s.t.1 ≤ i < j ≤ t,

?, otherwise.

F := {x⊗t : x ∈ {0, 1}n} is a (t − 1)-fooling set of f . If
wid(N ) > t

I 1-instance: ∅ 6= core(N ) = H1 ∩ · · · ∩ Ht ⊆ span(N )

I 0-instance: since wid(N ) > t, let each player i select an
element in Hi that is different with all prior selections.

DD(EQ − DISTn,t) ≥ log
2n

t(t − 1)
= n − log(t2 − 1) ≥ n − 2 log t



EQ-SPRD Problem

Input: |x1| = · · · = |xt | = dβne

EQ-SPRDβ,γn,t (x1, ..., xt) =


1, if x1 = · · · = xt ,

0, if |x1 ∪ · · · ∪ xt | ≥ γn,
?, otherwise.



Lower bounds for EQ-SPRD – large t

Theorem
For all values 0 < β < γ ≤ 1 and sufficiently large n, if t ≥ γn,
then DD(EQ-SPRDβ,γn,t ) ≥ (β log(1/γ))n − log t

F = {x⊗t : x ∈ {0, 1}n} is a
(bγnc
βn

)
-fooling set, when t ≥ γn. If

wid(N ) >
(bγnc
βn

)
:

I 1-instance: ∅ 6= core(N ) = H1 ∩ · · · ∩ Ht ⊆ span(N )

I 0-instance: let each player i select a subset yi in Hi that
enlarge the current union Ui−1 = y1 ∪ · · · ∪ yi−1 by 1.

DD(EQ-SPRDβ,γn,t ) ≥ log

( n
βn

)
t
(bγnc
βn

) ≥ log

(
n
γn

)βn
t

≥ βn log 1
γ
− log t



Lower bounds for EQUALITY – small t

Theorem
For all values t ≥ 2, β > 0, γ ≤ βt(1− eβt) > β, and sufficiently
large integral n, we have
DD(EQ-SPRDβ,γn,t ) ≥ 2eβ2n − 2 log t −Θ(1)

Proof: Using Error Correcting Code to reduce it to EQ-DIST
problem.



Lower bounds for EQUALITY – small t

I Suppose C is a set of subsets of [n], i.e. C ⊆ 2[n], it is an
(r , s, n)-packing if:

I ∀A ∈ C, |A| = s
I ∀A,B ∈ C,A 6= B, |A ∩ B| ≤ r

I For all values 0 ≤ r ≤ s ≤ n, there exists an (r , s, n)-packing C
such that

|C| ≥
(
n

r

)/(
s

r

)2

.

I Set s = dβne, r = 2deβse

|C| ≥
(n
r

)(s
r

)2 ≥ (ns )r ( r

es

)r
=
( nr

es2

)r



Lower bounds for EQUALITY – small t

To find an injection:

r log
nr

es2 ≥ r log
2eβsn
es2 = r log

2βn
dβne

= 2eβ2n −Θ(1) ≥ N

Reduction:
I Obviously, the 1-input for EQ-DIST is also 1-input for

EQ-SPRD.
I For 0-input (x1, ..., xt) maps to (y1, ..., yt) in EQ-SPRD. Since

all yi ’s are different, from the packing property, there is:

|x1∪· · ·∪xt | ≥ ts−
(
t

2

)
r = ts−t(t−1)deβse ≥ dβnet(1−eβt) ≥ γn

so, it is also an 0-input for EQ-SPRD.
DD(EQ−SPRDβ,γ

n,t ) ≥ DD(EQ−DISTN,t) ≥ 2eβ2n−2 log t−Θ(1)



Failed attempt to improve lower bound

Recall:

Theorem
For all values 0 < β < γ ≤ 1 and sufficiently large n, if t ≥ γn,
then DD(EQ-SPRDβ,γn,t ) ≥ (β log(1/γ))n − log t

F = {x⊗t : x ∈ {0, 1}n} is a
(bγnc
βn

)
-fooling set, when t ≥ γn.

We guess that the constraint t ≥ γn could be relaxed.
I Intuitively, every time the next player may could enlarge more

than 1 element. So we tried to consider it in expectation, then
use the probabilistic method. It is hard to bound, and actually
union bound is far from enough.

I If there is not any constraints, there is a contra-example: Just
consider every subsets contains a common element. We are
not sure, if it is possible to improve if we add some constraints.



Discussions

I For EQ-DIST: trivial upper bound n + 1, so the lower
bound(n − 2 log t) is tight up to lower order terms.

I For EQ-SPRD: trivial upper bound 2 log
( n
dβne
)
≤ 2H(β)n

when β < 1/2. So, the lower bound is tight on the order of n.
I The upper bound for EQ-DIST under blackboard protocol

could reach O(n/t). So the lower bound n − 2 log t confirmed
the separation between blackboard protocol and
discreet(private) protocol.



Streaming Lower Bounds: Frequency Moments

Let x = (x1, ..., xt), xi ∈ {0, 1}n be an input for EQ-SPRDβ,γn,t . The
corresponding frequency vector f = x1 + ...+ xt .

Small moments: k < 1
For k < 1, we have (from [CK16]):

EQ-SPRDβ,γn,t (x) = 1⇒ Fk(f ) = βtkn

EQ-SPRDβ,γn,t (x) = 0⇒ Fk(f ) ≥ F0(f ) ≥ γn

As a result:

Theorem
For each k ∈ [0, 1), every deterministic s-space p-pass α-estimator
for Fk satisfies ps = Ω(max{n1−k/α, n/α2/(1−k)}).



Streaming Lower Bounds: Frequency Moments
Let x = (x1, ..., xt), xi ∈ {0, 1}n be an input for EQ-SPRDβ,γn,t . The
corresponding frequency vector f = x1 + ...+ xt .

Intermediate case: k = 1
F1 is just stream length, so trivially:

ps = Ω(logm)

Large moments: k > 1
Here we have, by arguments from convexity ([CK16]):

ps = Ω(n/α2k/(k−1))

By concentration bounds on power sums of random variables and
existential arguments about mapping matrices, this can be
improved to:

Ω(n/αk/(k−1)(log logα)2)



Streaming Lower Bounds: Frequency Moments

Upper bounds (also from [CK16])

Theorem
For integers p > 1, and reals k > 0 and α > 1, there is a family of
deterministic p-pass α-estimators for Fk with the following
guarantees on their space usage, s:
I When k = 0, we have ps = dn/αe+ O(logn).
I When 0 < k < 1, we have ps = O(n logm/α1/(1−k))

I When k = 1, at p = 1 we have s ≤ dlogme, trivially.
I When k > 1, we have ps = O(n logm/α1/(k−1))



Streaming Lower Bounds: Frequency Moments

Longer Streams
Use more players to make a longer stream? Worsens the best lower
bounds, at least for EQ-DIST.

1. DD(EQ-DISTn,t) ≥ n − 2 · log t ([CK16])
2. DD(EQ-DISTn,t) ≤ n + 1 ([CK16])
3. DD(EQ-DISTn,t) ≤ 2(n − log t + 2)

(tighter upper bound for many players with streaming protocol)



Streaming Lower Bounds: Frequency Moments

Longer Streams
What about lengthening the stream by just having each player put
multiple copies of their input in the stream? But longer streams
don’t produce a larger ratio between the Fk of YES and NO
instances or allow larger fooling sets.

For a fixed stream length m:

nbm
n
ck ≤ Fk ≤ mk

For any two streams s1 and s2 of length m:

s1
s2
≤ nk−1

So we can only argue that at most logα nk−1 distinct streams of
length m must be pairwise distinguished by an α-estimator for Fk .



Streaming Lower Bounds: Frequency Moments

Longer streams
Can show some relationship between space complexity and length.
Define an infinite sequence M = m1,m2 . . . where:

mi = n2i

M = n2, n4, n6, . . .

Can show for all i < j , for any stream s1 of length mi and any
stream s2 of length mj :

Fk(s2)

Fk(s1)
≥ nk

So any α-estimator for non-trivial α < nk−1 must be able to
estimate logn2(m), which requires Ω(log logm) bits as m� n.



Streaming Lower Bounds: Frequency Moments

Turnstile Model
Some vector x ∈ {−m,−m + 1, . . . ,m − 1,m}n as stream of
element-wise ± increments
Negative updates can cancel out positive updates in the turnstile
model to produce a small Fk for a large stream
Have lower bounds ([WW15]):

Theorem
For any ε ∈ (0, 1) and any δ ≥ 2, any algorithm obtaining a (1 + ε)
approximation with probability at least 1− δ to Fk requires
Ω
(
n

1−2
k ε−2 logm log 1

δ

)
. This also implies that algorithms with

high success probability (where δ = O( 1
n )), including all

deterministic algorithms, require Ω
(
n

1−2
k ε−2 logm log n

)
space.



Streaming Lower Bounds: Frequency Moments

Augmentation by problem copies
What if there are g groups of t players, and for each group i , all its
members have i copies of every element from subset of size βn in
an instance of EQ-SPRD, but together the players must compute
the output of each EQ-SPRD problem?
The players can just pass along g sketches in parallel and only use
streams of length βn. The number of copies held doesn’t need to
influence the stream reduction, only which sketch is updated.

Reduction to varying length streams
Seems promising, but how?



Graph Streams: Maximum Matching Size
Estimation(MMSE)

I Input: A bipartite graph Gn = (V1,V2,E ), with one set of
vertices |V2| = n and the other set of vertices |V1| = O(n).
The stream gives each vertex u ∈ V1 and all its neighbors in
V2 every time("vertex-arrival" model).

I Output: An estimate of edges in a maximum cardinality
matching.



Graph Streams: Maximum Matching Size
Estimation(MMSE)

Previous Results on MMSE
I A 2-estimator algorithm: maintain a maximal matching using

ndlog ne space.
I An O(

√
n)-estimator algorithm: maintain a randomized sketch

using O(poly log n) space.
I [KKS14]: an O(poly log n)-estimator using O(poly log n)

space over randomly ordered streams.
I [EHL+15]: Ω(

√
n) space lower bound for randomized one-pass

(3/2− ε)-estimators and Ω(n) space lower bound for
deterministic one-pass (3/2− ε)-estimators. This paper used
reduction from a communication problem called Boolean
Hidden Matching.

Most of the results are more algorithmic.



MMSE: Results from Lower Bounds of EQ-DR

There are t = bγnc players. Each player receives a dβne subset of
n. The problem is to distinguish the the case when all subsets are
equal from the case when each player picks a representative element
from his/her subset so that these representatives are distinct.

EQ − DRβn,t =



1, if |x1| = |x2| = .... = |xt | = dβne
and x1 = ... = xt

0, if |x1| = |x2| = .... = |xt | = dβne
and ∃g : [t]→ x1 ∪ ... ∪ xt

such that g is injective and g(i) ∈ xi , ∀i ∈ [t]

∗, otherwise



MMSE: Results from Lower Bounds of EQ-DR

A weaker version of EQ-SPRD!
The proof for lower bound of Equal-vs-Spread applies to analyzing
lower bound proof of EQ-DR by letting γ = t/n and using the
same construction for y = span(N ). Then we can easily get the
lower bound: for all values 0 < β < 1, ε > 0 and sufficiently large
n, if (β + ε)n ≤ t < n, then we have

DD(EQ-DRβn,t) ≥ (β log(n/t))n − log t



MMSE: Results from Lower Bounds of EQ-DR

Then we can reduce EQ-DRβn,t to MMSE:

I set the two sets of vertices to be V1 = {u1, ..., ut} and
V2 = [n].

I For i ∈ [t], player i adds edges {{ui , j}, j ∈ xi} to construct a
graph G .

I By definition of EQ-DRβn,t , there is an injective mapping from
[t] to [n].

I If EQ-DRβn,t(x1, ..., xt) = 1, then an MCM in G has size βn

I if EQ-DRβn,t(x1, ..., xt) = 0, then an MCM in G has size t

To optimize the original EQ-DRβn,t lower bound, we set t = n/e
and β = 1/(αe)− 1/n for some α < t/βn. Then we can obtain a
lower bound of ( n

eα log e − log n)/2 for an α−estimator.



Maximum Matching in Simultaneous Message Model

Consider a related problem from [DNO14]:

n players together have a bipartite graph G = (V1,V2,E ), with
|V1| = |V2| = n. Each player gets as input the set of neighbors of a
vertex in V1. They send a (possibly) randomized message to a
coordinator simultaneously who has to output a perfect matching
M, but M may contain edges not in E . The goal is to maximize
|M ∩ E |.

This problem can be modified that the coordinator has to just
estimate the maximum matching size. And the lower bound reduced
from EQ-DR in [CK16] can also be generalized to the SM model.



Edge Connectivity
Divert to 2-party CC here....

Dynamic graph connectivity problem XCONN:
Alice and Bob get inputs EA and EB which are edges on the vertex
set [n]. They should determine whether the graph
EA ⊕ EB := (EA ∪ EB)− (EA ∩ EB) is connected.

Reduction EQ to XCONN
Alice and Bob each has a complete graph with size n/2. And they
hold the vectors indicate the edges between these two components.
I Alice adds a complete graph on [n/2] and Bob adds a

complete graph on [n]− [n/2].
I The inputs for EQn2/4 are encoded on the edges in

[n/2]× ([n]− [n/2]): if Alice and Bob hold a same edge, this
corresponds to one equal bit

I When EQ = 1, XCONN = 0; when EQ = 0, XCONN = 1.
Thus the communication complexity of XCONN is at least n2

4 .



Edge Connectivity with strong promise

Still hard!
Even with the promise that (EA ⊕ EB) is disconnected or
(n/2− 1)-connected(i.e. at least need to remove (n/2− 1) edges
to disconnect it), the communication complexity of determine
connectivity is still Ω(n2).
Do the same reduction as the above from EQN2 where N = Ω(n)
and use a binary Error Correcting Code of size 2N

2
, block length

n2/4, and distance n/2− 1.

I if EQ = 1, EA ⊕ EB is disconnected
I if EQ =0, then the corresponding ECC has a distance of

(n/2− 1), so there are at least n/2− 1 edges from Alice’s set
[n/2] to Bob’s [n]− [n/2] and each of them holds a complete
graph, so EA ⊕ EB is (n/2− 1)-connected.



Separation between Deterministic and Randomized protocols

Randomized protocol is more powerful.

Example

I Separation of randomized and deterministic protocols for
XCONN: O(n log3 n) randomized protocol upper bound from
[AGM12].
Alice can send Bob the sketch for connectivity. Bob can solve
XCONN using this sketch.

I The results in [CK16] show that deterministic approximation of
frequency moments within any constant factor requires linear
space(except k = 1), hence demonstrating a separation from
randomized streaming which require only Õ(1) space for k ≤ 2
and o(n) for k > 2 to (1± ε)-approximate Fk .



Randomized Protocols

While randomized protocol is more powerful, in analyzing lower
bounds for them, sometimes need to take use of deterministic
protocols.
One of the most important principles that relate deterministic to
randomized protocols is Yao’s Minimax Principle, which gives an
equivalence between two kinds of randomness in algorithms:
randomness inside the algorithm itself, and randomness on the
inputs. A lot of randomized lower bounds can be proved using its
idea.



Randomized Protocols

Fix some model of computation for computing a Boolean function
F . Let Rε(F ) be the minimal complexity among all randomized
algorithms that compute F (x) with success probability at least
1− ε, for all inputs x . Let Dµ

ε (F ) be the minimal complexity among
all deterministic algorithms that compute F correctly on a fraction
of at least (1− ε) of all inputs, weighed according to a distribution
µ on the inputs. Yao’s principle tells us that these two complexities
are equal if we look at the “hardest” input distribution µ:

Rε(F ) = max
µ

Dµ
ε (F )

Therefore in order to prove a lower bound for randomized protocol
it suffices to find a hard distribution and prove a distributional
lower bound for it.



Randomized Protocols

See more randomized techniques in our report....!
I Symmetrization
I Information Complexity
I Direct Sum argument

And various applications to randomized streaming algorithms.



Other Applications of NIH?

Applications of NIH deterministic multiparty communication
complexity beyond streaming algorithms lower bound exist.
The parity decision tree complexity D⊕(f ) and the t-party XOR
functions F (x1, ...xt) = f (x1 ⊕ ...⊕ xt) have the relationship
CC (k)(F ) ≤ k · D⊕(f )
[Yao15] shows that for 4-party XOR:

D⊕(f ) ≤ O(CC (4)(F )5)



Open Questions

I The lower bounds discussed in this paper are all on the
insertion-only model; could these techniques be used to prove
tighter lower bounds for deterministic estimators in the
turnstile model?

I The l.b. and u.b. of Fk estimation when k ≤ 1 are not very
close. Could we improve it?

I Although the authors said that the lower bound of Fk
estimation when 0 ≤ k < 1 is tight, there is still a logm gap,
where the m is the length of the stream. Could we still
improve it? The lower bound even do not contains m.
Actually, the estimator for Fk and entropy given in this paper
is very simple and rough. Though it is lying in the algorithm
side, but still worth to think could we improve the upper
bound? The estimator given for entropy using 2-pass, is that
possible just using 1-pass?



I The lower bounds shown in graph streams are all consider
bipartite graph. Could we do something on non-bipartite
graph? Or could we do something on MCM rather than
MMSE?

I Let’s formulate the problems in the strong fooling sets paper
into a randomized context. Can we apply the techniques for
randomized protocols presented in this report(symmetrization,
information complexity) to them?

I Following the above question, what kind of hard input
distribution can we construct for EQ-SPRD and EQ-DIST to
apply the above techniques?



Conclusions

I The Strong Fooling Sets method is a powerful tool for
deterministic NIH multiparty communication complexity. Some
bounds obtained in [CK16] seem to be not very tight, but it’s
also non-trivial to tighten these bounds using only tools from
the paper. We may need to utilize other tools or develop new
ones.



Conclusions

I Throughout this project, we have seen many examples
demonstrating sharp contrast, i.e. separation between different
models. A slight change in the communication model can
result in lower/upper bounds with significant difference and
also a change in analysis methods. For example:
private-message versus blackboard model; simultaneous
message passing versus general one-way protocol, not to
mention with-promise versus no-promise and deterministic
versus randomized.

I Promise on the input of a problem sometimes helps with
analysis of lower bounds and reduction to other problems, but
does not necessarily lower the difficulty of the problem. For
example, the edge connectivity problem with strong promise
still requires Ω(n2) space.



Conclusions in terms of good research...

I We surveyed on a few techniques used for analyzing multiparty
communication complexity for this project. However, we have
learned throughout the progress that it’s hard to start a
research project from a specific technique unless one has
profound insight into its applications. It’s more reasonable to
actually start from a specific problem and go on to fix and
detail our model step by step, meanwhile looking for possible
techniques to solve it.

I It’s worthwhile to continue this project by attempting a few
problems we identified even though we got stuck for now. For
some of the open problems we identified, it would help to
make them more specific and eliminate some of our invalid
conjectures with future research.
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